初中数学中考试题集锦圆相关试题大全
- 格式:doc
- 大小:1.49 MB
- 文档页数:24
初三数学圆测试题及答案一、选择题(每题3分,共30分)1. 下列说法正确的是()。
A. 圆的直径是半径的2倍B. 圆的周长是直径的π倍C. 圆的面积是半径的平方乘以πD. 圆的周长是半径的2π倍答案:D2. 圆的面积公式为()。
A. S = πrB. S = πr²C. S = πdD. S = πd²答案:B3. 圆的周长公式为()。
A. C = 2πrB. C = 2πdC. C = πrD. C = πd答案:A4. 圆心角为60°的扇形面积是()。
A. πr²/6B. πr²/3C. πr²/2D. πr²答案:A5. 一个圆的半径为3cm,其面积为()。
A. 9π cm²B. 18π cm²C. 27π cm²D. 36π cm²答案:C6. 圆的直径增加1倍,其面积增加()。
A. 1倍B. 2倍C. 4倍D. 8倍答案:C7. 圆的半径增加1倍,其周长增加()。
A. 1倍B. 2倍C. 3倍D. 4倍答案:B8. 一个圆的周长为12.56cm,其直径为()。
A. 2cmB. 4cmC. 6cmD. 8cm答案:B9. 圆的半径为4cm,其直径为()。
A. 2cmB. 4cmC. 8cmD. 16cm答案:C10. 圆的半径为2cm,其周长为()。
A. 4π cmB. 8π cmC. 12π cmD. 16π cm答案:B二、填空题(每题3分,共30分)1. 圆的周长公式为______。
答案:C = 2πr2. 圆的面积公式为______。
答案:S = πr²3. 圆的直径是半径的______倍。
答案:24. 圆的周长是直径的______倍。
答案:π5. 圆的面积是半径的平方乘以______。
答案:π6. 圆心角为90°的扇形面积是圆面积的______。
答案:1/47. 圆心角为180°的扇形面积是圆面积的______。
中考数学圆经典必考题型中考试题(附答案)解答题1.(已知:如图,△ ABC 内接于O O 过点B 作的切线,交 CA 的延长线于点 E / EB & 2① 求证:AB= AC1AB ② 若tan / ABE=丄,(i )求 的值;(ii )求当 AC= 2时,AE 的长. 2BC=4cm 求O o 的半径.2.如图,PA 为O O 的切线, A 为切点,O 0的割线PBC 过点0与O O 分别交于B 、C, PA= 8cm PB3.已知:如图,BC 是O 0的直径,AC 切O 0于点C AB 交O 0于点D,若AD : DB= 2 : 3, AC= 10,求 sin B 的值.4.如图,PC 为O 0的切线,C 为切点,PAB 是过0的割线,1若tan B= _ , PC= 10cm 求三角形BCD的面积.25•如图,在两个半圆中,大圆的弦MNW小圆相切,D为切点,且MN AB MN a, ON CD分别为两圆的半径,求阴影部分的面积.6.已知,如图,以△ ABC的边AB作直径的O O分别并AC BC于点D E,弦FG// AB S A CDE S△ ABC= 1 : 4, DE= 5cm FG= 8cm,求梯形AFG啲面积.7.如图所示:PA为O O的切线,A为切点,PBC是过点O的割线,PA= 10, PB= 5,求:(1)O O的面积(注:用含n的式子表示);(2)cos / BAP的值.参考答案1.( 1)v BE 切O O 于点 B ,「. / ABE=Z C./ EBC= 2/ C,即 / ABH / ABC= 2/C,/ C +Z ABO 2 / C,/ ABC=Z C, ••• AB= AC.(2)①连结AO 交BC 于点F ,AB- AC, AOL BC 且 BF = FC.AF 在 Rt A ABF 中, =tan / ABF BF1 又 tan / ABF= tan C = tan / ABE=2 AF = 1 BF.AB AB .5BC 2BF4 ②在△ EBA M^ ECB 中 ,^EA 2- EA- (EA^ AC ),又 EA M 0 , 5 11EA= AC EA= — x 2 = 10 .5 11 11 22 •设O 的半径为r ,由切割线定理,得 PA = PB- PCAC 切O O 于点C,线段ADB 为O O 的割线,2AC = AD- ABAB= AM DB= 2k + 3k = 5k ,2 210 = 2k X 5k,••• k = 10,AB= AF 2 * * * BF 2BF 2 AF = 1BF 2/ E =Z E , / EBA=Z ECB△ EBA^A ECBEAEBBE 2 AB BC ,解之,得 EA ECk> 0,「. k= 10 .AB= 5k= 10 .AC切O O于C, BC为O O的直径,ACL BC在Rt A ACB中, sin B=虫10 10 .AB 5 屁5CD L AB于点D,/ADC=Z BD= 90°,/ 2= 90°—/ BAC=Z B.1tan B=2tan / 2=—.2AD CD 1 ACCD DB 2 CB .