新人教版九年级下册初中数学 课时1 相似图形及成比例线段 教案(教学设计)
- 格式:doc
- 大小:1.14 MB
- 文档页数:21
平行线分线段成比例(续表)(续表)(续表)【学习目标】 1.知识层面(1)理解相似三角形的概念,了解相似三角形的对应元素及相似比;(2)掌握判定三角形相似的预备定理:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似. 2.能力层面(1)经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程,进一步发展学生的探究、交流能力;(2)通过相似多边形和三角形全等的条件类比,体会类比的教学思想,领会特殊与一般的关系. 【学习重难点】1.重点:掌握相似三角形的概念及判定两个三角形相似的预备定理,会运用预备定理判定两个三角形相似.2.难点:会准确的运用判定两个三角形相似的预备定理来判断两个三角形是否相似. 课前延伸 【知识梳理】1.相似多边形的性质:__对应角相等__,__对应边成比例__.2. 如图27-2-24,已知△ADE ∽△ABC ,AD =6 cm ,DB =3 cm ,BC =9.9 cm ,∠B =50°,则∠ADE =__50°__,DE =____ cm.图27-2-243.已知在△ABC 中,D ,E 分别是AB ,AC 的中点,则∠ADE =__∠B __,∠AED =__∠C __,DE BC __12__. 课内探究一、课堂探究1(a问题探究,自主学习)1.问题解决:如图27-2-25,在△ABC中,D是边AB的中点,DE∥BC,DE交AC于点E,△ADE与△ABC有什么关系?图27-2-25二、课堂探究2(分组讨论,合作探究)在课堂探究1问题的基础上,改变点D在AB上的位置,先自己画图、测量验证、猜想△ADE 与△ABC是否仍相似.(1)若点D为线段AB上任意一点,则△ADE与△ABC有什么关系?(2)若点D为AB延长线上任意一点,则△ADE与△ABC有什么关系?归纳:__平行于三角形一边的直线和其他两边(或延长线)相交,_所构成的三角形与原三角形相似__.几何语言:如图27-2-26,在△ABC中,∵__DE∥BC__,∴__△ADE∽△ABC__.图27-2-26三、反馈训练(可以设计成必做题与选做题两类,分层要求)1.如图27-2-27,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.图27-2-27 图27-2-282.如图27-2-28,已知在△ABC中,DE∥BC.(1)如果AD=2,DB=3,求DE∶BC的值;(2)如果AD=8,DB=12,AC=15,DE=7,求AE和BC的长.3.如图27-2-29,在△ABC中,DE∥AB,BD=8,CD=6,AE=4,则CE的长为(B)A . 6B . 163C . 4D . 3图27-2-29 图27-2-304.如图27-2-30,已知菱形BEDF 内接于△ABC ,点E ,D ,F 分别在AB ,AC 和BC 上.若AB =15 cm, BC =12 cm ,求菱形的边长. 课后提升一、课后练习题(1-6为必做题,7、8为选做题):1.如图27-2-31,AB ∥CD, AE ∥FD ,AE ,FD 分别交BC 于点G ,H ,则图中与△CEG 相似的三角形 有( B )A . 2个B . 3个C . 4个D . 5个图27-2-31 图27-2-32 图27-2-33 图27-2-342.如图27-2-32,DE ∥BC ,EO =6,OC =15,则△OED ∽__△OCB __,相似比为__2∶5__. 3.如图27-2-33,已知在△ABC 中,EF ∥GH ∥IJ ∥BC ,则图3中相似三角形共有__6__对. 4.如图27-2-34,在▱ABCD 中,EF ∥AB ,DE ∶EA =2∶3,EF =4,求CD 的长.5.如图27-2-35,在△ABC 中,DE ∥BC ,AD =EC ,DB =1 cm ,AE =4 cm ,BC =5 cm ,求DE 的长.图27-2-35 图27-2-366.如图27-2-36,在▱ABCD 中,E 是BC 上一点,BE ∶EC =2∶3,AE 交BD 于点F ,求BF ∶FD .word11 / 11 7.如图27-2-37,在Rt △ABC 中,∠C =90°,三角形中有一内接正方形DEFC ,连接AF 交DE 于点G ,AC =15,BC =10,求GE.图27-2-37 图27-2-388.如图27-2-38,四边形ABCD 和四边形ACED 都是平行四边形,R 为DE 的中点,BR 分别交AC ,CD 于点P ,Q .(1)请写出图中各对相似三角形(相似比为1的除外);(2)求BP ∶PQ ∶QR .。
第二十七章相似27.2 相似三角形27.2.1 相似三角形的判定课时1 相似多边形及平行线分线段成比例【知识与技能】1.了解相似三角形的概念,掌握平行线分线段成比例这一基本事实.2.经历利用平行线判定三角形相似的证明过程,掌握利用平行线判定三角形相似的方法.【过程与方法】1.通过平行线分线段成比例这一基本事实在三角形中的转化,体会数学中的化归思想及数形结合思想.2.通过平行线判定三角形相似及利用相似三角形的性质解决问题,提高学生分析问题、解决问题的能力.【情感态度与价值观】1.通过观察、测量、归纳平行线分线段成比例定理,培养学生动手操作能力及直觉思维.2.探究利用平行线判定三角形相似的证明,培养学生合情推理及演绎推理能力,提高逻辑思维能力.3.在探究活动中通过小组合作交流,培养学生共同探究的合作意识及探索实践的良好习惯.1.掌握平行线分线段成比例基本事实.2.能利用平行线判定三角形相似.探索利用平行线判定三角形相似的方法.多媒体课件.导入一:【课件展示】你知道金字塔有多高吗?传说法老命令祭师们测量金字塔的高度,祭师们为此伤透了脑筋,为了帮助祭师们解决困难,古希腊一位伟大的数学家泰勒斯利用巧妙的办法测量金字塔的高度(在金字塔旁边竖立一根木桩,当木桩影子的长度和木桩的长度相等时,只要测量金字塔的影子的长度,便可得出金字塔的高度),展示了他非凡的数学及科学才能,如图.[过渡语]泰勒斯测量金字塔的高度的方法正确吗?通过学习相似三角形的判定及性质,就可以说明他的测量方法是正确的.导入二:【复习提问】(1)什么是相似多边形?相似多边形有什么性质?(2)当相似比为1时,两个相似多边形有什么关系?【师生活动】学生独立回答,教师点评.[设计意图]通过数学家测量金字塔的高度导入新课,激发学生学习的兴趣,从而向学生进行要刻苦学习的思想教育,同时让学生体会数学在实际生活中的应用;通过复习相似多边形的概念及性质,让学生用类比法得到相似三角形的概念及性质,为本节课的学习做好铺垫.[过渡语]三角形是最简单的多边形,我们知道了相似多边形的概念,很容易得到相似三角形的概念.一、认识相似三角形思考并回答:(1)类比相似多边形的概念,你能说出相似三角形的概念吗?(2)如果相似比是1,那么这两个三角形是什么关系?(3)△ABC与△A'B'C'的相似比为k,那么△A'B'C'与△ABC的相似比是多少?(4)类比相似多边形的性质,说出相似三角形的性质,并用几何语言表示.【师生活动】学生思考回答,教师对每个问题点评后展示课件,规范数学语言.(课件展示)(1)定义:三个角分别相等,三条边成比例,我们就说这两个三角形相似.对应边的比就叫做两个三角形的相似比.(2)表示:△ABC与△A'B'C'相似记作“△ABC∽△A'B'C'”,读作“△ABC相似于△A'B'C'”.注意:对应顶点写在对应的位置上.(3)相似比为1时,这两个三角形全等,所以全等三角形是相似三角形的特例.(4)△ABC与△A'B'C'的相似比为k,那么△A'B'C'与△ABC的相似比是.(5)性质:相似三角形的对应角相等,对应边成比例.【几何语言】如图,△A1B1C1∽△ABC,∴∠A1=∠A,∠B1=∠B,∠C1=∠C;==.[设计意图]通过复习相似多边形的定义和性质,迁移到相似三角形的定义和性质,让学生体会类比思想在数学中的应用,帮助学生建立新旧知识之间的联系,体会事物之间由一般到特殊,由特殊到一般之间的联系.二、平行线分线段成比例基本事实思路一(1)在课前准备的距离相等的一组平行线l1,l2,l3中,任意作直线AC和A1C1(如图(1)),则=,=,即.(2)在课前准备的距离相等的一组平行线l1,l2,l3,l4,l5中,任意作直线AE和A 1E1(如图(2)),则=,=,即;=,=,即.(3)在图(2)中,你还能得到其他的比例式吗?(4)对于任意一组平行线,截得的对应线段成比例吗?(5)尝试用语言概括你得出的结论.【师生活动】学生观察、思考、计算后,小组合作交流,得出结论,教师在巡视过程中帮助有困难的学生,对学生的展示进行点评.【课件展示】两条直线被一组平行线所截,所得的对应线段成比例.如图,当直线l1∥l2∥l3时,则=,=,=,=等.思路二【动手操作】任意画两条直线l1,l2,再画三条与l1,l2都相交的平行线l3,l4,l5,分别度量l3,l4,l5在l1上截得的线段AB,BC,AC和在l2上截得的线段DE,EF,DF的长度.(1)根据度量的长度,你得到哪些成比例线段?尝试写出来.(2)这些成比例线段在图中的位置有什么关系?(3)对于任意一组平行线,截得的对应线段成比例吗?(4)你能用语言概括你得到的结论吗?【师生活动】学生动手独自测量思考,写出比例式,小组合作交流答案,学生展示后教师点评.[过渡语]我们每个同学虽然画的直线的位置不同,但得到的结论是相同的,所以我们可以得到基本事实:【课件展示】两条直线被一组平行线所截,所得的对应线段成比例.如图,当直线l1∥l2∥l3时,则=,=,=,=等.[设计意图]通过动手操作,测量或计算得出平行线分线段成比例这一基本事实,体会从特殊到一般的探索过程,激发学生的求知欲,培养学生分析问题的能力.三、平行线分线段成比例转化到三角形中活动1如图,l1∥l2∥l3,当两条被截直线的交点在直线l1或l2上时,你能得到哪些比例式?(教师动画演示,将图(1)中的直线平移到图(2)的位置,让学生直观感受平行线分线段成比例基本事实仍然成立)【师生活动】学生观察教师演示动画,小组交流结果,教师点评结论.活动2(1)如图,在△ABC中,DE∥BC,且DE分别交AB,AC(或AB,AC的反向延长线)于点D,E,那么比例式=成立吗?(2)你能用语言叙述图中的结论吗?