九年级数学反比例函数知识点归纳和典型例题
- 格式:docx
- 大小:91.19 KB
- 文档页数:15
反比例函数是什么?反比例函数相关知识1:反比例函数是什么?反比例函数的定义域和值域因为x在分母上,所以x≠0,即自变量X的取值范围为非零实数。
而且常数k≠0,因此y≠0,即因变量y的`取值范围为非零实数。
反比例函数的图像及其性质形状:反比例函数的图象是两条双曲线,每一条曲线都无限向X轴Y轴延伸但不与坐标轴相交。
增减性:当k>0时,双曲线的两支分别位于第一、三象限,在每个象限内y随x的增大而减小;当k<0时,双曲线的两支分别位于第二、四象限,在每个象限内y随x的增大而增大。
对称性:反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴y=x和y=-x,对称中心是坐标原点。
2:反比例函数知识点1、反比例函数的表达式X是自变量,Y是X的函数y=k/x=k?1/xxy=ky=k?x^(-1)(即:y等于x的负一次方,此处X必须为一次方)y=kx(k为常数且k≠0,x≠0)若y=k/nx此时比例系数为:k/n2、函数式中自变量取值的范围①k≠0;②在一般的情况下,自变量x的取值范围可以是不等于0的任意实数;③函数y的取值范围也是任意非零实数。
解析式y=k/x其中X是自变量,Y是X的函数,其定义域是不等于0的一切实数y=k/x=k?1/xxy=ky=k?x^(-1)y=kx(k为常数(k≠0),x不等于0)3、反比例函数图象反比例函数的图像属于以原点为对称中心的中心对称的双曲线(hyperbola),反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。
4、反比例函数中k的几何意义是什么?有哪些应用?过反比例函数y=k/x(k≠0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积S=x的绝对值_y的.绝对值=(x_y)的绝对值=|k|研究函数问题要透视函数的本质特征。
反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积S=PM?PN=|y|?|x|=|xy|=|k|。
初中数学反比例函数知识点及经典例题反比例函数是数学中常见的一类函数,它是由一元二次函数反过来得到的。
反比例函数的特点是,自变量的增大导致函数值的减小,自变量的减小导致函数值的增大。
本文将介绍反比例函数的定义、性质、图像、经典例题以及解题思路。
一、反比例函数的定义反比例函数是指当两个变量之间满足一个恒等关系时,这个关系可以用一个反比例关系式表示。
一般地,反比例关系式可以表示为:y=k/x,其中k为常数。
二、反比例函数的性质1.反比例函数的定义域是非零实数集。
2.反比例函数的值域是非零实数集。
3.反比例函数的图像是一个经过原点的开口向右下方的双曲线。
4.当自变量等于1时,反比例函数的值等于常数k。
5.反比例函数的平行于y轴的渐近线是x=0。
三、反比例函数的图像反比例函数的图像是一个经过原点的开口向右下方的双曲线。
当自变量趋于正无穷时,函数值趋近于0;当自变量趋于负无穷时,函数值趋近于无穷大。
反比例函数的图像与x轴和y轴均不相交,且在第一象限和第三象限上。
四、反比例函数的经典例题及解题思路解题思路:根据题意可得到等式3=k/2,解方程可得到k=6、因此,此反比例函数为y=6/x。
例题2:证明反比例函数y=3/x与y=4/x在坐标原点处相交。
解题思路:将两个函数分别带入坐标原点,可得到y1=3/0=0,y2=4/0=0,因此,两个函数在坐标原点处相交。
例题3:如果一个反比例函数的变量x增加了50%,那么函数值y会发生什么变化?解题思路:根据反比例函数的定义可以得到y=k/x,将x增加了50%相当于原来的x增加了1.5倍,那么y就变成了原来的1.5倍。
例题4:如果一个反比例函数的函数值y减少了60%,那么自变量x会发生什么变化?解题思路:根据反比例函数的定义可以得到y=k/x,将y减少了60%相当于原来的y减少了0.6倍,那么x就变成了原来的0.6倍。
总结:反比例函数是一类常见的函数,它的特点是自变量的增大导致函数值的减小,自变量的减小导致函数值的增大。
九年级数学反比例函数知识点归纳和典型例题一、基础知识(一)反比例函数的概念1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;3.反比例函数的自变量,故函数图象与x轴、y轴无交点.(二)反比例函数的图象在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).(三)反比例函数及其图象的性质1.函数解析式:()2.自变量的取值范围:3.图象:(1)图象的形状:双曲线.越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.(2)图象的位置和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.4.k的几何意义如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是).如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为.图1 图25.说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.(2)直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.(3)反比例函数与一次函数的联系.(四)实际问题与反比例函数1.求函数解析式的方法:(1)待定系数法;(2)根据实际意义列函数解析式.2.注意学科间知识的综合,但重点放在对数学知识的研究上.(五)充分利用数形结合的思想解决问题.三、例题分析1.反比例函数的概念(1)下列函数中,y是x的反比例函数的是().A.y=3x B.C.3xy=1 D.(2)下列函数中,y是x的反比例函数的是().A.B.C.D.答案:(1)C;(2)A.2.图象和性质(1)已知函数是反比例函数,①若它的图象在第二、四象限内,那么k=___________.②若y随x的增大而减小,那么k=___________.(2)已知一次函数y=ax+b的图象经过第一、二、四象限,则函数的图象位于第________象限.(3)若反比例函数经过点(,2),则一次函数的图象一定不经过第_____象限.(4)已知a·b<0,点P(a,b)在反比例函数的图象上,则直线不经过的象限是().A.第一象限B.第二象限C.第三象限D.第四象限(5)若P(2,2)和Q(m,)是反比例函数图象上的两点,则一次函数y=kx+m的图象经过().A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限(6)已知函数和(k≠0),它们在同一坐标系内的图象大致是().A.B.C.D.答案:(1)①②1;(2)一、三;(3)四;(4)C;(5)C;(6)B.3.函数的增减性(1)在反比例函数的图象上有两点,,且,则的值为().A.正数B.负数C.非正数D.非负数(2)在函数(a为常数)的图象上有三个点,,,则函数值、、的大小关系是().A.<<B.<<C.<<D.<<(3)下列四个函数中:①;②;③;④.y随x的增大而减小的函数有().A.0个B.1个C.2个D.3个(4)已知反比例函数的图象与直线y=2x和y=x+1的图象过同一点,则当x>0时,这个反比例函数的函数值y随x的增大而(填“增大”或“减小”).答案:(1)A;(2)D;(3)B.注意,(3)中只有②是符合题意的,而③是在“每一个象限内” y随x的增大而减小.4.解析式的确定(1)若与成反比例,与成正比例,则y是z的().A.正比例函数B.反比例函数C.一次函数D.不能确定(2)若正比例函数y=2x与反比例函数的图象有一个交点为(2,m),则m=_____,k=________,它们的另一个交点为________.(3)已知反比例函数的图象经过点,反比例函数的图象在第二、四象限,求的值.(4)已知一次函数y=x+m与反比例函数()的图象在第一象限内的交点为P (x 0,3).①求x 0的值;②求一次函数和反比例函数的解析式.(5)为了预防“非典”,某学校对教室采用药薰消毒法进行消毒.已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧完后,y与x 成反比例(如图所示),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克.请根据题中所提供的信息解答下列问题:①药物燃烧时y关于x的函数关系式为___________,自变量x 的取值范围是_______________;药物燃烧后y关于x的函数关系式为_________________.②研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过_______分钟后,学生才能回到教室;③研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10 分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?答案:(1)B;(2)4,8,(,);(3)依题意,且,解得.(4)①依题意,解得②一次函数解析式为,反比例函数解析式为.(5)①,,;②30;③消毒时间为(分钟),所以消毒有效.5.面积计算(1)如图,在函数的图象上有三个点A、B、C,过这三个点分别向x轴、y 轴作垂线,过每一点所作的两条垂线段与x轴、y轴围成的矩形的面积分别为、、,则().A.B.C.D.第(1)题图第(2)题图(2)如图,A、B是函数的图象上关于原点O对称的任意两点,AC//y轴,BC//x 轴,△ABC的面积S,则().A.S=1 B.1<S<2C.S=2 D.S>2(3)如图,Rt△AOB的顶点A在双曲线上,且S△AOB=3,求m的值.第(3)题图第(4)题图(4)已知函数的图象和两条直线y=x,y=2x在第一象限内分别相交于P1和P2两点,过P1分别作x轴、y轴的垂线P1Q1,P1R1,垂足分别为Q1,R1,过P2分别作x 轴、y轴的垂线P2 Q 2,P2 R 2,垂足分别为Q 2,R 2,求矩形O Q 1P1 R 1和O Q 2P2 R 2的周长,并比较它们的大小.(5)如图,正比例函数y=kx(k>0)和反比例函数的图象相交于A、C两点,过A作x轴垂线交x轴于B,连接BC,若△ABC面积为S,则S=_________.第(5)题图第(6)题图(6)如图在Rt△ABO中,顶点A是双曲线与直线在第四象限的交点,AB⊥x轴于B且S△ABO=.①求这两个函数的解析式;②求直线与双曲线的两个交点A、C的坐标和△AOC的面积.(7)如图,已知正方形OABC的面积为9,点O为坐标原点,点A、C分别在x轴、y轴上,点B在函数(k>0,x>0)的图象上,点P (m,n)是函数(k>0,x>0)的图象上任意一点,过P分别作x轴、y轴的垂线,垂足为E、F,设矩形OEPF在正方形OABC以外的部分的面积为S.①求B点坐标和k的值;②当时,求点P的坐标;③写出S关于m的函数关系式.答案:(1)D;(2)C;(3)6;(4),,矩形O Q 1P1 R 1的周长为8,O Q 2P2 R 2的周长为,前者大.(5)1.(6)①双曲线为,直线为;②直线与两轴的交点分别为(0,)和(,0),且A(1,)和C(,1),因此面积为4.(7)①B(3,3),;②时,E(6,0),;③.6.综合应用(1)若函数y=k1x(k1≠0)和函数(k2 ≠0)在同一坐标系内的图象没有公共点,则k1和k2().A.互为倒数B.符号相同C.绝对值相等D.符号相反(2)如图,一次函数的图象与反比例数的图象交于A、B两点:A(,1),B(1,n).①求反比例函数和一次函数的解析式;②根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.(3)如图所示,已知一次函数(k≠0)的图象与x 轴、y轴分别交于A、B两点,且与反比例函数(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D,若OA=OB=OD=1.①求点A、B、D的坐标;②求一次函数和反比例函数的解析式.(4)如图,一次函数的图象与反比例函数的图象交于第一象限C、D两点,坐标轴交于A、B两点,连结OC,OD(O是坐标原点).①利用图中条件,求反比例函数的解析式和m的值;②双曲线上是否存在一点P,使得△POC和△POD的面积相等?若存在,给出证明并求出点P的坐标;若不存在,说明理由.(5)不解方程,判断下列方程解的个数.①;②.(2)①反比例函数为,一次函数为;②范围是或.(3)①A(0,),B(0,1),D(1,0);②一次函数为,反比例函数为.(4)①反比例函数为,;②存在(2,2).(5)①构造双曲线和直线,它们无交点,说明原方程无实数解;②构造双曲线和直线,它们有两个交点,说明原方程有两个实数解.。
部编版初中九年级数学反比例函数(含中考真题解析答案)反比例函数(含答案)?解读考点知识点 1.反比例函数概念反比例函数概2.反比例函数图象念、图象和性3.反比例函数的性质质 4.一次函数的解析式确定名师点晴会判断一个函数是否为反比例函数。
知道反比例函数的图象是双曲线,。
会分象限利用增减性。
能用待定系数法确定函数解析式。
会用数形结合思想解决此类问题.反比例函5.反比例函数中比例系数的几何能根据图象信息,解决相应的实际问题.数的应用意义能解决与三角形、四边形等几何图形相关的计算和证明。
?2年中考【2021年题组】y?1.(2021崇左)若反比例函数kx的图象经过点(2,-6),则k的值为()A.-12 B.12 C.-3 D.3【答案】A.【解析】y?试题分析:∵反比例函数kx的图象经过点(2,��6),∴k?2?(?6)??12,解得k=��12.故选A.考点:反比例函数图象上点的坐标特征. 2.(2021苏州)若点A(a,b)在反比例函数A.0 B.��2 C.2 D.��6 【答案】B.【解析】y?y?2x的图象上,则代数式ab��4的值为()试题分析:∵点(a,b)反比例函数22b?x上,∴a,即ab=2,∴原式=2��4=��2.故选B.考点:反比例函数图象上点的坐标特征. 3.(2021来宾)已知矩形的面积为10,长和宽分别为x和y,则y关于x的函数图象大致是()- 1 -A. B. C.D.【答案】C.考点:1.反比例函数的应用;2.反比例函数的图象.4.(2021河池)反比例函数y1?mx(x?0)的图象与一次函数y2??x?b的图象交于A,B两点,其中A(1,2),当y2?y1时,x的取值范围是()A.x<1 B.1<x<2 C.x>2 D.x<1或x>2 【答案】B.【解析】试题分析:根据双曲线关于直线y=x对称易求B(2,1).依题意得:如图所示,当1<x<2时,y2?y1.故选B.考点:反比例函数与一次函数的交点问题.- 2 -5.(2021贺州)已知k1?0?k2,则函数y?k1x和y?k2x?1的图象大致是()A.【答案】C.B.C. D.考点:1.反比例函数的图象;2.一次函数的图象. 6.(2021宿迁)在平面直角坐标系中,点A,B的坐标分别为(��3,0),(3,0),点P在y?反比例函数2x的图象上,若△PAB为直角三角形,则满足条件的点P的个数为()A.2个 B.4个 C.5个 D.6个【答案】D.【解析】y?试题分析:①当∠PAB=90°时,P点的横坐标为��3,把x=��3代入此时P点有1个;22y??x得3,所以2222222(x?3)?()(x?3)?()22x,PB=x,AB2 ②当∠APB=90°,设P(x,x),PA=222222(x?3)?()?(x?3)?()222(3?3)xxPA?PB?AB==36,因为,所以=36,整理得2x4?9x2?4?0,所以x2?9?659?65x2?22,或,所以此时P点有4个;y?22y?x得3,所以此时P点有1个;③当∠PBA=90°时,P点的横坐标为3,把x=3代入综上所述,满足条件的P点有6个.故选D.考点:1.反比例函数图象上点的坐标特征;2.圆周角定理;3.分类讨论;4.综合题.7.(2021自贡)若点(的点,并且x1,y1),(x2,y2),(x3,y3y??),都是反比例函数1x图象上y1?0?y2?y3,则下列各式中正确的是()- 3 -A.D.x1?x2?x3 B.x1?x3?x2 C.x2?x1?x3x2?x3?x1【答案】D.【解析】试题分析:由题意得,点(的点,且(x1,y1)xy,xy,(2,2)(3,3)都是反比例函数y??1x上y1?0?y2?y3,xy,xy位于第三象限,x?x3,则(2,2)(3,3)y随x的增大而增大,2 x1,y1)位于第一象限,x1最大,故x1、x2、x3的大小关系是x2?x3?x1.故选D.考点:反比例函数图象上点的坐标特征.8.(2021凉山州)以正方形ABCD两条对角线的交点O为坐标原点,建立如图所示的平面y?直角坐标系,双曲线3x经过点D,则正方形ABCD的面积是()A.10 B.11 C.12 D.13 【答案】C.考点:反比例函数系数k的几何意义.y?9.(2021眉山)如图,A、B是双曲线kx上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为()48A.3 B.3 C.3 D.4- 4 -【答案】B.考点:1.反比例函数系数k的几何意义;2.相似三角形的判定与性质. 10.(2021内江)如图,正方形ABCD位于第一象限,边长为3,点A在直线y=x上,点Ay?的横坐标为1,正方形ABCD的边分别平行于x轴、y轴.若双曲线有公共点,则k的取值范围为()kx与正方形ABCDA.1<k<9 B.2≤k≤34 C.1≤k≤16 D.4≤k<16 【答案】C.【解析】试题分析:点A在直线y=x上,其中A点的横坐标为1,则把x=1代入y=x解得y=1,则Ay?的坐标是(1,1),∵AB=BC=3,∴C点的坐标是(4,4),∴当双曲线kx经过点(1,1)时,k=1;当双曲线kx经过点(4,4)时,k=16,因而1≤k≤16.故选C.考点:1.反比例函数与一次函数的交点问题;2.综合题.- 5 -11.(2021孝感)如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函y?数1ky?x的图象上.若点B在反比例函数x的图象上,则k的值为()A.��4 B.4 C.��2 D.2【答案】A.考点:1.反比例函数图象上点的坐标特征;2.相似三角形的判定与性质;3.综合题.41012.(2021宜昌)如图,市煤气公司计划在地下修建一个容积为m3的圆柱形煤气储存室,则储存室的底面积S(单位:m2)与其深度d(单位:m)的函数图象大致是()- 6 -【答案】A.B. C. D.考点:1.反比例函数的应用;2.反比例函数的图象.y?13.(2021三明)如图,已知点A是双曲线2x在第一象限的分支上的一个动点,连接AO并延长交另一分支于点B,过点A作y轴的垂线,过点B作x轴的垂线,两垂线交于点C,随着点A的运动,点C的位置也随之变化.设点C的坐标为(m,n),则m,n满足的关系式为()A.n??2m B.【答案】B.【解析】n??24n??m C.n??4m D.m2试题分析:∵点C的坐标为(m,n),∴点A的纵坐标是n,横坐标是:n,∴点A 的坐22标为(n,n),∵点C的坐标为(m,n),∴点B的横坐标是m,纵坐标是:m,∴点B2nm?2222mmn??mn,∴m2n2?4,又∵m<0,n>0,∴的坐标为(m,m),又∵n,∴- 7 -mn??2,∴n??2m,故选B.考点:反比例函数图象上点的坐标特征.y?14.(2021株洲)从2,3,4,5中任意选两个数,记作a和b,那么点(a,b)在函数图象上的概率是()12x1111A.2 B.3 C.4 D.6【答案】D.考点:1.列表法与树状图法;2.反比例函数图象上点的坐标特征.OA3?OB4.15.(2021乌鲁木齐)如图,在直角坐标系xOy中,点A,B分别在x轴和y轴,∠y?AOB的角平分线与OA的垂直平分线交于点C,与AB交于点D,反比例函数kx的图象2过点C.当以CD为边的正方形的面积为7时,k的值是()- 8 -A.2 B.3 C.5 D.7 【答案】D.考点:1.反比例函数综合题;2.综合题;3.压轴题. 16.(2021重庆市)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴y?平行,A,B两点的纵坐标分别为3,1.反比例函数ABCD的面积为()3x的图象经过A,B两点,则菱形A.2 B.4 C.22 D.42 【答案】D.【解析】y?试题分析:过点A作x轴的垂线,与CB的延长线交于点E,∵A,B两点在反比例函数3x的图象上且纵坐标分别为3,1,∴A,B横坐标分别为1,3,∴AE=2,BE=2,∴AB=22,S菱形ABCD=底×高=22×2=42,故选D.- 9 -考点:1.菱形的性质;2.反比例函数图象上点的坐标特征;3.综合题.17.(2021临沂)在平面直角坐标系中,直线y??x?2与反比例函数1y?x的图象有2个公共点,则b的取值范围是公共点,若直线y??x?b与反比例函数()y?1x的图象有唯一A.b>2 B.��2<b<2 C.b>2或b<��2 D.b<��2 【答案】C.考点:反比例函数与一次函数的交点问题. 18.(2021滨州)如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转,若∠BOA12y??y?x、x的图象交于B、A两点,则∠OAB的大小的变化趋势为的两边分别与函数()- 10 -A.逐渐变小 B.逐渐变大 C.时大时小 D.保持不变【答案】D.考点:1.相似三角形的判定与性质;2.反比例函数图象上点的坐标特征;3.综合题. 19.(2021扬州)已知一个正比例函数的图象与一个反比例函数的一个交点坐标为(1,3),则另一个交点坐标是.【答案】(��1,��3).【解析】试题分析:∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(1,3)关于原点对称,∴该点的坐标为(��1,��3).故答案为:(��1,��3).考点:反比例函数图象的对称性.20.(2021泰州)点(a��1,1)、(a+1,2)在反比例函数yyy?k?k?0?x的图象上,若y1?y2,- 11 -则a的范围是.【答案】��1<a<1.考点:1.反比例函数图象上点的坐标特征;2.分类讨论.y?21.(2021南宁)如图,点A在双曲线23ky?x(x?0)上,x(x?0)点B在双曲线上(点B在点A的右侧),且AB∥x轴.若四边形OABC是菱形,且∠AOC=60°,则k= .【答案】63.【解析】y?试题分析:因为点A在双曲线2323x(x?0)上,设A点坐标为(a,a),因为四23边形OABC是菱形,且∠AOC=60°,所以OA=2a,可得B点坐标为(3a,a),可得:3a?k=23a=63,故答案为:63.考点:1.菱形的性质;2.反比例函数图象上点的坐标特征;3.综合题. 22.(2021桂林)如图,以?ABCO的顶点O为原点,边OC所在直线为x轴,建立平面直y?角坐标系,顶点A、C的坐标分别是(2,4)、(3,0),过点A的反比例函数交BC于D,连接AD,则四边形AOCD的面积是.kx的图象- 12 -【答案】9.考点:1.平行四边形的性质;2.反比例函数系数k的几何意义;3.综合题;4.压轴题. 23.(2021贵港)如图,已知点A1,A2,…,An均在直线y?x?1上,点B1,B2,…,y??Bn均在双曲线1x上,并且满足:A1B1⊥x轴,B1A2⊥y轴,A2B2⊥x轴,B2A3⊥y轴,…,AnBn⊥x轴,BnAn+1⊥y轴,…,记点An的横坐标为an(n为正整数).若则a2021= .a1??1,【答案】2.- 13 -考点:1.反比例函数图象上点的坐标特征;2.一次函数图象上点的坐标特征;3.规律型;4.综合题.24.(2021南京)如图,过原点O的直线与反比例函数y1,y2的图象在第一象限内分别交于点A,B,且A为OB的中点,若函数y1?1x,则y2与x的函数表达式是.【答案】【解析】y2?4x.试题分析:过A作AC⊥x轴于C,过B作BD⊥x轴于D,∵点A在反比例函数y1?1x上,11∴设A(a,a),∴OC=a,AC=a,∵AC⊥x轴,BD⊥x轴,∴AC∥BD,∴△OAC∽△ACOCOAACOCOA12?????OBD,∴BDODOB,∵A为OB的中点,∴BDODOB2,∴BD=2AC=a,- 14 -2k2y2?2a??4yx,∴k=aOD=2OC=2a,∴B(2a,a),设,∴2与x的函数表达式是:y2?44y2?x.故答案为:x.考点:1.反比例函数与一次函数的交点问题;2.综合题;3.压轴题.y?25.(2021攀枝花)如图,若双曲线kx(k?0)与边长为3的等边△AOB(O为坐标原点)的边OA、AB分别交于C、D两点,且OC=2BD,则k的值为.363【答案】25.- 15 -考点:1.反比例函数图象上点的坐标特征;2.等边三角形的性质;3.综合题.93(x>0)y?x26.(2021荆门)如图,点A1,A2依次在的图象上,点B1,B2依次在x轴的正半轴上,若△A1OB1,△A2B1B2均为等边三角形,则点B2的坐标为.【答案】(62,0).- 16 -考点:1.反比例函数图象上点的坐标特征;2.等边三角形的性质;3.综合题;4.压轴题. 27.(2021南平)如图,在平面直角坐标系xOy中,△OAB的顶点A在x轴正半轴上,OCy?