设AD= x (x > 0), CD= 2x, DB= 4x, AB= 5x .•/ PC切O O于点C,点B在O O上,• / 1 = / B./ P=/ P,「. △ PAC^ PCBPA AC 1PC CB 2 .PC= 10,「. PA= 5,PC 切O O 于点C, PAB 是O 0的割线,2PC = PA- PB210 = 5 (5 + 5 x ).解得 x = 3.AD= 3, CD= 6, DB= 12.1 1S ^BCD = CD" DB= — x 6X 12 = 36.2 22即三角形BCD 的面积36cm .PA= 10,二 PB= 20.2由切割线定理,得 PC = PA- PBA 內 DB= x + 4x = 15,解得 x = 3,CD= 2x = 6, DB= 4x = 12.S A BCD = ^CD- DB= 1 x 6X 12= 36.2 22即三角形BCD 的面积36cm .5.解:如图取 MN 的中点E 连结OE解法二:同解法一,由△ PAC^A PCB 得 PA PC AC CBPB 101220 AB= PB- PA= 15,2 2 2 a在 Rt A NOE 中 NO- OE = EN =2 6.解:T / CDE=/ CBA / DCE=/ BCA /• △ CDE^A ABC2S CDEDE S ABC AB DE = S CDE =任=1AB S ABC ' 42 ' 51 即 ,解得 AB= 10 (cm ,AB 2作OML FG 垂足为M11 则 FM= ^FG=丄^ 8= 4 (cm),22连结OF 11 OA= AB= — x 10= 5 (cm ).2 2OF= OA= 5 (cm ).在Rt A OMF 中由勾股定理,得 OM = . OF 2 FM 2 = -52 42 = 3 (cm ).A B FG10 Q 2 ••• 梯形 AFG 啲面积= -------------- • OM= -------- x 3 = 27 (cm ).2 27. 2 1 a n2 n ・ — =—a 2 2 8 2 2 1n( NO — OE ) 2 (平方单位). (2) CBAP AC PA △ ACP^A BAP —— P P AB PBAC 2AB 1S阴影 ⑴PA 是。
中考数学关于圆的22道经典题1、如图,⊙O 的半径等于1,弦AB 和半径OC 互相平分于点M.求扇形OACB 的面积(结果保留π)解:∵弦AB 和半径OC 互相平分∴OC ⊥ABOM=MC=21OC=21OA 在Rt △OAM 中,sinA=21=OA OM ∴∠A=30°又∵OA=OB ∴∠B=∠A=30° ∴∠AOB=120° ∴S 扇形=33601120ππ=⋅⋅2、如图,△ABC 内接于⊙O ,AB =6,AC =4,D 是AB 边上一点,P 是优弧BAC 的中点,连结PA 、PB 、PC 、PD.(1)当BD 的长度为多少时,△PAD 是以AD 为底边的等腰三角形?并证明; (2)若cos ∠PCB=55,求PA 的长. 解:(1)当BD =AC =4时,△PAD 是以AD 为底边的等腰三角形 ∵P 是优弧BAC 的中点 ∴弧PB =弧PC ∴PB =PC∵BD =AC =4 ∠PBD=∠PCA ∴△PBD ≌△PCA∴PA=PD 即△PAD 是以AD 为底边的等腰三角形(2)由(1)可知,当BD =4时,PD =PA ,AD =AB-BD =6-4=2过点P 作PE ⊥AD 于E ,则AE =21AD=1 ∵∠PCB=∠PAD ∴cos ∠PAD=cos ∠PCB=55=PA AE ∴PA=53、如图,AB 是⊙O 的直径,C 是的中点,CE ⊥AB 于 E ,BD 交CE 于点F .