(3)用几何语言如何描述这一结论?【师生活动】学生小组合作交流,共同探究结论,教师及时点拨,师生共同归纳结论.【课件展示】平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.【几何语言】如图,∵DE∥BC,∴=.[设计意图]通过动画演示将平行线分线段成比例基本事实转化到三角形中,学生易直观形象地得出结论,同时通过学生讨论交流,培养学生的合作意识及语言表达能力.四、利用平行线证明三角形相似问题如图,在△ABC中,DE∥BC,且DE分别交AB,AC于点D,E,△ADE与△ABC相似吗?如何证明?教师引导回答问题:(1)要证明三角形相似,需要哪些条件?(∠A=∠A,∠ADE=∠B,∠AED=∠C,==)(2)你能证明这些角对应相等吗?(由两直线平行,同位角相等可得)(3)如何证明=?(由平行线分线段成比例事实易得)(4)DE不在BC边上,用什么方法将DE转化到BC边上呢?(过E作EF∥AB,交BC于点F)(5)你能证明=吗?(由平行线分线段成比例事实易得)(6)你能写出△ADE∽△ABC的证明过程吗?(7)尝试用语言叙述上述结论,并用几何语言表示你的结论.【师生活动】学生在教师问题的引导下,思考后小组交流,小组代表板书过程,教师在巡视过程中帮助有困难的学生,对学生板书点评,规范书写过程.证明:在△ADE和△ABC中,∠A=∠A.∵DE∥BC,∴∠ADE=∠B,∠AED=∠C.过E作EF∥AB,交BC于点F.∵DE∥BC,EF∥AB,∴=,=.∵四边形DBFE是平行四边形,∴DE=BF.∴=,∴==.∴△ADE∽△ABC.【课件展示】平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.【几何语言】如图,在△ABC中,∵DE∥BC,∴△ADE∽△ABC.【追问】当DE与BA和CA的延长线相交时,上述结论还成立吗?(教师总结归纳利用平行线证明三角形相似的基本图形:“A”型和“X”型)[设计意图]通过教师设计的小问题,层层深入,达到分析问题的目的,学生易于理解和掌握,提高学生分析问题的能力,同时培养学生归纳总结的能力,加深对平行线证明三角形相似的判定方法的理解.[知识拓展](1)相似三角形与全等三角形的联系与区别:全等三角形的大小相等,形状相同,而相似三角形的形状相同,大小不一定相等,所以全等三角形是相似三角形的特例,相似比是1∶1的两个相似三角形是全等三角形.(2)相似三角形的传递性:如果△ABC∽△A'B'C',△A'B'C'∽△A″B″C″,那么△ABC∽△A″B″C″.(3)在应用平行线分线段成比例这个基本事实时,找准被平行线截得的对应线段,被截线段不一定平行,当“上比下”的值为1时,说明这些平行线间的距离相等.(4)符合平行线证明三角形相似的图形有两个,我们称为“A”型和“X”型,如图,若DE∥BC,则△ADE∽△ABC.1.相似三角形的概念、表示:三个角分别相等,三条边成比例,△ABC∽△A'B'C'.2.平行线分线段成比例的基本事实:两条直线被一组平行线所截,所得的对应线段成比例.3.平行线分线段成比例在三角形中的应用:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.4.平行线证明三角形相似:“A”型和“X”型.平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.第1课时1.相似三角形的概念、表示2.平行线分线段成比例的基本事实3.平行线分线段成比例在三角形中的应用4.平行线证明三角形相似:“A”型和“X”型一、教材作业二、课后作业【基础巩固】1.若△ABC∽△A'B'C',∠A=40°,∠C=110°,则∠B'等于()A.30°B.50°C.40°D.70°2.若△ABC∽△A'B'C',且相似比为k,则k的值等于()A.∠A∶∠A'B.AB∶A'C'C.AB∶A'B'D.BC∶A'B'3.如图,在△ABC中,点D,E分别在AB,AC边上,DE∥BC,若=,BC=9,则DE等于()A.2B.3C.4D.54.如图,已知在△ABC中,点D,E,F分别是边AB,AC,BC上的点,DE∥BC,EF∥AB,且=,那么的值为()A. B. C. D.5.如图,点P是▱ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A.0对B.1对C.2对D.3对6.已知△ABC∽△DEF,∠A=80°,∠B=20°,那么△DEF的各角的度数分别是.7.如图,直线l1,l2,…,l6是一组等距离的平行线,过直线l1上的点A作两条射线,分别与直线l3,l6相交于点B,E,C,F.若BC=2,则EF的长是.8.如图,AB是斜靠在墙壁上的长梯,梯脚B距墙80 cm,梯上点D距墙70 cm,BD 长55 cm.求梯子的长.9.如图,已知AC⊥AB,BD⊥AB,AO=78 cm,BO=42 cm,CD=159 cm,求CO和DO.【能力提升】10.如图是A,B,C,D四点在坐标平面上的位置,其中O为原点,AB∥CD.根据图中各点的坐标,可知D点的坐标为()A. B. C.(0,5) D.(0,6)11.如图,已知AB,CD,EF都与BD垂直,垂足分别是B,D,F,且AB=1,CD=3,那么EF 的长是()A. B. C. D.12.如图,在△ABC中,DE∥BC,EF∥CD.求证=.【拓展探究】13.如图(1),在▱ABCD中,O是对角线AC上一动点,连接DO并延长交直线AB 于点E,得到△DOC∽△EOA.(1)当点O运动到何处时,△DOC与△EOA的相似比为2?(如图(2))(2)当点O运动到何处时,△DOC≌△EOA?(3)当点O运动到何处时E与B重合?此时△DOC与△EOA的相似比是多少?此时O点继续向C点运动,DO的延长线与BC交于F,且有△DFC∽△EFB,当F是BC的中点时,求△DOC与△EOA的相似比.【答案与解析】1.A解析:在△ABC中,∠A+∠B+∠C=180°,∠A=40°,∠C=110°,∴∠B=30°.又△ABC∽△A'B'C',∴∠B'=∠B=30°.故选A.2.C解析:相似比为相似三角形对应边的比,即AB∶A'B'或AC∶A'C'或BC∶B'C'.故选C.3.B解析:∵DE∥BC,∴△ADE∽△ABC,∴=,∵=,∴=,=.又∵BC=9,∴=,∴DE=3.故选B.4.A解析:∵=,∴=.∵DE∥BC,∴==.∵EF∥AB,∴==.故选A.5.D解析:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴△APE∽△BPC,△APE∽△DCE,∴△BPC∽△DCE.故选D.6. 80°,20°,80°解析:根据三角形的内角和,可得∠A+∠B+∠C=180°,∴∠C=80°.∵△ABC∽△DEF,∴∠D=∠A=80°,∠E=∠B=20°,∠F=∠C=80°.故填80°,20°,80°.7.5解析:由平行线分线段定理可得=.因为BC∥EF,所以△ABC∽△AEF,所以==.因为BC=2,所以AE=5.故填5.8.解:∵DE⊥AC,BC⊥AC,∴DE∥BC,∴△ADE∽△ABC.∴=,∴=.∴AB=440(cm).∴梯子的长为440 cm.9.解:设DO=x cm,则CO=(159-x)cm.∵AC⊥AB,BD⊥AB,∴AC∥BD.∴△AOC∽△BOD.∴=,即=.∴x=55.65.∴CO=103.35 cm,DO=55.65 cm.10.C解析:∵AB∥CD,∴△AOB∽△COD.∴=,即∶=∶DO,∴DO=5,∴D 点的坐标为(0,5).故选C.11.C解析:∵AB,CD,EF都与BD垂直,∴AB∥CD∥EF,∴△DEF∽△DAB,△BEF∽△BCD,∴=,=,∴+=+=1.∵AB=1,CD=3,∴+=1,∴EF=.故选C. 12.证明:∵DE∥BC,∴△ADE∽△ABC.∴=.∵EF∥CD,∴△AEF∽△ACD.∴=,∴=.13.解:(1)∵△DOC与△EOA的相似比为2,则=2,∴当点O运动到=2处时,△DOC与△EOA的相似比为2.(2)当点O运动到AC的中点时,AO=CO,∵AB∥CD,∴∠CDO=∠AEO,∠DCO=∠EAO,∴△DOC≌△EOA,∴当O点运动到AC的中点处时,△DOC与△EOA全等.(3)∵当E与B重合时,△DOC与△EOA全等,∴AO=CO,∴当点O运动到AC的中点时,E与B重合,此时△DOC与△EOA的相似比是1.当点F是BC的中点时,则BF=CF.∵AB∥CD,∴∠CDF=∠BEF,∠DCF=∠EBF,∴△DFC≌△EFB,∴DC=BE,∴AB=DC=BE,∴=,∴△DOC与△EOA的相似比为=.本节课是三角形的判定的第1课时,通过复习相似多边形的概念,学生用类比法易得到相似三角形的概念及表示方法,降低了学习概念的难度.以动手操作为主,探究平行线分线段成比例这一事实,学生经历动手操作、观察、计算、比较、讨论、归纳等教学活动,人人参与课堂,积极展示,学生成为课堂的主人,在积极思维中经历知识的形成过程,然后通过动画展示,学生直观形象地观察到这一基本事实在三角形中的应用,体会数学中的转化思想,为平行线证明相似做好铺垫.最后在教师的引导下完成定理的证明,培养学生逻辑思维能力和严谨的学习精神.本节课在探究平行线分线段成比例基本事实后,将这一基本事实转化到三角形中应用,得到三角形中的两个推论,课容量较大,在前面概念及基本事实的探究活动中耽误时间长,后面的探究活动教师设计的小问题较多,造成完不成课时任务,后面的处理过于仓促,有头重脚轻的感觉,学生对本节课的重点把握不准,在以后的教学中要注重时间的安排,突出课时重点.。
27.1 图形的相似(第 1 课时)【学习目标】1.经历探究图形的形状、大小,图形的边、角之间的关系,掌握相似多边形的定义以及相似比,并能根据定义判断两个多边形是否是相似多边形.2.掌握相似多边形的定义、表示法,并能根据定义判断两个多边形是否相似.3.能根据相似比进行有关计算.【自学指导】第一节1.相似三角形的定义及记法三角对应相等,三边对应成比例的两个三角形叫做相似三角形.如△ ABC与△ DEF相似,记作△ ABC∽△ DEF。
