桁架杆系有限元分析及ANSYS实例
- 格式:doc
- 大小:1.13 MB
- 文档页数:16
利用 ANSYS 有限元分析软件对三杆组成的桁架结构进行数值模拟,并根据计算结果,建立优化设计数学模型,在优化处理器指定分析文件, 对三根横截面积为
A1A2A3基本尺寸 B 为变量进行分析对比, 通过数值迭代模拟主要的到如下结论
(1横截面积迭代进行 ANSYS 优化分析时,在分析得到的重量,应力,横截面,三个图中当寻优迭代进行到第 16次主动变量被调整到相同的优化效率时 A1为 1
10
7056
. 4-
⨯A2为 4
10
0000
. 6-
⨯A3为 2
10
3055
. 3-
⨯, 桁架重量取得最小值 130370kg 与初始设计重量 481520.422kg 相比,得到了很大程度的减轻。
符合最优化准则 (2根据计算结果,改进的桁架明显好于其他情况, ansys 软件数值模拟得到最优解,其计算误差很小,完全能满足工程精度要求
ANSYS 程序中进行优化的方法是成功的 , 方法本身收敛速度快 , 精度高 , 稳定性强。
本文使用迭代法得到的最优解都非常接近于或优于所求问题的最优解 , 这表明将迭代法一类的高效优化方法用 APDL 语言嵌套到 AnSYS 程序中来求解优化问题的方法既可行又简便 , 结构优化设计领域具有很好的应用前景。
ansys桁架结构分析实例平面桁架的静力分析摘要:近些年来,ANSYS 工程软件在工程领域内运用的很多,在分析线性有限元模型上比其他软件更具有优势。
而在ANSYS 软件中最常用的是线性静力分析,尽管很多的材料不一样,但结果确基本一致。
本文主要是要对平面桁架进行静力分析。
关键字:线性;桁架;有限元;结构The plane truss static analysisAbstract :ANSYS engineering software engineering field use in recent years, a lot, in the analysis of linear finite element model on more than any other software advantages. The most commonly used in ANSYS linear static analysis, although a lot of the material is not the same, but the result was consistent. This article is mainly for static analysis of plane truss.Key words:Linear; truss; finite element; structure1. 引言结构分析的四个基本步骤是:创建几何模型、生成有限元模型、加载与求解、结果评价与分析。
具体步骤与结构分析类型有关,并且有些步骤可以省略或相互之间交叉,如简单结构的几何模型创建过程可省略而直接创建有限元模型,加载可在处理层也可以在求阶层等,需要根据具体情况以便利原则而定。
2主要步骤结构线性静力分析步骤为:2.1创建几何模型(1)清楚当前数据库。
回到开始层:FINISH 命令。
清楚数据库的操作步骤要在开始层。
清楚数据库:/CLEAR命令。
平面桁架的静力学分析摘要:本文利用有限元分析软件ANSYS12.0,对杆系结构——平面桁架进行静力学分析,通过将分析完成后得到的列表数据与解析解相比较确定ANSYS 分析软件的可靠性。
关键词:平面桁架,有限元,ANSYS1 前言实际结构都是空间结构,所承受的载荷也是空间的。
但是如果结构具有某种特殊形状,所承受的载荷具有某种特殊的性质,就可以将空间问题转化为杆系结构问题、平面问题等。
这样处理后,计算工作量大大减少,而所得到的结果仍可满足精度要求。
所谓杆系结构指的是有长度远远大于其他方向尺寸(10:1)的构件组成的结构,如连续梁、桁架、刚架等。