(1)求证:CF ﹦BF ;(2)若CD ﹦6, AC ﹦8,则⊙O 的半径为 ▲ ,CE 的长是 ▲ .CBDEFO 12解:(1) 证明:∵AB 是⊙O 的直径,∴∠ACB ﹦90° 又∵CE ⊥AB , ∴∠CEB ﹦90° ∴∠2﹦90°-∠A ﹦∠1又∵C 是弧BD 的中点,∴∠1﹦∠A ∴∠1﹦∠2,∴ CF ﹦BF ﹒ …………………4分 (2) ⊙O 的半径为5 , CE 的长是524﹒ ………4分(各2分)4、已知:AB 是⊙O 的弦,D 是AB 的中点,过B 作AB 的垂线交AD 的延长线于C . (1)求证:AD =DC ;(2)过D 作⊙O 的切线交BC 于E ,若DE =EC ,求sin C .证明:连BD ∵BD AD =∴∠A =∠ABD ∴AD =BD …………………2分 ∵∠A +∠C =90°,∠DBA +∠DBC =90°∴∠C =∠DBC ∴BD =DC∴AD =DC ………………………………………………………4分 (2)连接OD ∵DE 为⊙O 切线 ∴OD ⊥DE …………………………5分 ∵BD AD =,OD 过圆心 ∴OD ⊥AB又∵AB ⊥BC ∴四边形FBED 为矩形∴DE ⊥BC ……………………6分 ∵BD 为Rt △ABC 斜边上的中线∴BD =DC ∴BE =EC =DE∴∠C =45° …………………………………………………7分 ∴sin ∠C =22………………………………………………………………8分5、如图,AB 是O 的直径,C 为圆周上一点,30ABC ∠=︒,O 过点B 的切线与CO 的延长线交于点D .求证:(1)CAB BOD ∠=∠;(2)ABC ∆≌ODB ∆. (1)∵AB 是O 的直径,∴90ACB ∠=︒,由30ABC ∠=︒,∴60CAB ∠=︒BE CDAOO A D B ECDCBOA又OB OC =,∴30OCB OBC ∠=∠=︒∴60BOD ∠=︒,∴CAB BOD ∠=∠.…… 4分(2)在Rt ABC ∆中,30ABC ∠=︒,得12AC AB =,又12OB AB =,∴AC OB =. 由BD 切O 于点B ,得90OBD ∠=︒.在ABC ∆和ODB ∆中,CAB BODACB OBD AC OB ∠=∠∠=∠⎧=⎪⎨⎪⎩∴ABC ∆≌ ODB ∆ …… 8分6、如图,⊙O 的半径等于1,弦AB 和半径OC 互相平分于点M.求扇形OACB 的面积(结果保留π)解:∵弦AB 和半径OC 互相平分∴OC ⊥ABOM=MC=21OC=21OA 在Rt △OAM 中,sinA=21=OA OM ∴∠A=30°又∵OA=OB ∴∠B=∠A=30° ∴∠AOB=120° ∴S 扇形=33601120ππ=⋅⋅7、如图,在矩形ABCD 中,点O 在对角线AC 上,以OA 的长为半径的圆O 与AD 、AC 分别交于点E 、F ,且∠ACB=∠DCE .(1)判断直线CE 与⊙O 的位置关系,并证明你的结论;(2)若tan ∠ACB=22,BC=2,求⊙O 的半径.答案:1)直线CE 与⊙O 相切。
1、(2011•湖州)如图,已知AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,∠AOC=60°,OC=2.(1)求OE 和CD 的长;(2)求图中阴影部队的面积.2、(2011•衡阳)如图,△ABC 内接于⊙O ,CA=CB ,CD ∥AB 且与OA 的延长线交于点D .(1)判断CD 与⊙O 的位置关系并说明理由;(2)若∠ACB=120°,OA=2.求CD 的长.3、(2011•杭州)在平面上,七个边长为1的等边三角形,分别用①至⑦表示(如图).从④⑤⑥⑦组成的图形中,取出一个三角形,使剩下的图形经过一次平移,与①②③组成的图形拼成一个正六边形(1)你取出的是哪个三角形?写出平移的方向和平移的距离;(2)将取出的三角形任意放置在拼成的正六边形所在平面,问:正六边形没有被三角形盖住的面积能否等于52?请说明理由.4、(2011•杭州)在△ABC 中,AB=√3,AC=√2,BC=1. (1)求证:∠A≠30°;(2)将△ABC 绕BC 所在直线旋转一周,求所得几何体的表面积.5、(2011•贵阳)在▱ABCD 中,AB=10,∠ABC=60°,以AB 为直径作⊙O ,边CD 切⊙O 于点E .(1)圆心O 到CD 的距离是 _________ .(2)求由弧AE 、线段AD 、DE 所围成的阴影部分的面积.(结果保留π和根号)6、(2011•抚顺)如图,AB 为⊙O 的直径,弦CD 垂直平分OB 于点E ,点F 在AB 延长线上,∠AFC=30°.