A与 D,D注意:其中对应顶点要写在对应位置,如AB 与 E,C与 F 相对应. AB∶DE等于相似比.2.想一想B C E F如果△ ABC∽△ DEF,那么哪些角是对应角?哪些边是对应边?对应角有什么关系?对应边呢?3.议一议(1)两个全等三角形一定相似吗?为什么?(2)两个直角三角形一定相似吗?两个等腰直角三角形呢?为什么?(3)两个等腰三角形一定相似吗?两个等边三角形呢?为什么?归纳:【典例分析】例 1:有一块呈三角形形状的草坪,其中一边的长是 20m,在这个草坪的图纸上,这条边长 5cm,其他两边的长都是 3.5cm,求该草坪其他两边的实际长度.(14m)例 2:如图,已知△ ABC∽△ ADE,AE=50cm,EC=30cm,BC=70cm,∠ BAC=45°,∠ACB=40°,求(1)∠AED和∠ ADE的度数;(2)DE的长.5.想一想:在例 2 的条件下,图中有哪些线段成比例?练习:等腰直角三角形 ABC与等腰直角三角形 A′B′C′相似,相似比为 3∶1,已知斜边 AB=5cm,求△ A′B′C′斜边A′B′上的高.(第 2 课时)【自学指导】第二节1、相似多边形的定义:两个多边形大小不等,但各角,各边这样的两个相似多边形叫做相似多边形。
注意:与相似三角形的定义的不同点。
2、叫做相似比。
3、判断:( 1)各角都对应相等的两个多边形是相似多边形。
相像三角形的判断第 1 课时平行线分线段成比率1.认识相像比的定义;(要点 )2.掌握平行线分线段成比率定理的基本领实以及利用平行线法判断三角形相像;(要点 ) 3.应用平行线分线段成比率定理及平行线法判断三角形相像来解决问题.(难点 )一、情境导入如图,在△ ABC 中, D 为边 AB 上任一点,作 DE∥BC ,交边 AC 于 E,用刻度尺和量角度量一量,判断△ ADE 与△ ABC 能否相像.二、合作研究研究点一:相像三角形的相关观点如下图,已知△OAC∽△ OBD ,且 OA= 4,AC =2, OB= 2,∠ C=∠ D,求:(1)△ OAC 和△ OBD 的相像比;(2)BD 的长.分析: (1)由△ OAC∽△ OBD 及∠C=∠D ,可找到两个三角形的对应边,即可求出相像比; (2)依据相像三角形对应边成比率,可求出BD 的长.解: (1)∵△ OAC ∽△ OBD ,∠ C=∠ D ,∴线段 OA 与线段 OB 是对应边,则△OAC 与△ OBD 的相像比为OA=4=2;OB 21AC= OA,∴ BD=AC·OB=2×2= 1.(2)∵△ OAC∽△ OBD,∴BD OB OA4方法总结:相像三角形的定义既是相像三角形的性质,也是相像三角形的判断方法.变式训练:见《学练优》本课时练习“讲堂达标训练”第 1 题研究点二:平行线分线段成比率定理【种类一】平行线分线段成比率的基本领实如图,直线 l 1、l2、l3分别交直线 l4于点 A、B、C,交直线 l 5于点 D 、E、F,直线 l 4、l5交于点 O,且 l 1∥ l2∥ l3,已知 EF ∶ DF = 5∶ 8, AC= 24.CB(1)求AB的值;(2)求 AB 的长.分析: (1) 依据 l 1 ∥l 2∥ l 3 推出CB= EF; (2) 依据 l 1∥ l 2∥l 3,推出EF= BC = 5,代入 ACABDEDF AC 8= 24 求出 BC 即可求出 AB.CB EFCB 5解: (1)∵ l 1∥ l 2∥l 3,∴ AB =DE .又∵ DF ∶DF =5∶ 8,∴ EF ∶DE = 5∶ 3,∴ AB = 3;(2)∵ l 1 ∥l 2∥ l 3, EF ∶ DF = 5∶8,AC = 24,∴ EF =BC = 5,∴ BC = 15,∴ AB = AC- BC DF AC 8= 24- 15=9.方法总结: 运用平行线分线段成比率定理时,必定要注意正确书写对应线段的地点. 变式训练: 见《学练优》本课时练习“讲堂达标训练” 第 3 题【种类二】 平行线分线段成比率的基本领实的推论如下图,已知△ABC 中, DE ∥ BC , AD = 2,BD = 5, AC = 5,求 AE 的长.分析: 依据 DE ∥BC 获得 AD =AE,而后依据比率的性质可计算出AE 的长.AB AC解: ∵DE ∥ BC ,∴AD=AE,即2=AE,∴ AE = 10AB AC 2+ 5 5 7 .方法总结: 解题的要点是深入察看图形, 正确找出图形中的对应线段, 正确列出比率式.变式训练: 见《学练优》本课时练习“讲堂达标训练”第 4 题研究点三:相像三角形的引理【种类一】 利用相像三角形的引理判断三角形相像如图,在 ?ABCD 中, E 为 AB 延伸线上的一点, AB = 3BE ,DE 与 BC 订交于点 F ,请找出图中全部的相像三角形,并求出相应的相像比.分析: 由平行四边形的性质可得: BC ∥ AD , AB ∥ CD ,从而可得 △ EFB ∽△ EDA ,△EFB ∽△ DFC ,再进一步求解即可.解: ∵四边形 ABCD 是平行四边形,∴ BC ∥ AD ,AB ∥ CD ,∴△ EFB ∽△ EDA ,△ EFB ∽△ DFC ,∴△ DFC ∽△ EDA ,∵ AB = 3BE ,∴相像比分别为 1∶ 4, 1∶ 3, 3∶ 4.方法总结: 求相像比不单要找准对应边,还需要注意两个三角形的先后次序. 变式训练: 见《学练优》本课时练习“讲堂达标训练”第5 题【种类二】 利用相像三角形的引理求线段的长如图,已知AB∥ EF∥ CD , AD 与 BC 订交于点O.(1)假如 CE= 3,EB=9, DF = 2,求 AD 的长;(2)假如 BO∶OE∶ EC= 2∶ 4∶3, AB= 3,求 CD 的长.分析: (1) 依据平行线分线段成比率可求得AF =6,则 AD = AF+FD = 8;(2)依据平行线AB ∥CD 分线段成比率知 BO ∶OE= AB∶ EF ,联合已知条件求得 EF = 6;同原因 EF∥ CD 推知EF 与 CD 之间的数目关系,从而求得 CD= 10.5.解: (1)∵CE =3, EB= 9,∴ BC= CE+ EB= 12.∵AB∥ EF,∴FOAF=EOEB,则FOEO=AFEB.又∵EF ∥ CD ,∴FO=EO,则FO=FD,∴AF=FD,即AF=2,∴ AF = 6,∴ AD= AF+FD =FD EC EO EC EB EC936+ 2= 8,即 AD 的长是 8;(2)∵ AB∥ CD,∴ BO∶ OE= AB∶EF .又∵ BO∶ OE= 2∶4,AB= 3,∴ EF = 6.∵ EF∥ CD ,∴ OE=EF.又∵ OE∶ EC= 4∶ 3,∴OE=4,∴EF=4,∴ CD =7EF= 10.5,即 CD 的长是OC CD OC7CD7410.5.方法总结:运用平行线分线段成比率的基本领实的推论必定要找准对应线段,以防解答错误.变式训练:见《学练优》本课时练习“讲堂达标训练”第 6 题三、板书设计1.相像三角形的定义及相关观点;2.平行线分线段成比率定理及推论;3.相像三角形的引理.本节课宜采纳研究式教课,教师在教课中是学生学习的组织者、指引者、合作者和共同研究者.鼓舞学生勇敢研究,指引学生关注过程,实时必定学生的表现,鼓舞创新.上课时教师只在要点处点拨,在不足时增补.教师与学生同等地沟通,创建民主、和睦的学习惯氛.7、我们各样习惯中再没有一种象战胜骄傲那麽难的了。
第27章相似27.1 图形的相似一、教学目标1.核心素养通过图形相似的学习,初步形成基本的几何直观、运算能力、推理能力.2.学习目标(1)理解并掌握两个图形相似的概念.(2)了解成比例线段的概念,会确定线段的比.(3)了解比例尺的概念.(4)记住相似多边形的性质,会辨别两个多边形是否相似,并会运用其性质进行相关的计算.3.学习重点相似图形的概念和与成比例线段的概念;相似多边形的性质与识别.4.学习难点线段成比例的意义;运用相似多边形的性质进行相关的计算.二、教学设计(一)课前设计1.预习任务任务1.阅读教材P24-25,思考:什么是相似图形?你能正确判断两个图形是否相似吗?任务2.阅读教材P26—P28,思考:什么是相似多边形?什么是相似比?相似多边形有怎样的性质?什么是成比例线段?2.预习自测(1)下列各组图形相似的是( )答案:B解析:略(2)下列各组数中成比例的是( )A. 2,3,4,1B. 3,5,13,9C. 6,8,9,10D. 10,20,20,40答案:D解析:略(3)如图,四边形EFGH 相似于四边形ABCD,则∠A=______度,∠C=______度,∠H=_____度,x=_____,y=_____,z=_____。
答案:70 120 60 40 45 75解析:∵四边形ABCD 和EFGH 相似,所以它们的对应角相等, 由此可得∠A=∠E=70°,∠C=∠G=120°,∠H=∠D=60°.∵四边形ABCD 和EFGH 相似,所以它们的对应边成比例, 由此可得5203018010===z y x , 解得x=40,y=45,z=75.(二)课堂设计1.知识回顾1.全等形的概念:能够完全重合的两个图形叫做全等形。
2.全等多边形的性质:全等多边形的对应角相等,对应边相等。
3.比的意义:两个数相除又叫做两个数的比。
比号前面的数叫做比的前项,比号后面的数叫做比的后项。