是△OAB的中线,点B,C在反比例函数于.3x(x?0)的图象上,则△OAB的面积等9【答案】2.考点:1.反比例函数系数k的几何意义;2.综合题. 28.(2021烟台)如图,矩形OABC的顶点A、C的坐标分别是(4,0)和(0,2),反比y?例函数kx(x>0)的图象过对角线的交点P并且与AB,BC分别交于D,E两点,连接OD,OE,DE,则△ODE的面积为.- 17 -15【答案】4.考点:1.反比例函数系数k的几何意义;2.反比例函数综合题;3.综合题. 29.(2021玉林防城港)已知:一次函数y??2x?10的图象与反比例函数y?kx(k?0)的图象相交于A,B两点(A在B的右侧).(1)当A(4,2)时,求反比例函数的解析式及B点的坐标;(2)在(1)的条件下,反比例函数图象的另一支上是否存在一点P,使△PAB是以AB为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.(3)当A(a,��2a+10),B(b,��2b+10)时,直线OA与此反比例函数图象的另一支交BC5?BD2,求△ABC的面积.于另一点C,连接BC交y轴于点D.若y?【答案】(1)81?x,B(1,8);(2)(��4,��2)、(��16,2);(3)10.- 18 -【解析】y?试题分析:(1)把点A的坐标代入kx,就可求出反比例函数的解析式;解一次函数与反比例函数的解析式组成的方程组,就可得到点B的坐标;(2)①若∠BAP=90°,过点A作AH⊥OE于H,设AP与x轴的交点为M,如图1,对于y=��2x+10,当y=0时,��2x+10=0,解得x=5,∴点E(5,0),OE=5.∵A(4,2),∴OH=4,AH=2,∴HE=5��4=1.∵AH⊥OE,∴∠AHM=∠AHE=90°.又∵∠BAP=90°,∴∠AME+∠AEM=90°,∠AME+∠MAH=90°,∴∠MAH=∠AEM,∴△AHM∽△EHA,∴AHMH2MH??EHAH,∴12,∴MH=4,∴M(0,0),可设直线AP的解析式为y?mx,1?y?x??2??x?4811?y??y?xy?2?x,2,则有4m?2,解得m=2,∴直线AP的解析式为解方程组?得:??x??4?y??2,∴点P的坐标为(��4,��2)或?.1②若∠ABP=90°,同理可得:点P的坐标为(��16,2).?- 19 -1综上所述:符合条件的点P的坐标为(��4,��2)、(��16,2);?(3)过点B作BS⊥y轴于S,过点C作CT⊥y轴于T,连接OB,如图2,则有BS∥CT,CDCTBC5CTCD3????BD2.∵A(a,��2a+10)∴△CTD∽△BSD,∴BDBS.∵BD2,∴BS,B(b,��2b+10),∴C(��a,2a��考点:1.反比例函数综合题;2.待定系数法求一次函数解析式;3.反比例函数与一次函数的交点问题;4.相似三角形的判定与性质;5.压轴题.【2021年题组】1. (2021年湖南湘潭)如图,A、B两点在双曲线线段,已知S阴影=1,则S1+S2=()y?4x上,分别经过A、B两点向轴作垂- 20 -④若OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.其中正确的结论是(把所有正确的结论的序号都填上).【答案】①④.考点:1.反比例函数综合题;2. 反比例函数的图象和k的几何意义;3.平行四边形、矩形的性质和菱形的性质.- 26 -9. (2021年湖北荆州)如图,已知点A是双曲线y?2x在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线是.y?kx(k<0)上运动,则k的值【答案】��6.考点:1.单动点问题;2.曲线上点的坐标与方程的关系;3. 等边三角形的性质;4.相似三角形的判定和性质;5.锐角三角函数定义;6.特殊角的三角函数值.- 27 -10. (2021年江苏淮安)如图,点A(1,6)和点M(m,n)都在反比例函数y?kx(x>0)的图象上,(1)k的值为;(2)当m=3,求直线AM的解析式;(3)当m>1时,过点M作MP⊥x轴,垂足为P,过点A作AB⊥y轴,垂足为B,试判断直线BP与直线AM的位置关系,并说明理由.【答案】(1)6;(2)y=��2x+8;(3)直线BP与直线AM的位置关系为平行,.- 28 -考点:1.反比例函数综合题;2.待定系数法的应用;3.曲线上点的坐标与方程的关系;4.相似三角形的判定和性质;5.平行的判定.?考点归纳归纳 1:反比例函数的概念基础知识归纳:一般地,函数(k是常数,k0)叫做反比例函数。
九年级反比例函数经典复习资料知识梳理知识点1.反比例函数的概念一般地,如果两个变量X、y之间的关系可以表示成“上或y二k* (k为常X 数,kHO)的形式,那么称y是x的反比例函数。
反比例函数的概念需注意以下儿点:(1)k是常数,且k不为零;(2)£中分母x的指数为1,如y = 4不是反x •比例函数。
(3)自变量x的取值范围是XH O—切实数.(4)自变量y的取值范围是y = 0一切实数。
知识点2.反比例函数的图象及性质反比例函数y =上的图象是双曲线,它有两个分支,这两个分支分别位于第一、X三象限或第二、■四象限。
它们关于原点对称、反比例函数的图象与X轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交。
画反比例函数的图象时要注意的问题:(1)画反比例函数图象的方法是描点法;(2)画反比例函数图象要注意自变量的取值范圉是XH O,因此不能把两个分支连接起来。
(3)由于在反比例函数中,x和y的值都不能为0,所以画出的双曲线的两个分支要分别体现出无限的接近坐标轴,但永远不能达到x轴和y轴的变化趋势。
反比例函数的性质y = -(k^O)的变形形式为xy=k (常数)所以:X(1)其图象的位置是:当k>0时,x、y同号,图象在第一、三象限;当kvO时,x、y异号,图象在第二、四象限。
(2)若点(m,n)在反比例函数y =上的图象上,则点(-m,-n)也在此图象上,X故反比例函数的图象关于原点对称。
(3)当k>0时,在每个象限内,y随x的增大而减小;当kvO时,在每个象限内,y随x的增大而增大;知识点3.反比例函数解析式的确定。
重点:掌握反比例函数解析式的确定难点:山条件来确定反比例函数解析式(1)反比例函数关系式的确定方法:待定系数法,由于在反比例函数关系式y =-中,只有一个待定系数k,确定了k的值,也就确定了反比例函数,因此只X 需给出一组X、y的对应值或图象上点的坐标,代入y =上中即可求出k的值,从而确定反比例函数的关系式。
反比例函数知识点归纳和典型例题反比例函数是数学中的一个重要概念,它在实际问题的建模和解决中起着重要作用。
本文将对反比例函数的知识点进行归纳,并给出一些典型例题进行解析。
一、定义和性质反比例函数又称为倒数函数,其定义如下:设x和y是实数,且y ≠ 0,若存在一个实数k,使得y = k/x,那么称y是x的反比例函数。
反比例函数的图象通常是一个拋物线的两支或一支,不包括原点。
其一般形式为y = k/x,其中k为常数。
反比例函数具有以下重要性质:1. 定义域:定义除数x不能为0,所以反比例函数的定义域为x ≠ 0。
2. 值域:值域取决于常数k的正负,当k > 0时,值域为(0, +∞),当k < 0时,值域为(-∞, 0)。
3. 对称性:反比例函数关于两个坐标轴都具有对称性。
二、图象和特殊情况反比例函数的图象通常是一个拋物线的两支或一支,不包括原点。
当常数k > 0时,反比例函数的图象在第一象限和第三象限,当常数k< 0时,反比例函数的图象在第二象限和第四象限。
对于一些特殊情况,我们有以下例子:1. 当k > 0时,反比例函数的图象经过点(1, k),且在x轴和y轴上有渐进线。
2. 当k < 0时,反比例函数的图象经过点(-1, k),且在x轴和y轴上有渐进线。
三、典型例题解析下面通过几个典型例题来进一步理解反比例函数的应用。
例题1:已知y和x成反比例关系,且当x = 2时,y = 5,求当x =4时,y的值。
解析:根据反比例函数的定义,有y = k/x。
代入已知条件x = 2时,y = 5,得到5 = k/2,解得k = 10。
因此,当x = 4时,y = 10/4 = 2.5。
例题2:如果一根细木杆以每分钟1.5cm的速度缩短,那么多少分钟后长度为60cm?解析:设时间为t分钟,根据题意可以列出反比例函数y = k/x。
已知当t = 0时,y = 100,即杆子的初始长度是100cm。
九年级数学反比例函数重点、难点、综合运用题型☞考点归纳归纳 1:反比例函数的概念基础知识归纳:一般地,函数(k是常数,k0)叫做反比例函数。
反比例函数的解析式也可以写成的形式。
自变量x的取值范围是x0的一切实数,函数的取值范围也是一切非零实数.基本方法归纳:判断一个函数是否是反比例函数关键是看它的横纵坐标的乘积k是否为一个非零常数.注意问题归纳:当k及自变量x的指数含字母参数时,要同时考虑k0及指数为-1.【例1】(株洲)已知反比例函数y=的图象经过点(2,3),那么下列四个点中,也在这个函数图象上的是()A.(﹣6,1)B.(1,6)C.(2,﹣3)D.(3,﹣2)【例2】(宁夏)已知两点、在函数的图象上,当时,下列结论正确的是()A. B. C. D.【例3】(呼和浩特)已知函数的图象在第一象限的一支曲线上有一点A(a,c),点B(b,c+1)在该函数图象的另外一支上,则关于一元二次方程ax2+bx+c = 0的两根x1,x2判断正确的是()A.x1 + x2 >1,x1·x2 > 0 B.x1 + x2 < 0,x1·x2 > 0C.0 < x1 + x2 < 1,x1·x2 > 0 D.x1 + x2与x1·x2 的符号都不确定【例4】【山东省聊城市】如图,一次函数y1=k1x+b的图象和反比例函数y2=的图象交于A(1,2),B (﹣2,﹣1)两点,若y1<y2,则x的取值范围是()A. x<1 B. x<﹣2 C.﹣2<x<0或x>1 D. x<﹣2或0<x<1【例5】(遵义)如图,反比例函数(k>0)的图象与矩形ABCO的两边相交于E,F两点,若E是AB 的中点,S△BEF=2,则k的值为.同步练习1.(山东省威海市乳山市中考一模)在平面直角坐标系中,若一个点的横纵坐标互为相反数,则该点一定不在()A.直线y=-x上 B.直线y=x上 C.双曲线y= D.抛物线y=x2上2.(山东省济南市平阴县中考二模)下列函数中,在0≤x≤2上y随x的增大而增大的是()A.y=-x+1 B.y=x2-4x+5 C.y=x2 D.y=3.(四川省成都市外国语学校中考直升模拟)一次函数y=-kx+4与反比例函数的图象有两个不同的交点,点(-,y1)、(-1,y2)、(,y3)是函数图象上的三个点,则y1、y2、y3的大小关系是()A.y2<y3<y1 B.y1<y2<y3 C.y3<y1<y2 D.y3<y2<y14.(山东省威海市乳山市中考一模)如图,等边△ABC的边长是2,内心O是直角坐标系的原点,点B在y轴上.若反比例函数y=(x>0),则k的值是()A. B.C. D.5.(山东省聊城市中考模拟)如图,一次函数y=x+3的图象与x轴,y轴交于A,B两点,与反比例函数y=的图象相交于C,D两点,分别过C,D两点作y轴,x轴的垂线,垂足为E,F,连接CF,DE.有下列四个结论:①△CEF与△DEF的面积相等;②△AOB∽△FOE;③△DCE≌△CDF;④AC=BD.其中正确的结论是()A.①② B.①②③ C.①②③④ D.②③④6.(山东省青岛市李沧区中考一模)函数(a≠0)与y=a(x﹣1)(a≠0)在同一坐标系中的大致图象是()7.(山西省晋中市平遥县九年级下学期4月中考模拟)点A为双曲线y=(k≠0)上一点,B为x轴上一点,且△AOB为等边三角形,△AOB的边长为2,则k的值为()A.2 B.±2 C. D.±8.(广东省广州市中考模拟)如图,正方形ABCD的顶点B,C在x轴的正半轴上,反比例函数y=(k≠0)在第一象限的图象经过顶点A(m,2)和CD边上的点E(n,),过点E的直线l交x轴于点F,交y轴于点G(0,-2),则点F的坐标是()A.(,0)B.(,0)C.(,0)D.(,0)9.(河北省中考模拟二)如图,两双曲线y=与y=-分别位于第一、四象限,A是y轴上任意一点,B是y=-上的点,C是y=上的点,线段BC⊥x轴于点 D,且4BD=3CD,则下列说法:①双曲线y=在每个象限内,y随x的增大而减小;②若点B的横坐标为3,则点C的坐标为(3,-);③k=4;④△ABC的面积为定值7,正确的有()A.1个 B.2个 C.3个 D.4个10.(湖北省黄石市6月中考模拟)如图,反比例函数(k>0)与一次函数的图象相交于两点A(x1,y1),B(x2,y2),线段AB交y轴与C,当|x1﹣x2|=2且AC=2BC时,k、b的值分别为()A.k=,b=2 B.k=,b=1 C.k=,b= D.k=,b=11.(山东省潍坊市诸城市实验中学中考三模)设函数y=x+5与y=的图象的两个交点的横坐标为a、b,则的值是.12.(四川省成都市外国语学校中考直升模拟)双曲线y=(x>0)与直线y=x在坐标系中的图象如图所示,点A、B在直线上AC、BD分别平行y轴,交曲线于C、D两点,若BD=2AC 则4OC2-OD2的值为.13.(安徽省安庆市中考二模)如图,直线y1=x+b与双曲线y2=交于点A(1,4)和点B,经过点A的另一条直线与双曲线y2=交于点C.则:①直线AB的解析式为y1=x+3;②B(﹣1,﹣4);③当x>1时,y2<y1;④当AC的解析式为y=4x时,△ABC是直角三角形.其中正确的是.(把所有正确结论的序号都写在横线上)14.(山东省日照市中考一模)如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数y=(k≠0,x>0)的图象过点B,E.若AB=2,则k的值为.15.(山东省日照市中考模拟)如图,一次函数y=mx与反比例函数y=的图象交于A、B两点,过点A作AM⊥x轴,垂足为M,连接BM,若S△ABM=3,则k的值是.17.(广东省佛山市初中毕业班综合测试)如图,点P在双曲线(k≠0)上,点P′(1,2)与点P 关于y轴对称,则此双曲线的解析式为.18.(广东省深圳市龙华新区中考二模)如图,已知反比例函数y=(k>0)的图象与正方形OABC的边AB、BC分别交于点D、E.若正方形OABC的边长为1,△ODE是等边三角形,则k的值为.19.(江苏省南京市建邺区中考一模)在同一平面直角坐标系中,反比例函数y1=(k为常数,k≠0)的图象与正比例函数y2=ax(a为常数,a≠0)的图象相交于A.B两点.若点A的坐标为(2,3),则点B的坐标为.20.(浙江省宁波市江东区4月中考模拟)如图,点A在双曲线y=第三象限的分支上,连结AO并延长交第一象限的图象于点B,画BC∥x轴交反比例函数y=的图象于点C,若△ABC的面积为6,则k的值是.(20题图)(21题图)21.(湖北省黄石市6月中考模拟)如图,四边形ABCD是平行四边形,点A(1,0),B(3,1),C(3,3),反比例函数y=(x>0)的图象过点D,点P是一次函数y=kx+3﹣3k(k≠0)的图象与该反比例函数的一个公共点.对于一次函数y=kx+3﹣3k(k≠0),当y随x的增大而增大时,则点P横坐标a的取值范围__________.22.(山东省聊城市中考模拟)如图,已知A(-4,0.5),B(-1,2)是一次函数y=ax+b与反比例函数y=(m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.23.(山东省潍坊市昌乐县中考一模)已知正比例函数y=2x的图象与反比例函数y=(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为P点,已知△OAP的面积为1.(1)求反比例函数的解析式;(2)如果点B为反比例函数在第一象限图象上的点(点B与点A不重合),且点B的横坐标为2,在x轴上求一点M,使MA+MB最小.24.(四川省成都市外国语学校中考直升模拟)如图(1),直线y=k1 x+b与反比例函数y=的图象交于点A(1,6),B(a,3)两点.(1)求k1、k2的值;(2)如图(1),等腰梯形OBCD中,BC∥OD,OB=CD,OD边在x轴上,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点F,当梯形OBCD的面积为12时,请判断FC和EF的大小,并说明理由;(3)如图(2),已知点Q是CD的中点,在第(2)问的条件下,点P在x轴上,从原点O出发,沿x轴负方向运动,设四边形PCQE的面积为S1,△DEQ的面积为S2,当∠PCD=90°时,求P点坐标及S1:S2的值.25.(山东省济南市平阴县中考二模)如图,反比例函数y=(x>0)的图象经过线段OA的端点A,O为原点,作AB⊥x轴于点B,点B的坐标为(2,0),tan∠AOB=.(1)求k的值;(2)将线段AB沿x轴正方向平移到线段DC的位置,反比例函数y=(x>0)的图象恰好经过DC上一点E,且DE:EC=2:1,求直线AE的函数表达式;(3)若直线AE与x轴交于点,N,与y轴交于点M,请你探索线段AM与线段NE的大小关系,写出你的结论并说明理由.26.(山西省晋中市平遥县九年级下学期4月中考模拟)如图,矩形OABC的边OA、OC分别在x轴、y轴的正半轴的正半轴上,且OA=3,OC=2,将矩形OABC向上平移4个单位得到矩形O1A1B1C1.(1)若反比例函数y=和y=的图象分别经过点B、B1,求k1和k2的值;(2)将矩形O1A1B1C1向左平移得到O2A2B2C2,当点O2、B2在反比例函数y=的图象上时,求平移的距离和k3的值.27.(湖北省黄石市6月中考模拟)如图,正方形ABCO的顶点A,C分别在x轴,y轴上,O为坐标原点,点B在第二象限,边长为m,双曲线线y=(x≠0)经过BC的中点H.(1)用m的代数式表示出k;(2)当m=3时,过B作直线BD,分别交x轴,y轴于G、F,分别交双曲线线y=(x≠0)的两个分支于E、D,求证:GE=DF;(3)在(2)的前提下,将直线BD绕点B旋转适当的角度在第二象限与双曲线线y=(x≠0)交于P、Q,分别过P、Q作直线AC的垂线PM、QN,垂足为M、N,试探究PQ与PM+QN的数量关系并证明.九年级数学反比例函数重点、难点、综合运用题型参考答案☞考点归纳归纳 1:反比例函数的概念基础知识归纳:一般地,函数(k是常数,k0)叫做反比例函数。
考点梳理:初中反比例函数章节必考点全梳理(精编Word)必考点1:反比例函数的概念掌握一般地,形如y=kx(k≠0)的函数称为反比例函数,反比例函数的等价形式①y=kx(k≠0)②y=kx﹣1(k≠0)③xy=k(k≠0)例题1下列函数:①y=x﹣2,②y=3x,③y=x﹣1,④y=2x+1,y是x的反比例函数的个数有()A.0个B.1个C.2个D.3个变式1若函数y=(m2﹣3m+2)x|m|﹣3是反比例函数,则m的值是()A.1B.﹣2C.±2D.2变式2已知函数y=(m+1)x m2−2是反比例函数,则m的值为.变式3下列函数中,y是x的反比例函数有()(1)y=3x;(2)y=−2x;(3)y=x3;(4)﹣xy=3;(5)y=2x+1;(6)y=1x2;(7)y=2x﹣2;(8)y=kx.A.(2)(4)B.(2)(3)(5)(8)C.(2)(7)(8)D.(1)(3)(4)(6)必考点2:反比例函数的图象(结合一次、二次函数)对于一次函数的图象、反比例函数的图象以及二次函数的图象,掌握一次函数、反比例函数、二次函数图象与系数的关系是解题的关键.例题2若函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y=ax+b和y=cx在同一平面直角坐标系中的图象大致是()A.B.C.D.变式4一次函数y=ax+b与反比例函数y=cx的图象如图所示,则二次函数y=ax2+bx+c的大致图象是()A.B.C.D.变式5函数y=kx与y=ax2+bx+c的图象如图所示,则函数y=kx﹣b的大致图象为()A.B.C.D.变式6抛物线y=ax2+bx+c的图象如图所示,那么一次函数y=bx+b2﹣4ac与反比例函数y= (a+b+c)(a−b+c)x在同一坐标系内的图象大致是()A.B.C.D.必考点3:反比例函数图象上点的坐标特征(比较大小)反比例函数图象上点的坐标特征:当k>0时,图象分别位于第一、三象限,横纵坐标同号;当k<0时,图象分别位于第二、四象限,横纵坐标异号.例题3若(﹣1,y1),(2,y2),(3,y3)三点均在反比例函数y=m2+1x的图象上,则下列结论中正确的是()A.y1>y2>y3B.y1>y3>y2C.y3>y1>y2D.y2>y3>y1变式7函数y=−k2−1x(k为常数)的图象经过点A(x1,y1)、B(x2,y2)、C(x3,y3),若x1<x2<0<x3,则y1、y2、y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y3变式8已知点A(x1,2),B(x2,4),C(x3,﹣1)都在反比例函数y=kx(k<0)的图象上,则x1,x2,x3的大小关系是()A.x3<x1<x2B.x2<x1<x3C.x1<x3<x2D.x1<x2<x3变式9若点A(a﹣1,y1),B(a+1,y2)在反比例函数y=kx(k<0)的图象上,且y1>y2,则a的取值范围是()A.a<﹣1B.﹣1<a<1C.a>1D.a<﹣1或a>1必考点4: 反比例函数图象上点的坐标特征(与四边形结合)反比例函数图象上点的坐标特征:当k >0时,图象分别位于第一、三象限,横纵坐标同号;当k <0时,图象分别位于第二、四象限,横纵坐标异号.例题4 在平面直角坐标系中,矩形ABCD 的顶点A (1,0),D (0,2),点B 在第一象限,BD ∥x 轴,若函数y =kx(k >0,x >0)的图象经过矩形ABCD 的对角线的交点,则k 的值为( )A .4B .5C .8D .10变式10 如图,在平面直角坐标系中,A 是反比例函数y =kx (k >0,x >0)图象上一点,B 是y 轴正半轴上一点,以OA 、AB 为邻边作▱ABCO .若点C 及BC 中点D 都在反比例函数y =−4x(x <0)图象上,则k 的值为( )A .6B .8C .10D .12变式11 如图,在平面直角坐标系中,四边形ABCD 是菱形,AB ∥x 轴,CD 与y 轴交于点E ,反比例函数y =k x(x >0)图象经过顶点B 、C ,已知点B 的横坐标为5,AE =2CE ,则点C 的坐标为( )A .(2,203) B .(2,83)C .(3,203) D .(3,83)变式12如图,在平面直角坐标系中,一次函数y=43x+4的图象与x轴、y轴分别相交于点B,点A,以线段AB为边作正方形ABCD,且点C在反比例函数y=kx(x<0)的图象上,则k的值为()A.﹣12B.﹣42C.42D.﹣21必考点5: 反比例函数系数k 的几何意义(面积)反比例函数y =kx (k ≠0)系数k 的几何意义:从反比例函数y =kx (k ≠0)图象上任意一点向x 轴和y 轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.例题5 如图,两个反比例函数y =4x 和y =2x 在第一象限内的图象分别是C 1和C 2,设点P 在C 1上,P A ⊥x 轴于点A ,交C 2于点B ,则△POB 的面积为( )A .1B .2C .4D .无法计算变式13 如图直线y =mx 与双曲线y =k x 交于点A 、B ,过A 作AM ⊥x 轴于M 点,连接BM ,若S △AMB =2,则k 的值是( )A .1B .2C .3D .4变式14 如图,点A 与点B 分别在函数y =k1x (k 1>0)与y =k2x (k 2<0)的图象上,线段AB 的中点M 在y 轴上.若△AOB 的面积为2,则k 1﹣k 2的值是( )A .2B .3C .4D .5变式15如图,是反比例函数y=k1x和y=k2x(k1<k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若S△AOB=2,则k2﹣k1的值为.必考点6: 反比例函数系数k 的几何意义(规律题)反比例函数y =kx (k ≠0)系数k 的几何意义:从反比例函数y =kx (k ≠0)图象上任意一点向x 轴和y 轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.例题6 如图,已知A 1,A 2,A 3,…A n ,…是x 轴上的点,且OA 1=A 1A 2=A 2A 3=…=A n ﹣1A n …=1,分别过点A 1,A 2,A 3,…A n ,…作x 轴的垂线交反比例函数y =1x (x >0)的图象于点B 1,B 2,B 3,…,B n ,…,过点B 2作B 2P 1⊥A 1B 1于点P 1,过点B 3作B 3P 2⊥A 2B 2于点P 2…,记△B 1P 1B 2的面积为S 1,△B 2P 2B 3的面积为S 2…,△B n P n B n +1的面积为S n .则S 1+S 2+S 3+…+S 20= .变式16 【变式6-1】(2019•蜀山区一模)如图,点B 在反比例函数y =2X(x >0)的图象上,过点B 分别与x 轴和y 轴的垂线,垂足分别是C 0和A ,点C 0的坐标为(1,0),取x 轴上一点C 1(32,0),过点C 1作x 轴的垂线交反比例函数图象于点B 1,过点B 1作线段B 1A 1⊥BC 0交于点A 1,得到矩形A 1B 1C 1C 0,依次在x 轴上取点C 2 (2,0),C 3(52,0)…,按此规律作矩形,则矩形A n B n ∁n C n ﹣1(n 为正整数)的面积为 .