(1)求证:CF 为⊙O 的切线.(2)若半径ON ⊥AD 于点M ,CE=√3,求图中阴影部分的面积.7、(2011•北京)如图,在△ABC ,AB=AC ,以AB 为直径的⊙O 分别交AC 、BC 于点D 、E ,点F 在AC 的延长线上,且∠CBF=12∠CAB .(1)求证:直线BF 是⊙O 的切线;(2)若AB=5,sin ∠CBF=√55,求BC 和BF 的长.8、(2010•义乌市)如图,以线段AB 为直径的⊙O 交线段AC 于点E ,点M 是AE ̂的中点,OM 交AC 于点D ,∠BOE=60°,cosC=12,BC=2√3.(1)求∠A 的度数;(2)求证:BC 是⊙O 的切线 (3)求MD 的长度.9、(2010•沈阳)如图,AB 是⊙O 的直径,点C 在BA 的延长线上,直线CD 与⊙O 相切与点D ,弦DF ⊥AB 于点E ,线段CD=10,连接BD .(1)求证:∠CDE=2∠B ;(2)若BD :AB=√3:2,求⊙O 的半径及DF 的长.10、(2010•绍兴)如图,已知△ABC 内接于⊙O ,AC 是⊙O 的直径,D 是AB ̂的中点,过点D 作直线BC的垂线,分别交CB 、CA 的延长线E 、F .(1)求证:EF 是⊙O 的切线;(2)若EF=8,EC=6,求⊙O 的半径.11、(2010•丽水)如图,直线l 与⊙O 相交于A ,B 两点,且与半径OC 垂直,垂足为H ,已知AB=16cm ,.(1)求⊙O 的半径;(2)如果要将直线l 向下平移到与⊙O 相切的位置,平移的距离应是多少?请说明理由.1、(2011•湖州)如图,已知AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,∠AOC=60°,OC=2.(1)求OE 和CD 的长;(2)求图中阴影部队的面积.考点:扇形面积的计算;垂径定理。
专题25圆的有关计算与证明(50题)一、单选题1.(2023·新疆·统考中考真题)如图,在O 中,若30ACB ∠=︒,6OA =,则扇形OAB (阴影部分)的面积是()A .12πB .6πC .4πD .2π2.(2023·江苏连云港·统考中考真题)如图,矩形ABCD 内接于O ,分别以AB BC CD AD 、、、为直径向外作半圆.若4,5==AB BC ,则阴影部分的面积是()A .41204π-B .41202π-C .20πD .203.(2023·湖北荆州·统考中考真题)如图,一条公路的转弯处是一段圆弧( AC ),点O 是这段弧所在圆的圆心,B 为 AC 上一点,OB AC ⊥于D .若3003m AC =,150m BD =,则 AC 的长为()A .300m πB .200m πC .150m πD .1003mπA .21cm 4πB 5.(2023·四川达州·统考中考真题)如图,四边形段90︒的圆心角的圆心为为A BCD 、、、循环,则A .40452πB .20236.(2023·四川广安·统考中考真题)如图,在等腰直角心,AC 为半径画弧,交AB 于点积是()A .π2-B .2π2-7.(2023·江苏苏州·统考中考真题)如图,AB 是半圆O 的直径,点,C D 在半圆上, CDDB =,连接,,OC CA OD ,过点B 作EB AB ⊥,交OD 的延长线于点E .设OAC 的面积为1,S OBE △的面积为2S ,若1223S S =,则tan ACO ∠的值为()A .2B .223C .75D .32二、填空题8.(2023·重庆·统考中考真题)如图,在矩形ABCD 中,2AB =,4BC =,E 为BC 的中点,连接AE DE ,,以E 为圆心,EB 长为半径画弧,分别与AE DE ,交于点M ,N ,则图中阴影部分的面积为________.(结果保留π)9.(2023·黑龙江绥化·统考中考真题)如图,O 的半径为2cm ,AB 为O 的弦,点C 为 AB 上的一点,将 AB 沿弦AB 翻折,使点C 与圆心O 重合,则阴影部分的面积为_______.(结果保留π与根号)10.(2023·重庆·统考中考真题)如图,O 是矩形ABCD 的外接圆,若4,3AB AD ==,则图中阴影部分的面积为___________.(结果保留π)14.(2023·天津·统考中考真题)如图,在每个小正方形的边长为且顶点A,B均在格点上.(1)线段AB的长为________(2)若点D在圆上,AB与CD为等边三角形,并简要说明点15.