相似三角形(第1课时)教学目标1.理解相似三角形的概念,知道用相似符号“∽”表示的相似三角形之间的边、角对应关系.2.掌握平行线分线段成比例的基本事实及推论,并能用其进行简单的证明和计算.3.掌握利用平行线判定两个三角形相似的定理,并能利用其判定三角形相似.教学重点掌握平行线分线段成比例的基本事实及推论,能利用平行线判定三角形相似.教学难点平行线分线段成比例的基本事实及推论的应用.教学准备准备带刻度的直尺.教学过程知识回顾1.相似多边形的概念是什么?【答案】两个边数相同的多边形,如果它们的角分别相等,边成比例,那么这两个多边形叫做相似多边形.2.相似多边形的性质有哪些?【答案】相似多边形的对应角相等,对应边成比例.3.什么是相似比?【答案】相似多边形对应边的比叫做相似比.【设计意图】复习相似多边形的相关知识,巩固基础,为本节课的学习作准备.新知探究一、探究学习【问题】在相似多边形中,最简单的是____________.【师生活动】学生独立思考,得出答案:相似三角形.【追问】你能说出相似三角形的定义吗?【新知】如图,在△ABC和△A′B′C′中,如果∠A=∠A′,∠B=∠B′,∠C=∠C′,ABA B''=BCB C''=ACA C''=k,即三个角分别相等,三条边成比例,我们就说△ABC与△A′B′C′相似,相似比为k.相似用符号“∽”表示,读作“相似于”.△ABC与△A′B′C′相似记作“△ABC∽△A′B′C′”.【思考】△A′B′C′与△ABC的相似比是什么?【师生活动】学生小组讨论,得出答案:△A′B′C′与△ABC的相似比为1k.教师让学生回顾:相似比具有顺序性.【归纳】特别提醒:用符号“∽”表示两个三角形相似时,要把表示对应顶点的大写字母写在对应的位置上.△ABC∽△A′B′C′表示顶点A与A′,B与B′,C与C′分别对应;如果仅说“△ABC与△A′B′C′相似”,没有用“∽”连接,则需要分类讨论它们之间的对应关系.【思考】如果k=1,这两个三角形有怎样的关系?【师生活动】学生小组讨论,得出答案:当ABA B''=BCB C''=ACA C''=k=1时,AB=A′B′,BC=B′C′,AC=A′C′,故△ABC≌△A′B′C′(SSS),即当k=1时,这两个三角形全等.教师讲解、总结.【归纳】全等三角形是相似比为1的相似三角形,即全等三角形是特殊的相似三角形,而相似三角形不一定是全等三角形.【思考】根据相似三角形的定义你能得到相似三角形的性质吗?【师生活动】学生自由发言,教师总结.【新知】相似三角形的定义可以看作是性质,即相似三角形的三个角分别相等,三条边成比例.符号表示:∵△ABC∽△A′B′C′,∴∠A=∠A′,∠B=∠B′,∠C=∠C′,ABA B''=BCB C''=ACA C''.【思考】如何判定两个三角形相似?【师生活动】学生自由发言,教师总结.【新知】相似三角形的定义也可以看作是判定,即三个角分别相等,三条边成比例的两个三角形相似.符号表示:∵∠A=∠A′,∠B=∠B′,∠C=∠C′,ABA B''=BCB C''=ACA C''=k,∴△ABC∽△A′B′C′.【设计意图】分析相似三角形的定义,让学生知道全等三角形是特殊的相似三角形,掌握相似三角形对应边、对应角的性质,并能根据定义判定两个三角形相似.【问题】判定两个三角形全等时,除了可以验证它们所有的角和边分别相等外,还可以使用简便的判定方法(SSS,SAS,ASA,AAS).类似地,判定两个三角形相似时,是不是也存在简便的判定方法呢?我们先来探究下面的问题.如图,任意画两条直线l1,l2,再画三条与l1,l2都相交的平行线l3,l4,l5.分别度量l3,l4,l5在l1上截得的两条线段AB,BC和在l2上截得的两条线段DE,EF的长度,AB BC与DEEF相等吗?【师生活动】学生通过测量、计算,得出答案:ABBC=DEEF.【追问】任意平移l5,ABBC与DEEF还相等吗?直线l3,l4,l5在直线l1,l2上截得的线段有什么关系?【师生活动】学生通过测量、计算,得出答案:ABBC=DEEF;小组讨论,发现:ABBC=DE EF ,BCAB=EFDE,ABAC=DEDF,BCAC=EFDF等.教师总结.【新知】平行线分线段成比例的基本事实:两条直线被一组平行线所截,所得的对应线段成比例.注意:(1)截线是一组平行线,被截直线不一定平行;(2)所有的成比例线段是指被截直线上的线段,与这组平行线上的线段无关;(3)对应线段的比相等是指同一直线上的两条线段的比等于另一条直线上与它们对应的线段的比.把平行线分线段成比例的基本事实应用到三角形中,会出现两种情况,如图所示.在图①中,把l4看成是平行于△ABC的边BC的直线;在图②中,把l3看成是平行于△ABC的边BC的直线,那么我们可以得到结论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.【设计意图】在让学生通过画图、测量、猜想感知结论的基础上,给出平行线分线段成比例的基本事实;并将基本事实应用到三角形中,直接得出推论,为学习“利用平行线判定两个三角形相似的定理”作准备.【问题】如图,在△ABC中,DE∥BC,且DE分别交AB,AC于点D,E,△ADE与△ABC有什么关系?【师生活动】学生自由发言,给出猜想:△ADE∽△ABC.教师追问:你能证明你的猜想吗?教师给出提示:利用相似的定义证明,即证明∠A=∠A,∠ADE=∠B,∠AED=∠C,AD AB =AEAC=DEBC.学生根据提示,小组讨论,发现:由前面的结论可得,ADAB=AEAC.而DEBC中的DE不在△ABC的边BC上,不能直接利用前面的结论.教师引导学生继续分析:从要证的AEAC=DEBC可以看出,除DE外,AE,AC,BC都在△ABC的边上,因此只需将DE平移到BC边上去,使得BF=DE,再证明AEAC=BFBC就可以了.如图,只要过点E作EF∥AB,交BC于点F,BF就是平移DE所得的线段.学生根据分析,完成证明.【答案】证明:如图,过点E作EF∥AB,交BC于点F.在△ADE与△ABC中,∠A=∠A.∵DE∥BC,∴∠ADE=∠B,∠AED=∠C.∵DE∥BC,EF∥AB,∴四边形DBFE为平行四边形,ADAB=AEAC,BFBC=AEAC.∴DE=BF.∴DEBC=AEAC.∴ADAB=AEAC=DEBC.∴△ADE∽△ABC.【新知】因此,我们有如下判定三角形相似的定理:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.符号表示:∵DE∥BC,∴△ADE∽△ABC.二、典例精讲【例1】如图,DE∥BC,AB=5,AC=6,AD=2,求AE的长.【师生活动】学生独立完成,请一名学生代表板演,教师指导、讲解.【答案】解:∵DE∥BC,∴ADAC=AEAB.∵AB=5,AC=6,AD=2,∴26=5AE.∴AE=53.【设计意图】通过例1,考查学生是否会用平行线分线段成比例的基本事实解决问题.【例2】如图,在△ABC中,DE∥BC,ADAB=13,BC=12,求DE的长.【师生活动】学生独立完成,请一名学生代表板演,教师指导、讲解.【答案】解:∵DE∥BC,∴△ADE∽△ABC.∴ADAB=AEAC=DEBC.∵ADAB=13,BC=12,∴DE=13BC=4.【提醒】(1)当三角形中出现平行线时,可利用相似三角形建立比例式求线段的长;(2)在利用平行线判定两个三角形相似时,只需两条直线平行这一个条件就能证明这两个三角形相似.【设计意图】通过例2,考查学生是否能利用平行线判定两个三角形相似.课堂小结板书设计一、相似三角形二、平行线分线段成比例三、利用平行线判定两个三角形相似的定理课后作业完成教材第31页练习第1~2题.。
图形的相似(第1课时)教学目标1.能通过生活中的实例认识相似图形,能直观地判断两个图形是否相似.2.了解线段的比和成比例线段的概念,会判断四条线段是否成比例,掌握成比例线段的实际应用.教学重点判断两个图形是否相似及判断四条线段是否成比例.教学难点判断四条线段是否成比例及成比例线段的实际应用.教学过程新课导入【问题】下图中的两个图形有什么关系?【师生活动】学生观察后猜想:全等.教师通过平移其中一个图形,使之与另一个图形重合,验证学生的猜想.【答案】全等.【追问1】全等满足什么条件呢?【师生活动】直接找学生回答,教师修正.【答案】形状和大小都相同.【追问2】如果把其中的一个图形缩小,它们还全等吗?【师生活动】教师把上面的一个图形缩小,然后直接找学生回答,教师修正.【答案】大小不同,不全等.【设计意图】通过这个情境,复习全等图形的概念,引出相似图形的情况,为下面讲相似图形的概念及其与全等图形的关系作铺垫.新知探究一、探究学习【问题】下面的每组图形有什么相同和不同的地方?【师生活动】学生观察思考得出结论教师总结.【答案】相同点:形状相同.不同点:大小不同.【新知】我们把形状相同的图形叫做相似图形.【归纳】注意:两个图形是否相似与图形的大小、位置无关.【设计意图】通过这个问题,引出相似图形的概念及其特点,提高学生观察、思考及概括的能力.【问题】全等图形与相似图形有什么关系呢?【师生活动】学生小组讨论,然后教师找学生代表回答.【答案】全等图形是形状相同、大小相等的图形,所以全等图形是相似图形,相似图形不一定是全等图形.【设计意图】通过这个问题,让学生思考全等图形与相似图形之间的关系,加深学生对相似图形的理解.【问题】观察这四组相似图形,其中一个图形可以看作由另一个图形怎样变换得到的?【师生活动】教师引导学生一一观察,对于每组图形,各找一个学生说一说其中一个图形可以看作由另一个图形怎样变换得到的,最后教师总结,给出结论.【答案】两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到的.【设计意图】通过这个问题,让学生了解两个相似图形之间的关系.【问题】你能再举出一些相似图形的例子吗?【师生活动】直接找几个学生回答.【答案】放电影时,银幕上的画面与胶片上的画面是相似图形;复印机把一个图形放大或缩小后得到的图形与原来的图形是相似图形;实际的建筑物与它的模型是相似图形.(答案不唯一,合理即可)【设计意图】引导学生将相似图形的知识与生活实际相结合,学以致用.【问题】如图是一个女孩从平面镜和哈哈镜里看到的自己的形象,这些镜中的形象相似吗?【师生活动】教师引导学生一一观察,找一个学生说一说镜中的形象分别有什么特点,最后给出结论.【答案】平面镜的表面平整,它所成像的形状和大小与物体完全相同.哈哈镜的表面凹凸不平,它能使所成的像产生奇异变形.所以,女孩从平面镜和哈哈镜里看到的自己的形象不相似.【归纳】判断两个图形是否相似,主要通过观察这两个图形局部和整体的特征,来判断这两个图形的形状是否完全相同,相同则相似,这是相似图形的本质.【设计意图】引导学生观察并思考生活中常见的镜面成像与相似图形的关系,拓展思维.【问题】下图所示的两个三角形是相似图形,你能用数字表示线段AB与线段DE的比吗?【师生活动】教师引导学生思考:线段的比是什么?学生回答:应该是长度的比,然后教师给出线段的比的概念,并让学生计算线段AB与线段DE的比,最后找学生回答.【答案】324.53 ABDE==.【新知】两条线段的比即它们长度的比.【归纳】注意:(1)线段的比是线段长度的比,是两条线段长度的比的运算结果,是一个没有单位的正数;(2)线段的比与所选线段的长度单位无关,在求两条线段的比时,要求两条线段的长度单位必须一致.【设计意图】通过这个问题,引导出线段的比的概念,并让学生知道计算线段的比时的注意事项.【追问】计算出线段BC与线段EF的比,然后和线段AB与线段DE的比进行比较,你发现了什么?【师生活动】学生计算,然后教师找学生回答.【答案】4263BCEF==,BC ABEF DE=.【新知】对于四条线段a,b,c,d,如果其中两条线段的比与另两条线段的比相等,如a cb d=(即ad=bc),我们就说这四条线段成比例.