变式17如图,在反比例函数的图象y=4x(x>0)上,有点P1,P2,P3,P4,…,点P1横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P1,P2,P3,P4,…分别作x轴,y轴的垂线,图中所构成的阴影部分的面积从左到右依次为S1,S2,S3,…则S1+S2+S3+…+S n=.变式18如图,已知反比例函数y=1x的图象,当x取1,2,3,…n时,对应在反比例图象上的点分别为M1、M2、M3…M n,则S△P1M1M2+S△P2M2M3+…S△Pn﹣1Mn﹣1Mn=.必考点7: 待定系数法求反比例函数解析式反比例函数y =kx (k ≠0)系数k 的几何意义:从反比例函数y =kx (k ≠0)图象上任意一点向x 轴和y 轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.例题7 已知反比例函数y =kx(k ≠0),当x =﹣3时,y =43. (1)求y 关于x 的函数表达式. (2)当y =﹣4时,求自变量x 的值.变式19 已知y 与x ﹣1成反比例,且当x =4时,y =1. (1)求y 与x 的函数关系式;(2)判断点(﹣2,﹣1)是否在该函数图象上.变式20已知y=y1﹣y2,y1与x成反比例,y2与x﹣2成正比例,当x=3时,y=5;当x=1时,y=﹣1.(1)y与x的函数表达式;(2)当x=﹣1时,求y的值.变式21已知y=y1+y2,y1与x2成正比例,y2与x+1成反比例,当x=0时,y=2;当x=1时,y=2.求y 与x的函数关系式,并写出自变量的取值范围.必考点8:反比例函数与一次函数交点问题例题8如图,等腰直角△ABC位于第二象限,BC=AC=2,直角顶点C在直线y=﹣x上,且点C的横坐标为﹣3,边BC,AC分别平行于x轴、y轴.若双曲线y=kx与△ABC的边AB有2个公共点,则k的取值范围为.变式22如图,直线y=1与反比例函数y=kx(x<0),y=2x(x>0)的图象分别交于点A和点B,线段AB的长是8,若直线y=n(x+2)(n≠0)与y=2x(x>0)的图象有交点,与y=kx(x<0)无交点,则n的取值范围为()A.﹣6<n<0B.0<n<6 C.﹣6<n<0或0<n<6D.0<n<2变式23在平面直角坐标系xOy中,过点A(﹣5,0)作垂直于x轴的直线AB,直线y=x+b与双曲线y=−4 x相交于点P(x1,y1)、Q(x2,y2),与直线AB相交于点R(x3,y3).若y1>y2>y3时,则b的取值范围是()A.b>4B.b>4或b<﹣4C.−295<b<﹣4或b>4D.4<b<295或b<﹣4变式24平面直角坐标系中,函数y=4x(x>0)的图象G经过点A(4,1),与直线y=14x+b的图象交于点B,与y轴交于点C.其中横、纵坐标都是整数的点叫做整点.记图象G在点A、B之间的部分与线段OA、OC、BC围成的区域(不含边界)为W.若W内恰有4个整点,结合函数图象,b的取值范围是()A.−54≤b<1或74<b≤114B.−54≤b<1或−74<b≤114C.−54≤b<﹣1或−74<b≤114D.−54≤b<﹣1或74<b≤114必考点9:反比例与一次函数综合例题9如图,一次函数y=kx+b的图象与反比例函数y=mx的图象交于点A(1,4)、B(4,n).(1)求这两个函数的表达式;(2)请结合图象直接写出不等式kx+b≤mx的解集;(3)若点P为x轴上一点,△ABP的面积为6,求点P的坐标.变式25如图,一次函数y=kx+b与反比例函数y=mx的图象交于点A(1,6),B(3,n)两点.与x轴交于点C.(1)求一次函数的表达式;(2)若点M在x轴上,且△AMC的面积为6,求点M的坐标.(3)在y轴上找一点P,使P A+PB的值最小,直接写出满足条件的点P的坐标是.变式26如图,在平面直角坐标系中,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=mx(m≠0)的图象相交于第一、三象限内的A(3,5),B(a,﹣3)两点,与x轴交于点C.(1)求该反比例函数和一次函数的解析式;(2)在y轴上找一点P使PB﹣PC最大,求PB﹣PC的最大值及点P的坐标;(3)直接写出不等式kx+b>mx的解集.变式27 如图,一次函数y =kx +b 的图象与反比例函数y =mx(x >0)的图象在第一象限交于点A ,B ,且该一次函数的图象与y 轴正半轴交于点C ,过A ,B 分别作y 轴的垂线,垂足分别为E ,D .已知A (4,1),CE =4CD .(1)求反比例函数的解析式. (2)求一次函数的解析式. (3)根据图象直接写出m x<kx +b 时x 的取值范围.(4)若点M 为一次函数图象上的动点,过点M 作MN ∥y 轴,交反比例函数y =m x(x >0)的图象于点N ,连结ME ,NE ,当△MNE 的面积为98时,直接写出点M 的横坐标.必考点10:反比例函数的应用例题10为了做好校园疫情防控工作,校医每天早上对全校办公室和教室进行药物喷洒消毒,她完成3间办公室和2间教室的药物喷洒要19min;完成2间办公室和1间教室的药物喷洒要11min.(1)校医完成一间办公室和一间教室的药物喷洒各要多少时间?(2)消毒药物在一间教室内空气中的浓度y(单位:mg/m3)与时间x(单位:min)的函数关系如图所示:校医进行药物喷洒时y与x的函数关系式为y=2x,药物喷洒完成后y与x成反比例函数关系,两个函数图象的交点为A(m,n).当教室空气中的药物浓度不高于1mg/m3时,对人体健康无危害,校医依次对一班至十一班教室(共11间)进行药物喷洒消毒,当她把最后一间教室药物喷洒完成后,一班学生能否进入教室?请通过计算说明.变式28学校的学生专用智能饮水机里水的温度y(℃)与时间x(分)之间的函数关系如图所示,当水的温度为20℃时,饮水机自动开始加热,当加热到100℃时自动停止加热(线段AB),随后水温开始下降,当水温降至20℃时(BC为双曲线的一部分),饮水机又自动开始加热……根据图中提供的信息,解答下列问题:(1)分别求出饮水机里水的温度上升和下降阶段y与x之间的函数表达式.(2)下课时,同学们纷纷用水杯去盛水喝.此时,饮水机里水的温度刚好达到100℃.据了解,饮水机1分钟可以满足12位同学的盛水要求,学生喝水的最佳温度在30℃~45℃,请问在大课间30分钟时间里有多少位同学可以盛到最佳温度的水?变式29实验数据显示,一般成人喝50毫升某品牌白酒后,血液中酒精含量y(毫克/百亳升)与时间x(时)变化的图象,如图(图象由线段OA与部分双曲线AB组成).国家规定,车辆驾驶人员血液中的酒精含量大于或等于20(毫克/百毫升)时属于“酒后驾驶”,不能驾车上路.(1)求部分双曲线AB的函数解析式;(2)参照上述数学模型,假设某驾驶员晚上22:30在家喝完50毫升该品牌白酒,第二天早上7:00能否驾车去上班?请说明理由.变式30饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热,此过程中水温y(℃)与开机时间x(分)满足一次函数关系,当加热到100℃时自动停止加热,随后水温开始下降,此过程中水温y (℃)与开机时间x(分)成反比例关系,当水温降至20℃时,饮水机又自动开始加热……,重复上述程序(如图所示),根据图中提供的信息,解答问题:(1)当0≤x<8时,求水温y(℃)与开机时间x(分)的函数关系式.(2)求图中t的值;(3)若在通电开机后即外出散步,请你预测散步42分钟回到家时,饮水机内水的温度约为多少℃?必考点11:反比例函数存在性问题(三角形)例题11如图,反比例函数y1=kx和一次函数y2=mx+n相交于点A(1,3),B(﹣3,a),(1)求一次函数和反比例函数解析式;(2)连接OA,试问在x轴上是否存在点P,使得△OAP为以OA为腰的等腰三角形,若存在,直接写出满足题意的点P的坐标;若不存在,说明理由.变式31如图,一次函数y=﹣x+3的图象与反比例函数y=kx(k≠0)在第一象限的图象交于A(1,a)和B两点,与x轴交于点C.(1)求反比例函数的解析式;(2)若点P在x轴上,且△APC的面积为5,求点P的坐标;(3)若点P在y轴上,是否存在点P,使△ABP是以AB为一直角边的直角三角形?若存在,求出所有符合条件的P点坐标;若不存在,请说明理由.变式32如图,关于x的一次函数y=k1x+b的图象与反比例函数y=k2x的图象相交于A(﹣2,8),B(4,m)两点.(1)求一次函数与反比例函数的解析式.(2)设一次函数y=k1x+b的图象与x轴,y轴的交点分别为M,N,P是x轴上一动点,当以P,M,N三点为顶点的三角形是等腰三角形时,求点P的坐标.变式33如图,函数y=kx(x>0)的图象过点A(n,2)和B(85,2n﹣3)两点.(1)求n和k的值;(2)将直线OA沿x轴向左移动得直线DE,交x轴于点D,交y轴于点E,交y=kx(x>0)于点C,若S△ACO=6,求直线DE解析式;(3)在(2)的条件下,第二象限内是否存在点F,使得△DEF为等腰直角三角形,若存在,请直接写出点F的坐标;若不存在,请说明理由.必考点12: 反比例函数存在性问题(四边形)例题12 已知,矩形OCBA 在平面直角坐标系中的位置如图所示,点C 在x 轴的正半轴上,点A 在y 轴的正半轴上,已知点B 的坐标为(2,4),反比例函数y =m x (x >0)的图象经过AB 的中点D ,且与BC 交于点E ,顺次连接O ,D ,E .(1)求线段DE 的长;(2)在线段OD 上存在一点M ,当△MOE 的面积等于34时,求点M 的坐标; (3)平面直角坐标系中是否存在一点N ,使得O 、D 、E 、N 四点构成平行四边形?若存在,请直接写出N 的坐标;若不存在,请说明理由.变式34如图1,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点B在反比例函数y=kx(k>0)的第一象限内的图象上,OA=4,OC=3,动点P在y轴的右侧,且满足S△PCO=38S矩形OABC.(1)若点P在这个反比例函数的图象上,求点P的坐标;(2)连接PO、PC,求PO+PC的最小值;(3)若点Q是平面内一点,使得以B、C、P、Q为顶点的四边形是菱形,请你直接写出满足条件的所有点Q的坐标.变式35如图,四边形OBAC是矩形,OC=2,OB=6,反比例函数y=kx的图象过点A.(1)求k的值.(2)点P为反比例图象上的一点,作PD⊥直线AC,PE⊥x轴,当四边形PDCE是正方形时,求点P的坐标.(3)点G为坐标平面上的一点,在反比例函数的图象上是否存在一点Q,使得以A、B、Q、G为顶点组成的平行四边形面积为14?若存在,请求出点G的坐标;若不存在,请说明理由.变式36如图,在平面直角坐标系中,四边形ABCD为正方形,已知点A(0,﹣6)、D(﹣3,﹣7),点B、C在第三象限内.(1)点B的坐标;(2)将正方形ABCD以每秒2个单位的速度沿y轴向上平移t秒,若存在某一时刻t,使在第二象限内点B、D两点的对应点B'、D'正好落在某反比例函数的图象上,请求出此时t的值以及这个反比例函数的解析式;(3)在(2)的情况下,问:是否存在x轴上的点P和反比例函数图象上的点Q,使得以P、Q、B'、D'四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点Q的坐标;若不存在,请说明理由.。
人教版九年级数学下册反比例函数知识点归纳及练习含答案在九年级数学下册教材中,反比例函数是一个重要的知识点。
它是函数的一种特殊形式,具有一些独特的性质和应用。
下面将对反比例函数的知识点进行归纳总结,并提供一些相关的练习题及答案。
一、反比例函数的定义反比例函数是指一个函数,它的函数关系是如下形式:y = k/x其中,k是常数,x和y分别是自变量和因变量。
二、反比例函数的性质1. 定义域和值域:对于反比例函数 y = k/x,其定义域是除数x不能为零的实数集,值域为除数k不能为零的实数集。
2. 反比例函数的图像:反比例函数的图像是一条经过原点(0,0)的曲线,其形状根据k的正负不同而有所变化。
当k>0时,反比例函数为一条开口向右上方的双曲线;当k<0时,反比例函数为一条开口向右下方的双曲线。
3. 反比例函数的性质:a) 反比例函数的图像关于y轴和x轴对称。
b) 当x>0时,y随着x的增大而减小;当x<0时,y随着x的减小而增大。
c) 当x等于1时,y等于k,这是反比例函数的特殊点。
d) 反比例函数可以通过求导得到,导数的值为-ky^2。
三、反比例函数的应用反比例函数在实际问题中具有广泛的应用,以下是几个常见的应用场景:1. 速度与时间的关系:当一个物体以恒定的速度运动时,它所用的时间与距离成反比。
2. 人均所得与人口数量的关系:当一个国家人口增加时,人均所得会相应减少。
3. 工人数量与完成一项任务所需时间的关系:当工人的数量增加时,完成一项任务所需的时间会相应减少。
四、练习题及答案1. 以下哪个函数是反比例函数?A. y = 2xB. y = x^2C. y = 3/xD. y = x + 1答案:C. y = 3/x2. 反比例函数 y = k/x 中,若k > 0,则函数的图像是一条__________的双曲线。
答案:开口向右上方3. 若反比例函数的定义域为(-∞, -4) ∪ (4, +∞),则函数的值域为__________。
中考数学复习----反比例函数之定义、图像与性质知识点总结与练习题(含答案解析)知识点总结1. 反比例函数的定义:形如()0≠=k xky 的函数叫做反比例函数。
有时也用k xy =或1−=kx y 表示。
2. 反比例函数的图像:反比例函数的图像是双曲线。
3. 反比例函数的性质与图像:反比例函数()0≠=k xky k 的符号0>k0<k所在象限一、三象限二、四象限大致图像增减性在一个支上(每一个象限内),y 随x 的增大而减小。
在一个支上(每一个象限内),y 随x 的增大而增大。
对称性图像关于原点对称练习题1.(2022•黔西南州)在平面直角坐标系中,反比例函数y =xk(k ≠0)的图像如图所示,则一次函数y =kx +2的图像经过的象限是( ) A .一、二、三 B .一、二、四C .一、三、四D .二、三、四【分析】先根据反比例函数的图像位于二,四象限,可得k <0,由一次函数y =kx +2中,k <0,2>0,可知它的图像经过的象限. 【解答】解:由图可知:k <0,∴一次函数y =kx +2的图像经过的象限是一、二、四. 故选:B .2.(2022•上海)已知反比例函数y =xk(k ≠0),且在各自象限内,y 随x 的增大而增大,则下列点可能在这个函数图像上的为( ) A .(2,3)B .(﹣2,3)C .(3,0)D .(﹣3,0)【分析】根据反比例函数的性质判断即可.【解答】解:因为反比例函数y =(k ≠0),且在各自象限内,y 随x 的增大而增大, 所以k <0,A .2×3=6>0,故本选项不符合题意;B .﹣2×3=﹣6<0,故本选项符合题意;C .3×0=0,故本选项不符合题意;D .﹣3×0=0,故本选项不符合题意; 故选:B .3.(2022•广东)点(1,y 1),(2,y 2),(3,y 3),(4,y 4)在反比例函数y =x4图像上,则y 1,y 2,y 3,y 4中最小的是( ) A .y 1B .y 2C .y 3D .y 4【分析】根据k >0可知增减性:在每一象限内,y 随x 的增大而减小,根据横坐标的大小关系可作判断. 【解答】解:∵k =4>0,∴在第一象限内,y 随x 的增大而减小,∵(1,y 1),(2,y 2),(3,y 3),(4,y 4)在反比例函数y =图像上,且1<2<3<4, ∴y 4最小. 故选:D .4.(2022•云南)反比例函数y =x6的图像分别位于( ) A .第一、第三象限 B .第一、第四象限 C .第二、第三象限D .第二、第四象限【分析】根据反比例函数的性质,可以得到该函数图像位于哪几个象限,本题得以解决.【解答】解:反比例函数y =,k =6>0, ∴该反比例函数图像位于第一、三象限, 故选:A .5.(2022•镇江)反比例函数y =xk(k ≠0)的图像经过A (x 1,y 1)、B (x 2,y 2)两点,当x 1<0<x 2时,y 1>y 2,写出符合条件的k 的值 (答案不唯一,写出一个即可). 【分析】先根据已知条件判断出函数图像所在的象限,再根据系数k 与函数图像的关系解答即可.【解答】解:∵反比例函数y =(k ≠0)的图像经过A (x 1,y 1)、B (x 2,y 2)两点,当x 1<0<x 2时,y 1>y 2,∴此反比例函数的图像在二、四象限, ∴k <0,∴k 可为小于0的任意实数,例如,k =﹣1等. 故答案为:﹣1.6.(2022•福建)已知反比例函数y =xk的图像分别位于第二、第四象限,则实数k 的值可以是 .(只需写出一个符合条件的实数)【分析】根据图像位于第二、四象限,易知k <0,写一个负数即可. 【解答】解:∵该反比例图像位于第二、四象限, ∴k <0,∴k 取值不唯一,可取﹣3, 故答案为:﹣3(答案不唯一).7.(2022•成都)在平面直角坐标系xOy 中,若反比例函数y =xk 2−的图像位于第二、四象限,则k 的取值范围是 .【分析】根据反比例函数的性质列不等式即可解得答案. 【解答】解:∵反比例函数y =的图像位于第二、四象限,∴k ﹣2<0, 解得k <2, 故答案为:k <2.8.(2022•襄阳)二次函数y =ax 2+bx +c 的图像如图所示,则一次函数y =bx +c 和反比例函数y =xa在同一平面直角坐标系中的图像可能是( ) A . B .C .D .【分析】根据二次函数图像开口向下得到a <0,再根据对称轴确定出b ,根据与y 轴的交点确定出c <0,然后确定出一次函数图像与反比例函数图像的情况,即可得解. 【解答】解:∵二次函数图像开口方向向下, ∴a <0,∵对称轴为直线x =﹣>0,∴b >0,∵与y 轴的负半轴相交, ∴c <0,∴y =bx +c 的图像经过第一、三、四象限, 反比例函数y =图像在第二四象限, 只有D 选项图像符合. 故选:D .9.(2022•菏泽)根据如图所示的二次函数y =ax 2+bx +c 的图像,判断反比例函数y =xa与一次函数y =bx +c 的图像大致是( )A .B .C .D .【分析】先根据二次函数的图像,确定a 、b 、c 的符号,再根据a 、b 、c 的符号判断反比例函数y =与一次函数y =bx +c 的图像经过的象限即可. 【解答】解:由二次函数图像可知a >0,c <0, 由对称轴x =﹣>0,可知b <0,所以反比例函数y =的图像在一、三象限,一次函数y =bx +c 图像经过二、三、四象限. 故选:A .10.(2022•安顺)二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,则一次函数y =ax +b 和反比例函数y =xc(c ≠0)在同一直角坐标系中的图像可能是( ) A . B .C .D .【分析】直接利用二次函数图像经过的象限得出a ,b ,c 的取值范围,进而利用一次函数与反比例函数的性质得出答案.【解答】解:∵二次函数y =ax 2+bx +c 的图像开口向上, ∴a >0,∵该抛物线对称轴位于y 轴的右侧, ∴a 、b 异号,即b <0. ∵抛物线交y 轴的负半轴,∴c <0,∴一次函数y =ax +b 的图像经过第一、三、四象限,反比例函数y =(c ≠0)在二、四象限. 故选:A .11.(2022•西藏)在同一平面直角坐标系中,函数y =ax +b 与y =axb(其中a ,b 是常数,ab ≠0)的大致图像是( )A .B .C .D .【分析】根据a 、b 的取值,分别判断出两个函数图像所过的象限,要注意分类讨论. 【解答】解:若a >0,b >0,则y =ax +b 经过一、二、三象限,反比例函数y =(ab ≠0)位于一、三象限,若a >0,b <0,则y =ax +b 经过一、三、四象限,反比例函数数y =(ab ≠0)位于二、四象限, 若a <0,b >0,则y =ax +b 经过一、二、四象限,反比例函数y =(ab ≠0)位于二、四象限, 若a <0,b <0,则y =ax +b 经过二、三、四象限,反比例函数y =(ab ≠0)位于一、三象限, 故选:A .12.(2022•张家界)在同一平面直角坐标系中,函数y =kx +1(k ≠0)和y =xk(k ≠0)的图像大致是( )A.B.C.D.【分析】分k>0或k<0,根据一次函数与反比例函数的性质即可得出答案.【解答】解:当k>0时,一次函数y=kx+1经过第一、二、三象限,反比例函数y=位于第一、三象限;当k<0时,一次函数y=kx+1经过第一、二、四象限,反比例函数y=位于第二、四象限;故选:D.13.(2022•绥化)已知二次函数y=ax2+bx+c的部分函数图像如图所示,则一次函数y=ax+b2﹣4ac与反比例函数y=xc ba++24在同一平面直角坐标系中的图像大致是()A.B.C.D.【分析】由二次函数y=ax2+bx+c的部分函数图像判断a,b2﹣4ac及4a+2b+c的符号,即可得到答案.【解答】解:∵二次函数y=ax2+bx+c的部分函数图像开口向上,∴a>0,∵二次函数y =ax 2+bx +c 的部分函数图像顶点在x 轴下方,开口向上, ∴二次函数y =ax 2+bx +c 的图像与x 轴有两个交点,b 2﹣4ac >0, ∴一次函数y =ax +b 2﹣4ac 的图像位于第一,二,三象限,由二次函数y =ax 2+bx +c 的部分函数图像可知,点(2,4a +2b +c )在x 轴上方, ∴4a +2b +c >0, ∴y =的图像位于第一,三象限,据此可知,符合题意的是B , 故选:B .14.(2022•贺州)已知一次函数y =kx +b 的图像如图所示,则y =﹣kx +b 与y =xb的图像为( )A .B .C .D .【分析】本题形数结合,根据一次函数y =kx +b 的图像位置,可判断k 、b 的符号;再由一次函数y =﹣kx +b ,反比例函数y =中的系数符号,判断图像的位置.经历:图像位置﹣系数符号﹣图像位置.【解答】解:根据一次函数y =kx +b 的图像位置,可判断k >0、b >0. 所以﹣k <0.再根据一次函数和反比例函数的图像和性质, 故选:A .15.(2022•广西)已知反比例函数y =xb(b ≠0)的图像如图所示,则一次函数y =cx ﹣a (c ≠0)和二次函数y =ax 2+bx +c (a ≠0)在同一平面直角坐标系中的图像可能是( )A .B .C .D .【分析】本题形数结合,根据反比例函数y =(b ≠0)的图像位置,可判断b >0;再由二次函数y =ax 2+bx +c (a ≠0)的图像性质,排除A ,B ,再根据一次函数y =cx ﹣a (c ≠0)的图像和性质,排除C .【解答】解:∵反比例函数y =(b ≠0)的图像位于一、三象限, ∴b >0;∵A 、B 的抛物线都是开口向下,∴a <0,根据同左异右,对称轴应该在y 轴的右侧, 故A 、B 都是错误的.∵C 、D 的抛物线都是开口向上,∴a >0,根据同左异右,对称轴应该在y 轴的左侧, ∵抛物线与y 轴交于负半轴, ∴c <0由a >0,c <0,排除C . 故选:D .16.(2022•滨州)在同一平面直角坐标系中,函数y =kx +1与y =﹣xk(k 为常数且k ≠0)的图像大致是( )A .B .C .D .【分析】根据一次函数和反比例函数的性质即可判断.【解答】解:当k >0时,则﹣k <0,一次函数y =kx +1图像经过第一、二、三象限,反比例函数图像在第二、四象限,所以A 选项正确,C 选项错误;当k <0时,一次函数y =kx +1图像经过第一、二,四象限,所以B 、D 选项错误. 故选:A .17.(2022•德阳)一次函数y =ax +1与反比例函数y =﹣xa在同一坐标系中的大致图像是( )A .B .C .D .【分析】根据一次函数与反比例函数图像的特点,可以从a >0,和a <0,两方面分类讨论得出答案.【解答】解:分两种情况:(1)当a >0,时,一次函数y =ax +1的图像过第一、二、三象限,反比例函数y =﹣图像在第二、四象限,无选项符合;(2)当a <0,时,一次函数y =ax +1的图像过第一、二、四象限,反比例函数y =﹣图像在第一、三象限,故B 选项正确. 故选:B .18.(2022•阜新)已知反比例函数y =x k (k ≠0)的图像经过点(﹣2,4),那么该反比例函数图像也一定经过点( )A .(4,2)B .(1,8)C .(﹣1,8)D .(﹣1,﹣8)【分析】先把点(﹣2,4)代入反比例函数的解析式求出k 的值,再对各选项进行逐一判断即可.【解答】解:∵反比例函数y =(k ≠0)的图像经过点(﹣2,4),∴k =﹣2×4=﹣8,A 、∵4×2=8≠﹣8,∴此点不在反比例函数的图像上,故本选项错误;B 、∵1×8=8≠﹣8,∴此点不在反比例函数的图像上,故本选项错误;C 、﹣1×8=﹣8,∴此点在反比例函数的图像上,故本选项正确;D 、(﹣1)×(﹣8)=8≠﹣8,∴此点不在反比例函数的图像上,故本选项错误. 故选:C .19.(2022•襄阳)若点A (﹣2,y 1),B (﹣1,y 2)都在反比例函数y =x2的图像上,则y 1,y 2的大小关系是( )A .y 1<y 2B .y 1=y 2C .y 1>y 2D .不能确定 【分析】根据反比例函数图像上点的坐标特征即可求解.【解答】解:∵点A (﹣2,y 1),B (﹣1,y 2)都在反比例函数y =的图像上,k =2>0,∴在每个象限内y 随x 的增大而减小,∵﹣2<﹣1,∴y 1>y 2,故选:C .20.(2022•海南)若反比例函数y =xk (k ≠0)的图像经过点(2,﹣3),则它的图像也一定经过的点是( )A .(﹣2,﹣3)B .(﹣3,﹣2)C .(1,﹣6)D .(6,1) 【分析】将(2,﹣3)代入y =(k ≠0)即可求出k 的值,再根据k =xy 解答即可.【解答】解:∵反比例函数y =(k ≠0)的图像经过点(2,﹣3),∴k =2×(﹣3)=﹣6,A 、﹣2×(﹣3)=6≠﹣6,故A 不正确,不符合题意;B 、(﹣3)×(﹣2)=6≠﹣6,故B 不正确,不符合题意;C 、1×(﹣6)=﹣6,故C 正确,符合题意,D 、6×1=6≠﹣6,故D 不正确,不符合题意.故选:C .21.(2022•武汉)已知点A (x 1,y 1),B (x 2,y 2)在反比例函数y =x6的图像上,且x 1<0<x 2,则下列结论一定正确的是( )A .y 1+y 2<0B .y 1+y 2>0C .y 1<y 2D .y 1>y 2 【分析】先根据反比例函数y =判断此函数图像所在的象限,再根据x 1<0<x 2判断出A (x 1,y 1)、B (x 2,y 2)所在的象限即可得到答案.【解答】解:∵反比例函数y =中的6>0,∴该双曲线位于第一、三象限,且在每一象限内y 随x 的增大而减小,∵点A (x 1,y 1),B (x 2,y 2)在反比例函数y =的图像上,且x 1<0<x 2,∴点A 位于第三象限,点B 位于第一象限,∴y 1<y 2.故选:C .22.(2022•天津)若点A (x 1,2),B (x 2,﹣1),C (x 3,4)都在反比例函数y =x8的图像上,则x 1,x 2,x 3的大小关系是( )A .x 1<x 2<x 3B .x 2<x 3<x 1C .x 1<x 3<x 2D .x 2<x 1<x 3 【分析】根据函数解析式算出三个点的横坐标,再比较大小.【解答】解:点A (x 1,2),B (x 2,﹣1),C (x 3,4)都在反比例函数y =的图像上, ∴x 1==4,x 2==﹣8,x 3==2. ∴x 2<x 3<x 1,故选:B .23.(2022•淮安)在平面直角坐标系中,将点A (2,3)向下平移5个单位长度得到点B ,若点B 恰好在反比例函数y =xk 的图像上,则k 的值是 .【分析】点A (2,3)向下平移5个单位长度得到点B (2,﹣2),代入y =利用待定系数法即可求得k 的值.【解答】解:将点A (2,3)向下平移5个单位长度得到点B ,则B (2,﹣2), ∵点B 恰好在反比例函数y =的图像上,∴k =2×(﹣2)=﹣4,故答案为:﹣4.24.(2022•北京)在平面直角坐标系xOy 中,若点A (2,y 1),B (5,y 2)在反比例函数y =xk (k >0)的图像上,则y 1 y 2(填“>”“=”或“<”). 【分析】先根据函数解析式中的比例系数k 确定函数图像所在的象限,再根据各象限内点的坐标特征及函数的增减性解答.【解答】解:∵k >0,∴反比例函数y =(k >0)的图像在一、三象限,∵5>2>0,∴点A (2,y 1),B (5,y 2)在第一象限,y 随x 的增大而减小,∴y 1>y 2,故答案为:>.。
