数学家欧拉的简介
- 格式:docx
- 大小:37.07 KB
- 文档页数:1
欧拉——数学家欧拉是数学史上最伟大的数学家之一。
他的成就之大,可以从18世纪到21世纪的所有领域中找到。
他是欧洲文化的一个象征,被誉为数学界的顶峰。
欧拉于1707年4月15日在瑞士的巴塞尔出生。
他的父亲在瑞士军队中任职,是一个数学爱好者。
欧拉从小就表现出了卓越的数学才能和创造力,父亲便开始亲自教导他数学。
在接下来的一段时间里,欧拉为数学痴迷,甚至用自己的衣服做图表演算式子。
随着年龄的增长,欧拉放弃了自己最初的兴趣:音乐,全心投入到了数学中。
在欧拉未满二十岁时,他已经开创出了自己的独特之路。
他在数学界的第一个大成就是解决了所谓的“无穷级数”的和的问题,这个问题当时一度被认为是不可能解决的。
欧拉的方法并不是直接求出这个和,而是运用了一种叫做“绝对收敛”的概念,对级数进行了转换。
借助这种技巧,欧拉不仅解决了当时的问题,而且铸下了他的天才声望。
此后,欧拉开创了独特的研究方式,用解析方法解释几何中的问题,这种方法后来演化成了分析学。
欧拉的贡献不仅仅在于开拓了数学的新领域,更在于他的发明创造。
人们常常忽略欧拉的发明——它们不仅在数学上具有重要意义,更对我们的日常生活产生了深远的影响。
欧拉发明的东西包括计算器上的逆函数,也就是用于计算指数函数的自然对数;还有欧拉数——它用于分析多项式进一步的因子分解,这很典型地体现了欧拉精湛的分析学技法;还有欧拉心脏线——一种充满诗意且复杂的图形。
欧拉的数学工作是有系统意义的,他不仅崇尚证明,而且非常理性,注重思辨和表达。
他的数学著作共享有大约900个,不仅涉及整个数学领域,还涉足物理学和工程学等其他领域。
欧拉的成就包括:建立微积分学的微分方程学派;在群论和图论领域逐渐研究并制定出一种特殊的记数法;为多项式理论作出贡献;在几何领域开创了一种新的微积分学方法,即微分几何学;发现了欧拉方程;利用三角函数的级数证明了“欧拉公式”,即含自然对数和音数的最为美丽而又典雅的数学方程。
欧拉对物理学家学习微积分学的重要性有着深刻的认识,甚至开创了向微积分学专业领域发展的道路。
天才数学家欧拉(Leonhard Euler 公元1707-1783年)欧拉1707年出生在瑞士的巴塞尔(Basel)城,13岁就进巴塞尔大学读书,得到当时最有名的数学家约翰·伯努利(Johann Bernoulli,1667-1748年)的精心指导.欧拉渊博的知识,无穷无尽的创作精力和空前丰富的著作,都是令人惊叹不已的!他从19岁开始发表论文,直到76岁,半个多世纪写下了浩如烟海的书籍和论文.到今几乎每一个数学领域都可以看到欧拉的名字,从初等几何的欧拉线,多面体的欧拉定理,立体解析几何的欧拉变换公式,四次方程的欧拉解法到数论中的欧拉函数,微分方程的欧拉方程,级数论的欧拉常数,变分学的欧拉方程,复变函数的欧拉公式等等,数也数不清.他对数学分析的贡献更独具匠心,《无穷小分析引论》一书便是他划时代的代表作,当时数学家们称他为"分析学的化身".欧拉是科学史上最多产的一位杰出的数学家,据统计他那不倦的一生,共写下了886本书籍和论文,其中分析、代数、数论占40%,几何占18%,物理和力学占28%,天文学占11%,弹道学、航海学、建筑学等占3%,彼得堡科学院为了整理他的著作,足足忙碌了四十七年.欧拉著作的惊人多产并不是偶然的,他可以在任何不良的环境中工作,他常常抱着孩子在膝上完成论文,也不顾孩子在旁边喧哗.他那顽强的毅力和孜孜不倦的治学精神,使他在双目失明以后,也没有停止对数学的研究,在失明后的17年间,他还口述了几本书和400篇左右的论文.19世纪伟大数学家高斯(G auss,1777-1855年)曾说:"研究欧拉的著作永远是了解数学的最好方法."欧拉的父亲保罗·欧拉(Paul Euler)也是一个数学家,原希望小欧拉学神学,同时教他一点教学.