(2023·江苏苏州·统考中考真题)如图,在H AH=.以点A为圆心,,3一个圆锥的侧面,记这个圆锥底面圆的半径为r r-=________________的半径为2r,则1216.(2023·四川自贡·统考中考真题)如图,小珍同学用半径为8cm ,圆心角为100︒的扇形纸片,制作一个底面半径为2cm 的圆锥侧面,则圆锥上粘贴部分的面积是________2cm .三、解答题17.(2023·四川南充·统考中考真题)如图,AB 与O 相切于点A ,半径OC AB ∥,BC 与O 相交于点D ,连接AD .(1)求证:OCA ADC ∠∠=;(2)若12,tan 3AD B ==,求OC 的长.18.(2023·四川成都·统考中考真题)如图,以ABC 的边AC 为直径作O ,交BC 边于点D ,过点C 作CE AB ∥交O 于点E ,连接AD DE ,,B ADE ∠=∠.(1)求证:AC BC =;(2)若tan 23B CD ==,,求AB 和DE 的长.(1)求证:90ADC BAC ∠-∠=︒;(请用两种证法解答)(2)若ACP ADC ∠=∠,O 的半径为3,4CP =,求AP 的长.(1)求BED ∠的度数;(2)如图2,过点A 作O 的切线交BC 延长线于点F ,过点D 作DG 235,4AD DE ==,求DG 的长.21.(2023·浙江杭州·统考中考真题)在边长为1的正方形ABCD 中,点射线BE 与射线CD 交于点F .(1)若13ED =,求DF 的长.(2)求证:1AE CF ⋅=.(3)以点B 为圆心,BC 长为半径画弧,交线段BE 于点G .若EG ED =,求ED 的长.22.(2023·河北·统考中考真题)装有水的水槽放置在水平台面上,其横截面是以AB 为直径的半圆O ,50cm AB =,如图1和图2所示,MN 为水面截线,GH 为台面截线,MN GH ∥.计算:在图1中,已知48cm MN =,作OC MN ⊥于点C .(1)求OC 的长.操作:将图1中的水面沿GH 向右作无滑动的滚动,使水流出一部分,当30ANM ∠=︒时停止滚动,如图2.其中,半圆的中点为Q ,GH 与半圆的切点为E ,连接OE 交MN 于点D .探究:在图2中(1)求证:2AOB ∠=∠(2)若4,5AB BC ==径,45ABD ∠=︒,直线l 与三条线段CD 、CA 、DA 的延长线分别交于点E 、F 、G .且满足45CFE ∠=︒.(1)求证:直线l ⊥直线CE ;(2)若AB DG =;①求证:ABC GDE △≌△;②若312R CE ==,,求四边形ABCD 的周长.25.(2023·天津·统考中考真题)在O 中,半径OC 垂直于弦AB ,垂足为D ,60AOC ∠=︒,E 为弦AB 所对的优弧上一点.(1)如图①,求AOB ∠和CEB ∠的大小;(2)如图②,CE 与AB 相交于点F ,EF EB =,过点E 作O 的切线,与CO 的延长线相交于点G ,若3OA =,求EG 的长.26.(2023·江苏苏州·统考中考真题)如图,ABC 是O 的内接三角形,AB 是O 的直径,5,25AC BC ==,点F 在AB 上,连接CF 并延长,交O 于点D ,连接BD ,作BE CD ⊥,垂足为E .(1)求证:DBE ABC △∽△;(2)若2AF =,求ED 的长.27.(2023·四川达州·统考中考真题)如图,ABC ABD 、内接于O AB BC P = ,,是OB 延长线上的一点,PAB ACB ∠=∠,AC BD 、相交于点E .(1)求证:AP 是O 的切线;(2)若24BE DE ==,,30P ∠=︒,求AP 的长.28.(2023·湖南·统考中考真题)如图,AB 是O 的直径,AC 是一条弦,D 是 AC 的中点,DE AB ⊥于点E ,交AC 于点F ,交O 于点H ,DB 交AC 于点G .(1)求证:AF DF =.(2)若55,sin 25AF ABD =∠=,求O 的半径.29.(2023·湖南怀化·统考中考真题)如图,AB 是O 的直径,点P 是O 外一点,PA 与O 相切于点A ,点C 为O 上的一点.连接PC 、AC 、OC ,且PC PA =.(1)求证:PC 为O 的切线;(2)延长PC 与AB 的延长线交于点D ,求证:PD OC PA OD ⋅=⋅;(3)若308CAB OD ∠=︒=,,求阴影部分的面积.30.(2023·四川眉山·统考中考真题)如图,ABC 中,以AB 为直径的O 交BC 于点E .AE 平分BAC ∠,过点E 作ED AC ⊥于点D ,延长DE 交AB 的延长线于点P .