运筹学单纯形法例题求解过程
- 格式:docx
- 大小:16.99 KB
- 文档页数:2
1(单纯形法)例:Min Z=-2x1-x2+x3 , s.t. 3x1+x2+x360≤x1-x2+2x310≤,x1+x2-x320≤,xj 0≥,解析:对第一、二、三个不等式添加松弛变量x4 x5 x6,则原线性问题化成标准形形式为:(略)因为B=(A4 A5 A6)是一单位矩阵,且b=(60 10 20)T>0 所以基B 是可行基,x4 x5 x6为基变量,x1 x2 x3为非基变量,基B 对应的基本可行解为检验数02>=ξ,故当前解不是最优解,A1列中有三个元素a11 a21 a31 均为正数,取min ()313212111,,a b a b a b =min ()120110360,,=10故转轴元为a21,x1为进基变量,x5为出基变量,进行旋转后得下表(略)它对应的基本可行解为x=(10 0 0 30 0 10)T,其目标函数值为Z0=-20,但,032>=ξ仍不是最优解,(以下的过程跟前面一样)最后得Z0=-35,检验向量0<ξ故为最优解。
故基本可行解x*=(15 ,5 ,0 )Tm 目标函数值为Z0=-35。
2(两阶段法)例 max z=3x1+4x2+2x3 s.t. x1+x2+x3+x430≤, 3x1+6x2+x3-2x40≤, x24≥解:化为标准形形式为min z=-3x1-4x2-2x3 s .t.分别加x5 x6 x7松弛变量,因为该线性规划的系数矩阵的系数矩阵已包含两个单位向量,就是A5=(100)T ,A6=(010)T ,第一阶段只要增加一个人工变量x8得到辅助LP 问题为min g=x8 s.t .以下略,作如下表(略),将表中第三行加到关于g 的第0行中,得到第一张单纯形表(略)按单纯形迭代,表略,第一阶段结束,得到辅助问题的一个最优解,3(对偶单纯形法)例 min 2x1+3x2+4x3, s.t. x1+2x2+x33≥ 2x1-x2+3x34≥ x1 x2 x3 0≥,解:引进非负的剩余变量x40≥,x50≥,将不等式约束化为等式约束直接利用对偶单纯形法求解,b2=- 4<b1=-3,所以x5为出基变量,由以下比值决定进基变量min(3422,----)=21a ξ=1,所以x1为进基变量,以a21为转轴元进行旋转变换得下表(略)因为b1=-1<0,所以x4为出基变量,因为min( )所以x2为进基变量,以a12为转轴得表(略)此时b>0,故原问题最优解为x*=( )T,其最优值Z0=() 4写出下面线性规划的对偶规划。
线性规划的单纯形法
由上表可知:
S=100*X1+80*X2
约束条件:
2*X1+4*X2<=80
3*X1+1*X2<=60
X1,X2>=0
由此可以引入松弛变量:
2*X1+4*X2+k1<=80
3*X1+1*X2+k2<=60
S=100*X1+80*X2+(0)*k1+(0)*k2〃k1和k2为闲置时间不产生利润
可建表
注:Zj为Cj列的每行数分别与XI,X2,k1,k2列相乘然后加的结果(例如:0=0*2+0*3)由表可知X1所在列为最有列,所以K2退出基变组(列表下,红字部分表示交换格)
而由表可知要消去图中绿字所在行必须是图中绿字所在行-2*红字所在行。
消去后的表的情
注:此时由上表可知X2所在列是最有解,切Cj-Zj依旧为正。
所以,此时K1出基(将k1行中各数据*3/10)得到如下表:
注:由表可知此时Cj-Zj为零,如果接续下去此值将会为负所以此时由最大利润为2560即:当摩托车生产16辆,自行车生产12辆是有最大利润。
本题只是为了让和我有一样迷惑的人有一个解题案例,如若真正搞懂线性规划问题的单纯形法还得去以参考书为准。
运筹学单纯形法例题求解过程
(原创版)
目录
一、运筹学单纯形法的基本概念
二、运筹学单纯形法的求解步骤
1.确定基变量和初始基本可行解
2.编制初始单纯形表
3.判断基本可行解是否为最优解
4.迭代求解下一个使目标函数更优的基本可行解
5.重新计算机会费用和检验数
三、运筹学单纯形法的应用实例
正文
一、运筹学单纯形法的基本概念
运筹学单纯形法是一种求解线性规划问题的方法,它是基于数学和统计学的理论基础,通过逐步优化算法,寻找线性规划问题中最优解的一种方法。
线性规划问题是指在一定约束条件下,寻求目标函数的最小值或最大值的问题。
而单纯形法是线性规划问题中最常用的求解方法之一,它通过迭代计算,不断优化基变量,从而得到问题的最优解。
二、运筹学单纯形法的求解步骤
1.确定基变量和初始基本可行解
在求解线性规划问题时,首先需要确定问题的基变量,即在所有变量中选择若干个变量作为基变量。
基变量的选取可以通过寻找单位矩阵的方法来确定。
确定基变量后,可以求出初始基本可行解,即满足所有约束条件的变量值组合。
2.编制初始单纯形表
根据初始基本可行解和线性规划模型提供的信息,可以编制初始单纯形表。
单纯形表是一个包含基变量、非基变量、目标函数系数、约束条件常数项和检验数等元素的矩阵表。
3.判断基本可行解是否为最优解
在求解过程中,需要判断基本可行解是否为最优解。
这可以通过检验数来进行。
检验数是指非基变量与对应约束条件的乘积,如果所有非基变量的检验数都小于等于 0,说明已经达到最优解。
否则,需要继续迭代求解。
4.迭代求解下一个使目标函数更优的基本可行解
如果基本可行解不是最优解,需要通过迭代求解来寻找下一个使目标函数更优的基本可行解。
迭代过程中,需要确定换入变量和换出变量,然后根据换入变量和换出变量生成新的单纯形表,并重新计算机会费用和检验数。
5.重新计算机会费用和检验数
在迭代过程中,需要重新计算机会费用和检验数,以便判断新的基本可行解是否更优。
如果新的基本可行解的检验数满足条件,说明已经找到最优解,可以结束迭代求解过程。
否则,需要继续迭代求解。
三、运筹学单纯形法的应用实例
在实际应用中,运筹学单纯形法可以用于解决各种线性规划问题,例如资源分配问题、物流运输问题、生产计划问题等。