超分散剂的特点和分类
- 格式:doc
- 大小:28.50 KB
- 文档页数:3
超级分散剂24000成分理论说明1. 引言1.1 概述超级分散剂24000是一种重要的化学材料,在颗粒分散和稳定化过程中具有广泛的应用。
它能够有效地将固体颗粒分散到液体介质中,使其均匀悬浮并保持稳定状态。
这种分散剂具有良好的乳化性能和高度可控的粒径调节能力,适用于多种行业,包括药品、化妆品、涂料、油墨等。
1.2 文章结构本文将以五个主要部分展开对超级分散剂24000成分的理论说明和相关研究的深入探讨。
首先,在引言部分我们将提供概述、文章结构以及论文的目的。
接下来,第二部分将详细介绍超级分散剂24000成分的定义与特点,以及其组成成分和功能。
第三部分将阐述其作用机制和作用方式,并通过实验结果和应用案例进行深入分析。
然后,第四部分将从优势优点和局限性改进方向两个方面探讨该成分的优缺点,并进行可行性和应用前景评估。
最后,我们在结论与展望部分对本文的研究进行总结,并探讨进一步研究的展望。
1.3 目的本文旨在通过理论说明,深入探讨超级分散剂24000成分的组成和功能,以及它在颗粒分散和稳定化的作用机制、方式。
同时通过实验结果与应用案例分析,评估该剂的优点、局限性以及可行性和应用前景。
通过这些方面的综合研究,我们希望能更全面地了解超级分散剂24000成分在多领域应用中的价值,并为进一步研究提供理论支持和指导。
2. 超级分散剂24000成分的理论说明2.1 定义与特点超级分散剂24000是一种广泛应用于化工领域的特殊成分。
它具有极强的分散性和稳定性,能够将固体颗粒稳定地分散在液相中。
其独特的特点使其在各个行业中广泛应用,在化妆品、药物制剂、涂料等领域都能发挥重要作用。
2.2 成分组成及功能超级分散剂24000主要由多种有机高分子化合物组成,这些化合物具有良好的表面活性和吸附能力。
通过与悬浮颗粒作用,超级分散剂24000能够使颗粒表面带电,并形成稳定的胶体体系。
同时,它还能有效降低液相中颗粒之间的相互作用力,从而防止沉积和聚集现象。
超分散剂及其在颜料中的应用
1 超分散剂
超分散剂是一种有机表面活性剂,它与被加工物之间形成一种相
容性结构,能协助物质之间形成微小粒子或颗粒。
所以超分散剂又称
为分散剂、分散助剂或表面活性剂。
在制造中可用来增加分散的润湿性,使产品的分散更加致密。
这种表面活性剂一般有双链、三链脂肪
酸类以及羧酸类、醚类、醇和磺酰柔韧性的结构。
2 在颜料中的应用
超分散剂可以用于制作颜料,使得颜料更加细腻,色泽更加完美。
超分散剂表面活性能力强,在颜料中可促进分散色料,降低水泥稠度;另外由于分散剂能在色料表面形成光滑,发散性好的膜状聚合物,它
不会影响颜料的品质,而且能够降低颜料的粘度,提升耐久性,使涂
料的粉度和抗腐蚀性得以改善。
3 结论
由此可见,超分散剂在颜料中的应用是非常广泛的。
超分散剂不
仅能够有效改善颜料的细腻性、色泽、粘度、耐久性,同时还可以降
低制备、使用成本,使颜料的性能更加稳定、经济、安全。
因此,在
颜料加工中超分散剂发挥着极其重要的作用。
聚乙烯亚胺-接枝聚羟基酸酯超分散剂的制备一、前言超分散剂是一种功能性高分子复合物,具有优异的分散稳定性和流变性能,广泛应用于水性涂料、油墨、纺织印染、胶黏剂等领域。
聚乙烯亚胺(PEI)和聚羟基酸酯(PHA)是两种常用的功能性高分子,PEI具有丰富的官能团和诸多特异的化学性质,对于超分散剂的制备是一种非常合适的单体,而PHA 则具有良好的亲水性和生物相容性,可以提高超分散剂的分散稳定性。
本文主要介绍聚乙烯亚胺-接枝聚羟基酸酯超分散剂的制备和性能分析。
二、实验原理由于PEI和PHA的极性不同,因此两者之间不能直接进行共价键的形成。
鉴于PEI具有高度反应性的胺基和PHA具有含有酐环结构的官能团,可以采用酰胺键的形成方式将两者进行化学反应。
具体步骤分为以下几个部分:1、将PHA分散在二甲苯中制成PHA分散液。