【归纳】注意:(1)成比例线段是有顺序的,即若a,b,c,d是成比例线段,则a cb d=(或ad=bc,其中b≠0,d≠0),不能写成a bd c =;(2)在用a cb d=运算时,通常情况下,四条线段a,b,c,d的长度单位要一致.【设计意图】通过这个问题,引导出成比例线段的概念,让学生知道成比例线段的特点及计算时的注意事项.二、典例精讲【例1】下列各组中的两个图形,哪些是相似图形?简单说明理由.【答案】解:①一个是正六边形,另一个不是正六边形,形状不同;②两个图形大小虽然不同,但形状相同;③两个图形全等,所以形状相同;④一个圆脸,一个长脸,形状不同.所以②组和③组是相似图形,其他两组不是相似图形.【设计意图】检验学生对判断相似图形的掌握情况.【例2】下列各组中的四条线段成比例的是().A.6 cm,2 cm,1 cm,4 cmB.4 cm,5 cm,6 cm,7 cmC.3 cm,4 cm,5 cm,6 cmD.6 cm,3 cm,8 cm,4 cm【解析】选项A:1×6≠2×4,故四条线段不成比例;选项B:4×7≠5×6,故四条线段不成比例;选项C:3×6≠4×5,故四条线段不成比例;选项D:3×8=4×6,故四条线段成比例.【答案】D【归纳】判断四条线段是否成比例的步骤:第一步:统一单位,即将四条线段的单位统一;第二步:大小排序,即把四条线段的长度按由小到大或由大到小的顺序排列;第三步:计算并判断,计算的方法有两种:(1)计算前两条线段的比和后两条线段的比,若比值相等,则这四条线段成比例;(2)分别计算前后两条线段的乘积和中间两条线段的乘积,如果乘积相等,则这四条线段成比例.【设计意图】检验学生对判断四条线段是否成比例的掌握情况.【例3】某市的两个旅游景区之间的距离为105 km,则在一张比例尺为1:2 000 000的交通旅游图上,它们之间的距离大约相当于().A.一根火柴的长度B.一支钢笔的长度C.一支铅笔的长度D.一根筷子的长度【解析】105 km=10 500 000 cm,设所求距离为x cm,则x:10 500 000=1:2 000 000,解得x=5.25,5.25 cm大约相当于一根火柴的长度.【答案】A【归纳】“应用比例尺,知二可求一”.比例尺=图上距离实际距离,在“比例尺、图上距离、实际距离”三个量中,已知其中任意两个量,都可以求出第三个量,但应注意单位的统一.【设计意图】检验学生对成比例线段的应用的掌握情况,并会根据比例尺看地图.课堂小结板书设计一、相似图形二、线段的比三、四条线段成比例课后作业完成教材第25页练习第1~2题和第27页练习第1题.。
相似图形的相似(一)一、教学目标理解并掌握两个图形相似的概念.了解成比例线段的概念,会确定线段的比.二、重点、难点重点:相似图形的概念与成比例线段的概念.难点:成比例线段概念.难点的突破方法(1)对于相似图形的概念,要强调:①相似形一定要形状相同,与它的位置、颜色、大小无关(全等形是一种特殊的相似形);②相似形不仅仅指平面图形,也包括立体图形的情况,③两个图形相似,其中一个图形可以看作有另一个图形放大或缩小得到的,而把一个图形的部分拉长或加宽得到的图形和原图形不是相似图形.(2)对于成比例线段: ②两条线段的比与所采用的长度单位没有关系,在计算时要注意统一单位;③线段的比是一个没有单位的正数;④四条线段a,b,c,d 成比例,记作d c b a =或a:b=c:d ;⑤若四条线段满足d c b a =,则有ad=bc (反之,若四条线段满足ad=bc ,则有d c b a =,或其它七种表达形式).三、例题的意图本节课的三道例题都是补充的题目,例1是一道判断图形相似的选择题,通过讲解要使学生明确:(1)相似形一定要形状相同,与它的位置、颜色、大小无关;(2)两个图形相似,其中一个图形可以看作有另一个图形放大或缩小得到的,而把一个图形的部分拉长或加宽得到的图形和原图形不是相似图形;(3)在识别相似图形时,不要以位置为准,要“形状相同”;例2通过分别采用m 、cm 、mm 三种不同的长度单位,求得的ba 的值相等,使学生明确:两条线段的比与所采用的长度单位无关,但求比时两条线段的长度单位必须一致;例3是求线段的比的题,要使学生对比例尺有进一步的认识:比例尺=实距图距实际距离图上距离= 四、课堂引入1.(1)请同学们看黑板正上方的五星红旗,五星红旗上的大五角星与小五角星他们的形状、大小有什么关系?再如下图的两个画面,他们的形状、大小有什么关系.(还可以再举几个例子)(2)教材P24引入.(3)相似图形概念:把形状相同的图形说成是相似图形.(强调:见前面)(4)让学生再举几个相似图形的例子.(5)讲解例1.2.问题:如果把老师手中的教鞭与铅笔,分别看成是两条线段AB 和CD ,那么这两条线段的长度比是多少?归纳:两条线段的比,就是两条线段长度的比.3.成比例线段:对于四条线段a,b,c,d ,如果其中两条线段的比与另两条线段的比相等,如d c b a =(即ad=bc ),我们就说这四条线段是成比例线段,简称比例线段. 【注意】 (1)两条线段的比与所采用的长度单位没有关系,在计算时要注意统一单位;(2)线段的比是一个没有单位的正数;(3)四条线段a,b,c,d 成比例,记作dc b a =或a:b=c:d ;(4)若四条线段满足dc b a =,则有ad=bc . 五、例题讲解例1(补充:选择题)如图,下面右边的四个图形中,与左边的图形相似的是( )分析:因为图A 是把图拉长了,而图D 是把图压扁了,因此它们与左图都不相似;图B 是正六边形,与左图的正五边形的边数不同,故图B 与左图也不相似;而图C 是将左图绕正五边形的中心旋转180º后,再按一定比例缩小得到的,因此图C 与左图相似,故此题应选C. 例2(补充)一张桌面的长a=1.25m ,宽b=0.75m ,那么长与宽的比是多少?(1)如果a=125cm ,b=75cm ,那么长与宽的比是多少?(2)如果a=1250mm ,b=750mm ,那么长与宽的比是多少?解:略.(35b a =) 小结:两条线段的比与所采用的长度单位无关,但求比时两条线段的长度单位必须一致. 例3(补充)已知:一张地图的比例尺是1:32000000,量得北京到上海的图上距离大约为3.5cm ,求北京到上海的实际距离大约是多少km ?分析:根据比例尺=实际距离图上距离,可求出其的实际距离.(1120 km ) 六、课堂练习1.教材P25的思考.2.下列说法正确的是( )A .小明上幼儿园时的照片和初中毕业时的照片相似.B .商店新买来的一副三角板是相似的.C .所有的课本都是相似的.D .国旗的五角星都是相似的.3.如图,请测量出右图中两个形似的长方形的长和宽,(1)(小)长是_______cm ,宽是_______cm ; (大)长是_______cm ,宽是_______cm ;(2)(小)=长宽 ; (大)=长宽 . (3)你由上述的计算,能得到什么结论吗?(答:相似的长方形的宽与长之比相等)4.在比例尺是1:8000000的“中国政区”地图上,量得福州与上海之间的距离时7.5cm ,那么福州与上海之间的实际距离是多少?5.AB 两地的实际距离为2500m ,在一张平面图上的距离是5cm ,那么这张平面地图的比例尺是多少?七、课后练习教后反思:。
人教版九年级数学下册27.1.1 相似图形及成比例线段一、教学目标1.通过实例知道相似图形的意义.2.经历观察、猜想和分析过程,知道相似多边形对应角相等,对应边的比相等,反之亦然.二、教学重点和难点1.重点:相似图形和相似多边形的意义.2.难点:探索相似多边形对应角相等,对应边的比相等.三、教学过程(一)创设情境,导入新课师:(出示两张全等的图片)大家看这两个图形,(稍停)这两个图形形状相同,大小也相同,它们叫什么图形?生:(齐答)叫全等图形.师:(出示两张相似的图片)大家看这两个图形,(稍停)这两个图形只是形状相同,它们叫什么图形?(稍停)它们叫相似图形.也可以说,这两个图形相似(板书:相似).师:和全等一样,相似也是两个图形的一种关系.从今天开始我们要学习新的一章,这一章要学的内容就是相似(在“相似”前板书:第二十七章). (二)尝试指导,讲授新课师:相似图形在我们的生活中是很常见的,大家把课本翻到第34页,(稍停)34页上有几个图,左上方是用同一张底片洗出的不同尺寸的照片,它们是相似图形;还有大小不同的两个足球,它们也是相似图形;还有一辆汽车和它的模型,它们也是相似图形.师:看了这些相似图形,哪位同学能给相似图形下一个定义?生:……(让几名同学回答)(师出示下面的板书)形状相同的两个图形叫做相似图形.师:请大家一起把相似图形的概念读两遍.(生读)师:(出示两张全等的图片)全等图形,它们不仅形状相同,而且大小也相同;(出示两张相似的图片)而相似图形,它们只是形状相同,它们的大小可能相同,也可能不相同.师:明确了相似图形的概念,下面请同学们来举几个相似图形的例子,谁先来说?生:……(让几位同学说,如果学生说的题材不够广泛,师可以再举几个例子.譬如,放电影时,屏幕上的画面与胶片上的图形是相似图形;实际的建筑物与它的模型是相似图形;复印机把一个图形放大,放大后的图形和原来图形是相似图形)师:好了,下面请大家做一个练习.(三)试探练习,回授调节1.下列各组图形哪些是相似图形?(1) (2) (3)(4) (5)(6)2.如图,图中是人们从平面镜及哈哈镜里看到的不同镜像,它们相似吗?(四)尝试指导,讲授新课(师出示下图)///B A C C B A师:(指准图)这个三角形和这个三角形形状相同,所以它们是相似三角形.从图上看,这两个相似三角形的角有什么关系?生:∠A=∠A ′,∠B=∠B ′,∠C=∠C ′.(生答师板书:∠A=∠A ′,∠B=∠B ′,∠C=∠C ′)师:(指图)这两个相似三角形的边有什么关系?(让生思考一会儿)师:(指准图)AB 与A ′B ′的比是AB A B ⅱ(板书:AB A B ⅱ),BC 与B ′C ′的比是BC B C ⅱ(板书:BC B C ⅱ),CA 与C ′A ′的比是CA C A ⅱ(板书:CA C Aⅱ),这三个比相等吗? 生:(齐答)相等.师:为什么相等?(稍停后指准图)△A ′B ′C ′可以看成是△ABC 缩小得到的,假如AB 是A ′B ′的2倍,那么可以想象,BC 也是B ′C ′的2倍,CA 也是C ′A ′的2倍,所以这三个比相等(在式子中间写上两个等号).师:我们再来看一个例子.(师出示下图)师:(指准图)这个四边形和这个四边形形状相同,所以它们是相似四边形.从图上看,这两个相似四边形的角有什么关系?