第六章反比例函数知识归纳与题型突破(十类题型清单)01思维导图02知识速记一、反比例函数的概念一般地,形如ky x=(k 为常数,0k ≠)的函数称为反比例函数,其中x 是自变量,y 是函数,自变量x 的取值范围是不等于0的一切实数.要点:在ky x=中,自变量x 的取值范围是,k y x=()可以写成()的形式,也可以写成的形式.二、反比例函数解析式的确定反比例函数解析式的确定方法是待定系数法.由于反比例函数ky x=中,只有一个待定系数k ,因此只需要知道一对x y 、的对应值或图象上的一个点的坐标,即可求出k 的值,从而确定其解析式.三、反比例函数的图象和性质1.反比例函数的图象反比例函数()0ky k x=≠的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限.它们关于原点对称,反比例函数的图象与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交.要点:观察反比例函数的图象可得:x 和y 的值都不能为0,并且图象既是轴对称图形,又是中心对称图形,它有两条对称轴,对称中心是坐标原点.①)0(≠=k x ky 的图象是轴对称图形,对称轴为x y x y -==和两条直线;②)0(≠=k x ky 的图象是中心对称图形,对称中心为原点(0,0);③xky x k y -==和(k≠0)在同一坐标系中的图象关于x 轴对称,也关于y 轴对称.注:正比例函数x k y 1=与反比例函数xk y 2=,当021<⋅k k 时,两图象没有交点;当021>⋅k k 时,两图象必有两个交点,且这两个交点关于原点成中心对称.2.反比例函数的性质(1)图象位置与反比例函数性质当0k >时,x y 、同号,图象在第一、三象限,且在每个象限内,y 随x 的增大而减小;当0k <时,x y 、异号,图象在第二、四象限,且在每个象限内,y 随x 的增大而增大.(2)若点(a b ,)在反比例函数ky x=的图象上,则点(a b --,)也在此图象上,故反比例函数的图象关于原点对称.(3)正比例函数与反比例函数的性质比较正比例函数反比例函数解析式图像直线有两个分支组成的曲线(双曲线)位置0k >,一、三象限;0k <,二、四象限0k >,一、三象限0k <,二、四象限增减性0k >,y 随x 的增大而增大0k <,y 随x 的增大而减小0k >,在每个象限,y 随x 的增大而减小0k <,在每个象限,y 随x 的增大而增大(4)反比例函数y=中k 的意义①过双曲线xky =(k ≠0)上任意一点作x 轴、y 轴的垂线,所得矩形的面积为k .②过双曲线x ky =(k ≠0)上任意一点作一坐标轴的垂线,连接该点和原点,所得三角形的面积为2k .四、应用反比例函数解决实际问题须注意以下几点1.反比例函数在现实世界中普遍存在,在应用反比例函数知识解决实际问题时,要注意将实际问题转化为数学问题.2.列出函数关系式后,要注意自变量的取值范围.03题型归纳题型一反比例函数的概念及应用例题1.下列函数中,y 是x 的反比例函数的是()A .3x y =B .321y x =+C .k y x=D .134y x -=巩固训练2.下列问题中的两个变量是成反比例的是()A .被除数(不为零)一定,除数与商B .货物的单价一定,货物的总价与货物的数量C .等腰三角形的周长一定,它的腰长与底边的长D .汽车所行的速度一定,它所行驶的路程与时间3.下列函数表达式中,表示y 是x 的反比例函数的有()(1)4x y =;(2)34y x=;(3)3xy -=;(4)1y 3x -=-;(5)21y x =+;(6)52y x =+A .1个B .2个C .3个D .4个4.下列各点在反比例函数2y x=图象上的是()A .()1,2-B .()2,1-C .()1,3D .()1,2--5.已知关于x 的反比例函数()32m y m x -=-,则m 的值为.6.如果2212n n n n y x+++=是反比例函数,那么n 的值是.题型二反比例函数的图像与性质例题7.关于反比例函数6y x=,下列说法不正确..的是()A .函数图像分别位于第一、三象限B .函数图像经过点()3,2--C .函数图像过()()23A m B n -,、,,则m n >D .函数图像关于原点成中心对称巩固训练8.如图是三个反比例函数11k y x=,22ky x =,33k y x =在x 轴上方的图象,则1k ,2k ,3k 的大小关系为()A .123k k k >>B .231k k k >>C .132k k k >>D .312k k k >>9.关于反比例函数4y x=-,下列说法正确的是()A .函数图像经过点()2,2B .函数图像位于第一、三象限C .函数值y 随着x 的增大而增大D .当1x >时,4y >-10.若点()11,A y -,()22,B y ,()33,C y 是反比例函数2y x=-图像上的三个点,则下列结论正确的是()A .132y y y >>B .321y y y >>C .213y y y >>D .312y y y >>题型三根据图像或性质求参数范围例题11.反比例函数2y x=的图象上有一点(),P m n ,当1n ≥-,则m 的取值范围是.巩固训练12.若反比例函数13ky x-=的图象不经过第一象限,则k 的取值范围是.13.在平面直角坐标系xOy 中,对于每一象限内的反比例函数3m y x+=图像,y 的值都随x 值的增大而增大,则m 的取值范围是.14.若反比例函数2221(21)kk y k x --=-的图象位于第二、四象限,则k 的值()A .0B .0或1C .0或2D .4题型四参数范围、图像与性质的相互判断例题15.在同一坐标系中,函数ky x=和2y kx =-+的图像大致是()A .B .C .D .巩固训练16.一次函数=−1与反比例函数()0ky k x=≠在同一直角坐标系中的图象可能是()A .B .C .D .17.已知反比例函数21k y x+=,则下列说法正确的是()A .函数图像分布在第二、四象限B .y 随x 的增大而减小C .如果两点()11,y -,()22,y 都在图像上,则12y y >D .图像关于原点中心对称18.在函数21m y x+=-(m 为常数)的图象上有三个点1(1)y -,,2(2)y -,,3(3)y ,,则函数值123、、y y y 的大小关系是().A .231y y y <<B .321y y y <<C .123y y y <<D .312y y y <<题型五反比例函数与方程、不等式例题19.如图,一次函数y kx b =+(k 、b 为常数,且0k ≠)的图象与反比例函数my x=(m 为常数,且0m ≠)的图象交于A 、B 两点.则关于x 的方程mkx b x+=的解为.巩固训练20.如图,已知一次函数=B +与反比例函数.ky x=的图象交于()()3,11,3A B --,两点.观察图象可知,不等式kmx n x+>的解集是.21.已知一次函数2y x =-+与反比例函数ky x=在同一坐标系内的图象没有交点,则k 的取值范围为.题型六k 的几何意义例题22.如图,过双曲线上任意一点P 分别作x 轴,y 轴的垂线PM ,PN ,交x 轴、y 轴于点M 、N ,所得矩形PMON 的面积为8,则k 的值是()A .4B .4-C .8D .8-巩固训练23.如图,反比例函数()40y x x-=>的图像上有一点P ,PA x ⊥轴于点A ,点B 在y 轴上,则PAB 的面积为()A .1B .2C .4D .824.如图,在平面直角坐标系中,AOC △的边OA 在y 轴上,点C 在第一象限内,点B 为AC 的中点,反比例函数()0k y x x=>的图象经过B ,C 两点.若AOC △的面积是6,则k 的值为.25.函数1(0)y x x =>与8(0)y x x=>的图象如图所示,点C 是y 轴上的任意一点.直线AB 平行于y 轴,分别与两个函数图象交于点A 、B ,连接AC BC 、.当AB 从左向右平移时,ABC V 的面积是.26.如图,点A B ,是反比例函数()0ky x x=>图像上的点,点,C D 分别在x 轴,y 轴正半轴上.若四边形ABCD 为菱形,BD x ∥轴,6ABCD S =菱形,则k 的值()A .3B .6C .12D .24题型七反比例函数的代数应用例题27.已知点1()2P a b -,与点2)1(2Pa b +-,在反比例函数()0ky k x=≠的图象上,()A .若0k >,则202a b ><<,B .若0k >,则12a b <->,C .若0k <,则22a b <>,D .若0k <,则1202a b -<<<<,巩固训练28.已知点()11,A x y ,()22,B x y ,()33,C x y 在反比例函数()0ky k x=>的图象上,123x x x <<,则下列结论一定成立的是()A .若130x x <,则23y y <B .若230x x <,则130y y >C .若130x x >,则23y y >D .若230x x >,则130y y >题型八反比例函数的实际应用例题29.验光师检测发现近视眼镜的度数y (度)与镜片焦距x (米)成反比例,y 关于x 的函数图象如图所示.经过一段时间的矫正治疗后,小雪的镜片焦距由0.25米调整到0.5米,则近视眼镜的度数减少了()度.A .150B .200C .250D .300巩固训练30.机器狗是一种模拟真实犬只形态和部分行为的机器装置,其最快移动速度()m/s v 是载重后总质量(kg)m 的反比例函数.已知一款机器狗载重后总质量60kg m =时,它的最快移动速度6m/s v =;当其载重后总质量90kg m =时,它的最快移动速度=v m/s .31.为检测某品牌一次性注射器的质量,将注射器里充满一定量的气体,当温度不变时,注射器里的气体的压强p (kPa )是气体体积V (ml )的反比例函数,其图像如图所示.则下列说法中错误的是()A .这一函数的表达式为6000p V=B .当气体体积为40ml 时,气体的压强值为150kPaC .当温度不变时,注射器里气体的压强随着气体体积增大而减小D .若注射器内气体的压强不能超过400kPa ,则其体积V 不能超过15ml 题型九最值问题、其他问题例题32.已知函数1k y x =,()20ky k x=->,当13x ≤≤时,函数1y 的最大值为a ,函数2y 的最小值为4a -,则a 的值为.巩固训练33.反比例函数1k y x =,()220ky k x =-≠,当a x b ≤≤(b ,a 为常数,且0b a >>)时,1y 的最小值为m ,2y 的最大值为n ,则mn的值为()A .2-B .12-C .12-或2-D .2b a-34.在同一坐标系中,若正比例函数1y k x =与反比例函数2k y x=的图象没有交点,则1k 与2k 的关系,下面四种表述:①120k k +≤;②120k k <;③1212||k k k k +<-;④121k k k +<或122k k k +<.正确的有()A .4个B .3个C .2个D .1个题型十解答综合题例题35.已知y 与2x +成反比例,且当5x =时,y =-6,求:(1)y 与x 之间的函数关系式;(2)当5y =时,x 的值.巩固训练36.如图,函数()120y x x =≥与2(0)ay x x=>的图象交于点()1,A b ,直线2x =与函数12,y y 的图象分别交于B ,C 两点.(1)求a 和b 的值;(2)求BC 的长度;(3)根据图象写出120y y >>时x 的取值范围(不需说明理由).37.某气球内充满一定质量的气体,当温度不变时,气球内气体的压强(kPa)p 与气体的体积()3m V 成反比例.当气体的体积30.8m V =时,气球内气体的压强112.5kPa p =.(1)当气体的体积为31m 时,它的压强是多少?(2)当气球内气体的压强大于150kPa 时,气球就会爆炸.问:气球内气体的体积应不小于多少气球才不会爆炸?38.如图,已知()4,A n -,()2,4B -是反比例函数ky x=的图象和一次函数y ax b =+的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求AOB V 的面积;(3)根据图象直接写出不等式0k ax b x+-<的解集.39.已知一次函数y ax b =+与反比例函数y =kx的图象交于()()3,2,6A n B --,两点.(1)①求一次函数和反比例函数的表达式;②求AOB 的面积.(2)在x 轴的负半轴上,是否存在点P ,使得PAO 为等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.40.已知:如图,直线4y kx =+与函数()0,0my x m x=>>的图像交于A ,B 两点,且与x ,y 轴分别交于C ,D 两点.(1)若直线4y kx =+与直线2y x =--平行,且AOD △面积为2,求m 的值;(2)若COD △的面积是AOB V倍,过A 作AE x ⊥轴于E ,过B 作BF y ⊥轴于F ,AE 与BF 交于H 点.①求:AH OD 的值;②求k 与m 之间的函数关系式.(3)若点P 坐标为2,0,在(2)的条件下,是否存在k ,m ,使得APB △为直角三角形,且90APB ∠=︒,若存在,求出k ,m 的值;若不存在,请说明理由.第六章反比例函数知识归纳与题型突破(十类题型清单)01思维导图02知识速记一、反比例函数的概念一般地,形如ky x=(k 为常数,0k ≠)的函数称为反比例函数,其中x 是自变量,y 是函数,自变量x 的取值范围是不等于0的一切实数.要点:在ky x=中,自变量x 的取值范围是,k y x=()可以写成()的形式,也可以写成的形式.二、反比例函数解析式的确定反比例函数解析式的确定方法是待定系数法.由于反比例函数ky x=中,只有一个待定系数k ,因此只需要知道一对x y 、的对应值或图象上的一个点的坐标,即可求出k 的值,从而确定其解析式.三、反比例函数的图象和性质1.反比例函数的图象反比例函数()0ky k x=≠的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限.它们关于原点对称,反比例函数的图象与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交.要点:观察反比例函数的图象可得:x 和y 的值都不能为0,并且图象既是轴对称图形,又是中心对称图形,它有两条对称轴,对称中心是坐标原点.①)0(≠=k x ky 的图象是轴对称图形,对称轴为x y x y -==和两条直线;②)0(≠=k x ky 的图象是中心对称图形,对称中心为原点(0,0);③xky x k y -==和(k≠0)在同一坐标系中的图象关于x 轴对称,也关于y 轴对称.注:正比例函数x k y 1=与反比例函数xk y 2=,当021<⋅k k 时,两图象没有交点;当021>⋅k k 时,两图象必有两个交点,且这两个交点关于原点成中心对称.2.反比例函数的性质(1)图象位置与反比例函数性质当0k >时,x y 、同号,图象在第一、三象限,且在每个象限内,y 随x 的增大而减小;当0k <时,x y 、异号,图象在第二、四象限,且在每个象限内,y 随x 的增大而增大.(2)若点(a b ,)在反比例函数ky x=的图象上,则点(a b --,)也在此图象上,故反比例函数的图象关于原点对称.(3)正比例函数与反比例函数的性质比较正比例函数反比例函数解析式图像直线有两个分支组成的曲线(双曲线)位置0k >,一、三象限;0k <,二、四象限0k >,一、三象限0k <,二、四象限增减性0k >,y 随x 的增大而增大0k <,y 随x 的增大而减小0k >,在每个象限,y 随x 的增大而减小0k <,在每个象限,y 随x 的增大而增大(4)反比例函数y=中k 的意义①过双曲线xky =(k ≠0)上任意一点作x 轴、y 轴的垂线,所得矩形的面积为k .②过双曲线x ky =(k ≠0)上任意一点作一坐标轴的垂线,连接该点和原点,所得三角形的面积为2k .四、应用反比例函数解决实际问题须注意以下几点1.反比例函数在现实世界中普遍存在,在应用反比例函数知识解决实际问题时,要注意将实际问题转化为数学问题.2.列出函数关系式后,要注意自变量的取值范围.03题型归纳题型一反比例函数的概念及应用例题1.下列函数中,y 是x 的反比例函数的是()A .3x y =B .321y x =C .k y x=D .134y x -=2.下列问题中的两个变量是成反比例的是()A .被除数(不为零)一定,除数与商B .货物的单价一定,货物的总价与货物的数量C .等腰三角形的周长一定,它的腰长与底边的长D .汽车所行的速度一定,它所行驶的路程与时间D .汽车所行的速度一定,它所行驶的路程与时间是正比例函数的关系,故此选项不符合题意.故选:A .【点睛】本题考查反比例函数,正确区分正比例函数与反比例函数是解题关键.判断一个函数是否是反比例函数,首先看看两个变量是否具有反比例关系.3.下列函数表达式中,表示y 是x 的反比例函数的有()(1)4x y =;(2)34y x=;(3)3xy -=;(4)1y 3x -=-;(5)21y x =+;(6)52y x =+A .1个B .2个C .3个D .4个4.下列各点在反比例函数y x=图象上的是()A .()1,2-B .()2,1-C .()1,3D .()1,2--5.已知关于x 的反比例函数()32m y m x -=-,则m 的值为.6.如果2212nn n n y +++=是反比例函数,那么n 的值是.例题7.关于反比例函数6y x=,下列说法不正确..的是()A .函数图像分别位于第一、三象限B .函数图像经过点()3,2--C .函数图像过()()23A m B n -,、,,则m n >D .函数图像关于原点成中心对称8.如图是三个反比例函数11k y x=,22ky x =,33k y x =在x 轴上方的图象,则1k ,2k ,3k 的大小关系为()A .123k k k >>B .231k k k >>C .132k k k >>D .312k k k >>【答案】C9.关于反比例函数y x=-,下列说法正确的是()A .函数图像经过点()2,2B .函数图像位于第一、三象限C .函数值y 随着x 的增大而增大D .当1x >时,4y >-【答案】D【分析】根据反比例函数的图象及其性质即可求解.【解析】A 、点()2,2不在它的图象上,不符合题意;B 、它的图象在第二、四象限,不符合题意;C 、在每个象限内,y 随x 的增大而增大,不符合题意;D 、当1x >时,4y >-,正确,符合题意;故选:D .【点睛】此题考查了反比函数的性质,正确掌握反比例函数的性质是解题的关键.10.若点()11,A y -,()22,B y ,()33,C y 是反比例函数2y x=-图像上的三个点,则下列结论正确的是()A .132y y y >>B .321y y y >>C .213y y y >>D .312y y y >>【答案】A【分析】根据反比例函数的比例系数的符号可得反比例函数所在象限为二、四,其中在第四象限的点的纵坐标总小于在第二象限的纵坐标,结合反比例函数的增减性,进而判断在同一象限内的点B 和点C 的纵坐标例题11.反比例函数2y x =的图象上有一点(),P m n ,当1n ≥-,则m 的取值范围是.12.若反比例函数13k y x -=的图象不经过第一象限,则k 的取值范围是.13.在平面直角坐标系xOy 中,对于每一象限内的反比例函数y x +=图像,y 的值都随x 值的增大而增大,则m 的取值范围是.14.若反比例函数2221(21)kk y k x --=-的图象位于第二、四象限,则k 的值()A .0B .0或1C .0或2D .4故选:A .题型四参数范围、图像与性质的相互判断例题15.在同一坐标系中,函数k y x =和2y kx =-+的图像大致是()A .B .C .D .16.一次函数=−1与反比例函数()0k y k x=≠在同一直角坐标系中的图象可能是()A .B .C .D .17.已知反比例函数1k y x+=,则下列说法正确的是()A .函数图像分布在第二、四象限B .y 随x 的增大而减小C .如果两点()11,y -,()22,y 都在图像上,则12y y >D .图像关于原点中心对称18.在函数y x+=-(m 为常数)的图象上有三个点1(1)y -,,2(2)y -,,3(3)y ,,则函数值123、、y y y 的大小关系是().A .231y y y <<B .321y y y <<C .123y y y <<D .312y y y <<例题19.如图,一次函数y kx b =+(k 、b 为常数,且0k ≠)的图象与反比例函数m y x =(m 为常数,且0m ≠)的图象交于A 、B 两点.则关于x 的方程m kx b x +=的解为.【答案】1-和2【分析】本题考查了反比例函数和一次函数的图像和性质,熟练掌握反比例函数和一次函数的图像和性质是解题的关键;根据反比例函数和一次函数的图像和性质求解即可;【解析】解:观察函数图象可知:点A 的横坐标为1-,点B 的横坐标为2,20.如图,已知一次函数=B +与反比例函数.k y x =的图象交于()()3,11,3A B --,两点.观察图象可知,不等式k mx n x +>的解集是.21.已知一次函数2y x =-+与反比例函数k y x =在同一坐标系内的图象没有交点,则k 的取值范围为.解得:1k >.故答案为:1k >.题型六k 的几何意义例题22.如图,过双曲线上任意一点P 分别作x 轴,y 轴的垂线PM ,PN ,交x 轴、y 轴于点M 、N ,所得矩形PMON 的面积为8,则k 的值是()A .4B .4-C .8D .8-23.如图,反比例函数()40y x x-=>的图像上有一点P ,PA x ⊥轴于点A ,点B 在y 轴上,则PAB 的面积为()A .1B .2C .4D .8【答案】B 【分析】本题考查反比例函数系数k 的几何意义,掌握过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于k ,并根据面积关系得出方程是解题的关键.设s ,则4xy =-,再由三角形的面积公式即可得出结论.