当结构承受不随时间变化的载荷作用时,需要进行静力学分析,分析其位移、应变、应力等。
2 问题描述及解析解图1为一平面桁架,长度L=0.1m ,各杆横截面面积均为24101m A -⨯=,力N P 2000=,计算各杆的轴向力a F 、轴向应力a σ。
图1 平面桁架根据静力平衡条件,很容易计算出轴向力a F 、轴向应力a σ,如表1所示。
3 有限元分析3.1建模与加载(1)创建单元类型GUI:PreProcessor Menu > Element Type > Add/Edit/Delete > Beam > 2D elastic 3单击“OK”按钮。
(2)定义单元实常数GUI:PreProcessor Menu > Element Type > Add/Edit/Delete > Add> OK在“AREA”文本框中输入1E-4,单击OK。
(3)定义材料属性GUI:PreProcessor > Material Props > Material models > Structural > Linear > Elastic >Isotropic在弹出对话框中键入EX=2e11(单位Mpa),PRXY=0.3。
钢桁架桥梁结构的ANSYS分析摘要本文中采用有限元分析法,在大型有限元分析软件ANSYS平台上分析桥梁工程结构,很好地模拟桥梁的受力、应力情况等。
在静力分析中,通过加载各种载荷,得出结构变形图,找出桥梁的危险区域。
1、问题描述下面以一个简单桁架桥梁为例,以展示有限元分析的全过程。
该桁架桥由型钢组成,顶梁及侧梁,桥身弦杆,底梁分别采用3种不同型号的型钢,结构参数见表1-1。
桥长L=32m,桥高H=5.5m。
桥身由8段桁架组成,每段长4m。
该桥梁可以通行卡车,若这里仅考虑卡车位于桥梁中间位置,假设卡车的质量为4000kg,若取一半的模型,可以将卡车对桥梁的作用力简化为P1 ,P2和P3 ,其中P1= P3=5000 N, P2=10000N,见图1。
1图1桥梁的简化平面模型(取桥梁的一半)2、模型建立在桥梁结构模拟分析中,最常用的是梁单元和壳单元,鉴于桥梁的模型简化,采用普通梁单元beam3。
实体模型的建立过程为先生成关键点,再形成线,从而得到桁架桥梁的简化模型。
3、有限元模型3.1单元属性整个桥梁分成三部分,分别为顶梁及侧梁、弦杆梁、底梁,三者所使用的单元都为beam3单元,因其横截面积和惯性矩不同,所以设置3个实常数。
此外,他们材料都为型钢,材料属性视为相同,取为弹性模量EX为2.1e11 ,泊松比prxy为0.3,材料密度dens为7800。
3.2网格划分线单元尺寸大小为2,即每条线段的1/2。
4、计算4.1约束根据问题描述的要求,该桁架桥梁在x=0处的边界条件为全约束,x=32处的边界条件为y方向位移为0(即UY=0)。
如下图所示。
4.2载荷卡车对桥梁的压力视为3个集中载荷,因为模型只取桥梁的一般,所以3个集中载荷的力之和为20000N,分别为p1=5000N,p2=10000N,p3=5000N。
并将载荷施加在底梁的关键点4,5,6上。
如下图所示。
5、静力分析的计算结果5.1查看结构变形图显示y方向位移显示x方向位移5.2结论从加载后的结构变形图中可以看出,在载荷作用下,桁架桥的中间位置向下发生弯曲变形最为明显而两侧的侧梁变形最小,载荷引起的位移最大处在桥中间位置,随跨中间向两侧递减。
1题目结构如图所示: 杆的弹性模量E 为200000Mpa ,横截面面积A 为3250mm 2。
图 1 桁架示意图2实验材料PC 机一台,Microsoft Visual Studio 软件,Ansys 软件。
3实验原理(1)桁架结构特点桁架结构中的桁架指的是桁架梁,是格一种梁式结构。
桁架结构常用于大跨度的厂房、展览馆、体育馆和桥梁等公共建筑中。
由于大多用于建筑的屋盖结构,桁架通常也被称作屋架。
结构上由光滑铰链连接,载荷只作用于节点处,只约束线位移,各杆只有轴向拉伸和压缩。
