12.0算法初步、推理与证明、复数(理_测试)
- 格式:doc
- 大小:198.00 KB
- 文档页数:9
第十四篇算法初步、推理与证明、复数第1讲算法的含义及流程图知识梳理1.算法与流程图(1)算法通常是指可以用计算机来解决的某一类问题的程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.(2)流程图是由一些图框和流程线组成的,其中图框表示各种操作的类型,图框中的文字和符号表示操作的内容,流程线表示操作的先后次序.2.三种基本逻辑结构(1)顺序结构是由若干个依次执行的处理步骤组成的,这是任何一个算法都离不开的基本结构.其结构形式为(2)选择结构是指算法的流程根据给定的条件是否成立而选择执行不同的流向的结构形式,也称为分支结构.其结构形式为(3)循环结构是指在算法中,需要重复执行同一操作的结构.反复执行的处理步骤称为循环体.循环结构又分为当型和直到型.循环结构主要用在一些有规律的重复计算的算法中,如累加求和,累乘求积等问题常常需要用循环结构来设计算法.其结构形式为3.赋值语句、输入语句、输出语句赋值语句用符号“←”表示,其一般格式是变量←表达式(或变量),其作用是对程序中的变量赋值;输入语句“Read a,b”表示输入的数据依次送给a,b,输出语句“Print x”表示输出运算结果x.4.算法的选择结构由条件语句来表达,条件语句有两种,一种是If-Then-Else语句,其格式是5.算法中的循环结构,可以运用循环语句来实现.(1)当循环的次数已经确定,可用“For”语句表示“For”语句的一般形式为说明:上面“For”和“End for”之间缩进的步骤称为循环体,如果省略“Step步长”,那么重复循环时,I每次增加1.(2)不论循环次数是否确定都可以用下面循环语句来实现当型和直到型两种语句结构.当型语句的一般格式是直到型语句的一般格式是学生用书第188页1.对算法概念的认识(1)任何算法必有条件结构.(×)(2)算法可以无限操作下去.(×)2.对程序框图的认识(3)▱是赋值框,有计算功能.(×)(4)当型循环是给定条件不成立时,执行循环体,反复进行,直到条件成立为止.(×)(5)(2012·江西卷改编)下图是某算法的流程图,则算法运行后输出的结果是3.(√)3.对算法语句的理解(6)5=x是赋值语句.(×)(7)输入语句可以同时给多个变量赋值.(√)[感悟·提升]三点提醒一是利用循环结构表示算法,一定要先确定是用当型循环结构,还是用直到型循环结构;当型循环结构的特点是先判断再循环,直到型循环结构的特点是先执行一次循环体,再判断;二是注意输入框、处理框、判断框的功能,不能混用,如(3);三是赋值语句赋值号左边只能是变量,不能是表达式,右边的表达式可以是一个常量、变量或含变量的运算式.考点一基本逻辑结构【例1】(1)(2013·山东卷改编)执行两次如图1所示的流程图,若第一次输入的a 的值为-1.2,第二次输入的a的值为1.2,则第一次、第二次输出的a的值分别为________.图1图2(2)(2013·广东卷改编)执行如图2所示的流程图,若输入n的值为3,则输出s的值是________.解析(1)执行流程图,第一次输入a=-1.2<0,a=-0.2<0,a=0.8>0且0.8<1,故输出a=0.8;第二次输入a=1.2>0且1.2>1,a=0.2<1,故输出a=0.2.(2)第1次执行循环:s=1,i=2(2≤3成立);第2次执行循环:s=2,i=3(3≤3成立);第三次执行循环:s=4,i=4(4≤3不成立),结束循环,故输出的s=4.答案(1)0.8,0.2(2)4规律方法此类问题的一般解法是严格按照流程图设计的计算步骤逐步计算,逐次判断是否满足判断框内的条件,决定循环是否结束.要注意初始值的变化,分清计数变量与累加(乘)变量,掌握循环体等关键环节.【训练1】(2013·天津卷改编)阅读下边的流程图,运行相应的程序,则输出n的值为________.解析第1次,S=-1,不满足判断框内的条件;第2次,n=2,S=1,不满足判断框内的条件;第3次,n=3,S=-2,不满足判断框内的条件;第4次,n=4,S =2,满足判断框内的条件,结束循环,所以输出的n =4.答案 4考点二 流程图的识别与应用问题【例2】 (1)(2013·新课标全国Ⅱ卷改编)执行如图1的流程图,如果输入的N =4,那么输出的S =________.图1 图2 学生用书第189页①1+12+13+14;②1+12+13×2+14×3×2;③1+12+13+14+15;④1+12+13×2+14×3×2+15×4×3×2(2)(2013·重庆卷改编)执行如图2所示的流程图,如果输出s =3,那么判断框内应填入的条件是________.①k ≤6;②k ≤7;③k ≤8;④k ≤9解析 (1)由框图知循环情况为:T =1,S =1,k =2;T =12,S =1+12,k =3;T =12×3,S =1+12+12×3,k =4;T =12×3×4,S =1+12+12×3+12×3×4,k =5>4,故输出S .(2)首次进入循环体,s =1×log 23,k =3;第二次进入循环体,s =lg 3lg 2×lg 4lg 3=2,k=4;依次循环,第六次进入循环体,s=3,k=8,此时终止循环,则判断框内填k≤7.答案(1)②(2)②规律方法识别、运行流程图和完善流程图的思路(1)要明确流程图的顺序结构、选择结构和循环结构.(2)要识别、运行流程图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.【训练2】(2013·福建卷改编)阅读如图所示的流程图,若输入的k=10,则该算法的功能是________.①计算数列{2n-1}的前10项和;②计算数列{2n-1}的前9项和;③计算数列{2n-1}的前10项和;④计算数列{2n-1}的前9项和.解析由流程图可知:输出S=1+2+22+…+29,所以该算法的功能是计算数列{2n-1}的前10项的和.答案①考点三基本算法语句【例3】(2014·南京调研)写出下列伪代码的运行结果.(1)图1的运行结果为________;(2)图2的运行结果为________.解析(1)图1的伪代码是先执行S←S+i,后执行i←i+1∴S=0+1+2+…+(i-1)=(i-1)i2>20,∴i的最小值为7.(2)图2的伪代码是先执行i←i+1,后执行S←S+i,∴S=0+1+2+…+i=i(i+1)2>20.∴i的最小值为6.答案(1)7(2)6规律方法编写伪代码的关键在于搞清问题的算法,特别是算法结构,然后确定采取哪一种算法语句.【训练3】下面是一个算法的伪代码,如果输入的x的值是20,则输出的y的值是________.解析∵x=20>5,∴执行赋值语句y=7.5x=7.5×20=150.答案1501.在设计一个算法的过程中要牢记它的五个特征:概括性、逻辑性、有穷性、不唯一性、普遍性.2.算法的思想与数学知识的融合会是新高考命题的方向,要注意此方面知识的积累.3.条件语句一般用在需要对条件进行判断的算法设计中,如判断一个数的正负,确定的两个数的大小等问题都要用到条件语句.4.循环语句有“直到型”与“当型”两种,要区别两者的异同,主要解决遇到需要反复执行的任务时,用循环语句编写伪代码.学生用书第190页教你审题12——算法语句的识别与读取【典例】 (2013·陕西卷改编)根据如图所示的伪代码,当输入x 为60时,输出y 的值为________.[审题] 一审图:本题是一个含条件语句的伪代码.二审过程:实际是一个分段函数求值问题.三审结论:要求y 值,应根据x 的取值找对应的解析式.解析 通过阅读理解知,算法语句是一个分段函数y =f (x )=⎩⎪⎨⎪⎧0.5x ,x ≤50,25+0.6(x -50),x >50,∴y =f (60)=25+0.6×(60-50)=31.答案 31[反思感悟] 计算机在执行条件语句时,首先对If后的条件进行判断,如果条件符合,就执行Then后的语句1,若条件不符合,对于If—Then—Else语句就执行Else 后的语句2,然后结束这一条件语句.对于If—Then语句,则直接结束该条件语句.【自主体验】为了在运行下面的伪代码后输出y=16,应输入的整数x的值是________.解析当x<0时,由(x+1)2=16得x=-5;当x≥0时,由1-x2=16得x2=-15,矛盾.答案-5基础巩固题组(建议用时:40分钟)一、填空题1.(2013·新课标全国Ⅰ卷改编)执行如图所示的流程图,如果输入的t∈[-1,3],则输出的s的范围为________.解析 作出分段函数s =⎩⎪⎨⎪⎧3t ,-1≤t <1,-t 2+4t ,1≤t ≤3的图象(图略),可知函数s 在[-1,2]上单调递增,在[2,3)上单调递减,s (-1)=-3,s (2)=4,s (3)=3,∴t ∈[-1,3]时,s ∈[-3,4].答案 [-3,4]2. (2013·北京卷)执行如图所示的流程图,输出的S 值为________.解析 初始条件i =0,S =1,逐次计算结果是S =23,i =1;S =1321,i =2,此时满足输出条件,故输出S =1321.答案13 213.按照下面的算法进行操作:S1x←2.35S2y←Int(x)S3Print y最后输出的结果是________.解析Int(x)表示不大于x的最大整数.答案 24.下面伪代码的结果为________.解析计算1+2+3+4+5的值.该伪代码是1+2+3+4+5=15.答案155.(2013·福建卷改编)阅读如图所示的流程图,运行相应的算法,如果输入某个正整数n后,输出的S∈(10,20),那么n的值为________.解析第一次运行,S=1,k=2;第二次运行,S=3,k=3;第三次运行,S=7,k=4;第四次运行,S=15,k=4.答案 4第5题图第6题图6.(2013·湖南卷改编)执行如图所示的流程图,如果输入a=1,b=2,则输出的a 的值为________.解析第一次循环,a=1+2=3,第二次循环,a=3+2=5,第三次循环,a=5+2=7,第四次循环,a=7+2=9>8,满足条件,输出a=9.答案97.(2013·江苏卷) 如图是一个算法的流程图,则输出的n的值是________.解析第一次循环:a=8,n=2;第二次循环:a=26,n=3.答案 38.如下给出的是用条件语句编写的一个伪代码,该伪代码的功能是________.答案求下列函数当自变量输入值为x 时的函数值f (x ),其中f (x )=⎩⎨⎧2x ,x <32,x =3x 2-1,x >39.(2014·临沂一模)某流程图如图所示,该算法运行后输出的k 的值是________.解析 第一次循环,S =20=1,k =1;第二次循环,S =1+21=3,k =2;第三次循环,S =3+23=11,k =3;第四次循环,S =11+211,k =4;第五次循环S =11+211≤100不成立,输出k =4. 答案 410.(2014·枣庄模拟) 如图是一个算法的流程图,若输出的结果是31,则判断框中整数M 的值是________.解析 本算法计算的是S =1+2+22+…+2A ,即S =1-2A +11-2=2A +1-1,由2A +1-1=31得2A +1=32,解得A =4,则A +1=5时,条件不成立,所以M =4. 答案 4能力提升题组 (建议用时:25分钟)一、填空题1.(2014·南通调研)根据如图的算法,输出的结果是________.解析 S =1+2+3+…+10=10×112=55. 答案 552.(2014·泰州调研)如图,运行伪代码所示的程序,则输出的结果是________.解析 流程图的执行如下:当I =8时,b =34,退出循环. 答案 343.(2013·辽宁卷)执行如图所示的流程图,若输入n =8,则输出S =________. 解析 S =S +1i 2-1的意义在于对1i 2-1求和.因为1i 2-1=12⎝ ⎛⎭⎪⎫1i -1-1i +1,同时注意i =i +2,所以所求的S =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫11-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫17-19=49. 答案 49第3题图第4题图4.(2013·湖北卷)阅读如图所示的流程图,运行相应的算法.若输入m的值为2,则输出的结果i=________.解析i=1,A=2,B=1→i=2,A=4,B=2→i=3,A=8,B=6→i=4,A=16,B=24,满足A<B,输出i=4.答案 45.(2014·淄博二模) 执行如图所示的流程图,若输出的结果是8,则输入的数是________.解析由a≥b得x2≥x3,解得x≤1.所以当x≤1时,输出a=x2,当x>1时,输出b=x3.所以当x≤1时,由a=x2=8,解得x=-8=-2 2.若x>1,由b=x3=8,得x=2,所以输入的数为2或-2 2.答案2或-2 26.(2014·丽水模拟) 依据小区管理条例,小区编制了如图所示的住户每月应缴纳卫生管理费的流程图,并编写了相应的算法.已知小张家共有4口人,则他家每个月应缴纳的卫生管理费(单位:元)是________.解析当n=4时,S=5+1.2×(4-3)=6.2.答案 6.2学生用书第191页知识梳理1.归纳推理(1)定义:根据一类事物中部分事物具有某种属性,推断该类事物中每一个事物都有这种属性的推理.或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).(2)归纳推理的特点①归纳推理是由部分到整体,由个别到一般的推理;②归纳推理的结论不一定为真;③归纳的个别情况越多,越具有代表性,推广的一般性命题就越可靠.2.类比推理(1)定义:由于两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似的其他特征的推理,称为类比推理.类比推理是两类事物特征之间的推理.(2)类比推理的特点①类比推理是由特殊到特殊的推理;②类比推理属于合情推理,其结论具有或然性,可能为真,也可能为假;③类比的相似性越多,相似的性质与推测的性质之间越相关,类比得出的命题就越可靠.3.演绎推理(1)定义:演绎推理是根据已知的事实和正确的结论,按照严格的逻辑法则得到新结论的推理过程.(2)演绎推理的特点①演绎推理是由一般到特殊的推理;②当前提为真时,结论必然为真.(3)演绎推理的主要形式是三段论,其一般模式为:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况作出的判断.辨析感悟1.对合情推理的认识(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.(×)(2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.(√)(3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.(×)(4)(教材习题改编)一个数列的前三项是1,2,3,那么这个数列的通项公式是a n=n(n ∈N*).(×)(5)(2014·安庆调研改编)在平面上,若两个正三角形的边长比为1∶2,则它们的面积比为1∶4,类似地,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为1∶8.(√)2.对演绎推理的认识(6)“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的倍数”,这是三段论推理,但其结论是错误的.(√)(7)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.(×)[感悟·提升]三点提醒一是合情推理包括归纳推理和类比推理,所得到的结论都不一定正确,其结论的正确性是需要证明的.二是在进行类比推理时,要尽量从本质上去类比,不要被表面现象所迷惑;否则只抓住一点表面现象甚至假象就去类比,就会犯机械类比的错误,如(3).三是应用三段论解决问题时,应首先明确什么是大前提,什么是小前提,如果大前提与推理形式是正确的,结论必定是正确的.如果大前提错误,尽管推理形式是正确的,所得结论也是错误的.如(7).学生用书第192页考点一归纳推理【例1】古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n个三角形数为n(n+1)2=12n2+12n,记第n个k边形数为N(n,k)(k≥3),以下列出了部分k边形数中第n个数的表达式:三角形数N(n,3)=12n2+12n,正方形数N(n,4)=n2,五边形数 N (n,5)=32n 2-12n , 六边形数N (n,6)=2n 2-n……可以推测N (n ,k )的表达式,由此计算N (10,24)=____________. 解析 由N (n,3)=12n 2+12n , N (n,4)=22n 2+02n , N (n,5)=32n 2+-12n , N (n,6)=42n 2+-22n ,推测N (n ,k )=⎝ ⎛⎭⎪⎫k -22n 2+⎝ ⎛⎭⎪⎫4-k 2n ,k ≥3. 