【解析】解:设s ,∵点P 在反比例函数()40y x x-=>的图象上,∴4xy =-.∵PA x ⊥轴,∴11142222PAB S PA OA xy =⨯⨯==⨯= .故选:B .24.如图,在平面直角坐标系中,AOC △的边OA 在y 轴上,点C 在第一象限内,点B 为AC 的中点,反比例函数()0ky x x =>的图象经过B ,C 两点.若AOC △的面积是6,则k 的值为.【答案】4【分析】过B ,C 两点分别作y 轴的垂线,垂足分别为D ,E ,设B 点坐标为k m m ⎛⎫ ⎪⎝⎭,,则BD m =,由点B 为AC 的中点,推出C 点坐标为22k m m ⎛⎫ ⎪⎝⎭,,求得直线BC 的解析式,得到A 点坐标,根据AOC △的面积是6,列式计算即可求解.∴BD CE ∥,∴ABD ACE ∽,∴BD AB CE AC=,设B 点坐标为k m m ⎛⎫ ⎪⎝⎭,,则BD m =,∵点B 为AC 的中点,25.函数1(0)y x x =>与8(0)y x x=>的图象如图所示,点C 是y 轴上的任意一点.直线AB 平行于y 轴,分别与两个函数图象交于点A 、B ,连接AC BC 、.当AB 从左向右平移时,ABC V 的面积是.【点睛】此题考查了反比例函数的OP BP AP 、、的长度,难度一般.26.如图,点A B ,是反比例函数()0ky x x=>图像上的点,点,C D 分别在x 轴,y 轴正半轴上.若四边形ABCD为菱形,BD x ∥轴,6ABCD S =菱形,则k 的值()A .3B .6C .12D .24AC BD ∴⊥,OA OC =,6ABCD S = 菱形,∴11222AC BD OC BD ⨯⨯=⨯⨯=6OC BD ∴⨯=,BD x ∥轴,BE x ⊥轴,题型七反比例函数的代数应用例题27.已知点1()2P a b -,与点2)1(2Pa b +-,在反比例函数()0ky k x=≠的图象上,()A .若0k >,则202a b ><<,B .若0k >,则12a b <->,C .若0k <,则22a b <>,D .若0k <,则1202a b -<<<<,∴020b b >⎧⎨-<⎩,∴02<<b ,故选项D 正确.故选:D .【点睛】本题考查了反比例函数图象上点的坐标特征,熟知反比例函数的性质是解题的关键.巩固训练28.已知点()11,A x y ,()22,B x y ,()33,C x y 在反比例函数()0ky k x=>的图象上,123x x x <<,则下列结论一定成立的是()A .若130x x <,则23y y <B .若230x x <,则130y y >C .若130x x >,则23y y >D .若230x x >,则130y y >故选C .【点睛】本题考查了反比例函数的性质,解题关键是掌握当比例系数0k >时,函数图象在第一、三象限内,且在每个象限内,y 随x 的增大而减小;当比例系数0k <时,函数图象在第二、四象限内,且在每个象限内,y 随x 的增大而增大.题型八反比例函数的实际应用例题29.验光师检测发现近视眼镜的度数y (度)与镜片焦距x (米)成反比例,y 关于x 的函数图象如图所示.经过一段时间的矫正治疗后,小雪的镜片焦距由0.25米调整到0.5米,则近视眼镜的度数减少了()度.A .150B .200C .250D .30030.机器狗是一种模拟真实犬只形态和部分行为的机器装置,其最快移动速度()m/s v 是载重后总质量(kg)m 的反比例函数.已知一款机器狗载重后总质量60kg m =时,它的最快移动速度6m/s v =;当其载重后总质量90kg m =时,它的最快移动速度=v m/s .31.为检测某品牌一次性注射器的质量,将注射器里充满一定量的气体,当温度不变时,注射器里的气体的压强p (kPa )是气体体积V (ml )的反比例函数,其图像如图所示.则下列说法中错误的是()A .这一函数的表达式为6000p V=B .当气体体积为40ml 时,气体的压强值为150kPaC .当温度不变时,注射器里气体的压强随着气体体积增大而减小D .若注射器内气体的压强不能超过400kPa ,则其体积V 不能超过15ml 【答案】D例题32.已知函数1k y x =,()20ky k x=->,当13x ≤≤时,函数1y 的最大值为a ,函数2y 的最小值为4a -,则a 的值为.33.反比例函数1k y x =,()220ky k x=-≠,当a x b ≤≤(b ,a 为常数,且0b a >>)时,1y 的最小值为m ,2y 的最大值为n ,则mn的值为()A .2-B .12-C .12-或2-D .2b a-34.在同一坐标系中,若正比例函数1y k x =与反比例函数2y x=的图象没有交点,则1k 与2k 的关系,下面四种表述:①120k k +≤;②120k k <;③1212||k k k k +<-;④121k k k +<或122k k k +<.正确的有()A .4个B .3个C .2个D .1个【答案】B【分析】根据题意得出1k 和2k 异号,再分别判断各项即可.例题35.已知y与2x=时,y=-6,求:x+成反比例,且当5(1)y与x之间的函数关系式;y=时,x的值.(2)当536.如图,函数()120y x x =≥与2(0)ay x x=>的图象交于点()1,A b ,直线2x =与函数12,y y 的图象分别交于B ,C 两点.(1)求a 和b 的值;(2)求BC 的长度;(3)根据图象写出120y y >>时x 的取值范围(不需说明理由).当2x =时,21,y =∴点C 的纵坐标为1.413BC ∴=-=.(3)解:当120y y >>时x 的取值范围是1x >.37.某气球内充满一定质量的气体,当温度不变时,气球内气体的压强(kPa)p 与气体的体积()3m V 成反比例.当气体的体积30.8m V =时,气球内气体的压强112.5kPa p =.(1)当气体的体积为31m 时,它的压强是多少?(2)当气球内气体的压强大于150kPa 时,气球就会爆炸.问:气球内气体的体积应不小于多少气球才不会爆炸?38.如图,已知()4,A n -,()2,4B -是反比例函数k y x=的图象和一次函数y ax b =+的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求AOB V 的面积;(3)根据图象直接写出不等式0k ax b x+-<的解集.39.已知一次函数y ax b =+与反比例函数y =x的图象交于()()3,2,6A n B --,两点.(1)①求一次函数和反比例函数的表达式;②求AOB 的面积.(2)在x 轴的负半轴上,是否存在点P ,使得PAO 为等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.由022x =--得1x =-;40.已知:如图,直线4y kx =+与函数()0,0m y x m x=>>的图像交于A ,B 两点,且与x ,y 轴分别交于C ,D 两点.(1)若直线4y kx =+与直线2y x =--平行,且AOD △面积为2,求m 的值;(2)若COD △的面积是AOB V倍,过A 作AE x ⊥轴于E ,过B 作BF y ⊥轴于F ,AE 与BF 交于H 点.①求:AH OD 的值;②求k 与m 之间的函数关系式.(3)若点P 坐标为2,0,在(2)的条件下,是否存在k ,m ,使得APB △为直角三角形,且90APB ∠=︒,若存在,求出k ,m 的值;若不存在,请说明理由.【答案】(1)3m =①设1,1,2,2(其中∵2COD AOB S S = ,∴()2COD AOC BOC S S S =- ,∴111222OC OD OC y ⎛⋅=⋅-若90APB ∠=︒,则90APE BPN ∠+∠=︒,∵90APE PAE ∠+∠=︒,∴EAP BPN ∠=∠,∵90AEP PNB ∠=∠=︒,相似比计算线段的长.。
九年级数学下册第二十六章反比例函数经典大题例题单选题1、春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过5min的集中药物喷洒,再封闭宿舍10min,然后打开⁄)与药物在空气中的持续时间x(min)之间的函数关系,在门窗进行通风,室内每立方米空气中含药量y(mg m3打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是()A.经过5min集中喷洒药物,室内空气中的含药量最高达到10mg/m3B.室内空气中的含药量不低于8mg/m3的持续时间达到了11minC.当室内空气中的含药量不低于5mg/m3且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D.当室内空气中的含药量低于2mg/m3时,对人体才是安全的,所以从室内空气中的含药量达到2mg/m3开始,需经过59min后,学生才能进入室内答案:C分析:利用图中信息一一判断即可.解∶由图象可知,经过5min集中喷洒药物,室内空气中的含药量最高达到10mg/m3,故A选项正确.不符合题意.设0<x<5时函数解析式为y1=k1x,把(5,10)代入得,k1=2,∴y1=2x,∴y1=8时,x=4,15-4=11,∴室内空气中的含药量不低于8mg/m3的持续时间达到了11min,故B选项正确,不符合题意;由图象可知,y=5时,x<5或x>15,,设反比例函数解析式为y2=k2x,把(15,8)代入得:8=k215解得:k2=120,∴y2=120,x当y1=5时,x1=2.5,当y2=5时,x2=24,24-2.5=21.5<35,故C选项错误,符合题意;当y1=2时,x1=1,当y2=2时,x2=60,60-1=59,故D选项正确.不符合题意,故选:C.小提示:本题考查反比例函数的应用、一次函数的应用等知识,解题的关键是读懂图象信息,属于中考常考题型.的图象相交于A、C两点,过点A作x轴的垂线交x轴于点B,2、如图,正比例函数y=kx与反比例函数y=4x连接BC,则ΔABC的面积等于()A.8B.6C.4D.2答案:C分析:由于点A、C位于反比例函数图象上且关于原点对称,则SΔOBA=SΔOBC,再根据反比例函数系数k的几何意义作答即可.解:因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S =12|k|. 所以ΔABC 的面积等于2×12|k|=|k|=4. 故选C .小提示:考查了反比例函数y =k x 中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k |,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S =12|k |.3、某城市市区人口x 万人,市区绿地面积50万平方米,平均每人拥有绿地y 平方米,则y 与x 之间的函数表达式为( )A .y =x +50B .y =50xC .y =50x D .y =x 50 答案:C分析:根据:平均每人拥有绿地y =总面积总人数,列式求解.解:依题意,得:平均每人拥有绿地y =50x. 故选:C 小提示:本题考查了反比例函数,解题的关键是掌握题目中数量之间的相互关系.4、一次函数y =mx +n 的图像与反比例函数y =m x 的图像交于点A 、B ,其中点A 、B 的坐标为A (-1m ,-2m )、B (m ,1),则△OAB 的面积( )A .3B .134C .72D .154 答案:D分析:将点A 的坐标代入可确定反比例函数关系式,进而确定点B 的坐标,再利用待定系数法求出一次函数关系式;求出直线AB 与y 轴交点D 的坐标,确定OD 的长,再根据三角形的面积公式进行计算即可. 解:∵A (-1m ,-2m )在反比例函数y =m x 的图像上,∴m =(-1m ) • ( -2m )=2,∴反比例函数的解析式为y =2x , ∴B (2,1),A (-12,-4),把B (2,1)代入y =2x +n 得1=2×2+n ,∴n =-3,∴直线AB 的解析式为y =2x -3,直线AB 与y 轴的交点D (0,-3),∴OD =3,∴S △AOB =S △BOD +S △AOD=12×3×2+12×3×12 =154.故选:D . .小提示:本题考查一次函数与反比例函数的交点,把点的坐标代入函数关系式是解决问题常用的方法.5、为了响应“绿水青山就是金山银山”的号召,建设生态文明,某工厂自2019年1月开始限产进行治污改造,其月利润y (万元)与月份x 之间的变化如图所示,治污完成前是反比例函数图象的一部分,治污完成后是一次函数图象的一部分,下列选项错误..的是( )A.4月份的利润为50万元B.治污改造完成后每月利润比前一个月增加30万元C.治污改造完成前后共有4个月的利润低于100万元D.9月份该厂利润达到200万元答案:C分析:直接利用已知点求出一次函数与反比例函数的解析式进而分别分析得出答案.A、设反比例函数的解析式为y=kx,把(1,200)代入得,k=200,∴反比例函数的解析式为:y=200x,当x=4时,y=50,∴4月份的利润为50万元,正确意;B、治污改造完成后,从4月到6月,利润从50万到110万,故每月利润比前一个月增加30万元,正确;C、当y=100时,则100=200x,解得:x=2,则只有3月,4月,5月共3个月的利润低于100万元,不正确.D、设一次函数解析式为:y=kx+b,则{4k+b=506k+b=110,解得:{k=30b=−70,故一次函数解析式为:y=30x−70,故y=200时,200=30x−70,解得:x =9,则治污改造完成后的第5个月,即9月份该厂利润达到200万元,正确.故选:C .小提示:此题主要考查了一次函数与反比函数的应用,正确得出函数解析式是解题关键.6、如图,A ,B 是反比例函数y =4x 在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,则△OAB 的面积是( )A .4B .3C .2D .1答案:B分析:先根据反比例函数图象上点的坐标特征及A ,B 两点的横坐标,求出A (2,2),B (4,1).再过A ,B 两点分别作AC ⊥x 轴于C ,BD ⊥x 轴于D ,根据反比例函数系数k 的几何意义得出S △AOC =S △BOD =12×4=2.根据S 四边形AODB =S △AOB +S △BOD =S △AOC +S 梯形ABDC ,得出S △AOB =S 梯形ABDC ,利用梯形面积公式求出S 梯形ABDC =12(BD +AC )•CD =12×(1+2)×2=3,从而得出S △AOB =3.∵A ,B 是反比例函数y =4x 在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,∴当x =2时,y =2,即A (2,2),当x =4时,y =1,即B (4,1),如图,过A ,B 两点分别作AC ⊥x 轴于C ,BD ⊥x 轴于D ,则S △AOC =S △BOD =12×4=2,∵S 四边形AODB =S △AOB +S △BOD =S △AOC +S 梯形ABDC ,∴S △AOB =S 梯形ABDC ,∵S 梯形ABDC =12(BD +AC )•CD =12×(1+2)×2=3, ∴S △AOB =3,故选B .小提示:本题考查了反比例函数y =k x (k ≠0)中k 的几何意义,反比例函数图象上点的坐标特征,梯形的面积,熟知反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 与k 的关系为S =12|k |是解题的关键. 7、如图,点A 在反比例函数y =k x (x >0)图象上,AB ⊥x 轴于点B ,C 是OB 的中点,连接AO ,AC ,若△AOC 的面积为2,则k =( )A .4B .8C .12D .16答案:B分析:根据三角形中线的性质得出S △AOB =4,然后根据反比例函数k 的几何意义得解.解:∵点C 是OB 的中点,△AOC 的面积为2,∴S △AOB =4,∵AB ⊥x 轴于点B ,∴12AB ⋅OB =4,∴AB ⋅OB =8,∴k =8,故选:B.小提示:本题考查了反比例函数k的几何意义以及三角形中线的性质,熟知反比例函数k的几何意义是解本题的关键.8、学校的自动饮水机,通电加热时水温每分钟上升10°C,加热到100°C时,自动停止加热,水温开始下降.此时水温y(°C)与通电时间x(min)成反比例关系.当水温降至20°C时,饮水机再自动加热,若水温在20°C 时接通电源,水温y与通电时间x之间的关系如图所示,则水温要从20°C加热到100°C,所需要的时间为()A.6min B.7min C.8min D.10min答案:C分析:由图像知加热时水温y(°C)与通电时间x(min)成正比例关系,通电加热时水温每分钟上升10°C,所以关系式为y=10x+20,进而可求得水温要从20°C加热到100°C所需要的时间.解:由图可知水温要从20°C加热到100°C,水温y(°C)与通电时间x(min)成正比例关系,关系式为y=10x+ 20,当y=100时,x=8.故选:C.小提示:本题考查一次函数的实际应用,熟练掌握相关知识是解题的关键.9、已知电压U、电流I、电阻R三者之间的关系式为:U=IR(或者I=U),实际生活中,由于给定已知量R不同,因此会有不同的可能图象,图象不可能是()A.B.C.D.答案:A分析:在实际生活中,电压U、电流I、电阻R三者之中任何一个不能为负,依此可得结果.,但自变量R的取值为负值,故选项A错误;B、C、D选项正确,不符合题意.A图象反映的是I=UR故选:A.小提示:此题主要考查了现实生活中函数图象的确立,注意自变量取值不能为负是解答此题的关键.10、已知点(-2,a)(2,b)(3,c)在函数y=k2+2(k为常数)的图像上,则下列判断正确的是()xA.a<c<b B.b<a<c C.a<b<c D.c<b<a答案:A(k为常数)的图象分布在第一、三象限,在每一象限,y随分析:根据反比例函数的性质得到函数y=k2+2xx的增大而减小,则b>c>0,a<0.∵k2+2>0,∴函数y=k2+2(k为常数)的图像分布在第一、三象限,在每一象限,y随x的增大而减小,x∵﹣2<0<2<3,∴b>c>0,a<0,∴a<c<b.故选:A.小提示:本题考查反比例函数的增减性比较大小,熟记函数性质,判断每个象限内的特点是解题关键.填空题11、每年春季为预防流感,某校利用休息日对教室进行药熏消毒,已知药物燃烧过程及燃烧完后空气中的含药量y(mg/m3)与时间x(h)之间的关系如图所示,根据消毒要求,空气中的含药量不低于3mg/m3且持续时间不能低于10h.请你帮助计算一下,当空气中的含药量不低于3mg/m3时,持续时间可以达到__h.答案:12分析:利用待定系数法求出反比例函数,利用y=6求出两函数交点坐标,再求正比例函数,利用y=3,求出两函数自变量值作差即可解:∵反比例函数经过点(24,2),∴k=xy=24×2=48,∴反比例函数的解析式为y=48,x令y=6,解得:x=8,∴直线与双曲线的交点坐标为(8,6),∴正比例函数的解析式为y=3x,4=3,解得:x=16,令y=48xx=3,解得:x=4,令y=34∴当空气中的含药量不低于3mg/m3时,持续时间可以达到16﹣4=12h,所以答案是:12.小提示:本题考查正比例函数与反比例函数的联合应用,会用待定系数法求反比例函数解析式与正比例函数解析式,会求函数值是解题关键.12、如图,等腰ΔABC的两个顶点A(−1,−4)、B(−4,−1)在反比例函数y=k1(x<0)的图象上,AC=xBC.过点C作边AB的垂线交反比例函数y=k1(x<0)的图象于点D,动点P从点D出发,沿射线CD方向运动x3√2个单位长度,到达反比例函数y=k2(x>0)图象上一点,则k2=__________.x答案:1分析:由AC=BC,CD⊥AB,得到△ABC是等腰三角形,CD是AB的垂直平分线,即CD是反比例函数y=k1 x 的对称轴,直线CD的关系式是y=x,根据A点的坐标是A(−1,−4),代入反比例函数y=k1x,得反比例函数关系式为y=4x ,在根据直线CD与反比例函数y=4x(x<0)的图象于点D,求得D点的坐标是(-2,-2),则OD=2√2,根据点P从点D出发,沿射线CD方向运动3√2个单位长度,到达反比例函数y=k2x图象上,得到OP=√2,则P点的坐标是(1,1),将P(1,1)代入反比例函数y=k2x,得k2=1.解:如图示,AB与CD相交于E点,P在反比例函数y=k2x(x>0)图象上,∵AC=BC,CD⊥AB,∴△ABC是等腰三角形,CD是AB的垂直平分线,∴CD是反比例函数y=k1x的对称轴,则直线CD的关系式是y=x,∵A点的坐标是A(−1,−4),代入反比例函数y=k1x,得k1=xy=(−1)×(−4)=4则反比例函数关系式为y=4x又∵直线CD与反比例函数y=4x(x<0)的图象于点D,则有{y=xy=4x,解之得:{x=−2y=−2(D点在第三象限),∴D点的坐标是(-2,-2),∴OD=2√2,∵点P从点D出发,沿射线CD方向运动3√2个单位长度,到达反比例函数y=k2x图象上,∴OP=√2,则P点的坐标是(1,1)(P点在第一象限),将P(1,1)代入反比例函数y=k2x,得k2=xy=1×1=1,所以答案是:1.小提示:本题考查了用待定系数法求出反比例函数,反比例函数的对称性和解二元一次方程组的应用,熟悉相关性质是解此题的关键.13、如图,直线y=−x+3与y轴交于点A,与反比例函数y=kx(x<0)的图象交于点C,过点C作CB⊥x轴于点B,若AO=3BO,则k的值为________.答案:-4分析:先求出点A的坐标,然后表示出AO、BO的长度,根据AO=3BO,求出点C的横坐标,代入直线解析式求出纵坐标,用待定系数法求出反比例函数解析式.解:∵直线y=−x+3与y轴的交点A的坐标为(0,3),∴AO=3.∵AO=3BO,∴BO=1,∵CB⊥x轴∴点C的横坐标为−1.把x=−1代入y=−x+3,得y=−(−1)+3=4,∴点C的坐标为(−1,4),把C(−1,4)代入y=kx,得k=−4.故答案是:-4.小提示:本题考查的是反比例函数与一次函数的交点问题,根据题意确定点C的横坐标并求出纵坐标是解题的关键.14、如图,在平面直角坐标系中,点M为x轴正半轴上一点,过点M的直线l∥y轴,且直线l分别与反比例函数y=8x (x>0)和y=kx(x>0)的图象交于P、Q两点,若S∥POQ=13,则k的值为___________.答案:-18分析:根据反比例函数系数k的几何意义,则∥OPM和∥OMQ的面积都可求得(或用k表示),根据∥POQ的面积,即可得到一个关于k的方程,进而求解.解:由反比例函数的性质可知S∥OPM=12×8=4,S∥OMQ=12×|k|=-12k,∵S∥POQ=13,∴4-12k=13,解得k=-18,故答案是:-18.小提示:本题考查了反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|,熟练掌握k的几何意义是解题的关键.15、已知△ABC的三个顶点为A(-1,1),B(-1,3),C(-3,-3),将△ABC向右平移m(m>0)个单位后,△ABC某一边的中点恰好落在反比例函数y= 3的图象上,则m的值为________.x答案:52分析:根据中点的坐标和平移的规律,利用点在函数图像上,可解出m的值.△ABC的三个顶点为A(-1,1),B(-1,3),C(-3,3)∴AB的中点(-1,2),BC的中点(-2,0),AC的中点(-2,-1)∴AB边的中点平移后为(-1+m,2),AC中点平移后为(-2+m,-1)∵△ABC某一边中点落在反比例函数上∴2(-1+m)=3或-1×(-2+m)=3m=2.5或-1(舍去).故答案是:5.2小提示:考查了反比例函数图象上点的坐标特点,关键是掌握反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.解答题(x>0)的图像交于点A(a,4).点B为x轴正半轴上一16、如图,正比例函数y=kx的图像与反比例函数y=8x点,过B作x轴的垂线交反比例函数的图像于点C,交正比例函数的图像于点D.(1)求a 的值及正比例函数y =kx 的表达式; (2)若BD =10,求△ACD 的面积. 答案:(1)a=2;y=2x ;(2)635分析:(1)已知反比例函数解析式,点A 在反比例函数图象上,故a 可求;求出点A 的坐标后,点A 同时在正比例函数图象上,将点A 坐标代入正比例函数解析式中,故正比例函数的解析式可求.(2)根据题意以及第一问的求解结果,我们可设B 点坐标为(b ,0),则D 点坐标为(b ,2b),根据BD=10,可求b 值,然后确认三角形的底和高,最后根据三角形面积公式即可求解.(1)已知反比例函数解析式为y=8x ,点A(a ,4)在反比例函数图象上,将点A 坐标代入,解得a=2,故A 点坐标为(2,4),又∵A 点也在正比例函数图象上,设正比例函数解析为y=kx ,将点A(2,4)代入正比例函数解析式中,解得k=2,则正比例函数解析式为y=2x . 故a=2;y=2x .(2)根据第一问的求解结果,以及BD 垂直x 轴,我们可以设B 点坐标为(b ,0),则C 点坐标为(b ,8b )、D 点坐标为(b ,2b),根据BD=10,则2b=10,解得b=5,故点B 的坐标为(5,0),D 点坐标为(5,10),C 点坐标为(5,85),则在△ACD 中,S △ACD =12×(10−85)×(5−2)=635.故△ACD 的面积为635.小提示:(1)本题主要考查求解正比例函数及反比例函数解析式,掌握求解正比例函数和反比例函数解析式的方法是解答本题的关键.(2)本题根据第一问求解的结果以及BD 垂直x 轴,利用待定系数法,设B 、C 、D 三点坐标,求出B 、C 、D 三点坐标,是解答本题的关键,同时掌握三角形面积公式,即可求解.17、心理学家研究发现,一般情况下,一节课40分钟,学生的注意力随教师讲课时间的变化而变化.学生的注意力指数y随时间x(分)的变化规律如图所示(其中AB、BC为线段,CD为双曲线的一部分).(1)上课后的第5分钟与第30分钟相比较,_______分钟时学生的注意力更集中.(2)分别求出线段AB和双曲线CD的函数关系式.(3)一道数学题,需要讲18分钟,为了学生听课效果较好,要求学生的注意力指数不低于40,那么经过适当的时间安排,教师能否在学生注意力达到所需状态下讲完这道题?.(3)教师能在学生注意力达到所需要求状态下讲完这道题.答案:(1)5;(2)y AB=2x+30;y CD=1000x分析:(1)(2)利用待定系数法分别求出AB和CD的函数表达式,得出第五分钟和第三十分钟的注意力指数,最后比较判断;(3)分别求出注意力指数为40时的两个时间,再将两时间之差和18比较,大于18则能讲完,否则不能.(1)(2)设线段AB所在的直线的解析式为y1=k1x+30,把B(10,50)代入得,k1=2,∴AB解析式为:y1=2x+30(0≤x≤10).设C、D所在双曲线的解析式为y2=k2,x把C(20,50)代入得,k2=1000,∴曲线CD的解析式为:y2=1000(x≥20);x当x1=5时,y1=2×5+30=40,,当x2=30时,y2=100030∴y1>y2∴第5分钟注意力更集中.所以答案是:5;(3)当y=40时,2x+30=40,x=5.1000=40,x=25.x∴25−5=20>18.∴教师能在学生注意力达到所需要求状态下讲完这道题.小提示:此题主要考查了反比例函数的应用.解题的关键是根据实际意义列出函数关系式,从实际意义中找到对应的变量的值,利用待定系数法求出函数解析式,再根据自变量的值求算对应的函数值.18、反比例函数y=k与一次函数y=2x−4的图像都过A(n,4).x(1)求A点坐标;(2)求反比例函数解析式.答案:(1)点A的坐标为(4,4)(2)y=16x分析:(1)把点A(n,4)代入一次函数y=2x-4求出n的值即可得出A点的坐标;求出k的值即可.(2)再把点A的坐标代入反比例函数y=kx(1)解:将点A(n,4)代入y=2x﹣4得:2n﹣4=4,解得:n=4,∴点A的坐标为(4,4).(2)解:将点A(4,4)代入y=k得:k=16,x∴反比例函数解析式为y=16.x小提示:本题主要考查的是一次函数及反比例函数图像上点的坐标特点,掌握函数图像的交点坐标即为函数解析式组成的方程组的解是解答本题的关键.。