(2)平面桁架有限元分析1、单元分析局部坐标系中的干单元如图所示:图 2 局部坐标系中的杆单元以下公式描述了整体位移和局部位移之间的关系:U=Tu 其中U=[ U ix U iy U jx U jy ],T=[cos θ−sin θ00sin θcos θ0000cos θ−sin θ00sin θcos θ],u=[u ix u iy u jx u jy ]U 和u 分别代表整体坐标系和局部坐标系XY 系和局部坐标系xy 下节点i 和节点j 的位移。
T 是变形从局部坐标转换到整体坐标系下的变换阵,类似的局部力和整体力也有以下关系:F=Tf其中F=[ F ixF iy F jx F jy ] ,是整体坐标系下施加在节点i 和j 上的力的分量而且f=[ f ix f iy f jx f jy ],代表局部坐标系下施加在节点i和j上的分量。
在假设的二力杆条件下,杆只能沿着局部坐标系的x方向变形,内力也总是沿着局部坐标系x的方向,因此将y方向的位移设置为0,局部坐标系下内力和位移通过刚度矩阵有如下关系:[f ixf iyf jxf jy]=|k0−k00000−k0k00000|=[U ixU iyU jxU jy]这里k=k eq=AE/L,写成矩阵形式有:f=Ku将f和u替换成F和U有:T-1F=KT-1U将方程两边乘以T得到:F=TKT-1U其中T-1是变换矩阵T的逆矩阵,替换方程中的TKT-1和U矩阵的值,相乘后得到:[F ixF iy F jx F jy]= k[cos2θsinθcosθ−cos2θ−sinθcosθsinθcosθsin2θ−sinθcosθ−sin2θ−cos2θ−sinθcosθcos2θsinθcosθ−sinθcosθ−sin2θsinθcosθsin2θ][U ixU iyU jxU jy]上述方程代表了施加外力、单元刚度矩阵和任意单元节点的整体位移之间的关系。
ANSYS案例——20例ANSYS经典实例】针对【典型例题】3.3.7(1)的模型,即如图3-19所示的框架结构,其顶端受均布力作用,用有限元方法分析该结构的位移。
结构中各个截面的参数都为:113.010PaE=,746.510mI-=,426.810mA-=,相应的有限元分析模型见图3-20。
在ANSYS平台上,完成相应的力学分析。
图3-19框架结构受一均布力作用图3-20单元划分、节点位移及节点上的外载解答对该问题进行有限元分析的过程如下。
1.基于图形界面的交互式操作(tepbytep)(1)进入ANSYS(设定工作目录和工作文件)程序→ANSYS→ANSYSInteractive→Workingdirectory(设置工作目录)→Initialjobname(设置工作文件名):beam3→Run→OK(2)设置计算类型(3)选择单元类型(4)定义材料参数ANSYSMainMenu:Preproceor→MaterialProp→MaterialModel→Struc tural→Linear→Elatic→Iotropic:E某:3e11(弹性模量)→OK→鼠标点击该窗口右上角的“”来关闭该窗口(5)定义实常数以确定平面问题的厚度ANSYSMainMenu:Preproceor→RealContant…→Add/Edit/Delete→Add→Type1Beam3→OK→RealContantSetNo:1(第1号实常数),Cro-ectionalarea:6.8e-4(梁的横截面积)→OK→Cloe(6)生成几何模型生成节点ANSYSMainMenu:Preproceor→Modeling→Creat→Node→InActiveCS→Nodenumber1→某:0,Y:0.96,Z:0→Apply→Nodenumber2→某:1.44,Y:0.96,Z:0→Apply→Nodenumber3→某:0,Y:0,Z:0→Apply→Nodenumber4→某:1.44,Y:0,Z:0→OK生成单元ANSYSMainMenu:Preproceor→Modeling→Create→Element→AutoNum