由于小欧拉的才人和异常勤奋的精神,又受到约翰·伯努利的赏识和特殊指导,当他在19岁时写了一篇关于船桅的论文,获得巴黎科学院的奖的奖金后,他的父亲就不再反对他攻读数学了.1725年约翰·伯努利的儿子丹尼尔·伯努利赴俄国,并向沙皇喀德林一世推荐了欧拉,这样,在1727年5月17日欧拉来到了彼得堡.1733年,年仅26岁的欧拉担任了彼得堡科学院数学教授.1735年,欧拉解决了一个天文学的难题(计算慧星轨道),这个问题经几个著名数学家几个月的努力才得到解决,而欧拉却用自己发明的方法,三天便完成了.然而过度的工作使他得了眼病,并且不幸右眼失明了,这时他才28岁.1741年欧拉应普鲁士彼德烈大帝的邀请,到柏林担任科学院物理数学所所长,直到1766年,后来在沙皇喀德林二世的诚恳敦聘下重回彼得堡,不料没有多久,左眼视力衰退,最后完全失明.不幸的事情接踵而来,1771年彼得堡的大火灾殃及欧拉住宅,带病而失明的64岁的欧拉被围困在大火中,虽然他被别人从火海中救了出来,但他的书房和大量研究成果全部化为灰烬了.沉重的打击,仍然没有使欧拉倒下,他发誓要把损失夺回来.在他完全失明之前,还能朦胧地看见东西,他抓紧这最后的时刻,在一块大黑板上疾书他发现的公式,然后口述其内容,由他的学生特别是大儿子A·欧拉(数学家和物理学家)笔录.欧拉完全失明以后,仍然以惊人的毅力与黑暗搏斗,凭着记忆和心算进行研究,直到逝世,竟达17年之久.欧拉的记忆力和心算能力是罕见的,他能够复述年青时代笔记的内容,心算并不限于简单的运算,高等数学一样可以用心算去完成.有一个例子足以说明他的本领,欧拉的两个学生把一个复杂的收敛级数的17项加起来,算到第50位数字,两人相差一个单位,欧拉为了确定究竟谁对,用心算进行全部运算,最后把错误找了出来.欧拉在失明的17年中;还解决了使牛顿头痛的月离问题和很多复杂的分析问题.欧拉的风格是很高的,拉格朗日是稍后于欧拉的大数学家,从19岁起和欧拉通信,讨论等周问题的一般解法,这引起变分法的诞生.等周问题是欧拉多年来苦心考虑的问题,拉格朗日的解法,博得欧拉的热烈赞扬,1759年10月2日欧拉在回信中盛称拉格朗日的成就,并谦虚地压下自己在这方面较不成熟的作品暂不发表,使年青的拉格朗日的工作得以发表和流传,并赢得巨大的声誉.他晚年的时候,欧洲所有的数学家都把他当作老师,著名数学家拉普拉斯(Laplace)曾说过:"欧拉是我们的导师." 欧拉充沛的精力保持到最后一刻,1783年9月1 8日下午,欧拉为了庆祝他计算气球上升定律的成功,请朋友们吃饭,那时天王星刚发现不久,欧拉写出了计算天王星轨道的要领,还和他的孙子逗笑,喝完茶后,突然疾病发作,烟斗从手中落下,口里喃喃地说:"我死了",欧拉终于"停止了生命和计算".欧拉的一生,是为数学发展而奋斗的一生,他那杰出的智慧,顽强的毅力,孜孜不倦的奋斗精神和高尚的科学道德,永远是值得我们学习的.欧拉在数学上的建树很多,对著名的哥尼斯堡七桥问题的解答开创了图论的研究。
[数学家欧拉简介]数学家欧拉名人故事欧拉(L.Euler,1707.4.15-1783.9.18)是瑞士数学家。
生于瑞士的巴塞尔(Basel),卒于彼得堡(Petepbypt)。
父亲保罗·欧拉是位牧师,喜欢数学,所以欧拉从小就受到这方面的熏陶。
但父亲却执意让他攻读神学,以便将来接他的班。
幸运的是,欧拉并没有走父亲为他安排的路。
父亲曾在巴塞尔大学上过学,与当时著名数学家约翰·伯努利(JohannBernoulli,1667.8.6-1748.1.1)及雅各布·伯努利(JacobBernoulli,1654.12.27-1705.8.16)有几分情谊。
由于这种关系,欧拉结识了约翰的两个儿子:擅长数学的尼古拉(NicolausBernoulli,1695-1726)及丹尼尔(DanielBernoulli,1700.2.9-1782.3.17)兄弟二人,(这二人后来都成为数学家)。
他俩经常给小欧拉讲生动的数学故事和有趣的数学知识。
这些都使欧拉受益匪浅。
1720年,由约翰保举,才13岁的欧拉成了巴塞尔大学的学生,而且约翰精心培育着聪明伶俐的欧拉。