生:∠A=∠A ′,∠B=∠B ′,∠C=∠C ′,∠D=∠D ′.(生答师板书:∠A=∠A ′,∠B=∠B ′,∠C=∠C ′,∠D=∠D ′)师:(指图)这两个相似四边形的边有什么关系? 生:AB A B ⅱ=BC B C ⅱ=CA C A ⅱ=DA D A ⅱ.(生答师板书:AB A B ⅱ=BC B C ⅱ=CA C A ⅱ=DA D A ⅱ) 师:(指式子)这四个比为什么相等?(稍停后指准图)四边形A ′B ′C ′D ′可以看成是四边形ABCD 放大得到的,假如AB 是A ′B ′的一半,那么可以想象,BC 也是B ′C ′的一半,CD 也是C ′D ′的一半,DA 也是D ′A ′的一半,所以这四个比相等.师:从这两个例子,大家想一想,你能得出一个什么结论?(等到有一部分同学举手再叫学生)生:……(多让几名学生发表看法)(师出示下面的板书)////A B C D D A B C相似多边形对应角相等,对应边的比也相等.师:请大家把这个结论一起来读两遍.(生读)师:相似多边形对应角相等,对应边的比也相等.实际上,这个结论反过来也是成立的,反过来怎么说?生:……(让几名学生说)(师出示下面的板书)对应角相等,对应边的比也相等的多边形是相似多边形.师:请大家把反过来的结论一起来读两遍.(生读)师:我们知道,形状相同的多边形是相似多边形.但是,什么样才算形状相同呢?(稍停)从这两个结论我们可以看到,对多边形来说,所谓形状相同,实际上指的就是对应角相等,对应边的比也相等.对应角相等,对应边的比也相等的多边形是相似多边形.所以,现在我们可以给相似多边形下一个更明确的定义. (师出示下面的板书)对应角相等,对应边的比也相等的两个多边形叫做相似多边形.师:下面我们利用相似多边形的概念来做两个练习.(五)试探练习,回授调节3.如图,△ABC与△A′B′C′相似,则∠C′= °,B′C′= .4.判断正误:对的画“√”,错的画“×”.(1)两个等边三角形一定相似;()(2)两个正方形一定相似;()(3)两个矩形一定相似;()(4)两个菱形一定相似. ()(六)归纳小结,布置作业师:(指准板书)本节课我们学习了相似图形和相似多边形的概念.什么叫做相似图形?形状相同的两个图形叫做相似图形.从这两个结论,我们进一步发现,对多边形来说,所谓形状相同指的就是对应角相等,对应边的比也相等.所以我们又给相似多边形下了一个更明确定义:对应角相等,对应边也相等的两个多边形叫做相似多边形.(作业:P35练习1.P38习题1.4.)C/ 11053//BAAB C四、板书设计。
数学试卷3.1—3.2.1相似的图形、线段的比、成比例线段【教学目标】1.知识与技能:理解相似形的特征,掌握相似形的识别方法;了解线段的比和成比例线段。
2.过程与方法:结合具体实例认识形状相同的图形,体会相似图形在现实中的广泛应用,进一步增强学生的数学应用意识;结合现实情境了解线段的比和成比例线段。
3.情感态度与价值观:在课堂教学中,进一步发展学生从数学的角度提出问题、分析问题和解决问题的能力,培养学生体会数学与自然、社会之间的密切关系,激发学生学习数学的兴趣和动力。
【教学重点难点】重点:通过测量、计算让学生感受相似形的特征,了解相似形的识别方法;掌握线段的比和成比例线段。
难点:在运用特征解决有关线段或角度的问题时,应注意“对应”。
【教法与学法指导】学生自学——合作交流——教师释疑——检测反馈【教学过程】一、创设情境、导入新课通过对生活中形状相同的图形的观察和欣赏,初步感受相似:你能看出上述图片的共同之处吗?(它们的形状相同,但大小不等)二、合作交流、解读探究你还记得全等的图形吗?说一说全等的图形和形状相同的图形之间有什么联系与区别!知识点1:相似图形定义1:形状相同的图形是相似的图形。
想一想:你能试阐述相似三角形的定义吗?各角对应相等、各边对应成比例的两个三角形叫做相似三角形。
知识点2:线段的比如果选用同一个长度单位量得两条线段AB、CD的长度分别是m、n,那么就说这两条线段的比(ratio )AB ∶CD =m ∶n ,或写成CD AB =n m,其中,线段AB 、CD 分别叫做这两个线段比的前项和后项.如果把n m 表示成比值k ,则CD AB=k 或AB =k ·CD .注意:在量线段时要选用同一个长度单位.如图,∠A =∠D ,∠B =∠E ,∠C =∠F 则△ABC 与△DEF 相似, 记做“△ABC ∽△DEF”。
其中k 叫做它们的相似比。
注意:表示两个三角形相似应把表示对应顶点的 字母写在对应的位置上。
图形的相似理解相似图形的有关概念教学目标:重点:掌握相似多边形的性质难点:相似多边形的性质(1)相似图形:的图形叫做相似图形.(2)相似多边形:两个边数的多边形,如果它们的角分别,边,那么这两个多边形叫做相似多边形.(3)相似比:相似多边形的比叫做相似比.(4)线段成比例对于四条线段a,b,c,d,如果其中两条线段的比(即它们长度的比)与另两条线段的比,如=(即ad=),则这四条线段成比例.相似多边形的对应角,对应边.重点一:相似图形(1)两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到的;(2)相似图形与图形摆放的位置无关.1.如图所示,四组图形中,是相似图形的是( )2.仔细观察下列图形,其中相似的图形有哪些?请你用线段将它们连起来.重点二:线段成比例判断给定四条线段是否成比例的方法①排:将四条线段的长度统一单位,再按大小顺序排列好;②算:分别求出前两条线段长度之比与后两条线段长度之比;③判:若这两个比值相等,则这四条线段是成比例线段;若这两个比值不相等,则这四条线段不是成比例线段.∶38000的某某交通游览图上,玄武湖隧道长约为7 cm,它的实际长度约为( )(A)0.266 km (B)2.66 km(C)26.6 km (D)266 km4.判断下列四条线段a、b、c、d是否成比例.(1)a=3,b=5,c=4,d=6.(2)a=1,b=,c=,d=5.重点三:相似多边形的性质及判定CD的四条边长分别为54 cm,48 cm,45 cm,63 cm,另一个和它相似的四边形最短边长为15 cm,则这个四边形的最长边为( )(A)18 cm (B)16 cm (C)21 cm (D)24 cm6.如图所示,四边形模板ABCD和EFGH是相似的,求两块模板中角α、β的大小和EH的长度.A层(基础)1.下面图形不相似的有( )(A)0组(B)1组(C)2组(D)3组2.(2013某某)下列四组图形中,一定相似的是( )(A)正方形与矩形(B)正方形与菱形(C)菱形与菱形(D)正五边形与正五边形3.下列各组线段(单位:cm)中,成比例的是( )(A)1、2、3、4 (B)1、2、2、4(C)3、5、9、13 (D)1、2、2、34.在某某交通图上,已知甲、乙两地的实际距离为5 km,画在图上的距离为2 cm,那么这X交通图的比例尺是( )(A)2∶5 (B)1∶2500(C)250000∶1 (D)1∶2500005.如图所示,在长为8 cm、宽为4 cm的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下的矩形的面积是( )(A)2 cm2(B)4 cm2(C)8 cm2(D)16 cm26.现有三条线段的长度分别为1、、2,请你再添上一个数使之成比例.7.如图,△ABC与△DFE相似,则x=,y=,∠F=.8.如图,其中相似的图形有,,,,,.9.仔细观察图形,看看四边形ABCD与四边形A'B'C'D'是否相似,如果相似,求出它们的相似比;如果不相似,请说明理由.10.如图所示为一矩形木框,四周为宽度相同的木条,那么这个矩形框的里、外两个矩形是相似形吗?假若外边框的长为30 cm,宽为20 cm,木条的宽度为2 cm,试加以验证.B层(拔高)11.如图,在△ABC中,已知DE∥BC,AD=4,DB=8,DE=3,BC=9,AC=9,EC=6.试证明:△ADE与△ABC相似.12.如图所示,把矩形ABCD对折,折痕为MN,矩形DMNC与矩形ABCD相似,已知AB=4.(1)求AD的长.(2)求矩形DMNC与矩形ABCD的相似比.教后反思:。
第二十七章相似27.1 图形的相似课时1 相似图形及成比例线段【知识与技能】1.在具体生活实例中认识相似图形,理解和掌握两个图形相似的概念.2.理解相似图形的特征,掌握相似图形的识别方法.3.了解成比例线段的含义,会判断是不是成比例线段.4.理解相似多边形的概念、性质及判定,并能计算和相似多边形有关的角度和线段的长.【过程与方法】1.通过观察实际生活中的图形,辨析相似图形,让学生体会数学与实际生活密切联系,激发学生学习的兴趣.2.通过观察、测量、辨析、归纳等数学活动,经历相似多边形的概念的形成过程,体会由特殊到一般的数学思想方法.3.通过应用成比例线段定义及相似多边形的性质进行有关计算,体会方程思想在几何中的应用,渗透数形结合思想.【情感态度与价值观】1.通过观察识别相似图形,渗透生活和数学中美的教育.2.经历相似多边形的概念的形成过程,培养学生的观察、推理能力,激发学生探究、发现数学问题的兴趣.3.在探索相似多边形的性质的过程中,培养学生与他人交流、合作的意识和品质.4.在观察、操作、推理的探究过程中,体验数学活动充满探索性和创造性.1.理解并掌握相似图形、相似多边形的概念及特征.2.能利用成比例线段的概念及相似多边形的性质进行有关计算.1.理解相似图形的特征,掌握识别相似图形的方法.2.探索相似多边形的性质中的“对应”关系.多媒体课件.导入一:欣赏图片.【课件1展示】(1)汽车和它的模型(2)大小不同的两个足球(3)大小不同的两张照片【引导语】上面各组图片的共同之处是什么?这些图形涉及的就是我们这章要学习的相似形问题.导入二:请同学们看黑板正上方的五星红旗,五星红旗上的大五角星与小五角星它们的形状、大小有什么关系?导入三:【复习提问】1.什么是全等形?全等形的形状和大小有什么关系?(能够完全重合的图形是全等形,全等形的形状相同、大小相等)2.判断下列图形是不是全等形?如何判断?(下列两幅图片均是全等形.判断依据:形状相同、大小相等)[设计意图]通过欣赏生活中的图片,让学生体会数学来源于生活,激发学生学习的兴趣,感受数学中的美.在欣赏国旗上的五角星时,对学生进行爱国主义思想教育.同时通过复习全等形的概念及全等形的判定,为本节课相似形的学习做铺垫.