从而N (n,24)=11n 2-10n ,N (10,24)=1 000. 答案 1 000规律方法 归纳推理是由部分到整体、由特殊到一般的推理,由归纳推理所得的结论不一定正确,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法. 【训练1】 (1)(2014·佛山质检)观察下列不等式: ①12<1;②12+16<2;③12+16+112< 3. 则第5个不等式为________. (2)(2013·陕西卷)观察下列等式 (1+1)=2×1(2+1)(2+2)=22×1×3(3+1)(3+2)(3+3)=23×1×3×5 ……照此规律,第n 个等式可为________.解析 (2)由已知的三个等式左边的变化规律,得第n 个等式左边为(n +1)(n +2)…(n +n ),由已知的三个等式右边的变化规律,得第n 个等式右边为2n 与n 个奇数之积,即2n ×1×3×5×…×(2n -1).答案 (1)12+16+112+120+130< 5 (2)(n +1)(n +2)…(n +n )=2n ×1×3×…×(2n -1)考点二 类比推理【例2】 在平面几何里,有“若△ABC 的三边长分别为a ,b ,c ,内切圆半径为r ,则三角形面积为S △ABC =12(a +b +c )r ”,拓展到空间,类比上述结论,“若四面体A -BCD 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球的半径为r ,则四面体的体积为________”.审题路线 三角形面积类比为四面体的体积⇒三角形的边长类比为四面体四个面的面积⇒内切圆半径类比为内切球的半径⇒二维图形中12类比为三维图形中的13⇒得出结论.答案 V 四面体A -BCD =13(S 1+S 2+S 3+S 4)r规律方法 在进行类比推理时,不仅要注意形式的类比,还要注意方法的类比,且要注意以下两点:①找两类对象的对应元素,如:三角形对应三棱锥,圆对应球,面积对应体积等等;②找对应元素的对应关系,如:两条边(直线)垂直对应线面垂直或面面垂直,边相等对应面积相等.【训练2】 二维空间中圆的一维测度(周长)l =2πr ,二维测度(面积)S =πr 2,观察发现S ′=l ;三维空间中球的二维测度(表面积)S =4πr 2,三维测度(体积)V =43πr 3,观察发现V ′=S .则四维空间中“超球”的四维测度W =2πr 4,猜想其三维测度V =________.解析 由已知,可得圆的一维测度为二维测度的导函数;球的二维测度是三维测度的导函数.类比上述结论,“超球”的三维测度是四维测度的导函数,即V =W ′=(2πr 4)′=8πr 3.答案 8πr 3考点三 演绎推理【例3】 数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2n S n (n ∈N *).证明:(1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列; (2)S n +1=4a n .证明 (1)∵a n +1=S n +1-S n ,a n +1=n +2n S n ,∴(n +2)S n =n (S n +1-S n ),即nS n +1=2(n +1)S n .∴S n +1n +1=2·S n n ,又S 11=1≠0,(小前提) 故⎩⎨⎧⎭⎬⎫S n n 是以1为首项,2为公比的等比数列.(结论) (大前提是等比数列的定义,这里省略了)(2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2), ∴S n +1=4(n +1)·S n -1n -1=4·n +1n -1·S n -1=4a n (n ≥2),(小前提)又a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提)∴对于任意正整数n ,都有S n +1=4a n .(结论)(第(2)问的大前提是第(1)问的结论以及题中的已知条件) 学生用书第193页规律方法 演绎推理是从一般到特殊的推理;其一般形式是三段论,应用三段论解决问题时,应当首先明确什么是大前提和小前提,如果前提是显然的,则可以省略.【训练3】 “因为对数函数y =log a x 是增函数(大前提),而y =log 14x 是对数函数(小前提),所以y=log1x是增函数(结论)”,以上推理的错误是________.4①大前提错误导致结论错误;②小前提错误导致结论错误;③推理形式错误导致结论错误;④大前提和小前提错误导致结论错误.解析当a>1时,函数y=log a x是增函数;当0<a<1时,函数y=log a x是减函数.故大前提错误导致结论错误.答案①1.合情推理主要包括归纳推理和类比推理.数学研究中,在得到一个新结论前,合情推理能帮助猜测和发现结论,在证明一个数学结论之前,合情推理常常能为证明提供思路与方向.2.演绎推理是从一般的原理出发,推出某个特殊情况下的结论的推理方法,是由一般到特殊的推理,常用的一般模式是三段论.数学问题的证明主要通过演绎推理来进行.3.合情推理仅是“合乎情理”的推理,它得到的结论不一定正确.而演绎推理得到的结论一定正确(前提和推理形式都正确的前提下).创新突破12——新定义下的归纳推理【典例】(2013·湖南卷)对于E={a1,a2,…,a100}的子集X={ai1,ai2,…,ai k},(1)子集{a1,a3,a5}的“特征数列”的前3项和等于______;(2)若E的子集P的“特征数列”p1,p2,…,p100满足p1=1,p i+p i+1=1,1≤i≤99;E的子集Q的“特征数列”q1,q2,…,q100满足q1=1,q j+q j+1+q j+2=1,1≤j≤98,则P∩Q的元素个数为________.突破1:读懂信息❶,对于集合X={ai1,ai2,…,ai k}来说,定义X的“特征数列”为x1,x2,…,x100是一个新的数列,该数列的xi1=xi2=…=xi k=1,其余项均为0.突破2:通过例子❷:“子集{a 2,a 3}的特征数列为0,1,1,0,0,…,0”来理解“特征数列”的特征;第2项,第3项为1,其余项为0.突破3:根据p 1=1,p i +p i +1=1可写出子集P 的“特征数列”为:1,0,1,0,1,0,…,1,0,归纳出子集P ;同理,子集Q 的特征数列为1,0,0,1,0,0,…,1,0,0,归纳出子集Q .突破4:由P 与Q 的前几项的规律,找出子集P 与子集Q 的公共元素即可. 解析 (1)根据题意可知子集{a 1,a 3,a 5}的“特征数列”为1,0,1,0,1,0,0,…,0,此数列前3项和为2.(2)根据题意可写出子集P 的“特征数列”为1,0,1,0,1,0,…,1,0,则P ={a 1,a 3,…,a 2n -1,…,a 99}(1≤n ≤50),子集Q 的“特征数列”为1,0,0,1,0,0,…,1,0,0,1,则Q ={a 1,a 4,…,a 3k -2,…,a 100}(1≤k ≤34),则P ∩Q ={a 1,a 7,a 13,…,a 97},共有17项.答案 (1)2 (2)17[反思感悟] 此类问题一定要抓住题设中的例子与定义的紧密结合, 细心观察,寻求相邻项及项与序号之间的关系,需有一定的逻辑推理能力.【自主体验】若定义在区间D 上的函数f (x )对于D 上的n 个值x 1,x 2,…,x n 总满足1n [f (x 1)+f (x 2)+…+f (x n )]≤f ⎝ ⎛⎭⎪⎫x 1+x 2+…+x n n ,称函数f (x )为D 上的凸函数.现已知f (x )=sin x 在(0,π)上是凸函数,则在△ABC 中,sin A +sin B +sin C 的最大值是________.解析 已知1n [f (x 1)+f (x 2)+…+f (x n )]≤f ⎝ ⎛⎭⎪⎫x 1+x 2+…+x n n ,(大前提)因为f (x )=sin x 在(0,π)上是凸函数,(小前提)所以f (A )+f (B )+f (C )≤3f ⎝ ⎛⎭⎪⎫A +B +C 3,(结论) 即sin A +sin B +sin C ≤3sin π3=332.因此sin A +sin B +sin C 的最大值是332.答案 332基础巩固题组(建议用时:40分钟)一、填空题1.正弦函数是奇函数,f (x )=sin(x 2+1)是正弦函数,因此f (x )=sin(x 2+1)是奇函数,以上推理________.①结论正确;②大前提不正确;③小前提不正确;④全不正确.解析 f (x )=sin(x 2+1)不是正弦函数而是复合函数,所以小前提不正确. 答案 ③2.(2014·西安五校联考)观察下式:1=12;2+3+4=32;3+4+5+6+7=52;4+5+6+7+8+9+10=72,…,则得出第n 个式子的结论:________.解析 各等式的左边是第n 个自然数到第3n -2个连续自然数的和,右边是中间奇数的平方,故得出结论:n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2. 答案 n +(n +1)+(n +2)+…+(3n -2)=(2n -1)23.若等差数列{a n }的首项为a 1,公差为d ,前n 项的和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 为等差数列,且通项为S n n =a 1+(n -1)·d 2,类似地,请完成下列命题:若各项均为正数的等比数列{b n }的首项为b 1,公比为q ,前n 项的积为T n ,则________.答案 数列{n T n }为等比数列,且通项为n T n =b 1(q )n -14.观察(x 2)′=2x ,(x 4)′=4x 3,(cos x )′=-sin x ,由归纳推理得:若定义在R 上的函数f (x )满足f (-x )=f (x ),记g (x )为f (x )的导函数,则g (-x )=________. 解析 由已知得偶函数的导函数为奇函数,故g (-x )=-g (x ).答案 -g (x )5.(2012·江西卷改编)观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10等于________.解析 从给出的式子特点观察可推知,等式右端的值,从第三项开始,后一个式子的右端值等于它前面两个式子右端值的和,照此规律,则a 10+b 10=123. 答案 1236.(2014·长春调研)类比“两角和与差的正弦公式”的形式,对于给定的两个函数:S (x )=a x -a -x ,C (x )=a x +a -x ,其中a >0,且a ≠1,下面正确的运算公式是________. ①S (x +y )=S (x )C (y )+C (x )S (y );②S (x -y )=S (x )C (y )-C (x )S (y );③2S (x +y )=S (x )C (y )+C (x )S (y );④2S (x -y )=S (x )C (y )-C (x )S (y ).解析 经验证易知①②错误.依题意,注意到2S (x +y )=2(a x +y -a -x -y ),S (x )C (y )+C (x )S (y )=2(a x +y -a -x -y ),因此有2S (x +y )=S (x )C (y )+C (x )S (y );同理有2S (x -y )=S (x )C (y )-C (x )S (y ).答案 ③④7.由代数式的乘法法则类比推导向量的数量积的运算法则:①“mn =nm ”类比得到“a ·b =b ·a ”;②“(m +n )t =mt +nt ”类比得到“(a +b )·c =a ·c +b ·c ”;③“(m ·n )t =m (n ·t )”类比得到“(a ·b )·c =a ·(b ·c )”;④“t ≠0,mt =xt ⇒m =x ”类比得到“p ≠0,a ·p =x ·p ⇒a =x ”;⑤“|m ·n |=|m |·|n |”类比得到“|a ·b |=|a |·|b |”;⑥“ac bc =a b ”类比得到“a ·c b ·c =a b ”.以上式子中,类比得到的结论正确的是________.解析 ①②正确;③④⑤⑥错误.答案 ①②8.(2014·南京一模)给出下列等式:2=2cos π4,2+2=2cos π8,2+2+2=2cos π16,请从中归纳出第n 个等式:2+…+2+2=________. 答案 2cosπ2n +1 二、解答题9.给出下面的数表序列:表1 表2 表31 1 3 1 3 54 4 812 …其中表n (n =1,2,3,…)有n 行,第1行的n 个数是1,3,5,…,2n -1,从第2行起,每行中的每个数都等于它肩上的两数之和.写出表4,验证表4各行中的数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n (n ≥3)(不要求证明).解 表4为 1 3 5 74 8 1212 2032它的第1,2,3,4行中的数的平均数分别是4,8,16,32,它们构成首项为4,公比为2的等比数列.将这一结论推广到表n (n ≥3),即表n (n ≥3)各行中的数的平均数按从上到下的顺序构成首项为n ,公比为2的等比数列.10.f (x )=13x +3,先分别求f (0)+f (1),f (-1)+f (2),f (-2)+f (3),然后归纳猜想一般性结论,并给出证明.解f(0)+f(1)=130+3+131+3=11+3+13(1+3)=33(1+3)+13(1+3)=33,同理可得:f(-1)+f(2)=33,f(-2)+f(3)=33.由此猜想f(x)+f(1-x)=3 3.证明:f(x)+f(1-x)=13x+3+131-x+3=13x+3+3x3+3·3x=13x+3+3x3(3+3x)=3+3x3(3+3x)=33.能力提升题组(建议用时:25分钟)一、填空题1.(2012·江西卷改编)观察下列事实:|x|+|y|=1的不同整数解(x,y)的个数为4,|x|+|y|=2的不同整数解(x,y)的个数为8,|x|+|y|=3的不同整数解(x,y)的个数为12,…,则|x|+|y|=20的不同整数解(x,y)的个数为________.解析由|x|+|y|=1的不同整数解的个数为4,|x|+|y|=2的不同整数解的个数为8,|x|+|y|=3的不同整数解的个数为12,归纳推理得|x|+|y|=n的不同整数解的个数为4n,故|x|+|y|=20的不同整数解的个数为80.答案802.观察下列各式9-1=8,16-4=12,25-9=16,36-16=20,…,这些等式反映了自然数间的某种规律,设n表示自然数,用关于n的等式表示为________.解析9-1=(1+2)2-12=4(1+1),16-4=(2+2)2-22=4(2+1),25-9=(3+2)2-32=4(4+1),36-16=(4+2)2-42=4×(5+1),…,一般地,有(n+2)2-n2=4(n+1)(n∈N*).答案(n+2)2-n2=4(n+1)(n∈N*)3.(2013·湖北卷)在平面直角坐标系中,若点P(x,y)的坐标x,y均为整数,则称点P为格点.若一个多边形的顶点全是格点,则称该多边形为格点多边形.格点多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L.例如图中△ABC是格点三角形,对应的S=1,N=0,L=4.(1)图中格点四边形DEFG对应的S,N,L分别是________;(2)已知格点多边形的面积可表示为S=aN+bL+c,其中a,b,c为常数.若某格点多边形对应的N=71,L=18,则S=________(用数值作答).解析(1)四边形DEFG是一个直角梯形,观察图形可知:S=(2+22)×2×1 2=3,N=1,L=6.(2)由(1)知,S四边形DEFG=a+6b+c=3.S△ABC=4b+c=1.在平面直角坐标系中,取一“田”字型四边形,构成边长为2的正方形,该正方形中S=4,N=1,L=8.则S=a+8b+c=4.联立解得a=1,b=12.c=-1.∴S=N+12L-1,∴若某格点多边形对应的N=71,L=18,则S=71+12×18-1=79.答案(1)3,1,6(2)79二、解答题4.(2012·福建卷)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin213°+cos217°-sin 13°cos 17°;②sin215°+cos215°-sin 15°cos 15°;③sin218°+cos212°-sin 18°cos 12°;④sin2(-18°)+cos248°-sin(-18°)cos 48°;⑤sin2(-25°)+cos255°-sin(-25°)cos 55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.解(1)选择②式,计算如下:sin215°+cos215°-sin 15°cos 15°=1-12sin 30°=1-1 4=3 4.(2)三角恒等式为sin2α+cos2(30°-α)-sin αcos(30°-α)=3 4.证明如下:sin2α+cos2(30°-α)-sin αcos(30°-α)=sin2α+(cos 30°cos α+sin 30°sin α)2-sinα·(cos 30°cos α+sin 30°sin α)=sin2α+34cos2α+32sin αcos α+14sin2α-32sin αcos α-12sin2α=34sin2α+34cos2α=34.学生用书第194页知识梳理1.直接证明(1)综合法定义:从命题的条件出发,利用定义、公理、定理及运算法则,通过演绎推理,一步一步地接近要证明的结论,直到完成命题的证明.这样的思维方法称为综合法.(2)(其中P表示已知条件、已有的定义、公理、定理等,Q表示要证的结论).(3)分析法定义:从求证的结论出发,一步一步地探索保证前一个结论成立的充分条件,直到归结为这个命题的条件,或者归结为定义、公理、定理等.这样的思维方法称为分析法.(4)2.间接证明(1)反证法定义:在证明数学命题时,要证明的结论要么正确,要么错误,二者必居其一.我们可以先假定命题结论的反面成立,在这个前提下,若推出的结果与定义、公理、定理相矛盾,或与命题中的已知条件相矛盾,或与假定相矛盾,从而说明命题结论的反面不可能成立,由此断定命题的结论成立.这种证明方法叫作反证法.(2)反证法的证题步骤是:①作出否定结论的假设;②进行推理,导出矛盾;③否定假设,肯定结论.辨析感悟对三种证明方法的认识(1)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.(×)(2)反证法是指将结论和条件同时否定,推出矛盾.(×)(3)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.(√)(4)证明不等式2+7<3+6最合适的方法是分析法.(√)[感悟·提升]两点提醒一是分析法是“执果索因”,特点是从“未知”看“需知”,逐步靠拢“已知”,其逐步推理,实际上是寻找使结论成立的充分条件,如(1);二是应用反证法证题时必须先否定结论,把结论的反面作为条件,且必须根据这。