2、将氯乙酰氯溶于二甲苯中,与PHA分散液混合,经过化学反应转化二甲苯溶液中的PHA为氯乙酰基接枝PHA。
3、将氯乙酰基接枝PHA分散到乙醇-水混合物中,待PHA分散液均匀后加入适量PEI,通过酰胺键的形成,PEI成功接枝在PHA表面,从而得到PEI-接枝PHA超分散剂。
三、实验步骤(1)制备PHA分散液将5 g的PHA粉末加入30 mL的二甲苯中,用机械搅拌器在室温下搅拌1 h,使PHA均匀分散在溶剂中,形成PHA分散液。
(2)制备氯乙酰基接枝PHA将0.2 g的氯乙酰氯溶解在10 mL的二甲苯中,缓慢滴入PHA分散液中,同时用机械搅拌器继续搅拌2 h,使其在室温下反应。
反应完毕后,通过离心将沉淀物取出,并用丙酮反复洗涤、离心干燥。
(3)制备PEI-接枝PHA超分散剂将2 g的氯乙酰基接枝PHA分散液加入80 mL的1:1乙醇-水混合物中,加入0.5 mL的三乙胺,用机械搅拌器搅拌1 h,使溶液基本均匀。
再将3 g的PEI分别加入混合溶液中,继续搅拌2 h,使PEI在溶液中接枝在PHA表面。
接着,通过超声处理1 h,将溶剂中的无机盐和气体去除。
CH系列超分散剂在颜料表面处理过程中的使用方法技术发展的主流方向。
与发达国家相比,我国颜料在表面处理技术上存在较大的差距,这一点正是造成我国颜料产品低价出口、高价进口的料产品,在国外进行表面处理后向全世界销售。
虽然某些情况下,国外厂商也向中国颜料生产商提供少量助剂以完成必要的基础性的表面的销售权。
通过这种技术封锁,发达国家将颜料生产过程中的大量污染留给了中国,而将丰厚的利润留给了自己。
这种局面是非常令人痛的核心是表面处理剂。
在众多的表面处理剂中,超分散剂以其优异的表面处理效果而受到特别的青睐。
超分散剂最早出现于二十世纪八十年类助剂的研究。
在多年理论研究工作的基础上,上海三正高分子材料有限公司推出了CH系列共60多个牌号的超分散剂产品。
有关这类产中已有介绍。
本文重点介绍超分散剂在颜料表面处理过程中的使用方法。
颜料表面处理方法通则用于水性颜料的表面处理,可在颜料制备过程中的任何阶段加入;非水溶性助剂一般以乳液或溶液的形式加入颜料浆中,通过调节PH值和或捏合操作以完成颜料化转变,在该操作中引入助剂是一种很好的表面处理方法;另外,所有助剂都可以与颜料干混,通过简单的物理混-7A以及CH-8E、CH-8F、CH-8S在常规颜料的表面处理中经常使用,后文将详述使用方法。
CH-6及CH-13、CH-13B、CH-13E是大多数有机丙醇、三乙醇胺等溶剂配成20-50%溶液,慢慢加入颜料浆中,在适当温度下搅拌1小时以上,使助剂吸附于颜料表面,然后冷却、过滤。
氮颜料、色淀颜料及酞菁颜料等常规品种,而且对缩合偶氮颜料、二噁嗪颜料、喹吖啶酮颜料以及其它许多高档颜料都具有相当好的效果下面是CH系列助剂在常见颜料表面处理中的使用方法料的超分散剂处理联苯胺黄(橙)、甲苯胺红等品种。
而色淀颜料主要包括偶氮色淀颜料,(如P.R.48、49、53、57)及三芳甲烷色淀颜料(如P.B.61),用松香处理的颜料,可将超分散剂溶解于松香皂中,与松香一道对颜料进行表面处理。
CH系列高性能助剂在油墨中的应用王正东陈腊琼上海三正高分子材料有限公司(上海 200233)随着科学技术的发展和人民生活水平的提高,人们对印刷品的要求越来越高。
提供多种多样的印刷承印物和与之相适应的油墨,并改善油墨的应用性能是适应这一要求的必然选择。
油墨助剂在保证产品质量、改善产品应用性能方面起着重要的作用,但是,助剂产品花样繁多,性能各异,如选用不当反而会对油墨产品产生负面影响。
上海三正高分子材料有限公司是一家民营科技企业,专业从事聚合物型助剂的研制、生产和销售。
针对油墨生产和应用中出现的颜料分散不良、流动性差以及乳化、结皮等问题,开发了CH系列助剂,在提高油墨生产效率和质量档次、改善油墨印刷适性等方面效果显著。
自产品投放市场以来赢得了不少油墨生产企业的好评。
目前,国内排名前二十位的油墨生产企业中,80%已应用了CH系列助剂。