[过渡语]在上面的全等形的图片中放大或缩小其中一张图片,得到的图片与另一张图片的形状和大小有什么关系?通过今天的学习,我们将认识这一类图形.一、认识相似图形思路一【思考1】以上展示的图片之间有什么特点?它们的形状和大小有怎样的关系?【师生活动】学生观察思考,教师引导点拨它们形状相同、大小不等.共同归纳本节课学习重点——相似形的概念.【结论】形状相同的图形叫做相似图形.【思考2】全等形一定是相似图形吗?相似图形一定全等吗?它们之间有什么关系?【师生活动】学生通过观察导入中图片,独立思考后小组交流,教师对学生的回答进行点评,归纳全等形与相似形之间的关系.【结论】全等图形是相似图形的一种特殊情况.全等图形一定相似,相似图形不一定全等.【思考3】你能举出现实生活中一些相似图形的例子吗?【师生活动】学生积极回答,通过生活中相似图形的实例巩固相似图形的概念,教师对思维活跃、积极参与的学生给予鼓励.思路二教师引导学生思考回答下列问题.(1)全等形的形状和大小之间有什么关系?(全等形的形状相同、大小相等)(2)观察上述图片,它们的形状和大小之间有什么关系?(形状相同、大小不等)(3)你能给出相似图形的定义吗?(形状相同的图形叫做相似形)(4)全等图形一定相似吗?相似图形一定全等吗?(全等图形一定相似,相似图形不一定全等)(5)归纳全等图形和相似图形之间的关系.(全等图形是相似图形的特例)(6)你能举出现实生活中一些相似图形的例子吗?【师生活动】学生在教师设置的问题下积极思考回答,教师及时点拨和引导,最后课件展示探究结论.【结论】形状相同的图形叫做相似图形.全等图形是相似图形的一种特殊情况.[设计意图]让学生亲自观察实际生活中的图形,在教师问题的引导下,进行分析、探究,根据图形特点归纳出相似形的概念,培养学生的观察能力,激发学生的求知欲望,经历相似形概念的形成过程,体会数学与生活息息相关.二、相似图形的特征【课件2展示】观察下列每组图形,是不是相似图形?【思考】(1)两个相似的平面图形之间有什么关系?(2)两个相似图形的主要特征是什么?(3)如何判定两个图形是相似图形?(4)相似图形的大小是不是一定相等?(5)相似图形是否可以看作其中一个图形是由另一个图形放大或缩小得到的?【师生活动】学生观察独立思考,小组合作交流,展示小组成果,教师点评,共同归纳相似图形的特征.【结论】相似图形的特征是:形状相同.两个图形的形状相同,则两个图形就是相似图形.相似图形的大小不一定相等,其中一个图形可以看作是由另一个图形放大或缩小得到的.[设计意图]让学生通过观察思考、合作交流,共同归纳出相似形的特征,培养学生的观察能力、归纳总结能力及合作交流的能力,激发学生学习的兴趣,加深学生对相似图形的概念的理解和掌握.三、例题讲解[过渡语]我们了解了相似形的概念和基本特征,让我们一起利用所学知识判断下列图形是不是相似图形.如图是一个女孩从平面镜和哈哈镜里看到的自己的形象,这些镜中的形象相似吗?【思考】(1)在平面镜中的像与物体的形状 ,大小,则从平面镜里看到的自己的形象与女孩相似图形(填“是”或“不是”).(2)哈哈镜里看到的形象,有的被“压扁”了,有的被“拉长”了,所以哈哈镜中的像与物体的形状 ,大小,则从哈哈镜里看到的自己的形象与女孩相似图形(填“是”或“不是”).〔解析〕女孩从平面镜中看到的自己的形象是相似的;女孩从哈哈镜里看到的自己的形象不是相似的.〔答案〕(1)相同相等是(2)不同不相等不是【师生活动】学生独立思考回答,教师点评.观察下列图形,哪些是相似图形?第一组:第二组:【师生活动】教师引导、点拨、分析.要找出图中的相似图形,只要仔细观察每个图形的特征,通过图形变化后是否具备“形状相同”这一特征.学生观察后回答即可.解:第一组图,图1,2,5是相似图形.第二组的相似图形分别是:(1)和(8);(2)和(6);(3)和(7).[设计意图]通过经历对例题的探究过程,加深学生对相似形的基本特征的理解,达到巩固知识的目的,培养学生分析问题、解决问题的能力.[知识拓展]所谓“形状相同”,就是与图形的大小、位置无关,与摆放角度、摆放方向也无关.有些图形之间虽然只有很小的形状差异,但也不能认为是“形状相同”.[过渡语]思考导入中的问题,我们将得到相似多边形的概念.一、成比例线段的概念(1)把九年级数学课本的两个邻边看作两条线段AB和CD,那么什么是这两条线段的比?(这两条线段的长度比叫做这两条线段的比)(2)对于四条线段a,b,c,d,如果其中两条线段的比与另外两条线段的比相等,如=(即ad=bc),我们就说这四条线段成比例.(3)如何判断四条线段是成比例线段?(四条线段中其中两条线段的比与另两条线段的比相等,就说这四条线段成比例)(4)成比例线段的概念中应注意什么问题?(成比例线段的概念中的四条线段是有顺序的,如a,b,c,d是成比例线段与a,d,b,c是成比例线段得到的比例式是不同的)【师生活动】学生在教师的引导下思考回答,教师课件展示成比例线段的概念.[设计意图]学生在教师提出的问题的引导下,层层深入地形成成比例线段的概念,学生经历概念的形成过程,加深对概念的理解,为相似多边形的概念的形成做了铺垫.二、认识相似多边形思路一(1)问题思考.①在导入二的△ABC及用2倍放大镜观察得到的△A1B1C1中,对应角之间的数量关系为:∠A∠A1,∠B∠B1,∠C∠C1;对应边之间的数量关系为:=,=,=,即==.②在导入三的四边形ABCD及用2倍放大镜观察得到的四边形A1B1C1D1中,对应角之间的数量关系为:∠A ∠A1,∠B ∠B1,∠C ∠C1,∠D ∠D1;对应边之间的数量关系为:=,=,=,=,即= = =.③放大镜下的图形与原图形是否相似?两个图形的对应角、对应边之间有什么关系?(相似,对应角相等,对应边成比例)④你能尝试给出相似多边形的定义吗?并尝试用几何语言表示出来.⑤相似比的值与两个相似多边形的顺序有关吗?⑥相似多边形的对应角、对应边有什么特点?用几何语言怎样表示?【师生活动】(1)学生独立思考后小组合作交流,共同探究相似多边形的概念,教师要给学生足够的时间让学生交流,在巡视过程中帮助学习有困难的学生,并对学生的展示作出点评,同时规范学生的语言表达.(2)相似多边形的定义:两个边数相同的多边形,如果它们的角分别相等,边成比例,那么这两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.【几何语言】如图,在两个大小不同的四边形ABCD和四边形A1B1C1D1中,∠A=∠A1,∠B=∠B1,∠C=∠C1,∠D=∠D1,===,因此四边形ABCD与四边形A 1B1C1D1相似.(3)相似多边形的性质:相似多边形的对应角相等,对应边成比例.如图,∵四边形ABCD与四边形A1B1C1D1相似,∴∠A=∠A1,∠B=∠B1,∠C=∠C1,∠D=∠D1,===.思路二(1)动手操作并思考.①测量课前准备的两个相似三角形(两个形状相同的三角尺)的各角,你得到什么结论?(对应角相等)②测量课前准备的两个相似三角形的各边,你发现了什么?(对应边成比例)③课前准备的两个正方形的各角相等吗?(相等,都等于90°)④课前准备的两个正方形的各边是否成比例?为什么?(成比例,因为两个正方形的边长分别相等,对应边的比都等于两个正方形的边长比.)⑤你能根据以上探究活动得出相似多边形的概念吗?⑥怎样用几何语言表示相似多边形的概念呢?⑦相似比与两个相似多边形的顺序有关吗?⑧相似多边形的对应角、对应边有什么特点?用几何语言怎样表示?【师生活动】学生在教师的引导下,边动手操作边思考回答问题,师生共同归纳出相似多边形的概念.(2)相似多边形的定义:两个边数相同的多边形,如果它们的角分别相等,边成比例,那么这两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.【几何语言】如图,在两个大小不同的四边形ABCD和四边形A1B1C1D1中,∠A=∠A1,∠B=∠B1,∠C=∠C1,∠D=∠D1,===,因此四边形ABCD与四边形A 1B1C1D1相似.(3)相似多边形的性质:相似多边形的对应角相等,对应边成比例.如图,∵四边形ABCD与四边形A1B1C1D1相似,∴∠A=∠A1,∠B=∠B1,∠C=∠C1,∠D=∠D1;===.[设计意图]通过观察——测量——辨析——归纳等数学活动,探究相似多边形的定义及性质,让学生体会由特殊到一般的数学思想方法.在探究过程中,教师通过设置层层深入的小问题,引导学生完成探究活动,降低了学生学习新知识的难度,体验了知识的形成过程,提高了学生分析问题的能力.通过几何语言表达相似多边形的定义和性质,完成文字与符号语言之间的转化,培养学生用符号语言表达数学知识的能力.三、例题讲解判断正误,正确的说明理由,错误的举出反例.(1)所有的矩形都相似.()(2)所有的菱形都相似.()(3)所有的正方形都相似.()(4)所有的等腰直角三角形都相似.()(5)所有的等边三角形都相似.()【师生活动】学生独立思考后小组讨论交流,教师巡视过程中及时帮助有困难的学生,对学生的展示进行点评,并指出易错点,强化相似多边形的判定方法.如图,四边形ABCD与EFGH相似,求角α,β的大小和EH的长度x.【思考】(1)相似多边形的性质是什么?(2)根据相似多边形的性质,你能求出∠F,∠G的大小吗?(3)四边形的内角和是多少度?(4)由四边形的内角和定理,能否求出∠H的值?(5)在相似四边形中,对应边AB与EF,AD与EH之间有什么关系?(6)在比例式中,已知三条线段的长能否求出第四条线段的长?尝试求出EH的值.【师生活动】学生在教师问题的指导下独立思考,完成解答过程,小组之间交流结果,小组代表板书过程,教师点评,归纳总结.解:∵四边形ABCD与四边形EFGH相似,∴α=∠C=83°,∠A=∠E=118°,=,即=,解得x=28.在四边形ABCD中,β=360°-83°-78°-118°=81°.【教师追问】利用相似多边形的性质,可以解决哪种类型的几何问题? (求角的大小、线段的长度;证明角相等、线段成比例等)[设计意图]通过对例题的探究,进一步巩固相似多边形的概念和性质,同时通过小组合作交流,归纳解题方法和思路,培养学生的合作意识及分析问题的能力.[知识拓展](1)式子=也可以写成a∶b=c∶d,通常这里的a叫做第一比例项,b叫做第二比例项,c叫做第三比例项,d叫做第四比例项.(2)有时在=中,b=c,例如=,这时我们把b(或c)叫做a,d的比例中项,此时b2(或c2)=ad.(3)在式子=的两边同时乘bd,得ad=cb,在与比例有关的计算中,我们常通过上述变形转化字母之间的关系.