2013年高考第一轮复习数学北师(江西版)理第十一章算法初步、推理与证明、复数单元检测(时间:120分钟 满分:150分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2011安徽高考,文1)设i 是虚数单位,复数1+a i2-i为纯虚数,则实数a 为( ).A .2B .-2C .-12D .122.如图是一个算法的程序框图,该算法输出的结果是( ).A .12B .23C .34D .453.观察下图中图形的规律,在其右下角的空格内画上合适的图形为( ).4.下面程序运行的结果是( ).A .5 050B .5 049C .3D .2 5.下列推理是归纳推理的是( ).A .A ,B 为定点,动点P 满足|PA |+|PB |=2a >|AB |,得动点P 的轨迹为椭圆 B .由a 1=1,a n =3n -1,求出S 1,S 2,S 3,猜想出数列的前n 项和S n 的表达式C .由圆x 2+y 2=r 2的面积为πr 2,猜出椭圆x 2a 2+y 2b2=1(a >b >0)的面积S =πabD .科学家利用鱼的沉浮原理制造潜艇6.定义运算⎪⎪⎪⎪⎪⎪ab cd =ad -bc ,则符合条件⎪⎪⎪⎪⎪⎪z 1+2i 1-i 1+i =0的复数z 的共轭复数所对应的点在( ).A .第一象限B .第二象限C .第三象限D .第四象限7.如图,程序框图的输出结果为170,那么在判断框中①表示的“条件”应该是( ).A .i >5B .i ≥7C .i ≥9D .i >98.在数列{a n }中,a 1=0,a n +1=2a n +2,则猜想a n =( ).A .2n -2-12B .2n-2C .2n -1+1D .2n +1-49.若三角形内切圆半径为r ,三边长分别为a ,b ,c ,则三角形的面积为S =12r (a +b +c ).根据类比思想,若四面体内切球半径为R ,四个面的面积分别为S 1,S 2,S 3,S 4,则这个四面体的体积为( ).A .V =16R (S 1+S 2+S 3+S 4)B .V =14R (S 1+S 2+S 3+S 4)C .V =13R (S 1+S 2+S 3+S 4)D .V =12R (S 1+S 2+S 3+S 4)10.(2011山东高考,理12)设A 1,A 2,A 3,A 4是平面直角坐标系中两两不同的四点,若13A A=λ12A A (λ∈R ),14A A =μ12A A (μ∈R ),且1λ+1μ=2,则称A 3,A 4调和分割A 1,A 2.已知平面上的点C ,D 调和分割点A ,B ,则下面说法正确的是( ).A .C 可能是线段AB 的中点 B .D 可能是线段AB 的中点C .C ,D 可能同时在线段AB 上D .C ,D 不可能同时在线段AB 的延长线上二、填空题(本大题共5小题,每小题5分,共25分)11.i 是虚数单位,⎝ ⎛⎭⎪⎫1+i 1-i 4=__________.12.定义某种运算⊗,S =a ⊗b 的运算原理如图所示.则0⊗(-1)=__________;设f (x )=(0⊗x )x -(2⊗x ),则f (1)=__________.13.将正整数12分解成两个正整数的乘积有1×12,2×6,3×4三种,其中3×4是这三种分解中,两数差的绝对值最小的,我们称3×4为12的最佳分解.当p ×q (p ≤q 且p ,q ∈N *)是正整数n 的最佳分解时,我们规定函数f (n )=p q ,例如f (12)=34.关于函数f (n )有下列叙述:①f (7)=17;②f (24)=38;③f (28)=47;④f (144)=916.其中正确的序号为__________(填入所有正确的序号). 14.对于命题:若O 是线段AB 上一点,则有|OB |OA +|OA |OB=0.将它类比到平面的情形是:若O 是△ABC 内一点,则有S △OBC OA +S △OCA OB +S △OBA OC=0.将它类比到空间的情形应该是:若O 是四面体ABCD 内一点,则有__________.15.在计算“11×2+12×3+…+1n (n +1)(n ∈N *)”时,某同学学到了如下一种方法:先改写第k 项:1k (k +1)=1k -1k +1,由此得11×2=11-12,12×3=12-13,…,1n (n +1)=1n -1n +1,将上述各式相加,得11×2+12×3+…+1n (n +1)=1-1n +1.类比上述方法,请计算“11×2×3+12×3×4+…+1n (n +1)(n +2)(n ∈N *)”,其结果为__________.三、解答题(本大题共6小题,共75分)16.(12分)已知集合A ={1,2,(a 2-3a -1)+(a 2-5a -6)i}(其中i 是虚数单位),集合B ={-1,3},A ∩B ={3}.求实数a 的值.17.(12分)已知函数f (x )=⎩⎪⎨⎪⎧3x -1,x <0,2-5x ,x ≥0,写出求该函数的函数值的算法,并画出程序框图.18.(12分)已知α,β≠k π+π2(k ∈Z ),且sin θ+cos θ=2sin α,①sin θcos θ=sin 2β,②求证:1-tan 2α1+tan 2α=1-tan 2β2(1+tan 2β).19.(12分)已知函数f (x )=kx +b 的图象与x ,y 轴分别相交于点A ,B ,AB=2i +2j (i ,j 分别是与x ,y 轴正半轴同方向的单位向量),函数g (x )=x 2-x -6. (1)求k ,b 的值;(2)当x 满足f (x )>g (x )时,求函数g (x )+1f (x )的最小值.20.(13分)已知a ,b ,c 是互不相等的实数,且都不为零.求证:由y =ax 2+2bx +c ,y =bx 2+2cx +a 和y =cx 2+2ax +b 确定的三条抛物线至少有一条与x 轴有两个不同的交点.21.(14分)如图,梯形ABCD 和正△PAB 所在平面互相垂直,其中AB ∥DC ,AD =CD =12AB ,且O 为AB 中点.(1)求证:BC ∥平面POD ; (2)求证:AC ⊥PD .参考答案一、选择题1.A 解析:1+a i 2-i =(1+a i)(2+i)(2-i)(2+i)=(2-a )+(2a +1)i 5=2-a 5+2a +15i 为纯虚数,∴2-a 5=0,∴a =2.2.C 解析:n =11×2+12×3+13×4=1-12+12-13+13-14=34.3.A 解析:表格中的图形都是矩形、圆、正三角形的不同排列,规律是每一行中只有一个图形是空心的,其他两个都是填充颜色的,第三行中已经有正三角形是空心的了,因此另外一个应该是阴影矩形.4.A 解析:读程序知,该程序的功能是求S =1+2+3+…+100的值,由等差数列的求和公式S =100×(1+100)2=5 050.5.B 解析:从S 1,S 2,S 3猜想出数列的前n 项和S n 的表达式,是从特殊到一般的推理,所以B 是归纳推理.6.A 解析:由已知得z (1+i)-(1+2i)·(1-i)=0,∴z =(1+2i)(1-i)1+i=(1+2i)(-i)=2-i.∴z =2+i ,即z 对应的点(2,1)在第一象限.7.C 解析:依次运行程序可得当S =2时,i =3;S =10时,i =5,…;S =170时,i =9,故判断框内可填入i ≥9.8.B 解析:∵a 1=0=21-2,∴a 2=2a 1+2=2=22-2, a 3=2a 2+2=4+2=6=23-2, a 4=2a 3+2=12+2=14=24-2, ……猜想a n =2n-2.9.C 解析:平面几何中结论的推导是面积分割,类比到空间几何中,应用体积分割的方法即可得到答案.10.D 解析:∵C ,D 调和分割点A ,B , ∴AC =λAB ,AD =μAB ,且1λ+1μ=2(*),不妨设A (0,0),B (1,0), 则C (λ,0),D (μ,0),对A ,若C 为AB 的中点,则AC =12AB ,即λ=12,将其代入(*)式,得1μ=0,这是无意义的,故A 错误;对B ,若D 为AB 的中点,则μ=12,同理得1λ=0,故B 错误;对C ,要使C ,D 同时在线段AB 上,则0<λ<1且0<μ<1,∴1λ>1,1μ>1,∴1λ+1μ>2,这与1λ+1μ=2矛盾;故C 错误;显然D 正确. 二、填空题11.1 解析:41i 1i +⎛⎫ ⎪-⎝⎭=42(1i)(1i)(1i)⎡⎤+⎢⎥+-⎣⎦=i 4=1.12.1 -1 解析:根据框图可知0(-1)=|-1|=1;f (x )=(0x )x -(2x )⇒f (1)=(01)-(21)=0-1=-1.13.①③ 解析:因为7=1×7,所以f (7)=17,①正确;24=3×8=4×6=2×12,最佳分解应该是4×6,所以f (24)=46=23,所以②错误;同理③正确;对于④,144=12×12,所以f (144)=1212=1.14.V O -BCD OA +V O -ACD OB +V O -ABD OC +V O -ABC OD=0 解析:由线段到平面,线段的长类比为面积,由平面到空间,面积可以类比为体积,由此可以类比得一命题为O 是四面体ABCD内一点,则有V O -BCD OA +V O -ACD OB +V O -ABD OC +V O -ABC OD=0.15.n 2+3n4(n +1)(n +2)解析:∵1n (n +1)(n +2)=12⎣⎢⎡⎦⎥⎤1n (n +1)-1(n +1)(n +2), ∴11×2×3+12×3×4+…+1n (n +1)(n +2) =12⎣⎢⎡11×2-12×3+12×3-13×4+…+⎦⎥⎤1n (n +1)-1(n +1)(n +2) =12⎣⎢⎡⎦⎥⎤11×2-1(n +1)(n +2) =n 2+3n 4(n +1)(n +2). 三、解答题16.解:∵A ∩B ={3},∴3∈A .∴(a 2-3a -1)+(a 2-5a -6)i =3.根据复数相等,得⎩⎪⎨⎪⎧a 2-3a -1=3,a 2-5a -6=0,解得a =-1.17.解:算法如下: 第一步,输入x .第二步,如果x <0,那么f (x )=3x -1; 否则f (x )=2-5x .第三步,输出函数值f (x ). 程序框图如下:18.证明:因为(sin θ+cos θ)2-2sin θ·cos θ=1,所以将①②代入,可得4sin 2α-2sin 2β=1.③另一方面,要证1-tan 2α1+tan 2α=1-tan 2β2(1+tan 2β), 即证1-sin 2αcos 2α1+sin 2αcos 2α=1-sin 2βcos 2β2⎝ ⎛⎭⎪⎫1+sin 2βcos 2β, 即证cos 2α-sin 2α=12(cos 2β-sin 2β),即证1-2sin 2α=12(1-2sin 2β),即证4sin 2α-2sin 2β=1.由于上式与③相同,于是问题得证.19.解:(1)由已知得k ≠0,A ⎝ ⎛⎭⎪⎫-bk,0,B (0,b ),则AB =(bk,b ),于是⎩⎪⎨⎪⎧b k=2,b =2,∴⎩⎪⎨⎪⎧k =1,b =2.(2)由f (x )>g (x ),得x +2>x 2-x -6,即(x +2)(x -4)<0,得-2<x <4. g (x )+1f (x )=x 2-x -5x +2=x +2+1x +2-5, 由于x +2>0,则g (x )+1f (x )≥-3,其中等号当且仅当x +2=1,即x =-1时成立. ∴g (x )+1f (x )的最小值是-3.20.证明:假设题设中的函数确定的三条抛物线都不与x 轴有两个不同的交点(即任何一条抛物线与x 轴没有两个不同的交点),由y =ax 2+2bx +c ,y =bx 2+2cx +a ,y =cx 2+2ax +b ,得Δ1=(2b )2-4ac ≤0,Δ2=(2c )2-4ab ≤0,Δ3=(2a )2-4bc ≤0.上述三个同向不等式相加得,4b 2+4c 2+4a 2-4ac -4ab -4bc ≤0,∴2a 2+2b 2+2c 2-2ab -2bc -2ac ≤0.∴(a -b )2+(b -c )2+(c -a )2≤0.∴a =b =c ,这与题设a ,b ,c 互不相等矛盾,因此假设不成立,从而命题得证. 21.证明:(1)因为O 为AB 中点,所以BO =12AB .又AB ∥CD ,CD =12AB ,所以有CD =BO ,CD ∥BO , 所以ODCB 为平行四边形, 所以BC ∥OD .又DO ⊂平面POD ,BC 平面POD , 所以BC ∥平面POD . (2)连接OC .因为CD =BO =AO ,CD ∥AO , 所以ADCO 为平行四边形,又AD =CD ,所以ADCO 为菱形,所以AC ⊥DO ,因为在正△PAB 中,O 为AB 中点, 所以PO ⊥AB .又因为平面ABCD ⊥平面PAB ,平面ABCD ∩平面PAB =AB ,所以PO ⊥平面ABCD , 而AC ⊂平面ABCD ,所以PO ⊥AC . 又PO ∩DO =O , 所以AC ⊥平面POD .又PD ⊂平面POD ,所以AC ⊥PD .。
1.对于复数的考查,一般比较简单,通常在选择题的前两道题,或者填空题当中出现,考查的内容一般为复数的概念、复数的运算、复数的几何意义;
2.程序框图考查频率有降低,不再作为必考题出现,考查的形式多为选择题或填空题,考查的内容一般为循环结构的程序框图的输出功能以及判断框内循环体结束条件的填空;
3.推理与证明单独的考查的频率比较低,一般作为工具应用到解题当中.
一、复数 1.形如的数叫做复数,复数通常用字母表示. 全体复数构成的集合叫做复数集,一般用大写字母表示.其中,分别叫做复数的实
部与虚部.
2.复数相等
如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等.
如果
,那么且. 特别地,,. 两个实数可以比较大小,但对于两个复数,如果不全是实数,就只能说相等或不相等,不能比较大小.
3.复数的分类
复数,时为实数;时为虚数,,时为纯虚数, 即复数(
,)()()()000b b a =⎧⎪⎨≠=⎪
⎩实数虚数当时为纯虚数. 4.复平面 直角坐标系中,表示复数的平面叫做复平面,轴叫做实轴,轴叫做虚轴.实轴上的点表示实数,
命题趋势 考点清单
复数、算法、推理证明
除了原点外,虚轴上的点都表示纯虚数.
复数集和复平面内所有的点所成的集合是一一对应的,即复数对应复平面内的点.
5.共轭复数
(1)当两个复数实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数.