CH系列助剂分为超分散剂、抗乳化剂、抗结皮剂三类,主要从颜料分散与油墨流变性质、胶印油墨油水平衡与抗乳化能力以及胶印油墨抗氧化抗结皮能力等方面改进油墨性能。
首先,油墨在制造和印刷过程中都必须有满意而严格的流变性,例如油墨应易于从墨斗倒出来,并传递、转移、分配、抵达印版上,直至最后转印到承印物表面。
而且,诸如飞墨、网点清晰度、密度、印刷一致性、渗透性、光泽、堆版等印刷效果也与油墨的流变性有关,而油墨的流变性很大程度上取决于颜料在粘结料中的分散状况。
CH系列产品中的超分散剂针对油墨体系颜料品种和溶剂品种的差异设计了不同分子结构的产品,以保证颜料在粘结料中的均匀分散且长期稳定,不会出现颜料絮凝、结固、返粗或油墨胶化等现象。
其次,胶印油墨的乳化会给印刷带来实地密度降低、网点扩大、油墨流动性变差、转移性变差、堆版、浮脏等毛病,如何控制乳化率、加快油墨油水平衡速度一直是油墨界技术人员普遍关心的问题。
CH系列产品中的抗乳化助剂能以较低的用量(0.2-0.4%)有效提高胶印油墨抗乳化能力,圆满地解决了胶印油墨的抗乳化问题。
本文摘自再生资源回收-变宝网()分散剂的7种类型分散剂又称湿润分散剂,它除具有湿润作用外,其活性基团一端能吸附在粉碎成细小微粒的颜料表面,另一端溶剂化进入漆基形成吸附层(吸附基越多,链节越长,吸附层越厚),产生电荷斥力(水性涂料)或熵斥力(溶剂型涂料),使颜料粒子长期分散悬浮于漆基中,避免再次絮凝,因而保证制成的色漆体系的贮存稳定。
分散剂有很多种,初步估算,现存世界上有1000多种物质具有分散作用。
现按其结构来区分,可分为以下7种类型。
阴离子型润湿分散剂大部分是由非极性带负电荷的亲油的碳氢链部分和极性的亲水的基团构成。
2种基团分别处在分子的两端,形成不对称的亲水亲油分子结构。
它的品种有:油酸钠c17h33coona、羧酸盐、硫酸酯盐(r—o—so3na)、磺酸盐(r—so3na)等。
阴离子分散剂相容性好,被广泛应用于水性涂料及油墨中。
多元羧酸聚合物等也可应用于溶剂型涂料,并作为受控絮凝型分散剂广泛使用。
阳离子型润湿分散剂非极性基带正电荷的化合物,主要有胺盐、季胺盐、吡啶鎓盐等。
阳离子表面活性剂吸附力强,对炭黑、各种氧化铁、有机颜料类分散效果较好,但要注意其与基料中羧基起化学反应,还要注意不要与阴离子分散剂同时使用。
非离子型润湿分散剂在水中不电离、不带电荷,在颜料表面吸附比较弱,主要在水系涂料中使用。
主要分为乙二醇性和多元醇型,降低表面张力和提高润湿性。
与阴离子型分散剂配合使用作为润湿剂或乳化剂,广泛应用于水性色浆、水性涂料及油墨中。
两性型润湿分散剂是由阴离子和阳离子所组成的化合物。
典型应用的是磷酸酯盐型的高分子聚合物。
这类聚合物酸值较高,可能会影响层间附着力。
电中性型润湿分散剂分子中阴离子和阳离子有机基团的大小基本相等,整个分子呈现中性,但却具有极性。
如油氨基油酸酯c18h35nh3oocc17h33等均属于这种类型,在涂料中应用相当广泛。
高分子型超分散剂高分子型分散剂最为常用,稳定性也最佳。
高分子型分散剂也分为多己内多酯多元醇-多乙烯亚胺嵌段共聚物型分散剂、丙烯酸酯高分子型分散剂、聚氨酯或聚酯型高分子分散剂等,由于它们的锚定基团一头与树脂缠绕吸附,另一头又与颜料粒子包附,因此贮存稳定性是比较好的。
7种常用涂料分散剂类型及应用效果涂料配方中,需要用到很多粉体填料来提高涂料各方面的性能,有效降低成本,但是由于各种填料都属于无机粉体,粒径比较小,比表面积大,粒子间的作用力比较强,容易团聚,因此需要通过合适的分散剂对不同的涂料配方,才能发挥最大的效果。
那么涂料用的涂料分散剂主要有哪几种呢?1.阴离子分散剂大部分是由非极性带负电荷的亲油的碳氢链部分和极性的亲水的基团构成。
2种基团分别处在分子的两端,形成不对称的亲水亲油分子结构。
阴离子分散剂相容性好,被广泛应用于水性涂料及油墨中。
2.阳离子分散剂阳离子分散剂吸附力强,对炭黑、各种氧化铁、有机颜料类分散效果较好,但要注意其与基料中羧基起化学反应,还要注意不要与阴离子分散剂同时使用。