(1)求证:PE 是O 的切线;(2)若1sin ,43P BP ∠==,求CD 的长.31.(2023·安徽·统考中考真题)已知四边形(1)如图1,连接,OA CA ,若OA BD ⊥,求证;CA 平分BCD ∠;(2)如图2,E 为O 内一点,满足,AE BC CE AB ⊥⊥,若BD =32.(2023·吉林长春·统考中考真题)【感知】如图①,点A 、B 、的大小为__________度.【探究】小明遇到这样一个问题:如图②,O 是等边三角形ABC 的外接圆,点P 在 AC 上(点P 不与点A 、C 重合),连结PA 、PB 、PC .求证:PB PA PC =+.小明发现,延长PA 至点E ,使AE PC =,连结BE ,通过证明PBC EBA ≌△△,可推得PBE 是等边三角形,进而得证.下面是小明的部分证明过程:证明:延长PA 至点E ,使AE PC =,连结BE ,四边形ABCP 是O 的内接四边形,180BAP BCP ∴∠+∠=︒.180BAP BAE ∠+∠=︒ ,BCP BAE ∴∠=∠.ABC 是等边三角形.BA BC ∴=,(SAS)PBC EBA ∴ ≌请你补全余下的证明过程.【应用】如图③,O 是ABC 的外接圆,90ABC AB BC ∠=︒=,,点P 在O 上,且点P 与点B 在AC 的两侧,连结PA 、PB 、PC .若22PB PA =,则PB PC的值为__________.33.(2023·四川泸州·统考中考真题)如图,AB 是O 的直径,210AB =,O 的弦CD AB ⊥于点E ,6CD =.过点C 作O 的切线交AB 的延长线于点F ,连接BC .∠;(1)求证:BC平分DCF(2)G为 AD上一点,连接CG交AB于点H,若34.(2023·黑龙江绥化·统考中考真题)如图,行弦,弦AB交MC于点H.点A在¼MC上,点⋅=⋅.(1)求证:MH CH AH BH(2)求证:AC BC=.(3)在⊙O中,沿弦ND所在的直线作劣弧ND NG的长.35.(2023·广东·统考中考真题)综合探究如图1,在矩形ABCD中(AB>BD于点E,连接CA'.(1)求证:AA CA '⊥';(2)以点O 为圆心,OE 为半径作圆.①如图2,O 与CD 相切,求证:3AA CA '=';②如图3,O 与CA '相切,1AD =,求O 的面积.36.(2023·山东·统考中考真题)如图,AB 为O 的直径,C 是圆上一点,D 是 BC 的中点,弦DE AB ⊥,垂足为点F .(1)求证:BC DE =;(2)P 是»AE 上一点,6,2AC BF ==,求tan BPC ∠;(3)在(2)的条件下,当CP 是ACB ∠的平分线时,求CP 的长.37.(2023·山东·统考中考真题)如图,已知AB 是O 的直径,CD CB =,BE 切O 于点B ,过点C 作CF OE ⊥交BE 于点F ,若2EF BF =.(1)如图1,连接BD ,求证:ADB OBE △≌△;(2)如图2,N 是AD 上一点,在AB 上取一点M ,使60MCN ∠=︒,连接MN .请问:三条线段MN BM DN ,,有怎样的数量关系?并证明你的结论.38.(2023·浙江杭州·统考中考真题)如图,在O 中,直径AB 垂直弦CD 于点E ,连接,,AC AD BC ,作CF AD ⊥于点F ,交线段OB 于点G (不与点,O B 重合),连接OF .(1)若1BE =,求GE 的长.(2)求证:2BC BG BO =⋅.(3)若FO FG =,猜想CAD ∠的度数,并证明你的结论.39.(2023·湖北宜昌·统考中考真题)如图1,已知AB 是O 的直径,PB 是O 的切线,PA 交O 于点C ,43AB PB ==,.(1)填空:PBA ∠的度数是_________,PA 的长为_________;(2)求ABC 的面积;(3)如图2,CD AB ⊥,垂足为D .E 是 AC 上一点,5AE EC =.延长AE ,与DC ,BP 的延长线分别交于点,F G ,求EF FG的值.40.(2023·山东滨州·统考中考真题)如图,点E 是ABC 的内心,AE 的延长线与边BC 相交于点F ,与ABC 的外接圆相交于点D .(1)求证:::ABF ACF S S AB AC =△△;(2)求证:::AB AC BF CF =;(3)求证:2AF AB AC BF CF =⋅-⋅;(4)猜想:线段,,DF DE DA 三者之间存在的等量关系.