当约翰发现课堂上的知识已满足不了欧拉的求知欲望时,就决定每周六下午单独给他辅导、答题和授课。
约翰的心血没有白费,在他的严格训练下,欧拉终于成长起来。
他17岁的时候,成为巴塞尔有史以来的第一个年轻的硕士,并成为约翰的助手。
在约翰的指导下,欧拉从一开始就选择通过解决实际问题进行数学研究的道路。
1726年,19岁的欧拉由于撰写了《论桅杆配置的船舶问题》而荣获巴黎科学院的资金。
这标志着欧拉的羽毛已丰满,从此可以展翅飞翔。
欧拉的成长与他这段历史是分不开的。
当然,欧拉的成才还有另一个重要的因素,就是他那惊人的记忆力!,他能背诵前一百个质数的前十次幂,能背诵罗马诗人维吉尔(Virgil)的史诗Aeneil,能背诵全部的数学公式。
直至晚年,他还能复述年轻时的笔记的全部内容。
双目失明的数学家:欧拉
双目失明的数学家:欧拉
双目失明的数学家:欧拉由数学网小编收集整理:
双目失明的数学家:欧拉
欧拉1707年4月15日生于瑞士的巴塞尔。
父亲是一位乡村穷牧师,一心想让聪颖的欧拉学习神学,以承父业。
因此,父亲从小就让儿子读圣经,作祷告,对儿子进行严格的宗教教育。
而欧拉最喜爱的是数学,为了不使父亲伤心,小欧拉常常等到父亲熟睡后,再偷偷地起来做数学题,或者在数学书外面套一张圣经的书皮,以逃避父亲的注意。
父命难违。
1720年,13岁的欧拉还是按照父亲的意愿,考入了瑞士的一所名牌大学——巴塞尔大学学神学。
当时,享誉世界的数学家、物理学家约翰•贝努里(1667——1748)正在校执教。
他除了讲授数学基础课外,还给少数高材生个别授课。
约翰旁征博引、生动风趣、极富魅力的数学讲座,吸引了许多外系学生来旁听。
欧拉是约翰教授的最忠实的听众,总是早早地坐在最前一排,闪烁着一双天真无邪的大眼睛,聚精会神地听讲。
在约翰教授的影响下,欧拉对数学的兴趣与日俱增。
慧眼识才。
毕竟,欧拉当时只是一个13岁的孩子,个子比一般学生矮一头,大学生们谁也没有把他放在眼里,更没有引起约翰教授的注意。
有一次,约翰在讲课时,无意中提到一个当时数学家还没有解决的难题。
没有想到,这个瘦小
决定。
” 父亲被打动了。
欧拉当了约翰的助手。
从此,欧拉和数学终身相伴。
【名人故事】数学界的莎士比亚――欧拉在整个数学史上,有许许多多杰出的数学家,但要说到最伟大的数学家,恐怕非欧拉莫属。
欧拉被誉为数学界的莎士比亚,他对数学的贡献不仅是惊人的,而且涉猎的领域之广泛,数学界的历史不可一世。
今天,就让我们来谈谈这位数学界的巨星,他的故事让我们瞩目不已。
欧拉(Leonhard Euler,1707-1783),是瑞士数学家与物理学家。
在十八世纪,他是欧洲最伟大的数学家,是数学史上著名的伟大数学家之一。
他是十八世纪数学界最重要的人物之一。
他在分析数学和应用数学领域成就卓越,是数学和物理学的伟大创新者之一。
生在瑞士的巴塞尔,欧拉体弱多病,初中时候视力就开始衰退,并一直到他27岁时全然失明。
失明并没有令他的数学之路变得模糊。
他利用大部分的时间去记住各种运算,并有意练习头脑计算,直至记得了三角函数、对数函数和圆周率的各种小数分数,这使他在数学上的精力很不浪费。
人们说:“除了教皇不以外,欧拉是17世纪数学家中最忙碌,也最有天赋的。
”欧拉曾经对运算能力说:“我记得我求得圆周率小数前六十五位”的方法,可见他的头脑计算之大-得份外的细?。
值得一提的是,欧拉是17世纪数学家中最能记住,并能计算的数学家之一。
欧拉有一双灵活而高超的手脚,使他能够只手便能把一根3尺长的棒立在他头上。
他善门使用一只手来解决大量的问题,这需要一种难以置信的均衡动作的装备。
欧拉对数学的热爱始于他小时候。
他读了一本关于数学的书后,对这个学科产生了浓厚的兴趣。
他毕生搜集了大量的数学首脑,嗣后,把自己的大部分时间都献给了数学。
除了数学之外,他还涉猎过法国文学,这使得他在写作上的造诣也不在话下。
他也有非凡的记忆力、超凡的耐心和极强的逻辑思维能力。