复数的共轭复数用。
“算法初步、复数、推理与证明”双基过关检测一、选择题1.若z =i(3-2i)(其中i 为复数单位),则z =( )A .3-2iB .3+2iC .2+3iD .2-3i解析:选D 由z =i(3-2i)=2+3i ,得z =2-3i.2.已知i 为虚数单位,a 为实数,复数z =a -3i 1-i在复平面上对应的点在y 轴上,则a 为( )A .-3B .-13 C.13D .3 解析:选A ∵z =a -3i 1-i =(a -3i )(1+i )(1-i )(1+i )=a +3-(3-a )i 2, 又复数z =a -3i 1-i在复平面上对应的点在y 轴上, ∴⎩⎪⎨⎪⎧a +3=0,3-a ≠0,解得a =-3. 3.分析法又称执果索因法,若用分析法证明“设a >b >c ,且a +b +c =0,求证:b 2-ac <3a ”索的因应是( )A .a -b >0B .a -c >0C .(a -b )(a -c )>0D .(a -b )(a -c )<0 解析:选C b 2-ac <3a ⇔b 2-ac <3a 2⇔(a +c )2-ac <3a 2⇔a 2+2ac +c 2-ac -3a 2<0⇔-2a 2+ac +c 2<0⇔2a 2-ac -c 2>0⇔(a -c )(2a +c )>0⇔(a -c )(a -b )>0.4.利用数学归纳法证明“(n +1)(n +2)·…·(n +n )=2n ×1×3×…×(2n -1),n ∈N *”时,从“n =k ”变到“n =k +1”时,左边应增乘的因式是( )A .2k +1B .2(2k +1)C.2k +1k +1D.2k +3k +1解析:选B 当n =k (k ∈N *)时,左式为(k +1)(k +2) ·…·(k +k );当n =k +1时,左式为(k +1+1)(k +1+2)·…·(k +1+k -1)(k +1+k )(k +1+k +1),则左边应增乘的式子是(2k +1)(2k +2)k +1=2(2k +1). 5.(2017·北京高考)执行如图所示的程序框图,输出的s 值为()A .2B.32C.53D.85解析:选C 运行该程序,k =0,s =1,k <3;k =0+1=1,s =1+11=2,k <3; k =1+1=2,s =2+12=32,k <3; k =1+2=3,s =32+132=53,此时不满足循环条件,输出s , 故输出的s 值为53. 6.若数列{a n }是等差数列,b n =a 1+a 2+…+a n n,则数列{b n }也为等差数列.类比这一性质可知,若正项数列{c n }是等比数列,且{d n }也是等比数列,则d n 的表达式应为( )A .d n =c 1+c 2+…+c n nB .d n =c 1·c 2·…·c n nC .d n = nc n 1+c n 2+…+c n n n D .d n =n c 1·c 2·…·c n解析:选D 因为数列{a n }是等差数列,所以b n =a 1+a 2+…+a n n =a 1+(n -1)·d 2(d 为等差数列{a n }的公差),{b n }也为等差数列,因为正项数列{c n }是等比数列,设公比为q ,则d n=n c 1·c 2·…·c n =n c 1·c 1q ·…·c 1q n -1=c 1q 12n-,所以{d n }也是等比数列.7.执行如图所示的程序框图,若输出的结果是99199,则判断框内应填的内容是( )A .n <98?B .n <99?C .n <100?D .n <101?解析:选B 由14n 2-1=1(2n -1)(2n +1)=1212n -1-12n +1, 可知程序框图的功能是计算并输出S =12⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫12n -1-12n +1=12⎝⎛⎭⎫1-12n +1=n 2n +1的值.由题意令n 2n +1=99199,解得n =99, 即当n <99时,执行循环体,若不满足此条件,则退出循环,输出S 的值.8.已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个“整数对”是( )A .(7,5)B .(5,7)C .(2,10)D .(10,1)解:选B 依题意,把“整数对”的和相同的分为一组,不难得知第n 组中每个“整数对”的和均为n +1,且第n 组共有n 个“整数对”,这样的前n 组一共有n (n +1)2个“整数对”, 注意到10×(10+1)2<60<11×(11+1)2, 因此第60个“整数对”处于第11组(每个“整数对”的和为12的组)的第5个位置, 结合题意可知每个“整数对”的和为12的组中的各对数依次为:(1,11),(2,10),(3,9),(4,8),(5,7),…,因此第60个“整数对”是(5,7).二、填空题9.M =1210+1210+1+1210+2+…+1211-1与1的大小关系为__________.解析:因为M =1210+1210+1+1210+2+…+1211-1 =1210+1210+1+1210+2+…+1210+(210-1)所以M <1.答案:M <110.若复数z =a +i i(其中i 为虚数单位)的实部与虚部相等,则实数a =________. 解析:因为复数z =a +i i =a i +i 2i 2=1-a i , 所以-a =1,即a =-1.答案:-111.下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为14,18,则输出的a =________.解析:a =14,b =18.第一次循环:14≠18且14<18,b =18-14=4;第二次循环:14≠4且14>4,a =14-4=10;第三次循环:10≠4且10>4,a =10-4=6;第四次循环:6≠4且6>4,a =6-4=2;第五次循环:2≠4且2<4,b =4-2=2;第六次循环:a =b =2,跳出循环,输出a =2.答案:212.设n 为正整数,f (n )=1+12+13+…+1n ,计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3,观察上述结果,可推测一般的结论为________.解析:∵f (21)=32,f (22)>2=42,f (23)>52,f (24)>62,∴归纳得f (2n )≥n +22(n ∈N *). 答案:f (2n )≥n +22(n ∈N *) 三、解答题13.若a >b >c >d >0且a +d =b +c , 求证:d +a <b +c .证明:要证d +a <b +c ,只需证(d +a )2<(b +c )2,即证a +d +2ad <b +c +2bc ,因为a +d =b +c ,所以只需证ad <bc ,即证ad <bc , 设a +d =b +c =t ,则ad -bc =(t -d )d -(t -c )c =(c -d )(c +d -t )<0, 故ad <bc 成立,从而d +a <b +c 成立.14.等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2.(1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S n n (n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.解:(1)由已知得⎩⎨⎧a 1=1+2,3a 1+3d =9+32,所以d =2,故a n =2n -1+2,S n =n (n +2).(2)证明:由(1),得b n =S n n =n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r 互不相等)成等比数列,则b 2q =b p b r ,即(q +2)2=(p +2)(r +2), 所以(q 2-pr )+2(2q -p -r )=0.因为p ,q ,r ∈N *,所以⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0, 所以⎝⎛⎭⎫p +r 22=pr ,(p -r )2=0. 所以p =r ,这与p ≠r 矛盾,所以数列{b n }中任意不同的三项都不可能成为等比数列.。
第二讲算法、复数、推理与证明考点一复数的概念与运算1.复数的乘法复数的乘法类似于多项式的四则运算,可将含有虚数单位i的看作一类项,不含i的看作另一类项,分别合并同类项即可.2.复数的除法除法的关键是分子分母同乘以分母的共轭复数,解题时要注意把i的幂写成最简形式.复数的除法类似初中所学化简分数常用的“分母有理化”,其实质就是“分母实数化”.3.复数运算中常见的结论(1)(1±i)2=±2i,1+i1-i=i,1-i1+i=-i;(2)i4n=1,i4n+1=i,i4n+2=-1,i4n+3=-i;(3)i4n+i4n+1+i4n+2+i4n+3=0.[对点训练]1.(2018·全国卷Ⅰ)设z=1-i1+i+2i,则|z|=()A.0 B.12C.1 D. 2[解析]∵z=(1-i)2(1+i)(1-i)+2i=1-2i-12+2i=i,∴|z|=1,故选C.[答案] C2.(2018·安徽安庆二模)已知复数z满足:(2+i)z=1-i,其中i是虚数单位,则z的共轭复数为()A.15-35i B.15+35iC.13-iD.13+i[解析] 由(2+i)z =1-i ,得z =1-i 2+i =(1-i )(2-i )(2+i )(2-i )=15-35i ,∴z -=15+35i ,故选B.[答案] B3.(2018·安徽马鞍山二模)已知复数z 满足z i =3+4i ,则复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限[解析] 由z i =3+4i ,得z =3+4i i =(3+4i )(-i )-i 2=4-3i ,∴复数z 在复平面内对应的点的坐标为(4,-3),该点位于第四象限,故选D.[答案] D4.(2018·江西师大附中、临川一中联考)若复数z =1+i 1-i,z -为z 的共轭复数,则(z -)2017=( )A .iB .-iC .-22017iD .22017i[解析] 由题意知z =1+i 1-i =(1+i )2(1-i )(1+i )=i ,可得z -=-i ,则(z -)2017=[(-i)4]504·(-i)=-i ,故选B.[答案] B[快速审题] (1)看到题目的虚数单位i ,想到i 运算的周期性;看到z ·z -,想到公式z ·z -=|z |2=|z -|2.(2)看到复数的除法,想到把分母实数化处理,即分子、分母同时乘以分母的共轭复数,再利用乘法法则化简.复数问题的解题思路以复数的基本概念、几何意义、相等的条件为基础,结合四则运算,利用复数的代数形式列方程或方程组解决问题.考点二程序框图1.当需要对研究的对象进行逻辑判断时,要使用条件结构,它是根据指定条件选择执行不同指令的控制结构.2.注意直到型循环和当型循环的本质区别:直到型循环是先执行再判断,直到满足条件才结束循环;当型循环是先判断再执行,若满足条件,则进入循环体,否则结束循环.3.循环结构主要用在一些有规律的重复计算的算法中,如累加求和、累乘求积等.[对点训练]1.执行如图所示的程序框图,运行相应的程序,若输出的结果是4,则常数a的值为()A.4 B.2 C.12D.-1[解析]S和n依次循环的结果如下:S=11-a,n=2;S=1-1a,n=4.所以1-1a =2,a =-1,故选D.[答案] D2.若某程序框图如图所示,则该程序运行后输出的i 的值为( )A .4B .5C .6D .7[解析] 根据程序框图,程序执行中的数据变化如下:n =12,i =1;n =6,i =2;6≠5;n =3,i =3;3≠5;n =10,i =4;10≠5;n =5,i =5;5=5成立,程序结束,输出i =5,故选B.[答案] B3.(2018·全国卷Ⅱ)为计算S =1-12+13-14+…+199-1100,设计了下面的程序框图,则在空白框中应填入( )A .i =i +1B .i =i +2C .i =i +3D .i =i +4[解析] S =1-12+13-14+…+199-1100=⎝ ⎛⎭⎪⎫1+13+15+ (199)⎝ ⎛⎭⎪⎫12+14+…+1100,当不满足判断框内的条件时,S =N -T ,所以N =1+13+15+…+199,T =12+14+…+1100,所以空白框中应填入i =i +2,故选B.[答案] B4.执行如图所示的程序框图,输出的S 的值是________.[解析] 由程序框图可知,n =1,S =0;S =cos π4,n =2;S =cos π4+cos 2π4,n =3;…;S =cos π4+cos 2π4+cos 3π4+…+cos 2014π4=251⎝ ⎛⎭⎪⎫cos π4+cos 2π4+…+cos 8π4+cos π4+cos 2π4+…+cos 6π4=251×0+22+0+⎝ ⎛⎭⎪⎫-22+(-1)+⎝ ⎛⎭⎪⎫-22+0=-1-22,n =2015,输出S .[答案] -1-22[快速审题] (1)看到循环结构,想到循环体的结构;看到判断框,想到程序什么时候开始和终止.(2)看到根据程序框图判断程序执行的功能,想到依次执行n 次循环体,根据结果判断.(3)看到求输入的值,想到利用程序框图得出其算法功能,找出输出值与输入值之间的关系,逆推得输入值.求解程序框图2类常考问题的解题技巧(1)程序框图的运行结果问题先要找出控制循环的变量及其初值、终值.然后看循环体,若循环次数较少,可依次列出即可得到答案;若循环次数较多,可先循环几次,找出规律.要特别注意最后输出的是什么,不要出现多一次或少一次循环的错误,尤其对于以累和为限定条件的问题,需要逐次求出每次迭代的结果,并逐次判断是否满足终止条件.(2)程序框图的填充问题最常见的是要求补充循环结构的判断条件,解决此类问题的方法是创造参数的判断条件为“i >n ?”或“i <n ?”,然后找出运算结果与条件的关系,反解出条件即可.考点三推理与证明1.归纳推理的思维过程实验、观察―→概括、推广―→猜测一般性结论2.类比推理的思维过程实验、观察―→联想、类推―→猜测新的结论[对点训练]1.(2017·全国卷Ⅱ)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩[解析]由题意可知,“甲看乙、丙的成绩,不知道自己的成绩”说明乙、丙两人是一个优秀一个良好,则乙看了丙的成绩,可以知道自己的成绩;丁看了甲的成绩,也可以知道自己的成绩,故选D.[答案] D2.(2018·山西孝义期末)我们知道:在平面内,点(x0,y0)到直线Ax+By+C=0的距离公式d=|Ax0+By0+C|A2+B2,通过类比的方法,可求得:在空间中,点(2,4,1)到直线x+2y+2z+3=0的距离为()A.3 B.5 C.5217D.3 5[解析]类比平面内点到直线的距离公式,可得空间中,点(x0,y0,z0)到直线Ax+By+Cz+D=0的距离公式为d=|Ax0+By0+Cz0+D|A2+B2+C2,则所求距离d=|2+2×4+2×1+3|12+22+22=5,故选B.[答案] B3.(2018·安徽合肥模拟)《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:223=223,338=338,4415=4415,5524=5524,…,则按照以上规律,若99n=99n具有“穿墙术”,则n=()A.25 B.48 C.63 D.80[解析]由2 23=223,338=338,4415=4415,5524=55 24,…,可得若9 9n=99n具有“穿墙术”,则n=92-1=80,故选D.[答案] D[快速审题]看到由特殊到一般,想到归纳推理;看到由特殊到特殊,想到类比推理.(1)破解归纳推理题的思维3步骤①发现共性:通过观察特例发现某些相似性(特例的共性或一般规律);②归纳推理:把这种相似性推广为一个明确表述的一般命题(猜想);③检验,得结论:对所得的一般性命题进行检验,一般地,“求同存异”“逐步细化”“先粗后精”是求解由特殊结论推广到一般结论型创新题的基本技巧.(2)破解类比推理题的3个关键①会定类,即找出两类对象之间可以确切表述的相似特征;②会推测,即用一类事物的性质去推测另一类事物的性质,得出一个明确的猜想;③会检验,即检验猜想的正确性.要将类比推理运用于简单推理之中,在不断的推理中提高自己的观察、归纳、类比能力.1.(2018·全国卷Ⅱ)1+2i1-2i=()A.-45-35i B.-45+35iC.-35-45i D.-35+45i[解析]1+2i1-2i=(1+2i)2(1-2i)(1+2i)=-3+4i5=-35+45i,故选D.[答案] D2.(2018·浙江卷)复数21-i(i为虚数单位)的共轭复数是()A.1+i B.1-i C.-1+i D.-1-i[解析]∵21-i =2(1+i)(1-i)(1+i)=1+i,∴21-i的共轭复数为1-i,故选B.[答案] B3.(2018·北京卷)执行如图所示的程序框图,输出的s值为()A.12 B.56 C.76 D.712[解析]k=1,s=1;s=1+(-1)1×11+1=1-12=12,k=2,2<3;s=12+(-1)2×11+2=12+13=56,k=3,此时跳出循环,∴输出56,故选B.[答案] B4.(2018·天津卷)阅读下边的程序框图,运行相应的程序,若输入N的值为20,则输出T的值为()A.1 B.2 C.3 D.4[解析]第一次循环T=1,i=3;第二次循环T=1,i=4;第三次循环T=2,i=5,满足条件i≥5,结束循环,故选B.[答案] B5.(2016·全国卷Ⅱ)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2.”乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1.”丙说:“我的卡片上的数字之和不是5.”则甲的卡片上的数字是________.[解析]由丙说的话可知丙的卡片上的数字一定不是2和3.若丙的卡片上的数字是1和2,则乙的卡片上的数字是2和3,甲的卡片上的数字是1和3,满足题意;若丙的卡片上的数字是1和3,则乙的卡片上的数字是2和3,此时,甲的卡片上的数字只能是1和2,不满足题意.故甲的卡片上的数字是1和3.[答案]1和31.高考对复数的考查重点是其代数形式的四则运算(特别是乘、除法),也涉及复数的概念及几何意义等知识,题目多出现在第1~3题的位置,难度较低,纯属送分题目.2.高考对算法的考查,每年平均有一道小题,一般出现在第6~9题的位置上,难度中等偏下,均考查程序框图,热点是循环结构和条件结构,有时综合性较强,其背景涉及数列、函数、数学文化等知识.3.在全国课标卷中很少直接考查“推理与证明”,特别是合情推理,而演绎推理,则主要体现在对问题的证明上.热点课题2间接证明的应用[感悟体验]等差数列{a n}的前n项和为S n,a1=1+2,S3=9+3 2.(1)求数列{a n}的通项a n与前n项和S n;(2)设b n =S nn (n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.