3.非离子型分散剂在水中不电离、不带电荷,在颜料表面吸附比较弱,主要在水系涂料中使用。
与阴离子型分散剂配合使用作为润湿剂或乳化剂,广泛应用于水性色浆、水性涂料及油墨中。
4.双性型润湿分散剂是由阴离子和阳离子所组成的化合物。
典型应用的是磷酸酯盐型的高分子聚合物。
这类聚合物酸值较高,可能会影响层间附着力。
5.电中性型润湿分散剂分子中阴离子和阳离子有机基团的大小基本相等,整个分子呈现中性,但却具有极性,在涂料中应用相当广泛。
6.高分子型超分散剂高分子型分散剂最为常用,稳定性也最佳。
由于它们的锚定基团一头与树脂缠绕吸附,另一头又与颜料粒子包附,因此贮存稳定性是比较好的。
7.自由基型超分散剂采用最新的受控自由基聚合技术(CFPP),可以使分散剂的结构更为规整。
常用的方法有:GTP、ATRP(原子转移自由基聚合)、RAFT(可逆加成断裂链转移可控自由基聚合,包括C-RAFT及S-RAFT等)、NMP、SFRP(稳定自由基聚合)、TEMPO等。
通过采用受控自由基聚合技术,可以使分散剂的相对分子质量分布更为集中,锚定基团也更为集中,效率更高。
综上所述,不同的涂料体系,不同的粉料,采用不同的分散剂,才能充分发挥涂料的性能。
超分散剂的作用机理及应用效果王正东 胡黎明(华东理工大学技术化学物理研究所,上海,200237)超分散剂的分子结构分为锚固基团与溶剂化链两个部分。
锚固基团可通过化学键、氢键及表面增效剂等不同方式紧紧吸附于颜料表面,而溶剂化链伸展于介质中并在颜料表面形成足够厚度的吸附层。
不同颗粒吸附层之间的排斥能可通过熵斥理论模型或渗透模型来计算。
超分散剂独特的作用机理使它具有一系列优异的应用性能。
关键词:超分散剂 作用机理 锚固基团 溶剂化链 应用效果1 超分散剂的分子结构特征超分散剂是一类高效的聚合物型分散助剂,目前已在国外油漆与油墨行业中获得广泛应用。
超分散剂的分子结构分为两个部分[1]:一部分为锚固基团,可紧紧吸附在颜料颗粒表面,防止超分散剂脱附;另一部分为溶剂化链,它与分散介质具有良好的相溶性,能在颜料表面形成足够厚度的保护层。
当吸附有超分散剂的颜料粒子相互靠近时,由于保护层之间的相互作用而使颗粒弹开,从而实现颜料粒子在油墨与油漆介质中的稳定分散,见图1。
与传统的表面活性剂型分散剂相比,超分散 收稿日期:19950911;修改稿收到日期:19960918。
SYNTHESIS TECHNOLOGY DEVELOPMENT OF PHENYLACETIC ACID AND ITS APPLICATIONYan Shuping(H ebei Petrochemical I ndustry Research I nstitute ,S hij iaz huang )Ren Shaofeng(H ebei Chemical Industry S chool ,S hij iaz huang )AbstractSome synthetic methods of phenylacetic acid and its uses w ere summ arized in this paper.T he in-dustralized methods of so dium cy anide ,phenylacetamide ,carborylation are com pared .It is pointed o ut that carbonylation pr ocess in the presence of cobalt carbonyl is the most ideal o ne.It is sugg ested that the installatio ns using carbonylatio n process w ill be built with hig h speed and the old pro cess of o rig-inal plants w ere replaced by car bonylation m ethod .Keywords :phenylacetic acid ;benzyl chlo ride ;cobalt carbonyl ;car bon monox ide ;carbo ny lation1996年11月 精 细 石 油 化 工SPECIA L IT Y CHEM ICA LS 第6期剂的结构特征在于以锚固基团及溶剂化链分别取代了表面活性剂的亲水基团与亲油基团[2]。
