管理运筹学 第5章 单纯形法[精]
- 格式:ppt
- 大小:733.00 KB
- 文档页数:46
第五章 目标规划§5.1重点、难点提要一、目标规划的基本概念与模型特征 (1)目标规划的基本概念。
当人们在实践中遇到一些矛盾的目标,由于资源稀缺和其它原因,这些目标可能无法同时达到,可以把任何起作用的约束都称为“目标”。
无论它们是否达到,总的目的是要给出一个最优的结果,使之尽可能接近制定的目标。
目标规划是处理多目标的一种重要方法,人们把目标按重要性分成不同的优先等级,并对同一个优先等级中的不同目标赋权,使其在许多领域都有广泛应用。
在目标规划中至少有两个不同的目标;有两类变量:决策变量和偏差变量;两类约束:资源约束(也称硬约束)和目标约束(也称软约束)。
(2)模型特征。
目标规划的一般模型:⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥=≥==-+=≤⎪⎭⎫ ⎝⎛+=+-=+-===++--∑∑∑∑.,,2,1;0,;,,2,10,,2,1,,2,1..)(min 1111K k d d n j x K k g d d x c m i b x a t s d d P Z k k j n j k k k j kj i nj j ij Lr K k k rk k rk r ωω 其中r P 为目标优先因子,+-rk rk ωω,为目标权系数,+-k k d d ,为偏差变量。
1)正、负偏差变量,i i d d +-。
正偏差变量i d +表示决策值超过目标值的部分;负偏差变量i d -表示决策值未达到目标值的部分。
因为决策值不可能既超过目标值同时又未达到目标值,所以有0i i d d +-⨯=。
2)硬约束和软约束。
硬约束是指必须严格满足的等式约束和不等式约束;软约束是目标规划特有的。
我们可以把约束右端项看成是要努力追求的目标值,但允许发生正、负偏差,通过在约束中加入正、负偏差变量来表示努力的结果与目标的差距,于是称它们为目标约束。
3)优先因子与权系数。
一个规划问题通常有若干个目标,但决策者在要求达到这些目标时,是有主次或缓急之分的。
《管理运筹学》第四版第5章单纯形法课后习题解析《管理运筹学》第四版课后习题解析第5章单纯形法1.解:表中a 、c 、e 、f 是可⾏解,f 是基本解,f 是基本可⾏解。
2.解:(1)该线性规划的标准型如下。
max 5x 1+9x 2+0s 1+0s 2+0s 3 s.t. 0.5x 1+x 2+s 1=8 x 1+x 2-s 2=100.25x 1+0.5x 2-s 3=6 x 1,x 2,s 1,s 2,s 3≥0(2)⾄少有两个变量的值取零,因为有三个基变量、两个⾮基变量,⾮基变量取零。
(3)(4,6,0,0,-2)T(4)(0,10,-2,0,-1)T(5)不是。
因为基本可⾏解要求基变量的值全部⾮负。
(6)略 3.解:令333x x x ''-'=,z f -=改为求f max ;将约束条件中的第⼀个⽅程左右两边同时乘以-1,并在第⼆和第三个⽅程中分别引⼊松弛变量5x 和剩余变量6x ,将原线性规划问题化为如下标准型:j x '、j x ''不可能在基变量中同时出现,因为单纯性表⾥⾯j x '、j x ''相应的列向量是相同的,只有符号想法⽽已,这时候选取基向量的时候,同时包含两列会使选取的基矩阵各列线性相关,不满⾜条件。
4.解:(1)表5-10,,,,,, 24423 1863 1334 7234max 654332163321543321433214321≥'''=-''+'--=++''+'-+-=+''+'---++-=x x x x x x x x x x x x x x x x x x x x x x x x x x x f 约束条件:(2)线性规划模型如下。
max 6x 1+30x 2+25x 3 s.t. 3x 1+x 2+s 1=40 2x 2+x 3+s 2=50 2x 1+x 2-x 3+s 3=20 x 1,x 2,x 3,s 1,s 2,s 3 ≥0(3)初始解的基为(s 1,s 2,s 3)T ,初始解为(0,0,0,40,50,20)T,对应的⽬标函数值为0。