[解] (1)由已知得⎩⎨⎧a 1=2+1,3a 1+3d =9+32,所以d =2,故a n =2n -1+2,S n =n (n +2),n ∈N *. (2)证明:由(1)得b n =S nn =n +2,n ∈N *.假设数列{b n }中存在三项b p ,b q ,b r (p <q <r ,p ,q ,r ∈N *)成等比数列,则b 2q =b p b r .即(q +2)2=(p +2)(r +2). ∴(q 2-pr )+(2q -p -r )2=0.∵p ,q ,r ∈N *,∴⎩⎨⎧q 2-pr =0,2q -p -r =0,∵⎝⎛⎭⎪⎫p +r 22=pr ,(p -r )2=0,∴p =r 与p <r 矛盾. 所以数列{b n }中任意不同的三项都不可能成为等比数列.专题跟踪训练(八)一、选择题1.已知z =1+2i ,则复数2iz -2的虚部是( ) A.25 B .-25 C.25i D .-25i [解析] 2i z -2=2i -1+2i =2i (-1-2i )(-1+2i )(-1-2i )=45-25i ,该复数的虚部为-25,故选B.[答案] B2.若复数z =1+2i ,则4iz z --1等于( ) A .1 B .-1 C .i D .-i[解析]4i z z --1=4i(1+2i )(1-2i )-1=i ,故选C. [答案] C3.已知z (3+i)=-3i(i 是虚数单位),那么复数z 对应的点位于复平面内的( )A .第一象限B .第二象限C .第三象限D .第四象限[解析] z =-3i 3+i =-3i (3-i )(3+i )(3-i )=-3-3i 4=-34-3i4,z 对应的点⎝ ⎛⎭⎪⎫-34,-34位于复平面内的第三象限,故选C.[答案] C4.(2018·大连模拟)下列推理是演绎推理的是( )A .由于f (x )=c cos x 满足f (-x )=-f (x )对任意的x ∈R 都成立,推断f (x )=c cos x 为奇函数B .由a 1=1,a n =3n -1,求出S 1,S 2,S 3,猜出数列{a n }的前n 项和的表达式C .由圆x 2+y 2=1的面积S =πr 2,推断:椭圆x 2a 2+y 2b 2=1的面积S =πabD .由平面三角形的性质推测空间四面体的性质[解析] 由特殊到一般的推理过程,符合归纳推理的定义;由特殊到与它类似的另一个特殊的推理过程,符合类比推理的定义;由一般到特殊的推理符合演绎推理的定义.A 是演绎推理,B 是归纳推理,C 和D 为类比推理,故选A.[答案] A5.(2018·江西南昌三模)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图,执行该程序框图,若输入的x =3,n =2,依次输入的a 为2,2,5,则输出的s =( )A.8 B.17 C.29 D.83[解析]根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量s的值.模拟程序的运行过程:输入的x=3,n=2,当输入的a为2时,s=2,k=1,不满足退出循环的条件;当再次输入的a为2时,s=8,k=2,不满足退出循环的条件;当输入的a为5时,s=29,k=3,满足退出循环的条件.故输出的s的值为29,故选C.[答案] C6.用反证法证明命题:“已知a,b是自然数,若a+b≥3,则a,b中至少有一个不小于2”.提出的假设应该是()A.a,b至少有两个不小于2B.a,b至少有一个不小于2C.a,b都小于2D.a,b至少有一个小于2[解析]根据反证法可知提出的假设为“a,b都小于2”,故选C.[答案] C7.(2018·广东汕头一模)执行如图所示的程序框图,输出的结果是()A.56 B.54 C.36 D.64[解析]模拟程序的运行,可得:第1次循环,c=2,S=4,c<20,a=1,b=2;第2次循环,c=3,S=7,c<20,a=2,b=3;第3次循环,c=5,S=12,c<20,a=3,b=5;第4次循环,c=8,S=20,c<20,a=5,b=8;第5次循环,c=13,S=33,c<20,a=8,b=13;第6次循环,c=21,S=54,c>20,退出循环,输出S的值为54,故选B.[答案] B8.(2018·广东茂名一模)执行如图所示的程序框图,那么输出的S值是()A.12B.-1 C.2008 D.2[解析]模拟程序的运行,可知S=2,k=0;S=-1,k=1;S=12,k=2;S=2,k=3;…,可见S的值每3个一循环,易知k=2008对应的S值是第2009个,又2009=3×669+2,∴输出的S值是-1,故选B.[答案] B9.(2018·湖南长沙模拟)如图,给出的是计算1+14+17+…+1100的值的一个程序框图,则图中判断框内(1)处和执行框中的(2)处应填的语句是()A.i>100,n=n+1 B.i<34,n=n+3C.i>34,n=n+3 D.i≥34,n=n+3[解析]算法的功能是计算1+14+17+…+1100的值,易知1,4,7, (100)等差数列,公差为3,所以执行框中(2)处应为n=n+3,令1+(i-1)×3=100,解得i=34,∴终止程序运行的i值为35,∴判断框内(1)处应为i>34,故选C.[答案] C10.(2018·武汉调研)一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是()A.甲B.乙C.丙D.丁[解析]由题可知,乙、丁两人的观点一致,即同真同假,假设乙、丁说的是真话,那么甲、丙两人说的是假话,由乙说的是真话,推出丙是罪犯,由甲说假话,推出乙、丙、丁三人不是罪犯,显然两个结论相互矛盾,所以乙、丁两人说的是假话,而甲、丙两人说的是真话,由甲、丙供述可得,乙是罪犯,故选B.[答案] B11.(2018·昆明七校调研)阅读如图所示的程序框图,运行相应的程序,若输出S的值为1,则判断框内为()A.i>6? B.i>5? C.i≥3? D.i≥4?[解析]依题意,执行程序框图,进行第一次循环时,S=1×(3-1)+1=3,i=1+1=2;进行第二次循环时,S=3×(3-2)+1=4,i=2+1=3;进行第三次循环时,S=4×(3-3)+1=1,i=4,因此当输出的S的值为1时,判断框内为“i≥4?”,故选D.[答案] D12.(2018·吉林一模)祖暅是南北朝时代的伟大数学家,5世纪末提出体积计算原理,即祖暅原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任何一个平面所截,如果截面面积都相等,那么这两个几何体的体积一定相等.现有以下四个几何体:图①是从圆柱中挖去一个圆锥所得的几何体,图②、图③、图④分别是圆锥、圆台和半球,则满足祖暅原理的两个几何体为()A .①②B .①③C .②④D .①④[解析] 设截面与底面的距离为h ,则①中截面内圆的半径为h ,则截面圆环的面积为π(R 2-h 2);②中截面圆的半径为R -h ,则截面圆的面积为π(R -h )2;③中截面圆的半径为R -h 2,则截面圆的面积为π(R -h 2)2;④中截面圆的半径为R 2-h 2,则截面圆的面积为π(R 2-h 2).所以①④中截面的面积相等,故其体积相等,故选D.[答案] D 二、填空题13.i 是虚数单位,若复数(1-2i)(a +i)是纯虚数,则实数a 的值为________. [解析] ∵(1-2i)(a +i)=2+a +(1-2a )i 为纯虚数,∴⎩⎨⎧1-2a ≠0,2+a =0,解得a=-2.[答案] -214.如图是一个三角形数阵:按照以上排列的规律,第16行从左到右的第2个数为________. [解析] 前15行共有15(15+1)2=120(个)数,故所求的数为a 122=12×122-1=1243. [答案] 124315.(2018·河南三市联考)执行如图所示的程序框图,如果输入m =30,n =18,则输出的m 的值为________.[解析] 如果输入m =30,n =18,第一次执行循环体后,r =12,m =18,n =12,不满足输出条件;第二次执行循环体后,r =6,m =12,n =6,不满足输出条件;第三次执行循环体后,r =0,m =6,n =0,满足输出条件,故输出的m 值为6.[答案] 616.“求方程⎝ ⎛⎭⎪⎫513x +⎝ ⎛⎭⎪⎫1213x =1的解”,有如下解题思路:设f (x )=⎝ ⎛⎭⎪⎫513x +⎝ ⎛⎭⎪⎫1213x,则f (x )在R 上单调递减,且f (2)=1,所以原方程有唯一解x =2,类比上述解题思路,可得不等式x 6-(x +2)>(x +2)3-x 2的解集是________.[解析] 因为x 6-(x +2)>(x +2)3-x 2,所以x 6+x 2>(x +2)3+(x +2),所以(x 2)3+x 2>(x +2)3+(x +2).令f (x )=x 3+x ,所以不等式可转化为f (x 2)>f (x +2).因为f (x )在R 上单调递增,所以x 2>x +2,解得x <-1或x >2.故原不等式的解集为(-∞,-1)∪(2,+∞).[答案] (-∞,-1)∪(2,+∞)。
12.3 合情推理与演绎推理考纲要求1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理.3.了解合情推理和演绎推理之间的联系和差异.1.合情推理主要包括__________和__________.合情推理的过程:从具体问题出发→观察、分析、比较、联想→归纳、类比→提出猜想(1)归纳推理:由某类事物的________具有某些特征,推出该类事物的__________都具有这些特征的推理,或者由________概括出__________的推理,称为归纳推理(简称归纳).简言之,归纳推理是由部分到整体、由个别到一般的推理.(2)类比推理:由________具有某些类似特征和其中________的某些已知特征,推出________也具有这些特征的推理称为类比推理(简称类比),简言之,类比推理是由______到______的推理.2.演绎推理:从______的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由______到______的推理.(1)三段论是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.(2)“三段论”可以表示为①大前提:M是P.②小前提:S是M.③结论:S是P.用集合说明:即若集合M的所有元素都具有性质P,S是M的一个子集,那么S中所有元素也都具有性质P.1.某同学在电脑上打下了一串黑白圆,如图所示,○○○●●○○○●●○○○…,按这种规律往下排,那么第36个圆的颜色应是( ).A.白色B.黑色C.白色可能性大D.黑色可能性大2.数列2,5,11,20,32,x,…中的x等于( ).A.28 B.32C.33 D.473.观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由归纳推理可得:若定义在R 上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=( ).A.f(x) B.-f(x)C.g(x) D.-g(x)4.给出下列三个类比结论.①(ab)n=a n b n与(a+b)n类比,则有(a+b)n=a n+b n;②log a(xy)=log a x+log a y与sin(α+β)类比,则有sin(α+β)=sin αsin β;③(a+b)2=a2+2ab+b2与(a+b)2类比,则有(a+b)2=a2+2a·b+b2.其中结论正确的个数是( ).A.0 B.1 C.2 D.3一、归纳推理【例1】 观察:①sin 210°+cos 240°+sin 10°cos 40°=34;②sin 26°+cos 236°+sin 6°cos 36°=34.由上面两题的结构规律,你能否提出一个猜想?并证明你的猜想. 方法提炼1.归纳推理的特点:(1)归纳推理是由部分到整体、由个别到一般的推理;(2)归纳的前提是部分的、个别的事实,因此归纳推理的结论超出了前提所界定的范围,其前提和结论之间的联系不是必然的,而是或然的.所以“前提真而结论假”的情况是可能发生的;(3)人们在进行归纳推理时,总是先收集一定的事实材料,有了个别性的、特殊性的事实作为前提,然后才能进行归纳推理,因此归纳推理要在观察和试验的基础上进行;(4)归纳推理能够发现新事实、获得新结论,是做出科学发现的重要手段.2.归纳推理的一般步骤:首先,对有限的资料进行观察、分析、归纳整理;然后,在此基础上提出带有规律性的结论,即猜想;最后,检验这个猜想.请做演练巩固提升1 二、类比推理【例2】 在Rt △ABC 中,∠BAC =90°,作AD ⊥BC ,D 为垂足,BD 为AB 在BC 上的射影,CD 为AC 在BC 上的射影,则有AB 2+AC 2=BC 2,AC 2=CD ·BC 成立.直角四面体PABC (即PA ⊥PB 、PB ⊥PC 、PC ⊥PA )中,O 为P 在△ABC 内的射影,△PAB 、△PBC 、△PCA 的面积分别记为S 1、S 2、S 3,△OAB 、△OBC 、△OCA 的面积分别记为S ′1、S ′2、S ′3,△ABC 的面积记为S .类比直角三角形中的射影结论,在直角四面体PABC 中可得到正确结论________(写出一个正确结论即可).方法提炼1.类比推理的特点:(1)类比推理是由特殊到特殊的推理;(2)类比推理是从人们已经掌握了的事物的特征,推测正在被研究中的事物的特征,所以类比推理的结果具有猜测性,不一定可靠;(3)类比推理以旧的知识作基础,推测新的结果,具有发现的功能;(4)由于类比推理的前提是两类对象之间具有某些可以清楚定义的类似特征,所以进行类比推理的关键是明确地指出两类对象在某些方面的类似特征.2.类比推理的步骤:首先,找出两类对象之间可以确切表述的相似特征;然后,用一类对象的已知特征去推测另一类对象的特征,从而获得一个猜想;最后,检验这个猜想.类比是科学研究最普遍的方法之一.在数学中,类比是发现概念、方法、定理和公式的重要手段,也是开拓新领域和创造新分支的重要手段.类比在数学中应用广泛,数与式、平面与空间、一元与多元、低次与高次、相等与不等、有限与无限之间有不少结论,都是先用类比法猜想,而后加以证明的.请做演练巩固提升2 三、演绎推理【例3】 如图,已知直四棱柱ABCD A 1B 1C 1D 1的底面是直角梯形,AB ⊥BC ,AB ∥CD ,E ,F 分别是棱BC ,B 1C 1上的动点,且EF ∥CC 1,CD =DD 1=1,AB =2,BC =3.(1)证明:无论点E 怎样运动,四边形EFD 1D 都为矩形; (2)当EC =1时,求几何体A EFD 1D 的体积. 方法提炼1.演绎推理是由一般性的命题推出特殊性命题的一种推理模式.2.演绎推理的一般模式是由大前提、小前提推出结论的三段论推理.三段论推理常用的一种格式,可以用以下公式来表示:如果b ⇒c ,a ⇒b ,则a ⇒c .3.演绎推理是一种必然性推理.演绎推理的前提与结论之间有蕴涵关系,因而,只要前提是真实的,推理的形式是正确的,那么结论必定是真实的.错误的前提可能导致错误的结论.三段论推理也可用集合论的观点来解释:若集合M 的所有元素都具有性质P ,S 是M 的子集,那么S 中所有元素也都具有性质P .三段论的公式中包含三个判断:第一个判断称为大前提,它提供了一个一般性的原理;第二个判断叫小前提,它指出了一个特殊情况;这两个判断联合起来,揭示了一般原理和特殊情况的内在联系,从而产生了第三个判断结论.请做演练巩固提升3把握不准周期性而致误【典例】 (2012陕西高考)观察下列不等式1+122<32, 1+122+132<53, 1+122+132+142<74, ……照此规律,第五个不等式为________________.答案:1+122+132+142+152+162<116答题指导:在解答本题时有两点易造成误解:(1)对于给定的式子,只观察式子结果,而不去继续探究下几项式子,从而找不到规律而误解.(2)在继续探究的情况下,运算错误从而导致周期找不到或找错周期而误解.1.观察下列各式:72=49,73=343,74=2 401,…,则72 011的末两位数字为( ). A .01 B .43 C .07 D .492.在平面几何中有如下结论:正三角形ABC 的内切圆面积为S 1,外接圆面积为S 2,则S 1S 2=14,推广到空间可以得到类似结论:已知正四面体PABC 的内切球体积为V 1,外接球体积为V 2,则V 1V 2=( ).A.18B.19C.164 D.1273.“因为指数函数y =a x是增函数(大前提),而y =⎝ ⎛⎭⎪⎫13x 是指数函数(小前提),所以y=⎝ ⎛⎭⎪⎫13x是增函数(结论)”,上面推理的错误..是( ). A .大前提错导致结论错 B .小前提错导致结论错C .推理形式错导致结论错D .大前提和小前提错都导致结论错4.(2012湖北高考)传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{a n },将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n }.可以推测:(1)b 2 012是数列{a n }中的第______项; (2)b 2k -1=______.(用k 表示)5.(2012长沙模拟)有以下命题:设a n 1,a n 2,…,a n m 是公差为d 的等差数列{a n }中任意m 项,若n 1+n 2+…+n m m =p +r m (p ∈N *,r ∈N 且r <m ),则a n 1+a n 2+…+a n mm =a p +r md ;特别地,当r =0时,称a p 为a n 1,a n 2,…,a n m 的等差平均项.(1)已知等差数列{a n }的通项公式为a n =2n ,根据上述命题,则a 1,a 3,a 10,a 18的等差平均项为________.(2)将上述真命题推广到各项为正实数的等比数列中:设a n 1,a n 2,…,a n m 是公比为q的等比数列{a n }中任意m 项,若n 1+n 2+…+n m m =p +r m(p ∈N *,r ∈N 且r <m ),则________;特别地,当r =0时,称a p 为a n 1,a n 2,…,a n m 的等比平均项.参考答案基础梳理自测知识梳理1.归纳推理 类比推理 (1)部分对象全部对象 个别事实 一般结论 (2)两类对象 一类对象 另一类对象 特殊 特殊 2.一般性 一般 特殊 基础自测1.A 解析:由图知,图形是三白二黑的圆周而复始相继排列,是一个周期为5的三白二黑的圆列,因为36÷5=7余1,所以第36个圆应与第1个圆颜色相同,即白色.2.D 解析:由5-2=3,11-5=6,20-11=9,32-20=12,则x -32=15,∴x =47. 3.D 解析:由已知的三个求导式可归纳推理得到偶函数的导函数是奇函数,又f (x )是偶函数,所以g(x )是奇函数,故g(-x )=-g(x ).4.B 解析:只有③正确. 考点探究突破【例1】 解:猜想sin 2α+cos 2(α+30°)+sin αcos(α+30°)=34.证明:左边=sin 2α+cos(α+30°)[cos(α+30°)+sin α]=sin2α+⎝ ⎛⎭⎪⎫32cos α-12sin α⎝ ⎛⎭⎪⎫32cos α+12sin α=sin 2α+34cos 2α-14sin 2α=34=右边.所以,猜想是正确的.