(直接写出,不需证明.)41.(2023·浙江台州·统考中考真题)我们可以通过中心投影的方法建立圆上的点与直线上点的对应关系,用直线上点的位置刻画圆上点的位置,如图,AB 是O 的直径,直线l 是O 的切线,B 为切点.P ,Q 是圆上两点(不与点A 重合,且在直径AB 的同侧),分别作射线AP ,AQ 交直线l 于点C ,点D .(1)如图1,当6AB =,BP的长为π时,求BC 的长.(2)如图2,当34AQ AB =, BP PQ =时,求BC CD的值.(3)如图3,当6sin 4BAQ ∠=,BC CD =时,连接BP ,PQ ,直接写出(1)求CE 的长和y 关于x 的函数表达式.(2)当PH PN <,且长度分别等于PH ,PN ,a 的三条线段组成的三角形与(3)延长PN 交半圆O 于点Q ,当1534NQ x =-时,求43.(2023·新疆·统考中考真题)如图,AB 是O 的直径,点接AF ,过点C 作AF 的垂线,交AF 的延长线于点D 交AC 于点H .(1)求证:CE 是O 的切线;(2)若tan 34E =,4BE =,求FH 的长.44.(2023·云南·统考中考真题)如图,BC 是O 的直径,A 是O 上异于B C 、的点.O 外的点E 在射线CB 上,直线EA 与CD 垂直,垂足为D ,且DA AC DC AB ⋅=⋅.设ABE 的面积为1,S ACD 的面积为2S .(1)判断直线EA 与O 的位置关系,并证明你的结论;(2)若21,BC BE S mS ==,求常数m 的值.45.(2023·浙江宁波·统考中考真题)如图1,锐角ABC 内接于O ,D 为BC 的中点,连接AD 并延长交O 于点E ,连接,BE CE ,过C 作AC 的垂线交AE 于点F ,点G 在AD 上,连接,BG CG ,若BC 平分EBG ∠且BCG AFC ∠=∠.(1)求BGC ∠的度数.(2)①求证:AF BC =.②若AG DF =,求tan GBC ∠的值,(3)如图2,当点O 恰好在BG 上且1OG =时,求AC 46.(2023·四川遂宁·统考中考真题)如图,四边形D 的直线l 交BA 的延长线于点M ,交BC 的延长线于点(1)求证:MN 是O 的切线;(2)求证:2AD AB CN =⋅;(3)当6AB =,3sin 3DCA ∠=时,求AM 的长.47.(2023·四川广安·统考中考真题)如图,以Rt ABC △E 是BC 的中点,连接OE DE 、.(1)求证:DE 是O 的切线.(2)若4sin ,55C DE ==,求AD 的长.(3)求证:22DE CD OE =⋅.48.(2023·浙江嘉兴·统考中考真题)已知,AB 是半径为1的O 的弦,O 的另一条弦CD 满足CD AB =,且CD AB ⊥于点H (其中点H 在圆内,且AH BH CH DH >>,).(1)在图1中用尺规作出弦CD 与点H (不写作法,保留作图痕迹).(2)连结AD ,猜想,当弦AB 的长度发生变化时,线段AD 的长度是否变化?若发生变化,说明理由:若不变,求出AD 的长度;(3)如图2,延长AH 至点F ,使得HF AH =,连结CF ,HCF ∠的平分线CP 交AD 的延长线于点P ,点M 为AP 的中点,连结HM ,若12PD AD =.求证:MH CP ⊥.49.(2023·浙江·统考中考真题)如图,在O 中,AB 是一条不过圆心O 的弦,点,C D 是 AB 的三等分点,直径CE 交AB 于点F ,连结AD 交CF 于点G ,连结AC ,过点C 的切线交BA 的延长线于点H .(1)求证:AD HC ∥;(2)若2OG GC=,求tan FAG ∠的值;(3)连结BC 交AD 于点N ,若O ①若52OF =,求BC 的长;②若10AH =,求ANB 的周长;③若88HF AB ⋅=,求BHC △的面积.50.(2023·四川宜宾·统考中考真题)如图,以CD AF ⊥交AF 的延长线于点D ,交点N .(1)求证:CD 是O 的切线;(2)求证:EM EN =;(3)如果N 是CM 的中点,且AB =。