九年级上册数学第5章反比例函数『一』 .知识归纳:● 知识点1 反比例函数的概念1.xky =(0≠k )可以写成1-=kx y (0≠k )的形式,注意自变量x 的指数为-1,在解决有关自变量指0≠k 数问题时应特别注意系数0≠k 这一限制条件;2.xky =(0≠k )也可以写成xy=k 的形式,用它可以迅速地求出反比例函数解析式中的k ,从而得到反比例函数的解析式; 3.反比例函数xky =的自变量0≠x ,故函数图象与x 轴、y 轴无交点. ● 知识点2 反比例函数的图象在用描点法画反比例函数xky =的图象时,应注意自变量x 的取值不能为0,且x 应对称取点(关于原点对称).● 知识点3 反比例函数及其图象的性质1.函数解析式:xky =(0≠k ) 2.自变量的取值范围:0≠x3.图象:(1)图象的形状:双曲线.k 越大,图象的弯曲度越小,曲线越平直.k 越小,图象的弯曲度越大.(2)图象的位置和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.当0>k 时,图象的两支分别位于一、三象限;在每个象限内,y 随x 的增大而减小; 当0<k 时,图象的两支分别位于二、四象限;在每个象限内,y 随x 的增大而增大. (3)对称性:图象关于原点对称,即若(a ,b )在双曲线的一支上,则),(b a --在双曲线的另一支上.图象关于直线x y ±=对称,即若(a ,b )在双曲线的一支上,则),(a b 和),(a b --在双曲线的另一支上.4.k 的几何意义如图1,设点P (a ,b )是双曲线xky =上任意一点,作PA ⊥x 轴于A 点,PB ⊥y 轴于B 点,则矩形PBOA 的面积是k (三角形PAO 和三角形PBO 的面k 21). 积都是如图2,由双曲线的对称性可知,P 关于原点的对称点Q 也在双曲线上,作QC ⊥PA 的延长线于C ,则有三角形PQC 的面积为k 2.5.说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.(2)直线x k y 1=与双曲线xk y 2=的关系: 当021<k k 时,两图象没有交点;当021>k k 时,两图象必有两个交点,且这两个交点关于原点成中心对称.(3)反比例函数与一次函数的联系.●知识点4 实际问题与反比例函数1.求函数解析式的方法:(1)待定系数法;(2)根据实际意义列函数解析式.2.注意学科间知识的综合,但重点放在对数学知识的研究上. ● 知识点5 充分利用数形结合的思想解决问题. 『二』典型例题解析★例题解析1 反比例函数的概念图2(1)下列函数中,y 是x 的反比例函数的是( ).A .y=3xB .x y 23=-C .3xy=1D .22x y = (2)下列函数中,y 是x 的反比例函数的是( ). A .x y 41=B .21x y -=C .21-=x y D .x y 11+= 答案:(1)C ;(2)A .★例题解析2 图象和性质 (1)已知函数是反比例函数,①若它的图象在第二、四象限内,那么k=___________. ②若y 随x 的增大而减小,那么k=___________.(2)已知一次函数y=ax+b 的图象经过第一、二、四象限,则函数xaby =的图象位于第________象限.(3)若反比例函数xk y =经过点(-1,2),则一次函数2+-=kx y 的图象一定不经过第_____象限.(4)已知a ·b <0,点P (a ,b )在反比例函数xay =的图象上, 则直线b ax y +=不经过的象限是( ).A .第一象限B .第二象限C .第三象限D .第四象限 (5)若P (2,2)和Q (m ,2m -)是反比例函数xky =图象上的两点, 则一次函数y=kx+m 的图象经过( ).A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限 (6)已知函数)1(-=x k y 和xky -=(k ≠0),它们在同一坐标系内的图象大致是( ).A .B .C .D . 答案:(1)①②1;(2)一、三;(3)四;(4)C ;(5)C ;(6)B .★例题解析3 函数的增减性 (1)在反比例函数)0(<=k xky 的图象上有两点),(),,(2211y x B y x A ,且021>>x x ,则21y y -的值为( ).A .正数B .负数C .非正数D .非负数(2)在函数xa y 12--=(a 为常数)的图象上有三个点),1(1y -,),41(2y -,),21(3y ,则函数值1y 、2y 、3y 的大小关系是( ).A .2y <3y <1yB .3y <2y <1yC .1y <2y <3yD .2y <1y <3y (3)下列四个函数中:①x y 5=;②x y 5-=;③x y 5=;④xy 5-=. y 随x 的增大而减小的函数有( ).A .0个B .1个C .2个D .3个 (4)已知反比例函数xky =的图象与直线y=2x 和y=x+1的图象过同一点,则当x >0时,这个反比例函数的函数值y 随x 的增大而 (填“增大”或“减小”). 答案:(1)A ;(2)D ;(3)B . ★例题解析4 解析式的确定(1)若y 与x 1成反比例,x 与z1成正比例,则y 是z 的( ). A .正比例函数 B .反比例函数 C .一次函数D .不能确定(2)若正比例函数y=2x 与反比例函数xky =的图象有一个交点为 (2,m ),则m=_____,k=________,它们的另一个交点为________.(3)已知反比例函数xm y 2=的图象经过点),(8-2-,反比例函数x m y =的图象在第二、四象限,求的值.(4)已知一次函数y=x+m 与反比例函数xm y 1+=(1≠m )的图象在第一象限内的交点为P (x 0,3).①求x 0的值;②求一次函数和反比例函数的解析式.(5)为了预防“非典”,某学校对教室采用药薰消毒法进行消毒. 已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧完后,y 与x 成反比例(如图所示),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克. 请根据题中所提供的信息解答下列问题:①药物燃烧时y 关于x 的函数关系式为___________,自变量x 的取值范围是_______________;药物燃烧后y 关于x 的函数关系式为_________________.②研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过_______分钟后,学生才能回到教室; ③ 研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10 分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?答案:(1)B ; (2)4,8,(2-,4-); (3)依题意,且,解得.(4)①依题意,⎩⎨⎧>+==+;013300m x m x 解得⎩⎨⎧==210m x②一次函数解析式为2+=x y ,,反比例函数解析式为xy 3=. (5)①x y 43=,80≤≤x ,)8(48>=x xy ; ②30;③消毒时间为1025.13433-348>=⨯(分钟),所以消毒有效. ★例题解析5 面积计算 (1)如图,在函数xy 3-=的图象上有三个点A 、B 、C ,过这三个点分别向x 轴、y 轴作垂线,过每一点所作的两条垂线段与x 轴、y 轴围成的矩形的面积分别为S 1、S 2、S 3,则( ). A .321s s s >>B .S 1<S 2<S 3C .S 1<S 3<S 2D .S 1=S 2=S 3第(1)题图 第(2)题图 (2)如图,A 、B 是函数xy 1=的图象上关于原点O 对称的任意两点,AC//y 轴,BC//x 轴,△ABC 的面积S ,则( ).A .S=1B .1<S <2C .S=2D .S >2(3)如图,Rt △AOB 的顶点A 在双曲线xmy =上,且S △AOB=3,求m 的值.第(3)题图 第(4)题图 (4)已知函数xy 4=的图象和两条直线y=x ,y=2x 在第一象限内分别相交于P 1和P 2两点,过P 1分别作x 轴、y 轴的垂线P 1Q 1,P 1R 1,垂足分别为Q 1,R 1,过P 2分别作x 轴、y 轴的垂线P 2 Q 2,P 2 R 2,垂足分别为Q 2,R 2,求矩形O Q 1P 1 R 1和O Q 2P 2 R 2的周长,并比较它们的大小.(5)如图,正比例函数y=kx (k >0)和反比例函数xy 1=的图象相交于A 、C 两点,过A 作x 轴垂线交x 轴于B ,连接BC ,若△ABC 面积为S ,则S=_________.(6)如图在Rt △ABO 中,顶点A 是双曲线xky =与直线)1(++-=k x y 在第四象限的交点,AB ⊥x 轴于B 且S △ABO=23.①求这两个函数的解析式;②求直线与双曲线的两个交点A 、C 的坐标和△AOC 的面积.(7)如图,已知正方形OABC 的面积为9,点O 为坐标原点,点A 、C 分别在x 轴、y 轴上,点B 在函数x k y =(k >0,x >0)的图象上,点P (m ,n )是函数xky =(k >0,x >0)的图象上任意一点,过P 分别作x 轴、y 轴的垂线,垂足为E 、F ,设矩形OEPF 在正方形OABC 以外的部分的面积为S . ① 求B 点坐标和k 的值;第5题图第6题图② 当29=S 时,求点P 的坐标; ③ 写出S 关于m 的函数关系式.答案:(1)D ; (2)C ;(3)6;(4))22(1,P ,)222(2,P ,矩形O Q 1P 1 R 1的周长为8,O Q 2P2 R 2的周长为26,前者大. (5)1.(6)①双曲线为xy 3-=,直线为2--=x y ;②直线与两轴的交点分别为(0,-2)和(-2,0),且A (1,-3)和C (-3,1), 因此AOC ∆面积为4. (7)①B (3,3),9=k ;②29=S 时,E (6,0),),(236P ; ③mn S 22793219-=⋅⋅-=.★例题解析5 综合应用(一)(1)若函数y=k1x (k1≠0)和函数)0(22≠=k xk y 在同一坐标系内的图象没有公共点,则k 1和k 2( ).A .互为倒数B .符号相同C .绝对值相等D .符号相反 (2)如图,一次函数b kx y +=的图象与反比例数xmy =的图象交于A 、B 两点:A (-2,1),B (1,n ).① 求反比例函数和一次函数的解析式;② 根据图象写出使一次函数的值大于反比例函数的值的x 的取值范围.(3)如图所示,已知一次函数b kx y +=(k ≠0)的图象与x 轴、y 轴分别交于A 、B 两点,且与反比例函数xmy =(m ≠0)的图象在第一象限交于C 点,CD 垂直于x 轴,垂足为D ,若OA=OB=OD=1.① 求点A 、B 、D 的坐标;② 求一次函数和反比例函数的解析式.(4)如图,一次函数b ax y +=的图象与反比例函数xky =的图象交于第一象限C 、D 两点,坐标轴交于A 、B 两点,连结OC ,OD (O 是坐标原点). ① 利用图中条件,求反比例函数的解析式和m 的值;② 双曲线上是否存在一点P ,使得△POC 和△POD 的面积相等?若存在,给出证明并求出点P 的坐标;若不存在,说明理由.(5)不解方程,判断下列方程解的个数. ①041=+x x ; ②041=-x x.答案: (1)D .(2)① 反比例函数为,一次函数为;②范围是或.(3)①A (0,),B (0,1),D (1,0);②一次函数为,反比例函数为.(4)①反比例函数为,;②存在(2,2).(5)①构造双曲线和直线,它们无交点,说明原方程无实数解;②构造双曲线和直线,它们有两个交点,说明原方程有两个实数解.『三』衔接中考:考题1:2013年潍坊市)设点()11,y x A 和()22,y x B 是反比例函数xky =图象上的两个点,当1x <2x <0时,1y <2y ,则一次函数k x y +-=2的图象不经过的象限是( ). A.第一象限 B.第二象限 C.第三象限 D.第四象限 答案:A .考题2:(2013泸州)如图、已知双曲线()0ky k x=<经过直角三角形△OAB 斜边OA 的中点D ,且与直角边AB 相交于点C ,若点A 的坐标为(—6,4),则△AOC 的面积为 A 、12 B 、9 C 、6 D 、4考题3:(2013年南京)在同一直线坐标系中,若正比例函数y =k 1x 的图像与反比例函数y = k 2x 的图像没有公共点,则(A) k 1+k 2<0 (B) k 1+k 2>0 (C) k 1k 2<0 (D) k 1k 2>0 答案:C考题4:(2013•衢州)若函数y=的图象在其所在的每一象限内,函数值y 随自变量x的增大而增大,则m 的取值范围是( ) A . m <﹣2 B . m <0 C . m >﹣2 D . m >0答案:A .考题5:(2013•滨州)若点A (1,y 1)、B (2,y 2)都在反比例函数的图象上,则y 1、y 2的大小关系为( ) A . y 1<y 2 B . y 1≤y 2 C . y 1>y 2 D . y 1≥y 2考题6:(2013•宁夏)函数(a ≠0)与y=a (x ﹣1)(a ≠0)在同一坐标系中的大致图象是( ) A .B .C .D .答案:C .考题5:(2013•六盘水)下列图形中,阴影部分面积最大的是( )A .B .C .D .答案:D考题6:(2013•毕节地区)一次函数y=kx+b (k ≠0)与反比例函数的图象在同一直角坐标系下的大致图象如图所示,则k 、b 的取值范围是( )A . k >0,b >0B . k <0,b >0C . k <0,b <0D . k >0,b <0答案:C考题7:(2013•莱芜)M(1,a)是一次函数y=3x+2与反比例函数图象的公共点,若将一次函数y=3x+2的图象向下平移4个单位,则它与反比例函数图象的交点坐标为(﹣1,﹣5),().考题8:已知一个函数的图象与y=6x的图象关于y轴成轴对称,则该函数的解析式为y=﹣6x.考题9:(2013•自贡)如图,在函数的图象上有点P1、P2、P3…、P n、P n+1,点P1的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P1、P2、P3…、P n、P n+1分别作x轴、y轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S1、S2、S3…、S n,则S1=4,S n=.(用含n的代数式表示)考题10:(2013•眉山)如图,在函数y1=(x<0)和y2=(x>0)的图象上,分别有A、B两点,若AB∥x轴,交y轴于点C,且OA⊥OB,S△AOC=,S△BOC=,则线段AB的长度=.考题11:(2013•雅安)如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(﹣2,0),且tan∠ACO=2.(1)求该反比例函数和一次函数的解析式;(2)求点B的坐标;(3)在x轴上求点E,使△ACE为直角三角形.(直接写出点E的坐标)答案:解答:解:(1)过点A作AD⊥x轴于D,∵C的坐标为(﹣2,0),A的坐标为(n,6),∴AD=6,CD=n+2,∵tan∠ACO=2,∴==2,解得:n=1,故A(1,6),∴m=1×6=6,∴反比例函数表达式为:y=,又∵点A、C在直线y=kx+b上,∴,解得:,∴一次函数的表达式为:y=2x+4;(2)由得:=2x+4,解得:x=1或x=﹣3,∵A(1,6),∴B(﹣3,﹣2);(3)分两种情况:①当AE⊥x轴时,即点E与点D重合,此时E1(1,0);②当EA⊥AC时,此时△ADE∽△CDA,则=,DE==12,又∵D的坐标为(1,0),∴E2(13,0).考题12:(2013•嘉兴)如图,一次函数y=kx+1(k≠0)与反比例函数y=(m≠0)的图象有公共点A(1,2).直线l⊥x轴于点N(3,0),与一次函数和反比例函数的图象分别交于点B,C.(1)求一次函数与反比例函数的解析式;(2)求△ABC的面积?解答:解:(1)将A(1,2)代入一次函数解析式得:k+1=2,即k=1,∴一次函数解析式为y=x+1;将A(1,2)代入反比例解析式得:m=2,∴反比例解析式为y=;(2)设一次函数与x轴交于D点,令y=0,求出x=﹣1,即OD=1,∴A(1,2),∴AE=2,OE=1,∵N(3,0),∴到B横坐标为3,将x=3代入一次函数得:y=4,将x=3代入反比例解析式得:y=,∴B(3,4),即ON=3,BN=4,C(3,),即CN=,则S△ABC=S△BDN﹣S△ADE﹣S梯形AECN=×4×4﹣×2×2﹣×(+2)×2=.考题13:(2013•湖州压轴题)如图①,O为坐标原点,点B在x轴的正半轴上,四边形OACB是平行四边形,sin∠AOB=,反比例函数y=(k>0)在第一象限内的图象经过点A,与BC交于点F.(1)若OA=10,求反比例函数解析式;(2)若点F为BC的中点,且△AOF的面积S=12,求OA的长和点C的坐标;(3)在(2)中的条件下,过点F作EF∥OB,交OA于点E(如图②),点P为直线EF 上的一个动点,连接PA,PO.是否存在这样的点P,使以P、O、A为顶点的三角形是直角三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.解答:解:(1)过点A作AH⊥OB于H,∵sin∠AOB=,OA=10,∴AH=8,OH=6,∴A点坐标为(6,8),根据题意得:8=,可得:k=48,∴反比例函数解析式:y=(x>0);(2)设OA=a(a>0),过点F作FM⊥x轴于M,∵sin∠AOB=,∴AH=a,OH=a,∴S△AOH=•aa=a2,∵S△AOF=12,∴S平行四边形AOBC=24,∵F为BC的中点,∴S△OBF=6,∵BF=a,∠FBM=∠AOB,∴FM=a,BM=a,∴S△BMF=BM•FM=a•a=a2,∴S△FOM=S△OBF+S△BMF=6+a2,∵点A,F都在y=的图象上,∴S△AOH=k,∴a2=6+a2,∴a=,∴OA=, ∴AH=,OH=2,∵S 平行四边形AOBC =OB •AH=24, ∴OB=AC=3, ∴C (5, );(3)存在三种情况:当∠APO=90°时,在OA 的两侧各有一点P ,分别为:P 1(,),P 2(﹣,), 当∠PAO=90°时,P 3(, ), 当∠POA=90°时,P 4(﹣,).『四』课堂练习: ▼(一)基础类型:1. 1下列函数,① 1)2(=+y x ②. 11+=x y ③21x y = ④.x y 21-=⑤2x y =-⑥13y x=;其中是y 关于x 的反比例函数的有:__④__⑥_____________。
反比例函数知识点及经典例题一、基础知识 1. 定义:一般地,形如xk y =(k 为常数,o k ≠)的函数称为反比例函数。
x k y =还可以写成kx y =1- 2. 反比例函数解析式的特征: ⑴等号左边是函数y ,等号右边是一个分式。
分子是不为零的常数k (也叫做比例系数k ),分母中含有自变量x ,且指数为1. ⑵比例系数0≠k⑶自变量x 的取值为一切非零实数。
⑷函数y 的取值是一切非零实数。
3. 反比例函数的图像 ⑴图像的画法:描点法① 列表(应以O 为中心,沿O 的两边分别取三对或以上互为相反的数) ② 描点(有小到大的顺序) ③ 连线(从左到右光滑的曲线) ⑵反比例函数的图像是双曲线,xky =(k 为常数,0≠k )中自变量0≠x ,函数值0≠y ,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交。
⑶反比例函数的图像是是轴对称图形(对称轴是x y =或x y -=)。
⑷反比例函数x k y =(0≠k )中比例系数k 的几何意义是:过双曲线xky = (0≠k )上任意引x 轴y 轴的垂线,所得矩形面积为k 。
4.反比例函数性质如下表:5. 反比例函数解析式的确定:利用待定系数法(只需一对对应值或图像上一个点的坐标即可求出k ) 6.“反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数,但是反比例函数xky =中的两个变量必成反比例关系。
7. 反比例函数的应用 二、例题 【例1】如果函数222-+=k kkx y 的图像是双曲线,且在第二,四象限内,那么的值是多少?【例2】在反比例函数xy 1-=的图像上有三点(1x ,)1y ,(2x ,)2y ,(3x ,)3y 。
若3210x x x >>>则下列各式正确的是( )A .213y y y >>B .123y y y >>C .321y y y >>D .231y y y >>oyx yxo y xoy xoAB CD【例3】如果一次函数()的图像与反比例函数xmn y m n mx y -=≠+=30相交于点(221,),那么该直线与双曲线的另一个交点为 【例4】 如图,在AOB Rt ∆中,点A 是直线m x y +=与双曲线xmy =在第一象限的交点,且2=∆AOB S ,则m 的值是_____.三、练习题 1.反比例函数xy 2-=的图像位于( )A .第一、二象限B .第一、三象限C .第二、三象限D .第二、四象限 2.若y 与x 成反比例,x 与z 成正比例,则y 是z 的( ) A 、正比例函数 B 、反比例函数 C 、一次函数 D 、不能确定3.如果矩形的面积为6cm 2,那么它的长y cm 与宽x cm 之间的函数图象大致为( )4.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P ( kPa ) 是气体体积V ( m 3) 的反比例函数,其图象如图所示.当气球内气压大于120 kPa 时,气球将爆炸.为了安全起见,气球的体积应( ) A 、不小于54m 3B 、小于54m 3 C 、不小于45m 3 D 、小于45m 35.如图 ,A 、C 是函数xy 1=的图象上的任意两点,过A 作x 轴的垂线,垂足为B ,过C 作y 轴的垂线,垂足为D ,记Rt ΔAOB 的面积为S 1,Rt ΔCOD 的面积为S 2则 ( )A . S 1 >S 2B . S 1 <S 2C . S 1=S 2D . S 1与S 2的大小关系不能确定 6.关于x 的一次函数y=-2x+m 和反比例函数y=1n x+的图象都经过点A (-2,1). 求:(1)一次函数和反比例函数的解析式;(2)两函数图象的另一个交点B 的坐标;(3)△AOB 的面积.7. 如图所示,一次函数y =ax +b 的图象与反比例函数y =kx的图象交于A 、B 两点,与x 轴交于点C .已知点A 的坐标为(-2,1),点B 的坐标为(12,m ).(1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围. 8. 某蓄水池的排水管每小时排水8m 3,6小时可将满池水全部排空.(1)蓄水池的容积是多少?(2)如果增加排水管,使每小时的排水量达到Q (m 3),那么将满池水排空所需的时间t (h )将如何变化?(3)写出t 与Q 的关系式.(4)如果准备在5小时内将满池水排空,那么每小时的排水量至少为多少?Oyx(5)已知排水管的最大排水量为每小时12m 3,那么最少需多长时间可将满池水全部排空? 9.某商场出售一批名牌衬衣,衬衣进价为60元,在营销中发现,该衬衣的日销售量y (件)是日销售价x 元的反比例函数,且当售价定为100元/件时,每日可售出30件.(1)请写出y 关于x 的函数关系式;(2)该商场计划经营此种衬衣的日销售利润为1800元,则其售价应为多少元?10.如图,在直角坐标系xOy 中,一次函数y =kx +b 的图象与反比例函数my x=的图象交于A(-2,1)、B(1,n)两点。