【例2】 S 21=S 1′S(或S 2=S 21+S 22+S 23)解析:空间问题与平面问题的类比,通常可抓住几何要素的如下对应关系作对比:多面体↔多边形,面↔边,体积↔面积,二面角↔平面角,面积↔线段长,…,由此,可类比得S 21=S 1′S(或S 2=S 21+S 22+S 23).【例3】 (1)证明:在直四棱柱ABCDA 1B 1C 1D 1中,DD 1∥CC 1, ∵EF∥CC 1,∴EF∥DD 1.又∵平面ABCD∥平面A 1B 1C 1D 1, 平面ABCD∩平面EFD 1D =ED , 平面A 1B 1C 1D 1∩平面EFD 1D =FD 1,∴ED∥FD 1.∴四边形EFD 1D 为平行四边形. ∵侧棱DD 1⊥底面ABCD ,又DE ⊂平面ABCD , ∴DD 1⊥DE.∴四边形EFD 1D 为矩形. (2)解:连接AE ,∵四棱柱ABCD A 1B 1C 1D 1为直四棱柱, ∴侧棱DD 1⊥底面ABCD.又AE ⊂平面ABCD ,∴DD 1⊥AE. 在Rt △ABE 中, AB=2,BE=2,则AE=在Rt △CDE 中,EC=1,CD=1,则在直角梯形ABCD 中,=∴AE 2+DE 2=AD 2,即AE ⊥ED. 又∵ED ∩DD 1=D , ∴AE ⊥平面EFD 1D.由(1)可知,四边形EFD 1D 为矩形,且DD 1=1,∴矩形EFD 1D 的面积为S 矩形EFD 1D =DE ·DD 1∴几何体AEFD 1D 的体积为V AEFD 1D =13S 矩形EFD 1D ·AE=13×2×22=43.演练巩固提升1.B 解析:(法一)由题意得,72 011=7502×4+3=(74)502·73,由于74=2 401末位为1,倒数第二位为0,因此2 401502的末两位定为01.又73=343,∴(74)502·73的末两位定为43.(法二)用归纳法:∵72=49,73=343,74=2 401,75=16 807,76=117 649,77=823 543,…,由上知末两位有周期性且T =4.又72 011=7502×4+3,∴72 011的末两位与73的末两位一样为43.2.D 解析:正四面体的内切球与外接球的半径之比为1∶3,故体积之比为V 1V 2=127.3.A 解析:y =a x是增函数这个大前提是错误的,从而导致结论错误.4.(1)5 030 (2)5k (5k -1)2解析:(1)由题意可得,a 1=1,a 2=3,a 3=6,a 4=10,…,a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,…,a n -a n -1=n .以上各式相加得,a n -a 1=2+3+…+n =(n -1)(n +2)2,故a n =n (n +1)2.因此,b 1=a 4=10,b 2=a 5=15,b 3=a 9=45,b 4=a 10=55,…由此归纳出b 2 012=a 5 030.(2)b 1=a 4=4×52,b 3=a 9=9×102,b 5=a 14=14×152,….归纳出b 2k -1=5k (5k -1)2.5.a 8ma n 1·a n 2·…·a n m =a p ·r mq解析:(1)∵a 1+a 3+a 10+a 184=2+6+20+364=16,∴a 1,a 3,a 10,a 18的等差平均项为a 8.(2)用m a n 1·a n 2·…·a n m 类比a n 1+a n 2+…+a n m m 用a p ·r m q 来类比a p +rmd 可得.。
第一节合情推理与演绎推理考纲要求:1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理.3.了解合情推理和演绎推理之间的联系和差异.1.合情推理(1)归纳推理①定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理.②特点:是由部分到整体、由个别到一般的推理.(2)类比推理①定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理.②特点:是由特殊到特殊的推理.2.演绎推理(1)演绎推理从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式①大前提——已知的一般原理.②小前提——所研究的特殊情况.③结论——根据一般原理,对特殊情况做出的判断.[自我查验]1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.()(2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.()(3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.( ) (4)演绎推理的结论一定是正确的.( )(5)演绎推理是由特殊到一般再到特殊的推理.( )(6)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.( ) 答案:(1)× (2)√ (3)× (4)× (5)× (6)× 2.下列表述正确的是( ) ①归纳推理是由部分到整体的推理; ②归纳推理是由一般到一般的推理; ③演绎推理是由一般到特殊的推理; ④类比推理是由特殊到一般的推理; ⑤类比推理是由特殊到特殊的推理. A .①②③ B .②③④ C .②④⑤ D .①③⑤解析:选D 由归纳推理、类比推理及演绎推理的特征可知①③⑤正确.3.“因为指数函数y =a x 是增函数(大前提),而y =⎝⎛⎭⎫13x是指数函数(小前提),所以y =⎝⎛⎭⎫13x 是增函数(结论)”,上面推理的错误在于( ) A .大前提错导致结论错 B .小前提错导致结论错 C .推理形式错导致结论错D .大前提和小前提都错导致结论错解析:选A y =a x 是增函数这个大前提是错误的,从而导致结论错误.4.已知数列{a n }的第1项a 1=1,且a n +1=a n1+a n(n =1,2,3,…),归纳该数列的通项公式a n =________.答案:1n5.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.解析:V 1V 2=13S 1h113S 2h 2=⎝⎛⎭⎫S 1S 2·h 1h 2=14×12=18.答案:1∶8归纳推理是发现问题、找出规律的具体鲜明的方法,也是创新的一种思维方式,因而成为高考考查的亮点,常以选择题、填空题的形式出现,且主要有以下几个命题角度:角度一:数的归纳[典题1] (1)给出以下数对序列: (1,1) (1,2)(2,1) (1,3)(2,2)(3,1) (1,4)(2,3)(3,2)(4,1) ……记第i 行的第 j 个数对为a ij ,如a 43=(3,2),则a nm =( ) A .(m ,n -m +1) B .(m -1,n -m ) C .(m -1,n -m +1) D .(m ,n -m )(2)两旅客坐火车外出旅游,希望座位连在一起,且有一个靠窗,已知火车上的座位如图所示,则下列座位号码符合要求的应当是( )A.48,49 B .62,63 C .75,76 D .84,85[听前试做] (1)由前4行的特点,归纳可得:若a nm =(a ,b ),则a =m ,b =n -m +1,∴a nm =(m ,n -m +1).(2)由已知图形中座位的排序规律可知,被5除余1的数和能被5整除的座位号靠窗,由于两旅客希望座位连在一起,且有一个靠窗,分析答案中的4组座位号知,只有D 符合条件.答案:(1)A (2)D解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等.角度二:式的归纳[典题2] (1)(2015·陕西高考)观察下列等式: 1-12=12,1-12+13-14=13+14, 1-12+13-14+15-16=14+15+16, ……据此规律,第n 个等式__________________.(2)已知f (x )=xe x ,f 1(x )=f ′(x ),f 2(x )=[f 1(x )]′,…,f n +1(x )=[f n (x )]′,n ∈N *,经计算:f 1(x )=1-x e x ,f 2(x )=x -2e x ,f 3(x )=3-xe x,…,照此规律,则f n (x )=________. (3)(2016·日照模拟)设n 为正整数,f (n )=1+12+13+…+1n ,计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3,观察上述结果,可推测一般的结论为________.[听前试做] (1)观察所给等式的左右可以归纳出1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n .(2)因为f 1(x )=(-1)(x -1)e x ,f 2(x )=(-1)2(x -2)e x ,f 3(x )=(-1)3(x -3)e x,…,所以f n (x )=(-1)n (x -n )e x. (3)∵f (21)=32,f (22)>2=42,f (23)>52,f (24)>62,∴归纳得f (2n )≥n +22(n ∈N *).答案:(1)1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n (2)(-1)n (x -n )e x(3)f (2n )≥n +22(n ∈N *)(1)与数字有关的等式的推理.观察数字特点,找出等式左右两侧的规律及符号后可解. (2)与不等式有关的推理.观察每个不等式的特点,注意是纵向看,找到规律后可解. 角度三:形的归纳[典题3] (1)(2016·重庆模拟)某种树的分枝生长规律如图所示,第1年到第5年的分枝数分别为1,1,2,3,5,则预计第10年树的分枝数为( )A .21B .34C .52D .55(2)蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以f (n )表示第n 个图的蜂巢总数.则f (4)=________,f (n )=________.[听前试做] (1)因为2=1+1,3=2+1,5=3+2,即从第三项起每一项都等于前两项的和,所以第10年树的分枝数为21+34=55.(2)因为f (1)=1,f (2)=7=1+6,f (3)=19=1+6+12,所以f (4)=1+6+12+18=37,所以f (n )=1+6+12+18+…+6(n -1)=3n 2-3n +1.答案:(1)D (2)37 3n 2-3n +1(1)归纳是依据特殊现象推断出一般现象,因而由归纳所得的结论超越了前提所包含的范围.(2)归纳的前提是特殊的情况,所以归纳是立足于观察、经验或试验的基础之上. (3)归纳推理所得结论未必正确,有待进一步证明,但对数学结论和科学的发现有很大作用.[典题4] (1)(2016·南昌模拟)如图,在梯形ABCD 中,AB ∥CD ,AB =a ,CD =b (a >b ).若EF ∥AB ,EF 到CD 与AB 的距离之比为m ∶n ,则可推算出:EF =ma +nb m +n .用类比的方法,推想出下面问题的结果.在上面的梯形ABCD 中,分别延长梯形的两腰AD 和BC 交于O 点,设△OAB ,△ODC 的面积分别为S 1,S 2,则△OEF 的面积S 0与S 1,S 2的关系是( )A .S 0=mS 1+nS 2m +nB .S 0=nS 1+mS 2m +nC.S 0=m S 1+n S 2m +nD.S 0=n S 1+m S 2m +n(2)已知面积为S 的凸四边形中,四条边长分别记为a 1,a 2,a 3,a 4,点P 为四边形内任意一点,且点P 到四条边的距离分别记为h 1,h 2,h 3,h 4,若a 11=a 22=a 33=a 44=k ,则h 1+2h 2+3h 3+4h 4=2Sk .类比以上性质,体积为V 的三棱锥的每个面的面积分别记为S 1,S 2,S 3,S 4,此三棱锥内任一点Q 到每个面的距离分别为H 1,H 2,H 3,H 4,若S 11=S 22=S 33=S 44=K ,则H 1+2H 2+3H 3+4H 4=( )A.4V KB.3V KC.2V KD.V K[听前试做] (1)在平面几何中类比几何性质时,一般是由平面几何中点的性质类比推理线的性质;由平面几何中线段的性质类比推理面积的性质.故由EF =ma +nbm +n类比到关于△OEF 的面积S 0与S 1,S 2的关系是S 0=m S 1+n S 2m +n.(2)根据三棱锥的体积公式,得13S 1H 1+13S 2H 2+13S 3H 3+13S 4H 4=V ,即KH 1+2KH 2+3KH 3+4KH 4=3V ,∴H 1+2H 2+3H 3+4H 4=3VK.答案:(1)C (2)B(1)类比推理是由特殊到特殊的推理,其一般步骤为: ①找出两类事物之间的相似性或一致性;②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).(2)类比推理的关键是找到合适的类比对象.平面几何中的一些定理、公式、结论等,可以类比到立体几何中,得到类似的结论.在平面几何中:△ABC 的∠C 内角平分线CE 分AB 所成线段的比为AC BC =AEBE.把这个结论类比到空间:在三棱锥A -BCD 中(如图),DEC 平分二面角A -CD -B 且与AB 相交于E ,则得到类比的结论是_____________________.解析:由平面中线段的比转化为空间中面积的比可得 AE EB =S △ACDS △BCD. 答案:AE EB =S △ACDS △BCD[典题5] 已知函数f (x )=-aa x +a(a >0,且a ≠1). (1)证明:函数y =f (x )的图象关于点⎝⎛⎭⎫12,-12对称; (2)求f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)的值.[听前试做] (1)证明:函数f (x )的定义域为全体实数,任取一点(x ,y ),它关于点⎝⎛⎭⎫12,-12对称的点的坐标为(1-x ,-1-y ).由已知y =-aa x +a,则-1-y =-1+aa x +a =-a xa x +a,f (1-x )=-aa 1-x +a =-aa a x +a=-a ·a xa +a ·a x =-a xa x +a , ∴-1-y =f (1-x ),即函数y =f (x )的图象关于点⎝⎛⎭⎫12,-12对称. (2)由(1)知-1-f (x )=f (1-x ), 即f (x )+f (1-x )=-1.∴f (-2)+f (3)=-1,f (-1)+f (2)=-1,f (0)+f (1)=-1. 故f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)=-3.演绎推理是由一般到特殊的推理,常用的一般模式为三段论,演绎推理的前提和结论之间有着某种蕴含关系,解题时要找准正确的大前提.一般地,若大前提不明确时,可找一个使结论成立的充分条件作为大前提.已知函数y=f(x)满足:对任意a,b∈R,a≠b,都有af(a)+bf(b)>af(b)+bf(a),试证明:f(x)为R上的单调增函数.证明:设任意x1,x2∈R,取x1<x2,则由题意得x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),∴x1[f(x1)-f(x2)]+x2[f(x2)-f(x1)]>0,[f(x2)-f(x1)](x2-x1)>0,∵x1<x2,∴f(x2)-f(x1)>0,即f(x2)>f(x1).∴y=f(x)为R上的单调增函数.—————————————[课堂归纳——感悟提升]——————————————[方法技巧]1.合情推理的过程概括为从具体问题出发―→观察、分析、比较、联想―→归纳、类比―→提出猜想2.演绎推理是从一般的原理出发,推出某个特殊情况的结论的推理方法,是由一般到特殊的推理,常用的一般模式是三段论.数学问题的证明主要通过演绎推理来进行.[易错防范]1.在进行类比推理时要尽量从本质上去类比,不要被表面现象迷惑,如果只抓住一点表面现象的相似甚至假象就去类比,那么就会犯机械类比的错误.2.合情推理是从已知的结论推测未知的结论,发现与猜想的结论都要经过进一步严格证明.3.演绎推理是由一般到特殊的推理,它常用来证明和推理数学问题,解题时应注意推理过程的严密性,书写格式的规范性.[全盘巩固]一、选择题1.观察(x 2)′=2x ,(x 4)′=4x 3,(cos x )′=-sin x ,由归纳推理可得:若定义在R 上的函数f (x )满足f (-x )=f (x ),记g (x )为f (x )的导函数,则g (-x )=( )A .f (x )B .-f (x )C .g (x )D .-g (x )解析:选D 由所给函数及其导数知,偶函数的导函数为奇函数,因此当f (x )是偶函数时,其导函数应为奇函数,故g (-x )=-g (x ).2.观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( )A .121B .123C .231D .211解析:选B 法一:由a +b =1,a 2+b 2=3,得ab =-1,代入后三个等式中符合,则a 10+b 10=(a 5+b 5)2-2a 5b 5=123.法二:令a n =a n +b n ,则a 1=1,a 2=3,a 3=4,a 4=7,…,得a n +2=a n +a n +1,从而a 6=18,a 7=29,a 8=47,a 9=76,a 10=123.3.在平面几何中有如下结论:正三角形ABC 的内切圆面积为S 1,外接圆面积为S 2,则S 1S 2=14,推广到空间可以得到类似结论:已知正四面体P -ABC 的内切球体积为V 1,外接球体积为V 2,则V 1V 2=( )A.18B.19C.164D.127解析:选D 正四面体的内切球与外接球的半径之比为1∶3,故V 1V 2=127.4.(2016·陕西商洛期中)对于任意的两个实数对(a ,b )和(c ,d ),规定:(a ,b )=(c ,d ),当且仅当a =c ,b =d ;运算“”为:(a ,b )(c ,d )=(ac -bd ,bc +ad );运算“”为:(a ,b )(c ,d )=(a +c ,b +d ),设p ,q ∈R ,若(1,2)(p ,q )=(5,0),则(1,2)(p ,q )=( )A .(4,0)B .(2,0)C .(0,2)D .(0,-4) 解析:选B 由(1,2)(p ,q )=(5,0)得⎩⎪⎨⎪⎧ p -2q =5,2p +q =0⇒⎩⎪⎨⎪⎧p =1,q =-2,所以(1,2)(p ,q )=(1,2)(1,-2)=(2,0).5.(2016·西安五校联考)已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个“整数对”是( )A .(7,5)B .(5,7)C .(2,10)D .(10,1)解:选B 依题意,把“整数对”的和相同的分为一组,不难得知第n 组中每个“整数对”的和均为n +1,且第n 组共有n 个“整数对”,这样的前n 组一共有n (n +1)2个“整数对”,注意到10×(10+1)2<60<11×(11+1)2,因此第60个“整数对”处于第11组(每个“整数对”的和为12的组)的第5个位置,结合题意可知每个“整数对”的和为12的组中的各对数依次为:(1,11),(2,10),(3,9),(4,8),(5,7),…,因此第60个“整数对”是(5,7).