在一篇关于数学的论文中,提高了柯西的公式,也就提出了著名的“欧拉数”挤出。
(Euler's Number)欧拉数是个极小的数,但它的应用大得不得了。
欧拉数与e是无理数,它等于 2.7…,然而却有无穷多位的小数部分。
数学家欧拉的介绍欧拉(Leonhard Euler)是18世纪最伟大的数学家之一,也是数学史上最重要的数学家之一、他对数学的贡献非常广泛,包括解析几何、微积分和图论等不同领域。
欧拉的大部分研究都是在数学的基础理论方面进行的,他对数学的发展与推进产生了深远影响。
在本文中,我将介绍欧拉的生平以及他在数学领域的贡献。
欧拉于1707年4月15日出生在瑞士巴塞尔的一个牧师家庭。
在他还很小的时候,他的父亲就开始给他上课,并教他拉丁语和数学。
他显示出了对数学的特别天赋,他开始研究数学书籍,并且很快就超过了他的父亲的数学知识。
在数学方面,欧拉最早的成就是解决了著名的著名的半径为n的球上放置8个正六边形的问题。
这个问题也成为了欧拉螺旋线的起源。
此外,欧拉还发表了一篇关于音乐和数学的论文,这是他对两个领域的结合的第一个尝试。
这篇论文使得欧拉被聘为圣彼得堡科学院的成员,开始了他的科学生涯。
此外,欧拉对解析几何和微积分的发展也做出了巨大的贡献。
他发展了一种新的记号系统,称为欧拉记号,使得数学符号更加简化和统一、这个记号系统被广泛使用,直到今天仍然是解析几何和微积分的基础。
欧拉在数论和代数方面的贡献也非常重要。
他提出了欧拉函数,可以用来计算整数的素数因子个数。
他还研究了二次剩余和二次互反律等领域,这些都对数论的发展产生了深远影响。
在代数方面,欧拉研究了对称函数和代数方程等问题,并开创了抽象代数的研究。
欧拉也是图论的创始人之一、他在研究柯尼斯堡七桥问题时,发展了图论的基本概念和方法。
他提出了欧拉图和欧拉回路的概念,并证明了柯尼斯堡七桥问题没有解。
这个问题的解决不仅对图论的发展具有重要意义,也对现代网络的设计和优化具有实际应用价值。
总的来说,欧拉是一位多产的数学家,他在多个领域都做出了重要的贡献。
他的工作不仅推动了数学理论的发展,还给后人留下了深远的影响。
他的数学成就和方法为后代的数学家提供了极大的启示和指导。
欧拉被公认为数学史上最伟大的数学家之一,他的贡献使数学的发展迈上了一个新的台阶。
数学家欧拉的简介
《欧拉》(1707–1783),又名爱德华·欧拉,是18世纪几何学、数学和物理学发
展史上空前绝后的杰出人物,也是理性批判和科学发展史上最杰出的伟大思想家之一。
他
最著名的成就是完成了数学世界里更伟大的工作,这条工作被称为欧拉公式:π = 2a +
d log(c sin b)。
欧拉是一个德国人,出生于一个中层知识分子家庭,他的父亲是一名教士。
他一生都
奉献于数学和物理学的研究,并不断探索和思考。
欧拉在学业上表现优良,15岁时就被入读马克斯·普朗克大学,六年后他获得学士学位和博士学位。
欧拉在1730年至1750年期间,以几何学为基础,使得他在不同领域的研究内容相融合,发现了几何学、数学和微积分的联系。
他的拿破仑定理于1736年演示后,成为一项
全新的几何发现,也是一个重要的科学里程碑。
1740年,欧拉发表了他的首个计算结果,提出求取条件下固定频率的椭圆调和线的方法。
欧拉的几何学研究使他俱有了杰出的成就,其中包括圆形几何学及空间几何学方面。
他还提出了很多关于此领域的重要概念,包括:欧拉几何、欧拉空间、欧拉图等。
值得一提的是,欧拉还开创了一个新应用领域,即系统地使用数学分析来研究物理学
及其他科学领域,建立了第一个数学物理学的典范——欧拉法则。
他的这一发现以及改革,对许多其他科学发展领域都产生了深远而重大的影响。
欧拉与众多伟大的科学家一样,是他一生研究激情的代表,历史的见证者和一生探究
真理惯性的催化剂。
他的学术论文和理论著作更是影响了数学、物理学以及其它学科的发展。
欧拉曾说过“没有数学,我们就不能敢于努力探索真理。
”欧拉的理论和思想在当今
也仍然具有重要意义。