新人教版初中数学——反比例函数知识点归纳及典型题解析一、反比例函数的概念1.反比例函数的概念一般地,函数kyx=(k是常数,k≠0)叫做反比例函数.反比例函数的解析式也可以写成1y kx-=的形式.自变量x的取值范围是x≠0的一切实数,函数的取值范围也是一切非零实数.2.反比例函数kyx=(k是常数,k≠0)中x,y的取值范围反比例函数kyx=(k是常数,k≠0)的自变量x的取值范围是不等于0的任意实数,函数值y的取值范围也是非零实数.二、反比例函数的图象和性质1.反比例函数的图象与性质(1)图象:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限.由于反比例函数中自变量x≠0,函数y≠0,所以,它的图象与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴.(2)性质:当k>0时,函数图象的两个分支分别在第一、三象限,在每个象限内,y随x的增大而减小.当k<0时,函数图象的两个分支分别在第二、四象限,在每个象限内,y随x的增大而增大.表达式kyx=(k是常数,k≠0)k k>0 k<0大致图象所在象限第一、三象限第二、四象限2.反比例函数图象的对称性反比例函数的图象既是轴对称图形,又是中心对称图形,其对称轴为直线y=x和y=-x,对称中心为原点.3.注意(1)画反比例函数图象应多取一些点,描点越多,图象越准确,连线时,要注意用平滑的曲线连接各点.(2)随着|x|的增大,双曲线逐渐向坐标轴靠近,但永远不与坐标轴相交,因为反比例函数kyx=中x≠0且y≠0.(3)反比例函数的图象不是连续的,因此在谈到反比例函数的增减性时,都是在各自象限内的增减情况.当k>0时,在每一象限(第一、三象限)内y随x的增大而减小,但不能笼统地说当k>0时,y随x 的增大而减小.同样,当k<0时,也不能笼统地说y随x的增大而增大.三、反比例函数解析式的确定1.待定系数法确定解析式的方法仍是待定系数法,由于在反比例函数kyx=中,只有一个待定系数,因此只需要一对对应值或图象上的一个点的坐标,即可求出k的值,从而确定其解析式.2.待定系数法求反比例函数解析式的一般步骤(1)设反比例函数解析式为kyx=(k≠0);(2)把已知一对x,y的值代入解析式,得到一个关于待定系数k的方程;(3)解这个方程求出待定系数k;(4)将所求得的待定系数k的值代回所设的函数解析式.四、反比例函数中|k|的几何意义1.反比例函数图象中有关图形的面积2.涉及三角形的面积型当一次函数与反比例函数结合时,可通过面积作和或作差的形式来求解. (1)正比例函数与一次函数所围成的三角形面积.如图①,S △ABC =2S △ACO =|k |;(2)如图②,已知一次函数与反比例函数ky x=交于A 、B 两点,且一次函数与x 轴交于点C ,则S △AOB =S △AOC +S △BOC =1||2A OC y ⋅+1||2B OC y ⋅=1(||||)2A B OC y y ⋅+; (3)如图③,已知反比例函数ky x=的图象上的两点,其坐标分别为()A A x y ,,()B B x y ,,C 为AB 延长线与x 轴的交点,则S △AOB =S △AOC –S △BOC =1||2A OC y ⋅–1||2B OC y ⋅=1(||||)2A B OC y y ⋅-. 五、反比例函数与一次函数的综合 1.涉及自变量取值范围型当一次函数11y k x b =+与反比例函数22k y x=相交时,联立两个解析式,构造方程组,然后求出交点坐标.针对12y y >时自变量x 的取值范围,只需观察一次函数的图象高于反比例函数图象的部分所对应的x 的范围.例如,如下图,当12y y >时,x 的取值范围为A x x >或0B x x <<;同理,当12y y <时,x 的取值范围为0A x x <<或B x x <.2.求一次函数与反比例函数的交点坐标(1)从图象上看,一次函数与反比例函数的交点由k值的符号来决定.①k值同号,两个函数必有两个交点;②k值异号,两个函数可能无交点,可能有一个交点,也可能有两个交点;(2)从计算上看,一次函数与反比例函数的交点主要取决于两函数所组成的方程组的解的情况.六、反比例函数的实际应用解决反比例函数的实际问题时,先确定函数解析式,再利用图象找出解决问题的方案,特别注意自变量的取值范围.考向一反比例函数的定义1.反比例函数的表达式中,等号左边是函数值y,等号右边是关于自变量x的分式,分子是不为零的常数k,分母不能是多项式,只能是x的一次单项式.2.反比例函数的一般形式的结构特征:①k≠0;②以分式形式呈现;③在分母中x的指数为1.典例1 下列函数中,y与x之间是反比例函数关系的是A.xy2B.3x+2y=0C.y=kxD.y=21x【答案】A【解析】A、xy=2属于反比例函数,故此选项正确;B、3x+2y=0是一次函数,故此选项错误;C、y=kx(k≠0),不属于反比例函数,故此选项错误;D 、y =21x +,是y 与x +1成反比例,故此选项错误. 故选A .1.下列函数:①2x y =;②2y x =;③12y x=-;④12y x -=中,是反比例函数的有 A .1个 B .2个 C .3个D .4个考向二 反比例函数的图象和性质当k >0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内,y 随x 的增大而减小.当k <0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内,y 随x 的增大而增大.双曲线是由两个分支组成的,一般不说两个分支经过第一、三象限(或第二、四象限),而说图象的两个分支分别在第一、三象限(或第二、四象限).典例2 在同一平面直角坐标系中,函数y =﹣x +k 与y =kx(k 为常数,且k ≠0)的图象大致是 A . B .C .D .【答案】C【解析】∵函数y =﹣x +k 与y =kx(k 为常数,且k ≠0),∴当k >0时,y =﹣x +k 经过第一、二、四象限,y =k x 经过第一、三象限,故选项D 错误,当k <0时,y =﹣x +k 经过第二、三、四象限,y =kx经过第二、四象限,故选项C 正确,选项A 、B 错误,故选C . 典例3 反比例函数3y x=-的图象在 A .第一、二象限 B .第一、三象限 C .第二、三象限D .第二、四象限【答案】D【解析】因为30k =-<,故图象在第二、四象限,故选D . 典例4 已知点A (1,m ),B (2,n )在反比例函数(0)ky k x=<的图象上,则 A .0m n << B .0n m << C .0m n >>D .0n m >>【答案】A【解析】∵反比例函数(0)k y k x =<,它的图象经过A (1,m ),B (2,n )两点,∴m =k <0,n =2k<0,∴0m n <<,故选A .2.对于函数4y x=,下列说法错误的是 A .这个函数的图象位于第一、第三象限B .这个函数的图象既是轴对称图形又是中心对称图形C .当x >0时,y 随x 的增大而增大D .当x <0时,y 随x 的增大而减小3.下列函数中,当x <0时,y 随x 的增大而减小的是 A .y =x B .y =2x –1 C .y =3x D .y =–1x4.如图是三个反比例函数y =1k x ,y =2kx ,y =3k x在x 轴上方的图象,由此观察得到k 1,k 2,k 3的大小关系为A .k 1>k 2>k 3B .k 3>k 2>k 1C .k 2>k 3>k 1D .k 3>k 1>k 2考向三 反比例函数解析式的确定1.反比例函数的解析式ky x=(k ≠0)中,只有一个待定系数k ,确定了k 值,也就确定了反比例函数,因此要确定反比例函数的解析式,只需给出一对x ,y 的对应值或图象上一个点的坐标,代入k y x=中即可.2.确定点是否在反比例函数图象上的方法:(1)把点的横坐标代入解析式,求出y 的值,若所求值等于点的纵坐标,则点在图象上;若所求值不等于点的纵坐标,则点不在图象上.(2)把点的横、纵坐标相乘,若乘积等于k ,则点在图象上,若乘积不等于k ,则点不在图象上.典例5 若反比例函数的图象经过点()32,-,则该反比例函数的表达式为 A .6y x = B .6y x =-C .3y x=D .3y x=-【答案】B【解析】设反比例函数为:ky x=.∵反比例函数的图象经过点(3,-2),∴k =3×(-2)=-6.故反比例函数为:6y x=-,故选B . 典例6 如图,某反比例函数的图象过点M (-2,1),则此反比例函数表达式为A.y=2xB.y=-2xC.y=12xD.y=-12x【答案】B【解析】设反比例函数表达式为y=kx,把M(2-,1)代入y=kx得,k=(-2)×1=-2,∴2yx=-,故选B.典例7 如图,C1是反比例函数y=kx在第一象限内的图象,且过点A(2,1),C2与C1关于x轴对称,那么图象C2对应的函数的表达式为__________(x>0).【答案】y=–2 x【解析】∵C2与C1关于x轴对称,∴点A关于x轴的对称点A′在C2上,∵点A(2,1),∴A′坐标(2,–1),∴C2对应的函数的表达式为y=–2x,故答案为y=–2x.5.已知反比例函数y=-6x,下列各点中,在其图象上的有A.(-2,-3)B.(2,3)C.(2,-3)D.(1,6)6.点A为反比例函数图象上一点,它到原点的距离为5,则x轴的距离为3,若点A在第二象限内,则这个函数的解析式为A.y=12xB.y=-12xC.y=112xD.y=-112x7.在平面直角坐标系中,点P(2,a)在反比例函数y=2x的图象上,把点P向上平移2个单位,再向右平移3个单位得到点Q,则经过点Q的反比例函数的表达式为__________.考向四反比例函数中k的几何意义三角形的面积与k的关系(1)因为反比例函数kyx中的k有正负之分,所以在利用解析式求矩形或三角形的面积时,都应加上绝对值符号.(2)若三角形的面积为12|k|,满足条件的三角形的三个顶点分别为原点,反比例函数图象上一点及过此点向坐标轴所作垂线的垂足.典例8 如图,矩形ABOC的顶点B、C分别在x轴,y轴上,顶点A在第二象限,点B的坐标为(﹣2,0).将线段OC绕点O逆时针旋转60°至线段OD,若反比例函数y=kx(k≠0)的图象经过A、D两点,则k值为__________.163【解析】如图,过点D作DE⊥x轴于点E,∵点B 的坐标为(﹣2,0),∴AB =﹣2k ,∴OC =﹣2k , 由旋转性质知OD =OC =﹣2k,∠COD =60°,∴∠DOE =30°, ∴DE =12OD =﹣14k ,OE =OD ·cos30°=32×(﹣2k )=﹣34k , 即D (﹣34k ,﹣14k ),∵反比例函数y =kx(k ≠0)的图象经过D 点, ∴k =(﹣34k )(﹣14k )=316k 2,解得:k =0(舍)或k =﹣1633,故答案为:﹣1633. 典例9 如图,已知双曲线ky x经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C ,若 △OBC 的面积为9,则k =__________.【答案】6【解析】如图,过点D 作x 轴的垂线交x 轴于点E ,∵△ODE的面积和△OAC的面积相等.∴△OBC的面积和四边形DEAB的面积相等且为9.设点D的横坐标为x,纵坐标就为kx,∵D为OB的中点.∴EA=x,AB=2kx,∴四边形DEAB的面积可表示为:12(kx+2kx)x=9;k=6.故答案为:6.【名师点睛】过反比例函数图象上的任一点分别向两坐标轴作垂线段,垂线段与两坐标轴围成的矩形面积等于|k|,结合函数图象所在的象限可以确定k的值,反过来,根据k的值,可以确定此矩形的面积.在解决反比例函数与几何图形综合题时,常常需要考虑是否能用到k的几何意义,以简化运算.8.如图,A、B两点在双曲线4yx=的图象上,分别经过A、B两点向轴作垂线段,已知1S=阴影,则12S S+=A.8 B.6 C.5 D.49.如图,点A,B是反比例函数y=kx(x>0)图象上的两点,过点A,B分别作AC⊥x轴于点C,BD⊥x轴于点D,连接OA、BC,已知点C(2,0),BD=3,S△BCD=3,则S△AOC为A.2 B.3 C.4 D.610.如图,等腰三角形ABC的顶点A在原点,顶点B在x轴的正半轴上,顶点C在函数y=kx(x>0)的图象上运动,且AC=BC,则△ABC的面积大小变化情况是A.一直不变B.先增大后减小C.先减小后增大D.先增大后不变考向五反比例函数与一次函数的综合反比例函数与一次函数综合的主要题型:(1)利用k值与图象的位置的关系,综合确定系数符号或图象位置;(2)已知直线与双曲线表达式求交点坐标;(3)用待定系数法确定直线与双曲线的表达式;(4)应用函数图象性质比较一次函数值与反比例函数值的大小等.解题时,一定要灵活运用一次函数与反比例函数的知识,并结合图象分析、解答问题.典例10 在同一平面直角坐标系中,函数1yx=-与函数y=x的图象交点个数是A.0个B.1个C.2个D.3个【答案】A【解析】∵y=x的图象是过原点经过一、三象限,1yx=-的图象在第二、四象限内,但不过原点,∴两个函数图象不可能相交,故选A.典例11 已知一次函数y1=kx+b与反比例函数y2=kx在同一直角坐标系中的图象如图所示,则当y1<y2时,x的取值范围是A.x<-1或0<x<3 B.-1<x<0或x>3 C.-1<x<0 D.x>3【答案】B【解析】根据图象知,一次函数y1=kx+b与反比例函数y2=kx的交点是(-1,3),(3,-1),∴当y1<y2时,-1<x<0或x>3,故选B.【名师点睛】本题主要考查函数图象的交点,把不等式转化为函数图象的高低是解题的关键,注意数形结合思想的应用.典例12 如图,已知直线y=–13x+10与双曲线y=kx(x>0)交于A、B两点,连接OA,若OA⊥AB,则k的值为A.910B.2710C 910D2710【答案】B【解析】如图,过A 作AE ⊥OD 于E ,∵直线解析式为y =–13x +10,∴C (0,10),D (310,0), ∴OC =10,OD =310,∴Rt △COD 中,CD =22 O C OD +=10, ∵OA ⊥AB ,∴12CO ×DO =12CD ×AO , ∴AO =3,∴AD =22OD OA -=9, ∵12OD ×AE =12AO ×AD ,∴AE =91010, ∴Rt △AOE 中,OE =22AO AE -=229103()10-=31010,∴A (31010,91010), ∴代入双曲线y =k x ,可得k =31010×91010=2710,故选B .11.已知反比例函数y =kx(k ≠0),当x >0时,y 随x 的增大而增大,那么一次函数y =kx -k 的图象经过 A .第一、二、三象限 B .第一、二、四象限 C .第一、三、四象限D .第二、三、四象限12.如图,已知A (–4,n ),B (2,–4)是一次函数y =kx +b 和反比例函数y =mx的图象的两个交点. (1)求一次函数和反比例函数的解析式; (2)求△AOB 的面积.考向六反比例函数的应用用反比例函数解决实际问题的步骤(1)审:审清题意,找出题目中的常量、变量,并理清常量与变量之间的关系;(2)设:根据常量与变量之间的关系,设出函数解析式,待定的系数用字母表示;(3)列:由题目中的已知条件列出方程,求出待定系数;(4)写:写出函数解析式,并注意解析式中变量的取值范围;(5)解:用函数解析式去解决实际问题.典例13 某化工车间发生有害气体泄漏,自泄漏开始到完全控制利用了40min,之后将对泄漏有害气体进行清理,线段DE表示气体泄漏时车间内危险检测表显示数据y与时间x(min)之间的函数关系(0≤x≤40),反比例函数y=kx对应曲线EF表示气体泄漏控制之后车间危险检测表显示数据y与时间x(min)之间的函数关系(40≤x≤?).根据图象解答下列问题:(1)危险检测表在气体泄漏之初显示的数据是__________;(2)求反比例函数y =__________的表达式,并确定车间内危险检测表恢复到气体泄漏之初数据时对应x 的值.【解析】(1)当0≤x ≤40时,设y 与x 之间的函数关系式为y =ax +b , (10,35)和(30,65)在y =ax +b 的图象上, 把(10,35)和(30,65)代入y =ax +b ,得10353065a b a b +=+=⎧⎨⎩,得 1.520a b ==⎧⎨⎩, ∴y =1.5x +20,当x =0时,y =1.5×0+20=20, 故答案为:20;(2)将x =40代入y =1.5x +20,得y =80,∴点E (40,80), ∵点E 在反比例函数y =kx的图象上, ∴80=40k,得k =3200, 即反比例函数y =3200x ,当y =20时,20=3200x,得x =160,即车间内危险检测表恢复到气体泄漏之初数据时对应x 的值是160.13.如图为某种材料温度y (℃)随时间x (min )变化的函数图象.已知该材料初始温度为15℃,温度上升阶段y 与时间x 成一次函数关系,且在第5分钟温度达到最大值60℃后开始下降;温度下降阶段,温度y 与时间x 成反比例关系.(1)分别求该材料温度上升和下降阶段,y 与x 间的函数关系式;(2)根据工艺要求,当材料的温度高于30℃时,可以进行产品加工,问可加工多长时间?1.下列函数中,y 是x 的反比例函数的是 A .x (y –1)=1B .15y x =- 1C 3y x=. 21D y x=.2.已知反比例函数y =8k x-的图象位于第一、三象限,则k 的取值范围是 A .k >8 B .k ≥8 C .k ≤8D .k <83.如图,直线l ⊥x 轴于点P ,且与反比例函数y 1=1k x(x >0)及y 2=2k x (x >0)的图象分别交于点A ,B ,连接OA ,OB ,已知△OAB 的面积为2,则k 1-k 2的值为A .2B .3C .4D .-44.若点A (–5,y 1),B (–3,y 2),C (2,y 3)在反比例函数3y x=的图象上,则y 1,y 2,y 3的大小关系是 A .y 1<y 3<y 2 B .y 2<y 1<y 3 C .y 3<y 2<y 1D .y 1<y 2<y 35.如图,在同一平面直角坐标系中,一次函数y 1=kx +b (k 、b 是常数,且k ≠0)与反比例函数y 2=cx(c 是常数,且c ≠0)的图象相交于A (-3,-2),B (2,3)两点,则不等式y 1>y 2的解集是A .-3<x <2B .x <-3或x >2C .-3<x <0或x >2D .0<x <26.一次函数y =ax +b 与反比例函数a by x-=,其中ab <0,a 、b 为常数,它们在同一坐标系中的图象可以是 A . B .C.D.7.反比例函数y=ax(a>0,a为常数)和y=2x在第一象限内的图象如图所示,点M在y=ax的图象上,MC⊥x轴于点C,交y=2x的图象于点A;MD⊥y轴于点D,交y=2x的图象于点B.当点M在y=ax的图象上运动时,以下结论:①S△ODB=S△OCA;②四边形OAMB的面积不变;③当点A是MC的中点时,则点B 是MD的中点.其中正确结论的个数是A.0个B.1个C.2个D.3个8.如图,平面直角坐标系xOy中,矩形OABC的边OA、OC分别落在x、y轴上,点B坐标为(6,4),反比例函数y=6x的图象与AB边交于点D,与BC边交于点E,连接DE,将△BDE沿DE翻折至△B'DE处,点B'恰好落在正比例函数y=kx图象上,则k的值是A.-25B.-121C.-15D.-1249.已知(),3A m、()2,B n-在同一个反比例函数图像上,则mn=__________.10.如图,直线分别与反比例函数2yx=-和3yx=的图象交于点A和点B,与y轴交于点P,且P为线段AB的中点,作AC⊥x轴于点C,BD⊥x轴交于点D,则四边形ABCD的面积是__________.11.如图,正方形ABCD的边长为2,AD边在x轴负半轴上,反比例函数y=kx(x<0)的图象经过点B和CD边中点E,则k的值为__________.12.如图,点A,B在反比例函数kyx=(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是__________.13.如图,已知反比例函数kyx=与一次函数y=x+b的图象在第一象限相交于点A(1,-k+4).(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.14.如图,已知A (-4,n ),B (2,-4)是一次函数y =kx +b 的图象与反比例函数my x=的图象的两个交点. (1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积; (3)求方程0x xk b m+-<的解集(请直接写出答案).15.一般情况下,中学生完成数学家庭作业时,注意力指数随时间x (分钟)的变化规律如图所示(其中AB 、BC 为线段,CD 为双曲线的一部分). (1)分别求出线段AB 和双曲线CD 的函数关系式;(2)若学生的注意力指数不低于40为高效时间,根据图中信息,求出一般情况下,完成一份数学家庭作业的高效时间是多少分钟?1.已知点A (1,–3)关于x轴的对称点A'在反比例函数y=kx的图象上,则实数k的值为A.3 B.1 3C.–3 D.–1 32.若点(–1,y1),(2,y2),(3,y3)在反比例函数y=kx(k<0)的图象上,则y1,y2,y3的大小关系是A.y1>y2>y3B.y3>y2>y1 C.y1>y3>y2D.y2>y3>y13.在同一平面直角坐标系中,函数y=﹣x+k与y=kx(k为常数,且k≠0)的图象大致是A.B.C.D.4.如图,函数y=1(0)1(0)xxxx⎧>⎪⎪⎨⎪-<⎪⎩的图象所在坐标系的原点是A .点MB .点NC .点PD .点Q5.如图,在平面直角坐标系中,点O 为坐标原点,平行四边形OABC 的顶点A 在反比例函数y =1x上,顶点B 在反比例函数y =5x上,点C 在x 轴的正半轴上,则平行四边形OABC 的面积是A .32B .52C .4D .66.在平面直角坐标系xOy 中,点A (a ,b )(a >0,b >0)在双曲线y =1k x上,点A 关于x 轴的对称点B 在双曲线y =2k x,则k 1+k 2的值为__________. 7.如图,在平面直角坐标中,点O 为坐标原点,菱形ABCD 的顶点B 在x 轴的正半轴上,点A 坐标为(–4,0),点D 的坐标为(–1,4),反比例函数y =k x(x >0)的图象恰好经过点C ,则k 的值为__________.8.如图,菱形ABCD 顶点A 在函数y =3x (x >0)的图象上,函数y =kx(k >3,x >0)的图象关于直线AC 对称,且经过点B 、D 两点,若AB =2,∠BAD =30°,则k =__________.9.已知y 是x 的反比例函数,并且当x =2时,y =6. (1)求y 关于x 的函数解析式; (2)当x =4时,求y 的值.10.如图,一次函数y =k 1x +b 的图象与反比例函数y =2k x的图象相交于A 、B 两点,其中点A 的坐标为(–1,4),点B 的坐标为(4,n ). (1)根据图象,直接写出满足k 1x +b >2k x的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且S △AOP ∶S △BOP =1∶2,求点P 的坐标.1.【答案】C【解析】①不是正比例函数,②③④是反比例函数,故选C . 2.【答案】C【解析】根据反比例函数的图象与性质,可由题意知k =4>0,其图象在一三象限,且在每个象限内y 随x 增大而减小,它的图象既是轴对称图形又是中心对称图形,故选C . 3.【答案】C【解析】A 、为一次函数,k 的值大于0,y 随x 的增大而增大,不符合题意; B 、为一次函数,k 的值大于0,y 随x 的增大而增大,不符合题意; C 、为反比例函数,k 的值大于0,x <0时,y 随x 的增大而减小,符合题意;变式拓展D、为反比例函数,k的值小于0,x<0时,y随x的增大而增大,不符合题意;故选C.4.【答案】B【解析】由图知,y y y k1<0,k2>0,k3>0,又当x=1时,有k2<k3,∴k3>k2>k1,故选B.5.【答案】C【解析】∵反比例函数y=-6x中,k=-6,∴只需把各点横纵坐标相乘,结果为-6的点在函数图象上,四个选项中只有C选项符合,故选C.6.【答案】B【解析】设A点坐标为(x,y).∵A点到x轴的距离为3,∴|y|=3,y=±3.