二、填空题6.观察下列不等式: 1+3+3<π2, 1+3×2+3×22<π4, 1+3×3+3×32<π6, ……照此规律,第n -1(n ≥2,n ∈N *)个不等式是________.解析:根据所给不等式易归纳推理出第n (n ∈N *)个不等式是1+3n +3n 2<π2n ,所以可以归纳推测出第n -1(n ≥2,n ∈N *)个不等式是1+3(n -1)+3(n -1)2<π2n -2.答案:1+3(n -1)+3(n -1)2<π2n -27.(2016·日照模拟)对于实数x ,[x ]表示不超过x 的最大整数,观察下列等式: [ 1 ]+[ 2 ]+[ 3 ]=3,[ 4 ]+[ 5 ]+[ 6 ]+[7 ]+[8 ]=10,[9 ]+[10 ]+[11 ]+[12 ]+[13 ]+[14 ]+[15 ]=21, ……按照此规律第n 个等式的等号右边的结果为________.解析:因为[ 1 ]+[ 2 ]+[ 3 ]=1×3,[ 4 ]+[ 5 ]+[ 6 ]+[7 ]+[8 ]=2×5,[9 ]+[10 ]+[11 ]+[12]+[13 ]+[14 ]+[15 ]=3×7,……,以此类推,第n 个等式的等号右边的结果为n (2n +1),即2n 2+n .答案:2n 2+n8.如果函数f (x )在区间D 上是凸函数,那么对于区间D 内的任意x 1,x 2,…,x n ,都有f (x 1)+f (x 2)+…+f (x n )n ≤f⎝⎛⎭⎫x 1+x 2+…+x n n .若y =sin x 在区间(0,π)上是凸函数,那么在△ABC中,sin A +sin B +sin C 的最大值是________.解析:由题意知,凸函数满足f (x 1)+f (x 2)+…+f (x n )n ≤f ⎝ ⎛⎭⎪⎫x 1+x 2+…+x n n , 又y =sin x 在区间(0,π)上是凸函数,则sin A +sin B +sin C ≤3sin A +B +C 3=3sin π3=332.答案:332三、解答题9.定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{a n }是等和数列,且a 1=2,公和为5.求:(1)a 18的值;(2)该数列的前n 项和S n .解:(1)由等和数列的定义,数列{a n }是等和数列,且a 1=2,公和为5,易知a 2n -1=2,a 2n =3(n =1,2,…),故a 18=3.(2)当n 为偶数时, S n =a 1+a 2+…+a n=(a 1+a 3+…+a n -1)+(a 2+a 4+…+a n ) =2+2+…+2n 2个2+3+3+…+3n 2个3=52n ; 当n 为奇数时,S n =S n -1+a n =52(n -1)+2=52n -12.综上所述,S n=⎩⎨⎧52n ,n 为偶数,52n -12,n 为奇数.10.在Rt △ABC 中,AB ⊥AC ,AD ⊥BC 于D ,求证:1AD 2=1AB 2+1AC 2.在四面体ABCD中,类比上述结论,你能得到怎样的猜想?并说明理由.解:如图所示,由射影定理AD2=BD·DC,AB2=BD·BC,AC2=BC·DC,∴1AD2=1 BD·DC=BC2 BD·BC·DC·BC=BC2AB2·AC2.又BC2=AB2+AC2,∴1AD2=AB2+AC2AB2·AC2=1AB2+1AC2.猜想,在四面体ABCD中,AB、AC、AD两两垂直,AE⊥平面BCD,则1AE2=1AB2+1AC2+1AD2.证明:如图,连接BE并延长交CD于F,连接AF.∵AB⊥AC,AB⊥AD,∴AB⊥平面ACD.∵AF⊂平面ACD,∴AB⊥AF.在Rt△ABF中,AE⊥BF,∴1AE2=1AB2+1AF2.∵AB⊥平面ACD,∴AB⊥CD.∵AE⊥平面BCD,∴AE⊥CD.又AB与AE交于点A,∴CD⊥平面ABF,∴CD⊥AF.∴在Rt△ACD中1AF2=1AC2+1AD2,∴1AE2=1AB2+1AC2+1AD2.[冲击名校]1.(2016·太原模拟)某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天. 甲说:我在1日和3日都有值班; 乙说:我在8日和9日都有值班; 丙说:我们三人各自值班的日期之和相等. 据此可判断丙必定值班的日期是( ) A .2日和5日 B .5日和6日 C .6日和11日 D .2日和11日解析:选C 这12天的日期之和S 12=122(1+12)=78,甲、乙、丙各自的日期之和是26.对于甲,剩余2天日期之和22,因此这两天是10日和12日,故甲在1日,3日,10日,12日有值班;对于乙,剩余2天日期之和是9,可能是2日,7日,也可能是4日,5日,因此丙必定值班的日期是6日和11日.2.如图,将平面直角坐标系中的格点(横、纵坐标均为整数的点)按如下规则标上数字标签:原点处标0,点(1,0)处标1,点(1,-1)处标2,点(0,-1)处标3,点(-1,-1)处标4,点(-1,0)处标5,点(-1,1)处标6,点(0,1)处标7,依此类推,则标签为2 0132的格点的坐标为( )A .(1 006,1 005)B .(1 007,1 006)C .(1 008,1 007)D .(1 009,1 008)解析:选B 因为点(1,0)处标1=12,点(2,1)处标9=32,点(3,2)处标25=52,点(4,3)处标49=72,依此类推得点(1 007,1 006)处标2 0132.故选B.3.设函数f (x )=xx +2(x >0),观察: f 1(x )=f (x )=xx +2, f 2(x )=f (f 1(x ))=x3x +4,f 3(x )=f (f 2(x ))=x7x +8, f 4(x )=f (f 3(x ))=x15x +16,……根据以上事实,由归纳推理可得:当n ∈N *且n ≥2时,f n (x )=f (f n -1(x ))=________.解析:根据题意知,分子都是x ,分母中的常数项依次是2,4,8,16,…,可知f n (x )的分母中常数项为2n ,分母中x 的系数为2n -1,故f n (x )=f (f n -1(x ))=x(2n -1)x +2n.答案:x(2n-1)x +2n4.(2016·淄博模拟)如图所示的三角形数阵叫“莱布尼茨调和三角形”,它是由整数的倒数组成的,第n 行有n 个数且两端的数均为1n (n ≥2),每个数是它下一行左右相邻两数的和,如11=12+12,12=13+16,13=14+112,则第7行第4个数(从左往右)为________. 11 12 12 13 16 13 14 112 112 14 15 120 130 120 15 ……解析:设第n 行第m 个数为a (n ,m ),由题意知a (6,1)=16,a (7,1)=17,∴a (7,2)=a (6,1)-a (7,1)=16-17=142,a (6,2)=a (5,1)-a (6,1)=15-16=130,a (7,3)=a (6,2)-a (7,2)=130-142=1105,a (6,3)=a (5,2)-a (6,2)=120-130=160,∴a (7,4)=a (6,3)-a (7,3)=160-1105=1140.答案:11405.对于三次函数f (x )=ax 3+bx 2+cx +d (a ≠0),给出定义:设f ′(x )是函数y =f (x )的导数,f ″(x )是f ′(x )的导数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若f (x )=13x 3-12x 2+3x -512,请你根据这一发现,(1)求函数f (x )=13x 3-12x 2+3x -512的对称中心;(2)计算f ⎝⎛⎭⎫12 017+f ⎝⎛⎭⎫22 017+f ⎝⎛⎭⎫32 017+f ⎝⎛⎭⎫42 017+…+f ⎝⎛⎭⎫2 0162 017. 解:(1)f ′(x )=x 2-x +3,f ″(x )=2x -1, 由f ″(x )=0,即2x -1=0,解得x =12.f ⎝⎛⎭⎫12=13×⎝⎛⎭⎫123-12×⎝⎛⎭⎫122+3×12-512=1. 由题中给出的结论,可知函数f (x )=13x 3-12x 2+3x -512的对称中心为⎝⎛⎭⎫12,1. (2)由(1),知函数f (x )=13x 3-12x 2+3x -512的对称中心为⎝⎛⎭⎫12,1, 所以f ⎝⎛⎭⎫12+x +f ⎝⎛⎭⎫12-x =2,即f (x )+f (1-x )=2. 故f ⎝⎛⎭⎫12 017+f ⎝⎛⎭⎫2 0162 017=2, f ⎝⎛⎭⎫22 017+f ⎝⎛⎭⎫2 0152 017=2, f ⎝⎛⎭⎫32 017+f ⎝⎛⎭⎫2 0142 017=2, ……f ⎝⎛⎭⎫2 0162 017+f ⎝⎛⎭⎫12 017=2,所以f ⎝⎛⎭⎫12 017+f ⎝⎛⎭⎫22 017+f ⎝⎛⎭⎫32 017+…+f ⎝⎛⎭⎫2 0162 017=12×2×2 016=2 016. 第二节 直接证明与间接证明考纲要求:1.了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程和特点.2.了解反证法的思考过程和特点.1.直接证明 (1)综合法①定义:利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法.②框图表示:P⇒Q1―→Q1⇒Q2―→Q2⇒Q3―→…―→Q n⇒Q(P表示已知条件、已有的定义、定理、公理等,Q表示所要证明的结论).(2)分析法①定义:从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等),这种证明方法叫做分析法.②框图表示:Q⇐P1―→P1⇐P2―→P2⇐P3―→…―→得到一个明显成立的条件.2.间接证明反证法:假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.[自我查验]1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)综合法是直接证明,分析法是间接证明.()(2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.()(3)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.()(4)证明不等式2+7<3+6最合适的方法是分析法.()(5)用反证法证明结论“a>b”时,应假设“a<b”.()(6)反证法是指将结论和条件同时否定,推出矛盾.()答案:(1)×(2)×(3)√(4)√(5)×(6)×2.用分析法证明:欲使①A>B,只需②C<D,这里①是②的()A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件解析:选B由题意可知,应有②⇒①,故①是②的必要条件.3.用反证法证明“如果a>b,那么a3>b3”时假设的内容为________.答案:a3≤b3[典题1]对于定义域为[0,1]的函数f(x),如果同时满足:①对任意的x∈[0,1],总有f(x)≥0;②f(1)=1;③若x1≥0,x2≥0,x1+x2≤1,都有f(x1+x2)≥f(x1)+f(x2)成立,则称函数f(x)为理想函数.(1)若函数f(x)为理想函数,证明:f(0)=0;(2)试判断函数f(x)=2x(x∈[0,1]),f(x)=x2(x∈[0,1]),f(x)=x(x∈[0,1])是否是理想函数.[听前试做](1)证明:取x1=x2=0,则x1+x2=0≤1,∴f(0+0)≥f(0)+f(0),∴f(0)≤0.又对任意的x∈[0,1],总有f(x)≥0,∴f(0)≥0.于是f(0)=0.(2)对于f(x)=2x,x∈[0,1],f(1)=2不满足新定义中的条件②,∴f(x)=2x(x∈[0,1])不是理想函数.对于f(x)=x2,x∈[0,1],显然f(x)≥0,且f(1)=1.对任意的x1,x2∈[0,1],x1+x2≤1,有f(x1+x2)-f(x1)-f(x2)=(x1+x2)2-x21-x22=2x1x2≥0,即f(x1)+f(x2)≤f(x1+x2).∴f(x)=x2(x∈[0,1])是理想函数.对于f(x)=x,x∈[0,1],显然满足条件①②.对任意的x1,x2∈[0,1],x1+x2≤1,有f2(x1+x2)-[f(x1)+f(x2)]2=(x1+x2)-(x1+2x1x2+x2)=-2x1x2≤0,即f2(x1+x2)≤[f(x1)+f(x2)]2.∴f(x1+x2)≤f(x1)+f(x2),不满足条件③.∴f(x)=x(x∈[0,1])不是理想函数.综上,f(x)=x2(x∈[0,1])是理想函数,f(x)=2x(x∈[0,1])与f(x)=x(x∈[0,1])不是理想函数.用综合法证题是从已知条件出发,逐步推向结论,综合法的适用范围是:(1)定义明确的问题,如证明函数的单调性、奇偶性,求证无条件的等式或不等式;(2)已知条件明确,并且容易通过分析和应用条件逐步逼近结论的题型.设f (x )=ax 2+bx +c (a ≠0),若函数f (x +1)与f (x )的图象关于y 轴对称,求证:f ⎝⎛⎭⎫x +12为偶函数.证明:由函数f (x +1)与f (x )的图象关于y 轴对称,可知f (x +1)=f (-x ).将x 换成x -12代入上式可得f ⎝⎛⎭⎫x -12+1=f ⎣⎡⎦⎤-⎝⎛⎭⎫x -12,即f ⎝⎛⎭⎫x +12=f -x +12,由偶函数的定义可知f ⎝⎛⎭⎫x +12为偶函数.[典题2] 已知a >0,证明 a 2+1a 2-2≥a +1a-2.[听前试做] 要证 a 2+1a 2-2≥a +1a-2,只需证a 2+1a 2≥⎝⎛⎭⎫a +1a -(2-2). 因为a >0,所以⎝⎛⎭⎫a +1a -(2-2)>0, 所以只需证⎝⎛⎭⎫a 2+1a 22≥⎣⎡⎦⎤⎝⎛⎭⎫a +1a -(2-2)2, 即2(2-2)⎝⎛⎭⎫a +1a ≥8-42, 只需证a +1a≥2.因为a >0,a +1a ≥2显然成立当且仅当a =1a=1时等号成立,所以要证的不等式成立.(1)逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件.正确把握转化方向是使问题顺利获解的关键.(2)证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证.已知m >0,a ,b ∈R ,求证:⎝ ⎛⎭⎪⎫a +mb 1+m 2≤a 2+mb 21+m .证明:∵m >0,∴1+m >0.所以要证原不等式成立,只需证(a +mb )2≤(1+m )·(a 2+mb 2),即证m (a 2-2ab +b 2)≥0,即证(a -b )2≥0, 而(a -b )2≥0显然成立,故原不等式得证.反证法的应用是高考的常考内容,题型为解答题,难度适中,为中高档题,且主要有以下几个命题角度:角度一:证明否定性命题[典题3] 已知数列{a n }的前n 项和为S n ,且满足a n +S n =2. (1)求数列{a n }的通项公式;(2)求证:数列{a n }中不存在三项按原来顺序成等差数列. [听前试做] (1)当n =1时,a 1+S 1=2a 1=2,则a 1=1. 又a n +S n =2, 所以a n +1+S n +1=2, 两式相减得a n +1=12a n ,所以{a n }是首项为1,公比为12的等比数列,所以a n =12n -1.(2)证明:假设存在三项按原来顺序成等差数列,记为a p +1,a q +1,a r +1(p <q <r ,且p ,q ,r ∈N *),则2·12q =12p +12r ,所以2·2r -q =2r -p +1.(*) 又因为p <q <r , 所以r -q ,r -p ∈N *.所以(*)式左边是偶数,右边是奇数,等式不成立. 所以假设不成立,原命题得证.[解题模板] 用反证法证明问题的一般步骤角度二:证明存在性问题[典题4] 若f (x )的定义域为[a ,b ],值域为[a ,b ](a <b ),则称函数f (x )是[a ,b ]上的“四维光军”函数.(1)设g (x )=12x 2-x +32是[1,b ]上的“四维光军”函数,求常数b 的值;(2)是否存在常数a ,b (a >-2),使函数h (x )=1x +2是区间[a ,b ]上的“四维光军”函数?若存在,求出a ,b 的值;若不存在,请说明理由.[听前试做] (1)由已知得g (x )=12(x -1)2+1,其图象的对称轴为x =1,区间[1,b ]在对称轴的右边,所以函数在区间[1,b ]上单调递增.由“四维光军”函数的定义可知,g (1)=1,g (b )=b , 即12b 2-b +32=b ,解得b =1或b =3. 因为b >1,所以b =3.(2)假设函数h (x )=1x +2在区间[a ,b ](a >-2)上是“四维光军”函数,因为h (x )=1x +2在区间(-2,+∞)上单调递减,所以有⎩⎪⎨⎪⎧ h (a )=b ,h (b )=a ,即⎩⎪⎨⎪⎧1a +2=b ,1b +2=a ,解得a =b ,这与已知矛盾.故不存在.利用反证法进行证明时,一定要对所要证明的结论进行否定性的假设,并以此为条件进行归谬,得到矛盾,则原命题成立.角度三:证明唯一性命题[典题5]已知四棱锥S-ABCD中,底面是边长为1的正方形,又SB=SD=2,SA=1.(1)求证:SA⊥平面ABCD;(2)在棱SC上是否存在异于S,C的点F,使得BF∥平面SAD?若存在,确定F点的位置;若不存在,请说明理由.[听前试做](1)证明:由已知得SA2+AD2=SD2,∴SA⊥AD.同理SA⊥AB.又AB∩AD=A,∴SA⊥平面ABCD.(2)假设在棱SC上存在异于S,C的点F,使得BF∥平面SAD.∵BC∥AD,BC⊄平面SAD.∴BC∥平面SAD.而BC∩BF=B,∴平面FBC∥平面SAD.这与平面SBC和平面SAD有公共点S矛盾,∴假设不成立.故不存在这样的点F,使得BF∥平面SAD.当一个命题的结论是以“至多”“至少”“唯一”或以否定形式出现时,可用反证法来证,反证法关键是在正确的推理下得出矛盾,矛盾可以是与已知条件矛盾,与假设矛盾,与定义、公理、定理矛盾,与事实矛盾等.—————————————[课堂归纳——感悟提升]——————————————[方法技巧]分析法与综合法相辅相成,对较复杂的问题,常常先从结论进行分析,寻求结论与条件的关系,找到解题思路,再运用综合法证明;或两种方法交叉使用.[易错防范]1.用分析法证明时,要注意书写格式的规范性,常常用“要证(欲证)……”“即证……”“只需证……”等,逐步分析,直至一个明显成立的结论出现为止.2.利用反证法证明数学问题时,要假设结论错误,并用假设的命题进行推理,如果没有用假设命题推理而推出矛盾结果,其推理过程是错误的.[全盘巩固]一、选择题1.用反证法证明命题:“若a,b,c,d∈R,a+b=1,c+d=1,且ac+bd>1,则a,b,c,d中至少有一个负数”的假设为()A.a,b,c,d中至少有一个正数B.a,b,c,d全都为正数C.a,b,c,d全都为非负数D.a,b,c,d中至多有一个负数解析:选C用反证法证明命题时,应先假设结论的否定成立,而“a,b,c,d中至少有一个负数”的否定是“a,b,c,d全都为非负数”.2.