超分散剂结构特征与作用机理超分散剂(Superplasticizer)是一种能够显著提高水泥浆体流动性和降低黏度的化学添加剂。
它在混凝土或水泥浆体中起到分散、过氧化物和润湿作用,使混凝土或水泥浆体能够以更流动的状态进行施工,并提高混凝土的强度和耐久性。
本文将探讨超分散剂的结构特征和作用机理。
超分散剂的结构特征:超分散剂的结构特征主要体现在它的分子结构上。
1.主体结构:超分散剂的主体结构通常由高分子聚合物组成,如聚丙烯酸酯和聚羧酸盐等。
这些高分子聚合物具有大量的分散基团和可溶性基团,使其能够与水泥颗粒和水分子发生化学和物理相互作用。
2.分散基团:超分散剂的分散基团通常是高分子聚合物分子链上的有机酸基团,如羧酸基团、磺酸基团等。
这些分散基团能够与水泥颗粒表面发生化学吸附,使其带负电荷,从而产生静电斥力,阻碍水泥颗粒的聚集。
3.可溶性基团:超分散剂的可溶性基团通常是高分子聚合物分子链上的羟基基团、醚基基团等。
这些可溶性基团能够与水分子形成氢键和范德华力,增加水泥浆体的流动性和润湿性。
超分散剂的作用机理:超分散剂通过分散、过氧化物和润湿作用发挥其性能。
1.分散作用:超分散剂中的分散基团能够与水泥颗粒表面形成静电斥力,阻碍水泥颗粒的聚集。
同时,分散基团也能与水泥颗粒表面形成化学键,使其分散均匀,并保持分散状态。
这样,超分散剂能够将水泥颗粒有效地分散在水中,形成稳定的浆体。
2.过氧化物作用:超分散剂中的分散基团还可以与水泥颗粒和水分子形成化学键,同时还能与过氧化氢分子发生反应生成自由基,进而通过氧化作用断裂混凝土中的硫化物、亚硫酸盐等有害物质,从而提高混凝土的强度和耐久性。
3.润湿作用:超分散剂中的可溶性基团能够与水分子形成氢键和范德华力,增加水泥浆体的流动性和润湿性。
这样,超分散剂能够使水泥浆体更容易与骨料和模板接触,降低摩擦力,提高施工效率。
总的来说,超分散剂通过分散作用、过氧化物作用和润湿作用,能够显著提高水泥浆体的流动性和降低黏度,使其能够以更流动的状态进行施工,并提高混凝土的强度和耐久性。
超分散剂的原理及应用研究1. 引言超分散剂是一种重要的化学物质,在许多领域中都有广泛的应用。
本文将介绍超分散剂的原理、分类以及在不同领域中的应用研究。
2. 超分散剂的原理超分散剂是一种具有分散作用的化学物质,它能够将固体颗粒或液体分散在液体介质中,并保持其稳定性。
超分散剂的原理如下:2.1 表面活性剂作用机制超分散剂中的表面活性剂能够降低液体界面的表面张力,使固体颗粒或液体分散在溶液中。
表面活性剂的分子结构具有亲水性和疏水性区域,可以在固体颗粒或液体表面形成包围层,从而增加分散系统的稳定性。
2.2 助剂作用机制除表面活性剂外,超分散剂还可以含有一些助剂,比如分散助剂和稳定助剂。
分散助剂能够通过改变颗粒表面的电荷性质,减小颗粒间的静电作用力,从而达到分散的目的。
稳定助剂则能够与表面活性剂相互作用,增强表面活性剂的分散效果,提高分散系统的稳定性。
3. 超分散剂的分类根据超分散剂的性质和应用特点,可以将其分为以下几类:3.1 聚合物超分散剂聚合物超分散剂主要由高分子化合物构成,具有较高的分散性和稳定性。
常见的聚合物超分散剂有聚乙烯醇、聚丙烯酸钠等。
3.2 矿物超分散剂矿物超分散剂主要由无机物质组成,具有优异的分散和稳定性能。
常见的矿物超分散剂有二氧化硅、氧化铝等。
3.3 有机超分散剂有机超分散剂主要由有机物质构成,具有较高的分散能力和化学稳定性。
常见的有机超分散剂有表面活性剂、聚合物分散剂等。