∵A点到原点的距离为5,∴x2+y2=52,解得x=±4,∵点A在第二象限,∴x=-4,y=3,∴点A的坐标为(-4,3),设反比例函数的解析式为y=kx,∴k=-4×3=-12,∴反比例函数的解析式为y=12x,故选B.7.【答案】y=15 x【解析】∵点P(2,a)在反比例函数y=2x的图象上,∴代入得:a=22=1,即P点的坐标为(2,1),∵把点P向上平移2个单位,再向右平移3个单位得到点Q,∴Q的坐标是(5,3),设经过点Q的反比例函数的解析式是y=cx,把Q点的坐标代入得:c=15,即y=15x,故答案为:y=15x.8.【答案】B【解析】∵点A、B是双曲线y=4x上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4-1×2=6,故选B.9.【答案】D【解析】在Rt △BCD 中, ∵12×CD ×BD =3,∴12×CD ×3=3,∴CD =2, ∵C (2,0),∴OC =2,∴OD =4,∴B (4,3), ∵点B 是反比例函数y =kx(x >0)图象上的点,∴k =12, ∵AC ⊥x 轴,∴S △AOC =2k=6,故选D . 10.【答案】A【解析】如图,作CD ⊥AB 交AB 于点D ,则S △ACD =2k,∵AC =BC ,∴AD =BD ,∴S △ACD =S △BCD , ∴S △ABC =2S △ACD =2×2k =k ,∴△ABC 的面积不变,故选A .11.【答案】B【解析】∵当x >0时,y 随x 的增大而增大,∴反比例函数ky x=(k ≠0)的图象在二、四象限,∴k <0,∴一次函数y =kx -k 的图象经过第一、二、四象限,故选B . 12.【解析】(1)∵B (2,–4)在y =mx图象上, ∴m =–8.∴反比例函数的解析式为y =–8x. ∵点A (–4,n )在y =–8x图象上, ∴n =2,∴A (–4,2).∵一次函数y =kx +b 图象经过A (–4,2),B (2,–4),∴4224k b k b -+=+=-⎧⎨⎩,解得12k b =-=-⎧⎨⎩.∴一次函数的解析式为y =–x –2;(2)如图,令一次函数y =–x –2的图象与y 轴交于C 点,当x=0时,y=–2,∴点C(0,–2).∴OC=2,∴S△AOB=S△ACO+S△BCO=12×2×4+12×2×2=6.13.【解析】(1)当0≤x<5时,为一次函数,设一次函数表达式为y=kx+b,由于一次函数图象过点(0,15),(5,60),所以15560bk b=+=⎧⎨⎩,解得:159bk==⎧⎨⎩,所以y=9x+15,当x≥15时,为反比例函数,设函数关系式为:y=mx,由于图象过点(5,60),所以m=300.则y=300x;(2)当0≤x<5时,y=9x+15=30,得x=53,因为y随x的增大而增大,所以x>53,当x≥5时,y=300x=30,得x=10,因为y随x的增大而减小,所以x<10,10–53=253.答:可加工253min.1.【答案】C考点冲关【解析】由反比例函数的定义知,13y x=是y 关于x 的反比例函数,其余的不是y 关于x 的反比例函数.故选C . 2.【答案】A【解析】∵反比例函数y =8k x-的图象位于第一、三象限,∴k –8>0,解得k >8,故选A . 3.【答案】C【解析】根据反比例函数k 的几何意义可知:△AOP 的面积为12k ,△BOP 的面积为22k, ∴△AOB 的面积为12k −22k , ∴12k −22k =2,∴k 1–k 2=4,故选C . 4.【答案】B【解析】∵点(–5,y 1)、(–3,y 2)、(2,y 3)都在反比例函数y =3x上, ∴y 1=–35,y 2=–1,y 3=32. ∵–35<–1<32,∴y 2<y 1<y 3,故选B .5.【答案】C【解析】∵一次函数y 1=kx +b (k 、b 是常数,且k ≠0)与反比例函数y 2=cx(c 是常数,且c ≠0)的图象相交于A (-3,-2),B (2,3)两点, ∴不等式y 1>y 2的解集是-3<x <0或x >2, 故选C . 6.【答案】C【解析】A .由一次函数图象过一、三象限,得a >0,交y 轴负半轴,则b <0,满足ab <0, ∴a −b >0,∴反比例函数y =a bx-的图象过一、三象限,所以此选项不正确; B .由一次函数图象过二、四象限,得a <0,交y 轴正半轴,则b >0,满足ab <0, ∴a −b <0,∴反比例函数y =a bx-的图象过二、四象限,所以此选项不正确; C .由一次函数图象过一、三象限,得a >0,交y 轴负半轴,则b <0,满足ab <0, ∴a −b >0,∴反比例函数y =a bx-的图象过一、三象限,所以此选项正确; D .由一次函数图象过二、四象限,得a <0,交y 轴负半轴,则b <0,满足ab >0,与已知相矛盾,所以此选项不正确,故选C . 7.【答案】D【解析】根据反比例函数的图象与系数k 的意义,设A (x 1,y 1),B (x 2,y 2),则有x 1y 1=x 2y 2=2可知S △ODB =S △OCA =1,故①正确;同样可知四边形OCMD 的面积为a ,因此四边形OAMB 的面积为a –2,故不会发生变化,故②正确;当点A 是MC 的中点时,y 2=2y 1,代入x 1y 2=a 中,得2x 1y 1=a ,a =4,由题得1242x x =,整理得x 1=2x 2,因此B 为MD 的中点,故③正确,故选D . 8.【答案】B【解析】∵矩形OABC ,∴CB ∥x 轴,AB ∥y 轴,∵点B 坐标为(6,4),∴D 的横坐标为6,E 的纵坐标为4,∵D ,E 在反比例函数y =6x 的图象上,∴D (6,1),E (32,4),∴BE =6-32=92,BD =4-1=3,∴ED =22BE BD +=3213,连接BB ′,交ED 于F ,过B ′作B ′G ⊥BC 于G ,∵B ,B ′关于ED 对称,∴BF =B ′F ,BB ′⊥ED ,∴BF •ED =BE •BD ,即3213BF =3×92,∴BF =913,∴BB ′=1813,设EG =x ,则BG =92-x ,∵BB ′2-BG 2=B ′G 2=EB ′2-GE 2,∴(1813)2-(92-x )2=(92)2-x 2,∴x =4526,∴EG =4526,∴CG =4213,∴B ′G =5413,∴B ′(4213,-213),∴k =-121,故选B .9.【答案】23-【解析】设反比例函数解析式为()0ky k x=≠,将(),3A m 、()2,B n -分别代入,得 3k m =,2k n =-,∴2332k m k n ==--, 故答案为:23-. 10.【答案】5【解析】如图,过点A 作AF y ⊥轴,垂足于点F ;过点B 作BE y ⊥轴,垂足为点E .∵点P 是AB 中点,∴PA PB =.易得△APF ≌△BPE , ∴APFBPESS=,∴ABCDACOFEODBSSS=+23=-+5=,故答案为5.11.【答案】-4【解析】∵正方形ABCD 的边长为2,∴AB =AD =2,设B (2k ,2),∵E 是CD 边中点,∴E (2k-2,1),∴2k-2=k ,解得k =-4,故答案为:-4. 12.【答案】372【解析】如图,过点B 作直线AC 的垂线交直线AC 于点F ,∵△BCE 的面积是△ADE 的面积的2倍,E 是AB 的中点, ∴S △ABC =2S △BCE ,S △ABD =2S △ADE ,∴S △ABC =2S △ABD ,且△ABC 和△ABD 的高均为BF , ∴AC =2BD ,∴OD =2O C . ∵CD =k , ∴点A 的坐标为(3k ,3),点B 的坐标为(–23k ,–32), ∴AC =3,BD =32, ∴AB =2AC =6,AF =AC +BD =92, ∴CD =k2==13.【解析】(1)∵已知反比例函数ky x=经过点A (1,-k +4), ∴41kk -+=,即-k +4=k , ∴k =2,∴A (1,2).∵一次函数y =x +b 的图象经过点A (1,2), ∴2=1+b ,∴b =1,∴反比例函数的表达式为2y x=, 一次函数的表达式为y =x +1.(2)由12y x y x ⎧=+⎪⎨=⎪⎩,消去y ,得x 2+x -2=0, 即(x +2)(x -1)=0, ∴x =-2或x =1. ∴y =-1或y =2. ∴21x y ⎧=-⎨=-⎩或12x y ⎧=⎨=⎩.∵点B 在第三象限, ∴点B 的坐标为(-2,-1),由图象可知,当反比例函数的值大于一次函数的值时,x 的取值范围是x <-2或0<x <1.14.【解析】(1)∵B (2,-4)在y =mx上, ∴m =-8.∴反比例函数的解析式为y =-8x. ∵点A (-4,n )在y =-8x上, ∴n =2. ∴A (-4,2).∵y =kx +b 经过A (-4,2),B (2,-4),∴4224k b k b -+=⎧⎨+=-⎩, 解之得12k b =-⎧⎨=-⎩.∴一次函数的解析式为y =-x -2. (2)∵C 是直线AB 与x 轴的交点, ∴当y =0时,x =-2. ∴点C (-2,0).∴OC =2. ∴S △AOB =S △ACO +S △BCO =12×2×2+12×2×4=6. (3)不等式0mkx b x+-<的解集为:-4<x <0或x >2. 15.【解析】(1)设线段AB 所在的直线的解析式为y 1=k 1x +30,把B (10,50)代入得,k 1=2, ∴AB 解析式为:y 1=2x +30(0≤x ≤10). 设C 、D 所在双曲线的解析式为22k y x=, 把C (44,50)代入得,k 2=2200, ∴曲线CD 的解析式为:y 2=2200x(x ≥44); (2)将y =40代入y 1=2x +30得:2x +30=40,解得:x =5,将y=40代入y2=2200x得:x=55.55-5=50.所以完成一份数学家庭作业的高效时间是50分钟.1.【答案】A【解析】点A(1,–3)关于x轴的对称点A'的坐标为(1,3),把A'(1,3)代入y=kx得k=1×3=3.故选A.2.【答案】C【解析】∵k<0,∴在每个象限内,y随x值的增大而增大,∴当x=–1时,y1>0,∵2<3,∴y2<y3<y1,故选C.3.【答案】C【解析】∵函数y=﹣x+k与y=kx(k为常数,且k≠0),∴当k>0时,y=﹣x+k经过第一、二、四象限,y=kx经过第一、三象限,故选项D错误,当k<0时,y=﹣x+k经过第二、三、四象限,y=kx经过第二、四象限,故选项C正确,选项A、B错误,故选C.4.【答案】A【解析】由已知可知函数y=1(0)1(0)xxxx⎧>⎪⎪⎨⎪-<⎪⎩关于y轴对称,所以点M是原点,故选A.5.【答案】C【解析】如图,过点B作BD⊥x轴于D,延长BA交y轴于E,∵四边形OABC是平行四边形,∴AB∥OC,OA=BC,∴BE⊥y轴,∴OE=BD,∴Rt△AOE≌Rt△CBD(HL),直通中考。
变式1 如果y 是m 的反比例函数,m 是x 的反比例函数,那么y 是x 的( ) A .反比例函数 B .正比例函数 C .一次函数 D .反比例或正比例函数 变式2 若函数11-=m xy (m 是常数)是反比例函数,则m =________,解析式为________.题型二:反比例函数解析式例3 已知A (﹣1,m )与B (2,m ﹣3)是反比例函数图象上的两个点.则m 的值 .例4 已知y 与2x -3成反比例,且41=x 时,y =-2,求y 与x 的函数关系式.变式3已知y 与x 成反比例,当x =2时,y =3.(1)求y 与x 的函数关系式;(2)当y =-23时,求x 的值.变式4 已知函数12y y y =-,其中1y 与x 成正比例, 2y 与x 成反比例,且当x =1时,y =1;x =3时,y =5.求:(1)求y 关于x 的函数解析式; (2)当x =2时,y 的值.1、反比例函数的图像(1)形状与位置:反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。
(2)变化趋势:由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
2、反比例函数的性质(1)对称性:反比例函数的图像是关于原点对称的中心对称图形,同时也是轴对称图形,有两条对称轴,分别是一、三象限和二、四象限的角平分线,即直线y x =±。
(注:过原点的直线与双曲线的两个交点关于原点对称)(2)双曲线的位置:当k>0时,双曲线位于一、三象限(x ,y 同号);当k<0时,双曲线位于二、四象限(x ,y 同号异号),反之也成立。
(3)增减性: 当k>0时,双曲线走下坡路,在同一象限内,y 随x 的增大而减小;当k<0时,双曲线走上坡路,在同一象限内,y 随x 的增大而增大。
反比例函数知识点归纳总结与典型例题(一)反比例函数的概念:知识要点:1、一般地,形如y = — ( k是常数,k = 0 )的函数叫做反比例函数。
x注意:(1)常数k称为比例系数,k是非零常数;(2)解析式有三种常见的表达形式:(A) y = k (k w 0) , (B) xy = k (k 丰 0) (C) y=kx-1 (kw0)x例题讲解:有关反比例函数的解析式1 1 1 x 1 (1)下列函数,① x(y 2) 1②.y ——③y /④.y ——⑤y —⑥y —;其中是y关x 1 x 2x 2 3x 于x的反比例函数的有:。
a2 2 ....... …(2)函数y (a 2)x 是反比例函数,则a的值是( )A.—1B. — 2C. 2D.2 或—21 .................(3)若函数y 七彳勤是常数)是反比例函数,则m=,解析式为 .xk(4)反比例函数y — (k 0)的图象经过(一2, 5)和(J2 , n),x求1) n的值;2)判断点B ( 4J2 , 短)是否在这个函数图象上,并说明理由(二)反比例函数的图象和性质:知识要点:1、形状:图象是双曲线。
2、位置:(1)当k>0时双曲线分另位于第象限内;(2)当k<0时,双曲线分另位于第象限I 3、增减性:(1)当k>0 时,,y 随x的增大而 ;(2)当k<0时,,y随x的增大而。
4、变化趋势:双曲线无限接近于x、y轴,但永远不会与坐标轴相交5、对称性:(1)对于双曲线本身来说,它的两个分支关于直角坐标系原点; (2)对于k取互为相反数的两个反比例函数(如:y = 6和丫= ―)来说,它们是关于x轴,y轴。
x x例题讲解:反比例函数的图象和性质:(1)写出一个反比例函数,使它的图象经过第二、四象限m2 2⑵若反比例函数v (2m 1)x的图象在第二、四象限,则m的值是( )A—1或1; B、小于-的任意实数;C、一1; D、不能确定2(3)下列函数中,当x 0时,y随x的增大而增大的是( )1 一一4 _ 1A y 3x 4B y - x 2 C. y - D. y ——.3 x 2x2 ____ ,. 一 . 一(4)已知反比例函数y ——的图象上有两点A ( x1,y1),B ( x2, y2),且x1 x2,则y i y 的值是()A.正数B.负数C.非正数D.不能确定2 .(5)右点(x i, y 1)、(X 2, y 2)和(X 3,y 3)分别在反比例函数 y —的图象上,且X iX 2 0 X 3,x则下列判断中正确的是()A . y i y y 3B . y 3 y i y 2C . y 2 y 3 y iD . y 3 y y ik 1 ................... 一 ...(6)在反比例函数 y --- 的图象上有两点(x1,y 1)和(x 2, y 2),右x 10 x 2时,y i y 2 ,则k 的x取值范围是.(7)老师给出一个函数,甲、乙、丙三位同学分别指出了这个函数的一个性质:甲:函数的图象经过第二象限;乙:函数的图象经过第四象限;丙:在每个象限内,y 随x 的增大而增大.请你根据他们的叙述构造满足上述性质的一个函数 :.(三)反比例函数与面积结合题型。
新人教版九年级数学下册第26章反比例函数学问点归纳和典型例题(一)学问构造〔二〕学习目的1.理解并驾驭反比例函数的概念,能依据实际问题中的条件确定反比例函数的解析式〔k为常数,〕,能推断一个给定函数是否为反比例函数.2.能描点画出反比例函数的图象,会用代定系数法求反比例函数的解析式,进一步理解函数的三种表示方法,即列表法、解析式法和图象法的各自特点.3.能依据图象数形结合地分析并驾驭反比例函数〔k 为常数,〕的函数关系和性质,能利用这些函数性质分析和解决一些简洁的实际问题.4.对于实际问题,能“找出常量和变量,建立并表示函数模型,探讨函数模型,解决实际问题〞的过程,体会函数是刻画现实世界中改变规律的重要数学模型.5.进一步理解常量及变量的辨证关系和反映在函数概念中的运动改变观点,进一步相识数形结合的思想方法.〔三〕重点难点1.重点是反比例函数的概念的理解和驾驭,反比例函数的图象及其性质的理解、驾驭和运用.2.难点是反比例函数及其图象的性质的理解和驾驭.二、根底学问〔一〕反比例函数的概念1.〔〕可以写成〔〕的形式,留意自变量x的指数为,在解决有关自变量指数问题时应特殊留意系数这一限制条件;2.〔〕也可以写成的形式,用它可以快速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;3.反比例函数的自变量,故函数图象及x轴、y 轴无交点.〔二〕反比例函数的图象在用描点法画反比例函数的图象时,应留意自变量x的取值不能为0,且x应对称取点〔关于原点对称〕.〔三〕反比例函数及其图象的性质1.函数解析式:〔〕2.自变量的取值范围:3.图象:〔1〕图象的形态:双曲线.越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.〔2〕图象的位置和性质:及坐标轴没有交点,称两条坐标轴是双曲线的渐近线.当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.〔3〕对称性:图象关于原点对称,即假设〔a,b〕在双曲线的一支上,那么〔,〕在双曲线的另一支上.图象关于直线对称,即假设〔a,b〕在双曲线的一支上,那么〔,〕和〔,〕在双曲线的另一支上.4.k的几何意义如图1,设点P〔a,b〕是双曲线上随意一点,作⊥x轴于A点,⊥y轴于B点,那么矩形的面积是〔三角形和三角形的面积都是〕.如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作⊥的延长线于C,那么有三角形的面积为.图1图25.说明:〔1〕双曲线的两个分支是断开的,探讨反比例函数的增减性时,要将两个分支分别探讨,不能一概而论.〔2〕直线及双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.〔3〕反比例函数及一次函数的联络.〔四〕实际问题及反比例函数1.求函数解析式的方法:〔1〕待定系数法;〔2〕依据实际意义列函数解析式.2.留意学科间学问的综合,但重点放在对数学学问的探讨上.〔五〕充分利用数形结合的思想解决问题.三、例题分析1☆.反比例函数的概念〔1〕以下函数中,y是x的反比例函数的是〔〕.A.3x B. C.31 D.〔2〕以下函数中,y是x的反比例函数的是〔〕.A.B. C.D.答案:〔1〕C;〔2〕A.2.图象和性质〔1〕函数是反比例函数,①假设它的图象在第二、四象限内,那么.②假设y随x的增大而减小,那么.〔2〕一次函数的图象经过第一、二、四象限,那么函数的图象位于第象限.〔3〕假设反比例函数经过点〔,2〕,那么一次函数的图象肯定不经过第象限.〔4〕a·b<0,点P〔a,b〕在反比例函数的图象上,那么直线不经过的象限是〔〕.A.第一象限 B.第二象限 C.第三象限D.第四象限〔5〕假设P〔2,2〕和Q〔m,〕是反比例函数图象上的两点,那么一次函数的图象经过〔〕.A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限〔6〕函数和〔k≠0〕,它们在同一坐标系内的图象大致是〔〕.A.B. C.D.答案:〔1〕①②1;〔2〕一、三;〔3〕四;〔4〕C;〔5〕C;〔6〕B.3.函数的增减性〔1〕在反比例函数的图象上有两点,,且,那么的值为〔〕.A.正数B.负数 C.非正数D.非负数〔2〕在函数〔a为常数〕的图象上有三个点,,,那么函数值、、的大小关系是〔〕.A.<<B.<<C.<<D.<<〔3〕以下四个函数中:①;②;③;④. y随x的增大而减小的函数有〔〕.A.0个 B.1个C.2个D.3个〔4〕反比例函数的图象及直线2x和1的图象过同一点,那么当x>0时,这个反比例函数的函数值y随x的增大而〔填“增大〞或“减小〞〕.答案:〔1〕A;〔2〕D;〔3〕B.留意,〔3〕中只有②是符合题意的,而③是在“每一个象限内〞 y随x的增大而减小.4.解析式的确定〔1〕假设及成反比例,及成正比例,那么y是z的〔〕.A.正比例函数 B.反比例函数C.一次函数D.不能确定〔2〕假设正比例函数2x及反比例函数的图象有一个交点为〔2,m〕,那么,,它们的另一个交点为.〔3〕反比例函数的图象经过点,反比例函数的图象在第二、四象限,求的值.〔4〕一次函数及反比例函数〔〕的图象在第一象限内的交点为P 〔x 0,3〕.①求x 0的值;②求一次函数和反比例函数的解析式.〔5〕☆为了预防“非典〞,某学校对教室采纳药薰消毒法进展消毒.药物燃烧时,室内每立方米空气中的含药量y 〔毫克〕刚好间x 〔分钟〕成正比例,药物燃烧完后,y及x成反比例〔如下图〕,现测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克.请依据题中所供应的信息解答以下问题:①药物燃烧时y关于x的函数关系式为,自变量x 的取值范围是;药物燃烧后y关于x的函数关系式为.②探讨说明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少须要经过分钟后,学生才能回到教室;③ 探讨说明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10 分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?答案:〔1〕B;〔2〕4,8,〔,〕;〔3〕依题意,且,解得.〔4〕①依题意,解得②一次函数解析式为,反比例函数解析式为.〔5〕①,,;②30;③消毒时间为〔分钟〕,所以消毒有效.5.面积计算〔1〕☆如图,在函数的图象上有三个点A、B、C,过这三个点分别向x轴、y轴作垂线,过每一点所作的两条垂线段及x轴、y轴围成的矩形的面积分别为、、,那么〔〕.A.B.C.D.第〔1〕题图第〔2〕题图〔2〕☆如图,A、B是函数的图象上关于原点O对称的随意两点,轴,轴,△的面积S,那么〔〕.A.1 B.1<S<2 C.2 D.S >2〔3〕如图,△的顶点A在双曲线上,且S△3,求m的值.第〔3〕题图第〔4〕题图〔4〕☆函数的图象和两条直线,2x在第一象限内分别相交于P1和P2两点,过P1分别作x轴、y轴的垂线P1Q1,P1R1,垂足分别为Q1,R1,过P2分别作x轴、y轴的垂线P2 Q 2,P2 R 2,垂足分别为Q 2,R 2,求矩形O Q 1P1 R 1和O Q 2P2 R 2的周长,并比较它们的大小.〔5〕如图,正比例函数〔k>0〕和反比例函数的图象相交于A、C两点,过A作x轴垂线交x轴于B,连接,假设△面积为S,那么.第〔5〕题图第〔6〕题图〔6〕如图在△中,顶点A是双曲线及直线在第四象限的交点,⊥x轴于B且S△.①求这两个函数的解析式;②求直线及双曲线的两个交点A、C的坐标和△的面积.〔7〕如图,正方形的面积为9,点O为坐标原点,点A、C分别在x轴、y轴上,点B在函数〔k>0,x>0〕的图象上,点P 〔m,n〕是函数〔k>0,x>0〕的图象上随意一点,过P分别作x轴、y轴的垂线,垂足为E、F,设矩形在正方形以外的部分的面积为S.① 求B点坐标和k的值;② 当时,求点P的坐标;③ 写出S关于m的函数关系式.答案:〔1〕D;〔2〕C;〔3〕6;〔4〕,,矩形O Q 1P1 R 1的周长为8,O Q 2P2 R 2的周长为,前者大.〔5〕1.〔6〕①双曲线为,直线为;②直线及两轴的交点分别为〔0,〕和〔,0〕,且A〔1,〕和C〔,1〕,因此面积为4.〔7〕①B〔3,3〕,;②时,E〔6,0〕,;③.6.综合应用〔1〕假设函数1x〔k1≠0〕和函数〔k2 ≠0〕在同一坐标系内的图象没有公共点,那么k1和k2〔〕.A.互为倒数 B.符号一样 C.肯定值相等D.符号相反(二)〔2〕如图,一次函数的图象及反比例数的图象交于A、B两点:A〔,1〕,B〔1,n〕.① 求反比例函数和一次函数的解析式;② 依据图象写出访一次函数的值大于反比例函数的值的x 的取值范围.〔3〕如下图,一次函数〔k≠0〕的图象及x 轴、y轴分别交于A、B两点,且及反比例函数〔m≠0〕的图象在第一象限交于C点,垂直于x轴,垂足为D,假设1.① 求点A、B、D的坐标;② 求一次函数和反比例函数的解析式.〔4〕☆如图,一次函数的图象及反比例函数的图象交于第一象限C、D两点,坐标轴交于A、B两点,连结,〔O是坐标原点〕.① 利用图中条件,求反比例函数的解析式和m的值;② 双曲线上是否存在一点P,使得△和△的面积相等?假设存在,给出证明并求出点P的坐标;假设不存在,说明理由.〔5〕不解方程,推断以下方程解的个数.①;②.答案:〔1〕D.〔2〕① 反比例函数为,一次函数为;②范围是或.〔3〕①A〔0,〕,B〔0,1〕,D〔1,0〕;②一次函数为,反比例函数为.〔4〕①反比例函数为,;②存在〔2,2〕.〔5〕①构造双曲线和直线,它们无交点,说明原方程无实数解;②构造双曲线和直线,它们有两个交点,说明原方程有两个实数解.。