若a,b,c是不全相等的正数,给出下列判断:①(a-b)2+(b-c)2+(c-a)2≠0;②a>b与a<b及a=b中至少有一个成立;③a≠c,b≠c,a≠b不能同时成立.其中判断正确的个数是()A.0B.1 C.2 D.3解析:选C由于a,b,c不全相等,则a-b,b-c,c-a中至少有一个不为0,故①正确;②显然成立;令a=2,b=3,c=5,满足a≠c,b≠c,a≠b,故③错.3.分析法又称执果索因法,若用分析法证明:“设a>b>c,且a+b+c=0,求证b2-ac <3a”索的因应是()A.a-b>0 B.a-c>0C.(a-b)(a-c)>0 D.(a-b)(a-c)<0解析:选C b2-ac<3a⇔b2-ac<3a2⇔(a+c)2-ac<3a2⇔a2+2ac+c2-ac-3a2<0⇔-2a 2+ac +c 2<0⇔2a 2-ac -c 2>0 ⇔(a -c )(2a +c )>0⇔(a -c )(a -b )>0.4.设a =3-2,b =6-5,c =7-6,则a 、b 、c 的大小顺序是( ) A .a >b >c B .b >c >a C .c >a >b D .a >c >b 解析:选A ∵a =3-2=13+2,b =6-5=16+5,c =7-6=17+6,且7+6>6+5>3+2>0, ∴a >b >c .5.已知函数f (x )=⎝⎛⎭⎫12x ,a ,b 为正实数,A =f ⎝⎛⎭⎫a +b 2,B =f (ab ),C =f ⎝⎛⎭⎫2ab a +b ,则A ,B ,C 的大小关系为( )A .A ≤B ≤C B .A ≤C ≤B C .B ≤C ≤AD .C ≤B ≤A解析:选A 因为a +b 2≥ab ≥2aba +b,又f (x )=⎝⎛⎭⎫12x 在R 上是单调减函数,故f ⎝ ⎛⎭⎪⎫a +b 2≤f (ab )≤f ⎝ ⎛⎭⎪⎫2ab a +b .二、填空题6.用反证法证明命题“a ,b ∈R ,ab 可以被5整除,那么a ,b 中至少有一个能被5整除”,那么假设的内容是________.解析:“至少有n 个”的否定是“最多有n -1个”,故应假设a ,b 中没有一个能被5整除.答案:a ,b 中没有一个能被5整除7.已知点A n (n ,a n )为函数y =x 2+1图象上的点,B n (n ,b n )为函数y =x 图象上的点,其中n ∈N *,设c n =a n -b n ,则c n 与c n +1的大小关系为________.解析:由条件得c n =a n -b n =n 2+1-n =1n 2+1+n,∴c n 随n 的增大而减小,∴c n +1<c n . 答案:c n +1<c n8.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,在区间[-1,1]内至少存在一点c ,使f (c )>0,则实数p 的取值范围是________.解析:法一:(补集法)令⎩⎪⎨⎪⎧f (-1)=-2p 2+p +1≤0,f (1)=-2p 2-3p +9≤0,解得p ≤-3或p ≥32,故满足条件的p 的范围为⎝⎛⎭⎫-3,32. 法二:(直接法)依题意有f (-1)>0或f (1)>0, 即2p 2-p -1<0或2p 2+3p -9<0, 得-12<p <1或-3<p <32,故满足条件的p 的取值范围是⎝⎛⎭⎫-3,32. 答案:⎝⎛⎭⎫-3,32 三、解答题9.若a >b >c >d >0且a +d =b +c , 求证:d +a <b +c . 证明:要证d +a <b +c , 只需证(d +a )2<(b +c )2, 即证a +d +2ad <b +c +2bc ,因为a +d =b +c ,所以只需证ad <bc ,即证ad <bc , 设a +d =b +c =t ,则ad -bc =(t -d )d -(t -c )c =(c -d )(c +d -t )<0, 故ad <bc 成立,从而d +a <b +c 成立.10.已知a 1+a 2+a 3+a 4>100,求证:a 1,a 2,a 3,a 4中至少有一个数大于25.证明:假设a 1,a 2,a 3,a 4均不大于25,即a 1≤25,a 2≤25,a 3≤25,a 4≤25,则a 1+a 2+a 3+a 4≤25+25+25+25=100,这与已知a 1+a 2+a 3+a 4>100矛盾,故假设错误.所以a 1,a 2,a 3,a 4中至少有一个数大于25.[冲击名校]1.等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2.(1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S nn(n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.解:(1)由已知得⎩⎪⎨⎪⎧a 1=2+1,3a 1+3d =9+32,所以d =2,故a n =2n -1+2,S n =n (n +2).(2)证明:由(1),得b n =S nn =n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r 互不相等)成等比数列,则b 2q =b p b r ,即(q +2)2=(p +2)(r +2),所以(q 2-pr )+2(2q -p -r )=0.因为p ,q ,r ∈N *,所以⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0,所以⎝⎛⎭⎪⎫p +r 22=pr ,(p -r )2=0. 所以p =r ,这与p ≠r 矛盾,所以数列{b n }中任意不同的三项都不可能成为等比数列. 2.已知函数f (x )=tan x ,x ∈⎝⎛⎭⎫0,π2,若x 1,x 2∈⎝⎛⎭⎫0,π2,且x 1≠x 2,求证:12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22.证明:要证12[f (x 1)+f (x 2)]>f ⎝ ⎛⎭⎪⎫x 1+x 22, 即证明12(tan x 1+tan x 2)>tan x 1+x 22,只需证明12⎝⎛⎭⎫sin x 1cos x 1+sin x 2cos x 2>tan x 1+x 22,只需证明sin (x 1+x 2)2cos x 1cos x 2>sin (x 1+x 2)1+cos (x 1+x 2).由于x 1,x 2∈⎝⎛⎭⎫0,π2, 故x 1+x 2∈(0,π).∴cos x 1cos x 2>0,sin(x 1+x 2)>0,1+cos(x 1+x 2)>0,故只需证明1+cos(x 1+x 2)>2cos x 1cos x 2, 即证1+cos x 1cos x 2-sin x 1sin x 2>2cos x 1cos x 2, 即证cos(x 1-x 2)<1.由x 1,x 2∈⎝⎛⎭⎫0,π2,x 1≠x 2知上式显然成立, 因此12[f (x 1)+f (x 2)]>f ⎝ ⎛⎭⎪⎫x 1+x 22. 第三节 算法与程序框图考纲要求:1.了解算法的含义,了解算法的思想.2.理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构.3.理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义.1.算法的含义与程序框图(1)算法:算法是指按照一定规则解决某一类问题的明确和有限的步骤.(2)程序框图:程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.(3)程序框图中图形符号的含义:(1)顺序结构描述的是最简单的算法结构,语句与语句之间,框与框之间按从上到下的顺序进行.(2)条件分支结构,它是依据指定条件选择执行不同指令的控制结构.(3)根据指定条件决定是否重复执行一条或多条指令的控制结构称为循环结构.3.(人教B)赋值、输入和输出语句(1)赋值语句①概念:用来表明赋给某一个变量一个具体确定值的语句.②一般格式:变量名=表达式.③作用:先计算出赋值号右边表达式的值,然后把该值赋给赋值号左边的变量,使该变量的值等于表达式的值.(2)输入语句①概念:用来控制输入相应数值的语句. ②作用:把程序和初始数据分开. (3)输出语句①概念:用来控制把求解的结果在屏幕上显示(或打印)的语句. ②作用:把求解结果输出出来.[自我查验]1.判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)算法的每一步都有确定的意义,且可以无限地运算.( )(2)一个程序框图一定包含顺序结构,也包含条件结构(选择结构)和循环结构.( ) (3)一个循环结构一定包含条件结构.( )(4)当型循环是给定条件不成立时,执行循环体,反复进行,直到条件成立为止.( ) 答案:(1)× (2)× (3)√ (4)×2.阅读如图的程序框图,若输入x =2,则输出的y 值为________.解析:∵2>0,∴y =2×2-3=1. 答案:13.如图所示,程序框图(算法流程图)的输出结果为________.解析:第一次循环后:s =0+12,n =4;第二次循环后:s =0+12+14,n =6;第三次循环后:s =0+12+14+16,n =8,跳出循环,输出s =0+12+14+16=1112.答案:1112。
单元检测十二算法初步、推理与证明、复数(时间:120分钟满分:150分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2011安徽高考,文1)设i是虚数单位,复数为纯虚数,则实数a为( ).A.2B.-2C.-D.2.函数f(x)=(1+tan 2x)cos 2x的最小正周期为( ).A.2πB.C.πD.3.集合A={(x,y)|x2+y2=2},B={(x,y)|x+y≤2},设p:x∈A,q:x∈B,则p是q的( ).A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件4.如图是“2011年全国计算机程序设计大赛”中某电脑程序设计人员未完成的程序设计框图.设当箭头a指向①时,输出的结果为s=m,当箭头a指向②时,输出的结果为s=n,则m+n=( ).A.30B.20C.15D.55.观察下图中图形的规律,在其右下角的空格内画上合适的图形为( ).6.下面程序运行的结果是( ).i=1 S=0 WHILE i<=100S=S+i i=i+1 WEND PRINT S ENDA.5 050B.5 049C.3D.27.下列推理是归纳推理的是( ).A.A,B 为定点,动点P 满足|PA|+|PB|=2a>|AB|,得动点P 的轨迹为椭圆B.由a 1=1,a n =3n-1,求出S 1,S 2,S 3,猜想出数列的前n 项和S n 的表达式C.由圆x 2+y 2=r 2的面积为πr 2,猜出椭圆+=1(a>b>0)的面积S=πabD.科学家利用鱼的沉浮原理制造潜艇8.定义运算=ad-bc,则符合条件=0的复数z 的共轭复数所对应的点在( ). A.第一象限 B.第二象限 C.第三象限D.第四象限9.如图,程序框图的输出结果为170,那么在判断框中①表示的“条件”应该是( ). A.i>5 B.i≥7 C.i≥9 D.i>910.(2011山东高考,理12)设A 1,A 2,A 3,A 4是平面直角坐标系中两两不同的四点,若=λ(λ∈R),=μ(μ∈R),且+=2,则称A 3,A 4调和分割A 1,A 2.已知平面上的点C,D 调和分割点A,B,则下面说法正确的是( ). A.C 可能是线段AB 的中点 B.D 可能是线段AB 的中点C.C,D可能同时在线段AB上D.C,D不可能同时在线段AB的延长线上二、填空题(本大题共5小题,每小题5分,共25分)11.在数列{an }中,a1=0,an+1=2an+2,则猜想an= .12.定义某种运算⊗,S=a⊗b的运算原理如图所示.则0⊗(-1)= ;设f(x)=(0⊗x)x-(2⊗x),则f(1)= .13.将正整数12分解成两个正整数的乘积有1×12,2×6,3×4三种,其中3×4是这三种分解中,两数差的绝对值最小的,我们称3×4为12的最佳分解.当p×q(p≤q且p,q∈N*)是正整数n的最佳分解时,我们规定函数f(n)=,例如f(12)=.关于函数f(n)有下列叙述:①f(7)=;②f(24)=;③f(28)=;④f(144)=.其中正确的序号为(填入所有正确的序号).14.对于命题:若O是线段AB上一点,则有||+||=0.将它类比到平面的情形是:若O是△ABC内一点,则有S△OBC +S△OCA+S△OBA=0.将它类比到空间的情形应该是:若O是四面体ABCD内一点,则有.15.在计算“++…+(n∈N*)”时,某同学学到了如下一种方法:先改写第k项:=-,由此得=-,=-,…,=-,将上述各式相加,得++…+=1-.类比上述方法,请计算“++…+(n∈N*)”,其结果为.三、解答题(本大题共6小题,共75分)16.(10分)已知集合A={1,2,(a2-3a-1)+(a2-5a-6)i}(其中i是虚数单位),集合B={-1,3},A∩B={3}.求实数a的值.17.(12分)已知函数f(x)=写出求该函数的函数值的算法,并画出程序框图.18.(12分)已知α,β≠kπ+(k∈Z),且sin θ+cos θ=2sin α,①sin θcos θ=sin2β,②求证:=.19.(13分)已知函数f(x)=kx+b的图象与x,y轴分别相交于点A,B,=2i+2j(i,j分别是与x,y轴正半轴同方向的单位向量),函数g(x)=x2-x-6.(1)求k,b的值;(2)当x满足f(x)>g(x)时,求函数的最小值.20.(14分)已知a,b,c是互不相等的实数,且都不为零.求证:由y=ax2+2bx+c,y=bx2+2cx+a和y=cx2+2ax+b确定的三条抛物线至少有一条与x轴有两个不同的交点.21.(14分)如图,梯形ABCD和正△PAB所在平面互相垂直,其中AB∥DC,AD=CD=AB,且O为AB中点.(1)求证:BC∥平面POD;(2)求证:AC⊥PD.参考答案一、选择题1.A 解析:===+i为纯虚数,∴=0,∴a=2.2.C 解析:∵f(x)=(1+tan 2x)·cos 2x=cos 2x+sin 2x=2cos,∴函数f(x)的最小正周期为=π.3.B4.B 解析:(1)当箭头a指向①时,执行循环体得s和i的结果如下:s 0+1 0+2 0+3 0+4 0+5i 2 3 4 5 6所以s=m=5.(2)当箭头a指向②时,执行循环体得s和i的结果如下:s 0+1 0+1+2 0+1+2+3 0+1+2+3+4 0+1+2+3+4+5i 2 3 4 5 6所以s=n=1+2+3+4+5=15,所以m+n=20,故选B.5.A 解析:表格中的图形都是矩形、圆、正三角形的不同排列,规律是每一行中只有一个图形是空心的,其他两个都是填充颜色的,第三行中已经有正三角形是空心的了,因此另外一个应该是阴影矩形.6.A 解析:读程序知,该程序的功能是求S=1+2+3+…+100的值,由等差数列的求和公式S==5 050.7.B 解析:从S1,S2,S3猜想出数列的前n项和Sn的表达式,是从特殊到一般的推理,所以B是归纳推理.8.A 解析:由已知得z(1+i)-(1+2i)·(1-i)=0,∴z==(1+2i)(-i)=2-i.∴=2+i,即对应的点(2,1)在第一象限.9.C 解析:依次运行程序可得当S=2时,i=3;S=10时,i=5,…;S=170时,i=9,故判断框内可填入i≥9.10.D 解析:∵C,D调和分割点A,B,∴=λ,=μ,且+=2(*),不妨设A(0,0),B(1,0),则C(λ,0),D(μ,0),对A,若C为AB的中点,则=,即λ=,将其代入(*)式,得=0,这是无意义的,故A错误;对B,若D为AB的中点,则μ=,同理得=0,故B错误;对C,要使C,D同时在线段AB上,则0<λ<1且0<μ<1,∴>1,>1,∴+>2,这与+=2矛盾;故C错误;显然D正确.二、填空题11.2n-2 解析:∵a1=0=21-2,∴a2=2a1+2=2=22-2,a 3=2a2+2=4+2=6=23-2,a 4=2a3+2=12+2=14=24-2,……猜想an=2n-2.12.1 -1 解析:根据框图可知0⊗(-1)=|-1|=1;f(x)=(0⊗x)x-(2⊗x)⇒f(1)=(0⊗1)-(2⊗1)=0-1=-1.13.①③解析:因为7=1×7,所以f(7)=,①正确;24=3×8=4×6=2×12,最佳分解应该是4×6,所以f(24)==,所以②错误;同理③正确;对于④,144=12×12,所以f(144)==1.14.VO-BCD +VO-ACD+VO-ABD+VO-ABC=0 解析:由线段到平面,线段的长类比为面积,由平面到空间,面积可以类比为体积,由此可以类比得一命题为O是四面体ABCD内一点,则有VO-BCD +VO-ACD+VO-ABD+VO-ABC=0.15.解析:∵=,∴++…+===.三、解答题16.解:∵A∩B={3},∴3∈A.∴(a2-3a-1)+(a2-5a-6)i=3.根据复数相等,得解得a=-1.17.解:算法如下:第一步,输入x.第二步,如果x<0,那么f(x)=3x-1; 否则f(x)=2-5x.第三步,输出函数值f(x).程序框图如下:18.证明:因为(sin θ+cos θ)2-2sin θ·cos θ=1,所以将①②代入,可得4sin2α-2sin2β=1.③另一方面,要证=,即证=,即证cos2α-sin2α=(cos2β-sin2β),即证1-2sin2α=(1-2sin2β),即证4sin2α-2sin2β=1.由于上式与③相同,于是问题得证.19.解:(1)由已知得k≠0,A,B(0,b),则=(,b),于是∴(2)由f(x)>g(x),得x+2>x2-x-6,即(x+2)(x-4)<0,得-2<x<4.==x+2+-5,由于x+2>0,则≥-3,其中等号当且仅当x+2=1,即x=-1时成立.∴的最小值是-3.20.证明:假设题设中的函数确定的三条抛物线都不与x轴有两个不同的交点(即任何一条抛物=(2b)2-4ac≤0,线与x轴没有两个不同的交点),由y=ax2+2bx+c,y=bx2+2cx+a,y=cx2+2ax+b,得Δ1Δ2=(2c)2-4ab≤0,Δ3=(2a)2-4bc≤0.上述三个同向不等式相加得,4b2+4c2+4a2-4ac-4ab-4bc≤0,∴2a2+2b2+2c2-2ab-2bc-2ac≤0.∴(a-b)2+(b-c)2+(c-a)2≤0.∴a=b=c,这与题设a,b,c互不相等矛盾,因此假设不成立,从而命题得证.21.证明:(1)因为O为AB中点,所以BO=AB.又AB∥CD,CD=AB,所以有CD=BO,CD∥BO,所以ODCB为平行四边形,所以BC∥OD.又DO⊂平面POD,BC⊄平面POD,所以BC∥平面POD.(2)连接OC.因为CD=BO=AO,CD∥AO,所以ADCO为平行四边形,又AD=CD,所以ADCO为菱形,所以AC⊥DO,因为在正△PAB中,O为AB中点,所以PO⊥AB.又因为平面ABCD⊥平面PAB,平面ABCD∩平面PAB=AB,所以PO⊥平面ABCD,而AC⊂平面ABCD,所以PO⊥AC.又PO∩DO=O,所以AC⊥平面POD.又PD⊂平面POD,所以AC⊥PD.。