4. 超分散剂的应用研究超分散剂在许多领域中都有广泛的应用,主要包括以下几个方面:4.1 化妆品行业超分散剂在化妆品行业中被用作乳化剂和稳定剂,能够使各种成分均匀分布在化妆品中,提高产品的质量和稳定性。
4.2 食品工业超分散剂在食品工业中主要用于乳化和稳定食品乳液,如巧克力乳、酸奶等。
4.3 药物制剂超分散剂在药物制剂中的应用也非常广泛,可以用于调整药物颗粒的大小和分布,提高药物的溶解性和生物利用度。
4.4 电子材料超分散剂在电子材料中的应用主要是用于制备高质量的纳米材料,如纳米颗粒、纳米薄膜等。
金团化学品-水性涂料油墨用超分子分散剂研究进展在涂料、油墨等化工产业中,颜填料的分散是涂料油墨制造技术的重要环节。
为了使涂料中的有机、无机颜料得到均一稳定分散,使用分散剂对于涂料贮存、涂装操作、涂膜形成、涂料性能等方面均起重要作用。
分散剂可以将颗粒(无机颗粒和有机颗粒)均匀地分散在分散介质中,同时还能阻碍颗粒的团聚,从而使颗粒悬浮液变得均一稳定。
同时,分散剂的应用效果还能直接影响到所制备产品的品质及性能。
从化学结构而言,分散剂分子结构主要包括锚定基团部分和溶剂化链部分,当前研究者对分散剂的分散机理有诸多报道,其中大部分是从静电斥力学说和空间位阻学说两方面进行解释。
分散剂分散机理(一)静电斥力学说颜料粒子在水性分散体中,甚至在油性分散体中会因不同的原因而带电。
由于粒子带电,其界面周围必然会吸附等量的反电荷,形成双电层结构。
DLVO理论是在扩散双电层基础上建立起来的理论,它是电荷斥力学说的中心,其中解释分散体系稳定的原因主要有两点:(1)胶粒间引力是范德华力。
因胶粒是由许多分子集聚而成,胶粒间的引力是所有分子引力的总和,这种粒子间的引力是远程作用的范德华力,它与距离的3次方成反比,这与一般分子间的引力与距离的6次方成反比不同;(2)粒子间相互排斥的力是由带电粒子产生的。
当粒子相互接近到离子氛产生重叠时,重叠区离子浓度变大,破坏了原先电荷分布的对称性,导致离子氛中电荷重新分布,即离子从浓度较大的重叠区域向外扩散,其结果是正电荷粒子产生斥力,使相近的粒子脱离,理论证明这种斥力为粒子间距离指数函数。
(二)空间位阻稳定机理空间位阻作用,吸附在胶体粒子表面上的高分子聚合物能有效阻止胶体粒子的凝聚,使分散体处于稳定状态,这种稳定作用被称之为空间位阻效应。
实践证实,具有最好空间位阻作用的分散剂应该具有颜料锚定基,通过化学或物理吸附牢固地锚定吸附在颜料粒子的表面上,以确保粒子运动时,分散剂聚合物不会脱吸;还应具有与分散介质(树脂)兼容的自由伸展链部分。
超分散剂的使用方法超分散剂的种类超分散剂有多种不同的类型,每一种类型都有其独特的特点和适用范围。
常见的超分散剂包括硅油、氧化铝、磷酸酯等。
其中,硅油是一种非极性化合物,具有较好的耐候性和耐化学腐蚀性,适用于各种涂料和油墨体系。
氧化铝则是一种无机超分散剂,具有高活性、高分散性的特点,适用于环氧树脂、聚酯等高分子材料。
磷酸酯是一种极性化合物,具有较好的水溶性和乳化性,适用于水性涂料和油墨。
超分散剂的使用方法使用超分散剂时,需要按照一定的配制方式和比例进行添加。
一般来说,超分散剂可以与原料混合在一起,或者在生产过程中直接加入。
对于不同的应用领域和体系,超分散剂的稀释比例和使用时间也会有所不同。
通常,建议先进行小样试验,以确定最佳的添加量和时间。
在配制超分散剂时,需要注意以下几点:首先,要确保所使用的超分散剂符合自己的需求,具有稳定性和安全性;其次,需要了解超分散剂的添加量和作用机理,以便达到最佳效果;最后,要注意超分散剂与其他原料的相容性,避免出现沉淀、分层等现象。
超分散剂的优点超分散剂具有许多优点,使其在许多领域中得到了广泛的应用。
首先,超分散剂可以显著提高粉末的分散性和稳定性,减少团聚现象,从而提高产品的质量和稳定性。
其次,超分散剂还可以提高产品的润滑性和流变性,从而改善加工性能,降低能耗。
此外,超分散剂还可以提高产品的耐腐蚀性和耐候性,延长其使用寿命。