bered→ThruNode→选择节点1,2(生成单元1)→apply→选择节点1,3(生成单元2)→apply→选择节点2,4(生成单元3)→OK(7)模型施加约束和外载左边加某方向的受力ANSYSMainMenu:Solution→DefineLoad→Apply→Structural→Force/Moment→OnNode→选择节点1→apply→Directionofforce:F某→VALUE:3000→OK→上方施加Y方向的均布载荷ANSYSMainMenu:Solution→DefineLoad→Apply→Structural→Preure→OnBeam→选取单元1(节点1和节点2之间)→apply→VALI:4167→VALJ:4167→OK左、右下角节点加约束(8)分析计算(9)结果显示(10)退出系统(11)计算结果的验证与MATLAB支反力计算结果一致。
一、有限元方法的手工计算结果与ansys分析结果的对比1分析的问题描述如图1所示,桁架的杆截面面积为8,由钢制成(E=200GPa)。
用有限元法计算出每个节点的位移以及反作用力。
(1)(2)(3)图1对于上述问题,本文将用手工计算和ansys软件分别计算出结果,对计算出来的结果进行对比。
2手工计算2.1桁架结构的有限元计算方法对于桁架结构,每个单元的刚度矩阵为,(2-1)YX图2其中,为桁架单元在整体坐标系中与X轴的夹角;,A为桁架的截面积,E 为弹性模量,L为桁架长度。
在固体力学问题中,有限元公式通常由如下的一般形式,Ku=F(2-2)其中,K为刚度矩阵,u为位移矩阵,F为载荷矩阵。
运用公式(2-3),就能求出反作用力,R=Ku-F(2-3)其中,R为反作用力矩阵。
2.2计算过程计算每个桁架单元的刚度,用公式(2-1)计算每个每个桁架单元的刚度矩阵,将每个单元放入总刚度矩阵,他们的位置分别为:10-100000 00000000 -10100000 00000000 00000000 00000000 00000000 0000000000000000 00000000 0010-1000 0000000000-101000 00000000 00000000 000000003.9-4.90000-3.9 4.9-4.9 6.10000 4.9-6.1 00000000 00000000 00000000 00000000-3.9 4.90000 3.9-4.9 4.9-6.10000-4.9 6.100000000 00000000 00000000 000 1.28000-1.28 00000000 00000000 00000000 000-1.28000 1.2800000000 00000000 00000000 00000000 0000 3.9 4.9-3.9-4.9 0000 4.9 6.1-4.9-6.1 0000-3.9-4.9 3.9 4.9 0000-4.9-6.1 4.9 6.1将个刚度矩阵相加得到总刚度矩阵为,19.9-4.90-16000-3.9 4.9 -4.9 6.100000 4.9-6.1 -160320-16000 00012.8000-12.8 00-16019.9 4.9-3.9-4.9 0000 4.9 6.1-4.9-6.1 -3.9 4.900-3.9-4.97.80 4.9-6.10-12.8-4.9-6.1025应用边界条件施加载荷,将总刚度矩阵带入式(2-2)得:19.9-4.90-16000-3.9 4.9Ux1 -4.9 6.100000 4.9-6.1Uy1 -160320-16000Ux2 00012.8000-12.8Uy200-16019.9 4.9-3.9-4.9Ux3 0000 4.9 6.1-4.9-6.1Uy3 -3.9 4.900-3.9-4.97.80Ux4 