(4)通常情况下,四条线段a,b,c,d的单位应该一致,但有时为了计算方便,a,b 和c,d的单位分别一致也可以.(5)在相似多边形中,“对应边成比例”“对应角相等”这两个条件必须同时成立时,才能说明这两个多边形是相似多边形.(6)相似多边形的性质可以用来确定两个多边形中未知的边的长度或未知的角的度数.(7)相似比的值与两个多边形的前后顺序有关.(8)相似比为1∶1的两个相似多边形是全等多边形.1.相似图形的定义:形状相同的图形叫做相似图形.2.相似图形与全等形之间的关系.3.相似图形的特征:形状相同.1.成比例线段:对于四条线段a,b,c,d,如果其中两条线段的比与另外两条线段的比相等,如=(即ad=bc),我们就说这四条线段成比例.2.相似多边形的定义:两个边数相同的多边形,如果它们的角分别相等,边成比例,那么这两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.3.相似多边形的性质:相似多边形的对应角相等,对应边成比例.第1课时1.认识相似图形2.相似图形的特征3.例题讲解例1例2第2课时1.成比例线段的概念2.认识相似多边形定义性质表示3.例题讲解例1例2一、教材作业二、课后作业【基础巩固】1.下列图形,相似的一组图形是()2.下列属性,是相似图形的本质属性的是()A.大小不同B.大小相同C.形状相同D.形状不同3.下列图形,不是相似图形的有()A.0组B.1组C.2组D.3组4.下列四组图形,一定相似的是()A.正方形和矩形B.正方形和菱形C.菱形与菱形D.正五边形与正五边形5.如图是小华拍摄的足球的照片,下列说法不正确的是()A.足球上所有“黑片”形状相同B.足球上所有“白片”形状相同C.足球上“黑片”“白片”形状相同D.足球上“黑片”“白片”形状不相同6.放大镜下的图形和原来的图形相似图形.哈哈镜中的图形和原来的图形相似图形(填“是”或“不是”).7.下列各组图形:①两个平行四边形;②两个圆;③两个矩形;④有一个内角是80°的两个等腰三角形;⑤两个正六边形;⑥有一个内角是100°的两个等腰三角形.其中一定是相似图形的是.8.如图,各组图形中相似的是.(只填序号)9.在实际生活和数学学习中,我们常会看到许多形状相同的图形,下图中,形状相同的图形有哪几组?10.如何将图中的图形ABCDE放大,使新图形的各顶点仍在格点上?【能力提升】11.用一个10倍的放大镜看一个15°的角,看到的角的度数是.12.在实际生活和数学学习中,我们常会看到许多形状相同的图形,在下图中,形状相同的图形有哪些?【拓展探究】13.用相似图形设计美丽的图案.生活中有许多形状相同的图形,我们可以用相似图形设计出各种各样的美丽图案.例如:已知如图(1)是由相似的直角三角形拼成的一个商标图案,请你参照此图案用相似图形设计出几个你喜欢的图案,并联系实际为你的设计取一个合适的名字. (下面举两例供参考,如图(2))【答案与解析】1.D解析:观察各图形,只有D中两个图形形状相同,大小不相等.故选D.2.C解析:相似图形的形状相同,但大小不一定相同,所以形状相同是相似图形的本质属性.故选C.3.B解析:(1)中形状相同,但大小不同,符合相似形的定义;(2)中形状相同,但大小不同,符合相似形的定义;(3)中形状不相同,不符合相似形的定义;(4)中形状相同,符合相似形的定义.故不是相似图形的有1组.故选B.4.D解析:正方形和矩形的形状不一定相同,所以不一定相似;正方形和菱形的对应角不一定相等,所以不一定相似;菱形与菱形对应角不一定相等,所以不一定相似;正五边形与正五边形的形状相同,所以两个图形相似.故选D.5.C解析:“黑片”是正五边形,“白片”是正六边形,两个图形的形状不相同.故选C.6.是不是解析:放大镜下的图形与原来的图形形状相同,大小不相等,所以是相似图形;哈哈镜中的图形与原来的图形形状不同,大小也不相等,所以不相似.7.②⑤⑥解析:两个平行四边形的角不一定相等,所以不一定相似;两个矩形的边不确定,所以不一定相似;80°的内角可能是顶角也可能是底角,所以形状不一定相同;两个圆、两个正六边形、一个内角是100°的两个等腰三角形的形状相同,所以图形相似.故填②⑤⑥.8.②③解析:观察图形可得:②③的形状相同,大小不相等.故填②③.9.解:(1)中的左边图形是圆,右边图形是椭圆,形状不同;(2)中的左边是正六边形,右边不是正六边形,形状不同;(3)中的两个图形形状相同;(4)中的左边是长方形,右边的是正方形,形状不同;(5)中的两个图形形状相同;(6)中的左边是圆形脸,右边是椭圆形脸,形状不同,故(3),(5)组中的图形形状相同,(1),(2),(4),(6)组中的图形形状不同.10.如图.11.15°解析:用放大镜看后的图形与原图形形状相同,大小不相等,角放大后度数不变.故填15°.12.解:(1)和(3),(2)和(13),(4)和(11),(5)和(10),(6)(7)(8)和(9).13.解:答案不唯一,如图.一、教材作业二、课后作业【基础巩固】1.下列各组中的四条线段成比例的是()A.a=,b=3,c=2,d=B.a=4,b=6,c=5,d=10C.a=2,b=,c=2,d=D.a=2,b=3,c=4,d=12.下列说法正确的是()A.两个平行四边形一定相似B.两个菱形一定相似C.两个矩形一定相似D.两个等腰直角三角形一定相似3.若四边形ABCD∽四边形A'B'C'D',且AB∶A'B'=1∶2,已知BC=8,则B'C'的长为()A.4B.16C.24D.644.如图的两个四边形相似,则α的度数是()A.87°B.60°C.75°D.120°5.如图,有三个矩形,其中是相似图形的是()A.甲和乙B.甲和丙C.乙和丙D.甲、乙和丙6.如果a,b,x,y四条线段成比例,那么可写成比例式,用乘法的形式表示为.7.已知=,则=.8.在比例尺为1∶40000的工程示意图上,南京地铁一号线的长度约为54.3 cm,它的实际长度约为km.9.下列说法,正确的是 (填序号).①对应角相等的两个多边形相似;②对应边成比例的两个多边形相似;③若两个多边形不相似,则对应角不相等;④若两个多边形不相似,则对应边不成比例;⑤边长分别为3,5的正方形是相似多边形;⑥全等多边形一定是相似多边形.10.如图,把矩形ABCD对折,折痕为MN,矩形DMNC与矩形ABCD相似,已知AB=4.(1)求AD的长;(2)求矩形DMNC与矩形ABCD的相似比.【能力提升】11.如果x∶y∶z=1∶3∶5,那么=.12.如图,在梯形ABCD中,AD∥BC,AD=12 cm,BC=27 cm,E,F分别在两腰AB,CD上,且EF∥AD,梯形AEFD∽梯形EBCF,则EF的长为.13.如图,依次连接正方形ABCD各边中点E,F,G,H所形成的四边形与原正方形相似吗?若相似,求出相似比.【拓展探究】14.在一矩形花坛ABCD的四周修筑小路,使得相对两条小路的宽均相等.若AB=20米,AD=30米,则小路的宽x与y的比值为多少时,能使小路四周所围成的矩形A'B'C'D'与矩形ABCD相似?请说明理由.【答案与解析】1.C解析:C中==,==,所以=,所以a,b,c,d是成比例线段.故选C.2.D解析:两个平行四边形的角不一定相等,所以不一定相似;两个菱形的角不一定相等,所以不一定相似;两个矩形的对应边不一定成比例,所以不一定相似;两个等腰直角三角形的对应边成比例,对应角相等,两个三角形相似.故选D.3.B解析:根据相似多边形的对应边成比例,可得=,所以=,所以B'C'=16.故选B.4.A解析:根据相似多边形的对应角相等及四边形的内角和为360°,可得138°+60°+75°+α=360°,解得α=87°.故选A.5.B解析:矩形的四个角都是直角,所以三个矩形的对应角相等,甲和丙的对应边的比相等,而甲和乙的对应边的比不相等,即甲和丙的对应边成比例,甲和乙的对应边不成比例,所以甲和丙相似,甲和乙不相似.故选B.6.=ay=bx解析:根据成比例线段的定义可得=,由比例的基本性质可得ay=bx.7.解析:设a=5k,b=2k,则==.8.21.72解析:设实际距离为x cm,根据图上距离∶实际距离=比例尺,可得=,解得x=2172000,2172000 cm=21.72 km.9.⑤⑥解析:对应角相等、对应边成比例的两个多边形相似,所以①②错误;两个多边形不相似时,对应角可能相等,如矩形和正方形不相似,但对应角相等,所以③错误;两个多边形不相似时,对应边可能成比例,如菱形和正方形不相似,但对应边成比例,所以④错误;任意两个正方形的对应角相等,对应边成比例,故任意两个正方形都相似,所以⑤正确;全等多边形是相似多边形的特例,所以⑥正确.10.解:(1)设矩形ABCD的长AD=x,则DM=AD=x.∵矩形DMNC与矩形ABCD相似,∴=,即=,∴x=4或x=-4(舍去).∴AD的长为4.(2)矩形DMNC与矩形ABCD的相似比为4∶4=1∶.11.解析:设x=k,y=3k,z=5k,所以===.故填.12.18 cm解析:∵梯形AEFD∽梯形EBCF,∴=,∴=,解得EF=18.故填18cm.13.解:设正方形ABCD的边长为a.因为四边形EFGH也是正方形,所以两个正方形相似.连接EG,HF可知正方形ABCD的面积是正方形EFGH的面积的两倍,故正方形EFGH的面积是a2,所以边长为a,所以正方形ABCD与四边形EFGH的相似比为a∶a=∶1.14.解:∵矩形A'B'C'D'与矩形ABCD相似,∴=,即=,∴20(30+2x)=30(20+2y),解得=.∴小路的宽x与y的比值为时,矩形A'B'C'D'与矩形ABCD相似.本节课通过对生活中形状相同的图形的观察和欣赏导入新课,让学生体会数学来源于生活,激发学生学习的兴趣,同时感受数学和生活中的美,再让学生观察、思考、分析、探究,然后归纳结论,得出相似图形的特征,相似图形只与形状有关,与图形大小、位置无关,培养了学生观察事物的能力,提高了学生分析问题与归纳的能力,例题的探究让学生体会把实际问题转化为数学问题,获得成功的体验,在探究知识的形成过程中,学生积极参与,思维活跃,尤其在举生活中相似图形的实例时,学生发言积极,课堂气氛活跃,让课堂教学达到高潮.本节课比较简单,通过观察图形,形状相同的图形是相似图形,所以学生学习起来比较简单,所以学生在课堂上非常活跃,发言积极,虽然有些学生发言不够准确,但可以看出大家情绪高涨、积极思考的状态.但是在简单课时的教学中,忽略了学生能力的培养和知识的拓展,如在探究图形相似的特征后,可以让学生在网格。