与传统助剂相比,超分散剂具有更高的效用和更广泛的应用范围。
注意事项虽然超分散剂具有许多优点,但在使用时仍需注意一些事项。
首先,要确保所使用的超分散剂符合自己的需求,了解其特点和使用方法。
其次,要注意超分散剂与其他原料的相容性,避免出现不兼容的现象。
此外,要注意超分散剂的储存和使用安全,避免对人体和环境造成伤害。
结论本文对超分散剂的使用方法及其优点进行了详细的介绍。
通过了解超分散剂的定义和作用、种类、使用方法、优点以及注意事项,我们可以更好地理解这一常用添加剂的应用。
超分散剂环评报告(一)超分散剂环评报告1. 引言本报告旨在对超分散剂的环境影响进行评估和分析。
超分散剂是一种重要的化工材料,应用广泛。
然而,其生产和使用可能会对环境造成一定的影响,因此需要进行环评。
2. 背景超分散剂的定义和用途 - 超分散剂是一种具有分散性的化学物质,常用于制造涂料、胶粘剂、颜料等产品。
- 它能够有效分散固体颗粒,降低液体的粘度,提高产品的质量和性能。
环境问题与风险 - 超分散剂的生产可能产生废水、废气和废固体,其中可能含有有害物质。
- 高浓度的超分散剂可能对水体生态系统造成影响。
- 超分散剂的使用和排放可能对空气质量产生一定的负面效应。
3. 环评方法本次环评采用以下方法进行评估: - 对超分散剂的生产工艺进行调研和分析,评估其可能的环境影响。
- 考察超分散剂的使用情况及其可能的环境风险。
- 采用专业软件模拟超分散剂在环境中的扩散和分布情况,评估其对环境的潜在影响。
4. 环评结果通过对超分散剂的环评,得出以下结论: - 超分散剂的生产过程可能会产生一定数量的废水、废气和废固体,但通过合理的处理措施,可以达到排放标准要求。
- 超分散剂在使用过程中,对水体的影响较小,但对空气质量可能产生一定的负面效应。
- 超分散剂的环境风险可以通过合理控制和管理得到有效降低。
5. 建议与措施综合以上环评结果,提出以下建议和措施: - 在超分散剂生产过程中,加强废水、废气和废固体的处理,确保排放符合相关环境要求。
- 鼓励研发更环保、低风险的超分散剂替代品,降低对环境的影响。
- 强化超分散剂的使用管理,减少其不必要的散发和排放。
- 进一步加强对超分散剂的监测和评估,及时发现和解决潜在的环境问题。
6. 结论超分散剂作为重要的化工材料,在生产和使用过程中,可能会对环境产生一定的影响。
通过合理的环评和管理措施,可以最大限度地降低超分散剂的环境风险。
建议相关部门加强对超分散剂的控制和监管,促进其可持续发展和环境友好型应用。
超分散剂的特点和分类
传统的分散剂(表面活性剂)的分子结构含有两个在溶解性和极性上相对的基团,其中一个是较短的极性基,称为亲水基,其分子结构特点使其很容易定向排列在物质表面或两相界面上,降低界面张力,对水性分散体系有很好的分散效果。
但其分子结构存在某些局限性:亲水基团在极性较低或非极性的颗粒表面结合不牢靠,易解吸而导致分散后离子的重新絮凝;亲油基团不具备足够的碳链长度(一般不超过18个碳原子),不能在非水性分散体系中产生足够多的空间位阻效应起到稳定作用。
为了克服传统分散剂在非水分散体系中的局限性,开发了一类新型的超分散剂,对非水体系有独特的分散效果,它的主要特点是:快速充分地润湿颗粒,缩短达到合格颗粒细度的研磨时间;可大幅度提高研磨基料中的固体颗粒含量,节省加工设备与加工能耗;分散均匀,稳定性好,从而使分散体系的最终使用性能显著提高。
超分散剂的分子结构分为两部分:其中一部分为锚固基团,常见的有一R2N、一R3N+、一COOH、一COO-、一SO3H、一SO2-、一PO42-.多元胺、多元醇及聚醚等,它们可通过离子键、共价键、氢键及范德华力等相互作用紧紧地吸附在固体颗粒表面,防止超分散剂脱附;另一部分为溶剂化链,常见的有聚酯、聚醚、聚烯烃及聚丙烯酸酯等,按极性大小可分为三种:低极性聚烯烃链;中等极性的聚酯链或聚丙烯酸酯链等;强极性的聚醚链。