4.9-6.10-12.8-4.9-6.1025Uy4带入边界条件解得:将结果带入(2-3)得:=Fx1Fy1Fx2Fy2Fx3Fy3Fx4Fy43用ansys软件求解(单位统一N,mm,Mpa)(1)选择单元(图3)图3(2)附材料属性(图4)图4(3)创建模型(图5)图5(4)施加载荷(图6)图6(5)求解每个节点的位移(图7)图7节点的反力(图8)图8(6)模型变形图(7)位移等值线分布图4结果对比及分析手算结果ansys 计算结果位移(mm)Ux100Uy100Ux2-0.0016-0.0016Uy2-0.0468-0.0468Ux300Uy300Ux4-0.0066-0.0066Uy4-0.0317-0.0317表1手算结果ansys计算结果节点反力(N)Fx1-1027.8-1027.8 Fy11608.31608.3 Fx2 5.60 Fy2-100 Fx32066.72063.1 Fy32257.12255.4 Fx48.80 Fy4-2.70表2由表1和表2可以看出,手工计算的结果与ansys计算的结果基本一致。
基于ANSYS的26t桁架门式起重机有限元分析ANSYS是一个强大的有限元分析软件,适用于各种结构和材料的工程分析。
本文将结合ANSYS对一种26t桁架门式起重机进行有限元分析。
首先,我们需要建立起重机的CAD模型,并对其中的主要构件进行网格划分。
在此过程中,需要注意选择适当的网格密度以及网格类型,以确保分析结果的准确性和计算效率。
接下来,我们可以使用ANSYS加载程序对起重机进行分析。
在分析过程中,需要考虑外部载荷、材料特性、约束条件等多个因素。
具体来说,一个26t桁架门式起重机外部受力主要包括起重物自重、物体运动时的惯性载荷、环境风力载荷等。
在有限元分析中,我们通常会使用强度计算模型、位移计算模型,以及模态分析模型等多种模型来模拟实际物理情况,并对构件的强度、刚度、自振频率等重要性能进行评估。
在对26t桁架门式起重机进行有限元分析过程中,可以得到以下结果:1. 刚度和强度分布特性:在外部载荷作用下,起重机各部件的刚度和强度分布情况可以得到精确的数值描述,以便进一步计算构件的应力、应变、位移等参数。
2. 位移和变形分布特性:起重机各部件在受力下的变形和位移情况可以得到全面而掌握性的分析结果,帮助了解结构的可操作性和稳定性。
3. 自然频率分布特性:进行模态分析时,可以得到起重机各个部件的自然振动频率以及振动模态分析等信息,帮助了解起重机在使用过程中的自身振动特性和在外部环境影响下的响应。
基于上述分析结果,可以为26t桁架门式起重机的设计、制造和使用提供可靠的依据。
同时,我们还可以在ANSYS上进行优化设计,比如可以在起重机中添加一些支撑结构、加强拉杆等措施,以及选择更优良的材料,来增强其强度和稳定性。
总的来说,利用ANSYS进行26t桁架门式起重机的有限元分析,有助于解决实际施工过程中可能存在的安全隐患,提高施工效率和工程质量。
对于一台26t桁架门式起重机的有限元分析,需要收集的数据包括起重机的CAD模型、材料力学参数、外部载荷等多个方面的数据。
有限元上机分析报告~学院:机械工程专业及班级:机械设计及其自动化08级7班姓名:***学号:题目编号: 2》1.题目概况结构组成和基本数据结构:该结构为一个六根杆组成的桁架结构,其中四根杆组成了直径为800cm的正方形,其他两根杆的两节点为四边形的四个角。
材料:该六根杆截面面积均为100cm2,材料均为Q235,弹性模量为200GPa,对于直径或厚度大于100mm的截面其强度设计值为190Mpa。
载荷:结构的左上和左下角被铰接固定,限制了其在平面内x和y方向的位移,右上角受到大小为2000KN的集中载荷。
结构的整体状况如下图所示:分析任务】该分析的任务是对该结构的静强度进行校核分析以验算该结构否满足强度要求。
2.模型建立物理模型简化及其分析由于该结构为桁架结构,故认为每根杆件只会沿着轴线进行拉压,而不会发生弯曲和扭转等变形。
结构中每根杆为铰接连接,有集中载荷作用于最上方的杆和最右方杆的铰接点。