在极性匹配的分散介质中,溶剂化链与分散介质具有良好的相容性,在分散介质中采取比较伸展的构象,在固体颗粒表面形成足够厚度的保护层。
超分散剂作用机理包括锚固机理和溶剂化机理两部分。
锚固机理:①对具有强极性表面的无机颗粒,如钛白、氧化铁或铅铬酸盐等,超分散剂只需要单个锚固基团,此基团可与颗粒表面的强极性基团以离子对的形式结合起来,形成 "单点锚固"。
②对弱极性表面的有机颗粒,如有机颜料和部分无机颜料,一般是用多个锚固基团的超分散剂,这些锚固基团可以通过偶极力在颗粒表面形成"多点锚固"。
③对完全非极性或极性很低的有机颜料及部分炭黑,因不具备可供超分散剂锚固的活性基团,故不管使用何种超分散剂,分散效果均不明显。
此时需使用表面增效剂,这是一种带有极性基团的颜料衍生物,其分子结构及物理化学性质与分散颜料非常相似,它能通过分子间范德华力紧紧地吸附于有机颜料表面,同时通过其分子结构的极性基团为超分散剂锚固基团的吸附提供化学位,通过这种"协同作用",超分散剂就能对有机颜料产生非常有效的润湿和稳定作用。
溶剂化机理:超分散剂的另一部分为溶剂化聚合链,聚合链的长短是影响超分散剂分散性能的一个重要因素。
聚合链长度过短时,立体上效应不明显,不能产生足够的空间位阻; 如果过长,将对介质亲和力过高,不仅会导致超分散剂从粒子表面解吸,而且还会引起在粒子表面过长的链发生反折叠现象,从而
压缩了立体障碍的位阻或者造成与相邻分子的缠结,最终发生粒子的再聚集或絮凝。
按照溶剂化链的单元结构,超分散剂可以大致分为以下四种类型:
①聚酯型超分散剂聚酯型超分散剂的溶剂化链一般通过羟基酸缩聚或内酯化合物开环反应制得,其端基类型及分子量可通过外加单元羧酸或单元醇来控制。
工业上较易得到且适合上述聚合反应的羟基酸及内酯化合物非常少见,较为实用的只有12-羟基硬脂酸及ε-已内酯两种。
在羟基酸及内酯化合物的聚合过程中,用脂肪酸或树脂作封端剂,可以得到端羧基聚酯。
该聚酯在某些情况下可直接用作超分散剂(如用于金属氧化物粉末在芳烃溶剂中的分散),也可以通过一定的化学反应与锚固基团相连。
例如,端羧基聚酯可以和多元胺及醇胺类物质反应生成以一C一NH一或一C一0—为桥基、以胺为锚固基团的超分散剂。
该超分散剂还可以与矿物酸、有机羧酸及颜料磺化衍生物反应,将锚固基团转变为胺盐。
也可以和硫酸二甲酯、硫酸二乙酯等烷基化试剂反应将锚固基团转变为季铵盐。
合适的多元胺或醇胺类物质的例子有多乙烯多胺、N,N-二甲基氨基丙胺、十八氨基丙胺、二乙基乙醇胺等。
端羟基聚酯可以通过端羧基聚酯与环氧化物的反应制得,也可以以单元醇为调聚剂,经羟基酸缩聚或内酯化合物开环反应制得。
端羟基聚酯与锚固基团之间的连接一般以多异氰酸酯为中介物质。
如果多异氰酸酯的官能团数为m,则它在与等量的端羟基聚酯反应后,会在溶剂化链末端形成(m一1〉个一NCO基团。
一NCO本身可以用作锚固基团,也可以与氮气、双氰酸胺及2-硫基-1,4-二酸等物质反应,将锚固基团分别转变成脲基、氰基和羧基。
②聚醚型超分散剂聚醚型超分散剂的溶剂化链主要是环氧乙烷、环氧丙烷、四氢呋喃等物质的均聚物与共聚物,其中主要包括环氧乙烷与环氧丙烷的共聚物。
这类超分散剂的合成可以用锚固基团为起始剂,在加热、加压及催化剂存在的条件下,通过环醚物质的开环反应制得。
例如,用二乙基乙醇胺作起始剂时,得到的下列结构的超分散剂对无机颜料在醇、醚等强极性介质中的分散具有非常
好的效果。
③聚丙烯酸酯型超分散剂丙烯酸酯单体的选择范围非常广泛,其溶剂化链的极性与溶解度参数可以通过改变共聚单体的投料比方便地进行调节,因此适用范围较广。
为了得到单官能团化的溶剂化链,一般选用巯基酸、巯基醇等物质作为链转移剂。
溶剂化链的相对分子质量可以通过改变引发剂与链转移剂的用量来进行控制。
得到的端羧基或端羟基聚丙烯酸酯,其后续反应过程与聚酯型溶剂化链完全相同。
④聚烯烃类超分散剂端基聚异丁烯是其最为重要的代表。
该类超分散剂在烃类介质中具有优异的分散效果,有时可使分散体系中固体颗粒的体积分数达到65%以上,而分散体仍然保持适中的操作黏度。