单元选择及其分析由于该结构的杆可以认为是只受拉压的杆件,故可以使用LINK180单元,该单元是有着广泛工程应用的杆单元,它可以用来模拟桁架、缆索、连杆、弹簧等等。
这种三维杆单元是杆轴方向的拉压单元,每个节点具有三个自由度:沿节点坐标系X、Y、Z方向的平动。
就像铰接结构一样,不承受弯矩。
输入的数据有:两个节点、横截面面积(AREA)、单位长度的质量(ADDMAS)及材料属性。
输出有:单元节点位移、节点的应力应变等等。
由此可见,LINK180单元适用于该结构的分析。
模型建立及网格划分((1)启动Ansys软件,选择Preferences→Structural,即将其他非结构菜单过滤掉。
(2)选择单元类型:选择Preprocessor→Element Type→Add/Edit/Delete→Add,在出现的对话框中选择Link→3d finit stn 180,即LINK180,点击“OK”(3)选择实常数:选择Preprocessor→Real Constants→Add/Edit/Delete→Add,在出现的对话框中的Cross-sectional area中输入100,点击“OK”。
用ANSYS对一桁架结构进行有限元计算有限元分析是一种常用的结构力学计算方法,其可以有效地分析并预测复杂结构的力学行为。
ANSYS是一款广泛使用的有限元分析软件,其提供了强大的功能和工具,可以对各种类型的结构进行有限元计算。
一桁架结构是一种常见的工程结构,其由一根主梁和多个次梁构成。
这种结构广泛应用于桥梁、建筑物和机械设备等领域。
下面将介绍在ANSYS中对一桁架结构进行有限元计算的步骤和方法。
首先,在ANSYS中创建一个新的工程,并选择适当的工作空间和单位。
然后,使用ANSYS的几何建模工具,如DesignModeler或SpaceClaim,创建一桁架结构的三维模型。
可以通过绘制线段、矩形和圆弧等基本几何形状来构建结构。
此外,还可以导入外部CAD文件或使用ANSYS提供的几何建模功能创建结构。
创建完模型后,需要定义结构的材料属性。
根据具体情况,在ANSYS的材料库中选择适当的材料,并将其属性分配给结构中的各个部分。
可以指定材料的弹性模量、泊松比、密度和屈服强度等参数。
接下来,定义结构的约束条件和加载情况。
可以在结构的关键节点上固定约束或施加位移约束,以模拟实际工况中的支撑条件。
此外,在适当的位置上施加集中载荷、分布载荷或压力等加载,以模拟外部力的作用。
在定义好约束条件和加载情况后,需要进行网格划分。
ANSYS提供了多种网格划分算法和工具,如Tetrahedral、Hexahedral和Prism等。
根据模型的复杂程度和预期计算结果的准确性,可以选择适当的网格划分方法。
完成网格划分后,可以开始进行有限元计算。
在ANSYS中,可以选择适当的有限元求解器,并设定求解器的参数。
然后,进行计算并等待计算结果。
在计算完成后,可以对结果进行后处理。
ANSYS提供了丰富的后处理工具和功能,如显示变形、应力云图、位移云图、剖面图等用于分析和解释计算结果。
可以通过这些后处理工具来评估结构的强度和刚度,并与设计要求进行对比。
一、用ANSYS 软件计算杆系结构
1、建立如图所示的杆系结构;
2、定义单元类型:LINK1
3、定义材料弹性模量EX=5e8Pa
4、定义实常数:杆的截面积0.01m 2
5、划分网格:一个杆为一个单元
6、定义约束
7、施加载荷
8、进行求解
9、观察变形图、列出节点位移值、轴向力
二、采用ANSYS 分析,计算节点的位移、反作用力和桁架系统的应力
几何参数及载荷如图3-10所示,杆的弹性模量E 为200000Mpa ,横截面面积A 为3250mm2。
)
3、跨度8m的人字形屋架,左边端点是固定铰链支座,右端是滑动铰链支座,在上面的三个节点上作用有三个向下集中力P=1KN,如图所示,试分析该屋架在三个集中力作用下的变形和内力。
弹性模量EX=207(kN/m2), 泊松比0.3, 杆的截面积0.01m2.。