初中中考圆试题及答案一、选择题(每题3分,共30分)1. 圆的半径为5,直径为()A. 10B. 5C. 15D. 202. 圆的周长公式为()A. C=πrB. C=2πrC. C=πdD. C=2πd3. 圆的面积公式为()A. S=πr²B. S=2πrC. S=πd²D. S=2πd4. 圆内接四边形的对角线()A. 相等B. 不相等C. 垂直D. 平行5. 圆的切线与半径()A. 垂直B. 相交C. 平行D. 重合6. 圆的直径是圆内最长的线段,这种说法()A. 正确B. 错误7. 圆心到圆上任意一点的距离都相等,这种说法()A. 正确B. 错误8. 圆的半径增加一倍,面积增加()A. 一倍B. 两倍C. 四倍D. 八倍9. 圆的周长与直径的比值是()A. πB. 2πC. 4πD. 1/π10. 圆的半径为3,圆的面积为()A. 9πB. 3πC. 6πD. 12π二、填空题(每题2分,共20分)1. 圆的直径是半径的______倍。
2. 圆的周长是半径的______倍。
3. 圆的面积是半径的______倍。
4. 圆周率π的近似值是______。
5. 圆的内接三角形的内角和为______度。
6. 圆的外切三角形的外角和为______度。
7. 圆的切线与半径垂直于______。
8. 圆的切线与圆心的距离等于______。
9. 圆的直径是圆内最长的______线段。
10. 圆的半径增加一倍,面积增加______倍。
三、解答题(每题10分,共50分)1. 已知圆的半径为4,求圆的周长和面积。
2. 已知圆的直径为8,求圆的周长和面积。
3. 已知圆的周长为31.4,求圆的直径和半径。
4. 已知圆的面积为78.5,求圆的半径。
5. 已知圆的半径为5,求圆内接正六边形的边长。
答案:一、选择题1. A2. B3. A4. A5. A6. A7. A8. C9. A 10. A二、填空题1. 22. 2π3. π4. 3.145. 1806. 3607. 切点8. 半径9. 弦10. 4三、解答题1. 周长:2πr = 2 × 3.14 × 4 = 25.12;面积:πr² = 3.14 × 4² = 50.242. 周长:C = πd =3.14 × 8 = 25.12;面积:S = πr² = 3.14 × (8/2)² = 50.243. 直径:d = C/π = 31.4/3.14 = 10;半径:r = d/2 = 10/2 = 54. 半径:r = √(S/π) = √(78.5/3.14) ≈ 4.075. 边长:边长= 2r × sin(π/6) = 2 × 5 × 0.5 = 5。
初中数学中考试题集锦(圆相关试题)一、选择题: 1、(2009·浙江温州·模拟1) 图①、图②、图③是三种方法将6根钢管用钢丝捆扎的截面图,三种方法所用的钢丝长分别为, (不记接头部分),则a, b, c,的大小关系为( )。
A 、 >c B. C. a<b<c D. a>b>c 答案:B2、(2009·浙江温州·模拟2)如图,A 、B 是⊙O 上的两点,是⊙O 的切线,∠=70°,则∠等于( ) A .20° B .10° C .70° D .35° 答案:A3、(2009·浙江温州·模拟3)一个圆锥的底面半径为3㎝,它的侧面积为15π㎝2,那么这个圆锥的高线长为A 、6㎝B 、8㎝C 、4㎝D 、4π㎝ 答案:C 4、(2009·浙江温州·模拟4)如图,是的直径,,则的度数是( )A .B .C .D .答案:D5、(2009·浙江温州·模拟5)在半径为18的圆中,120°的圆心角所对的弧长是( )A .12πB .10πC .6πD .3π答案:A 6、(2009·浙江温州·模拟6)如果圆锥的母线长为6,底面圆半径为3,则这个圆锥的侧面积为( ) A. B. C. D. 答案:B 7、(2009·浙江温州·模拟6)如图,已知⊙O 的弦、相交于点E ,的度数为60°,的度数为100°,则∠等于 ( )(A )60° (B )100° (C )80° (D )130°答案:C 8、(2009·浙江温州·模拟7)如图,在⊙O中,弦AB,CD相交于点E。
已知∠ECB=60°,图① 图②O A B C (第2题)CO第4题图∠AED=65°,那么∠ADE的度数是( ) A. 40° B. 15° C. 55° D. 65° 答案:C 9、(2009·浙江温州·模拟8)如图,已知直角坐标系中一条圆弧经过正方形网格的格点A 、B 、C 。
初三圆的试题及答案一、选择题1. 圆的半径为r,则圆的面积为()A. πr²B. 2πrC. πrD. 4πr²答案:A2. 圆的周长公式为()A. 2πrB. πr²C. πrD. 4πr²答案:A3. 圆的直径是半径的()A. 1倍B. 2倍C. 3倍D. 4倍答案:B4. 圆的半径增加1倍,面积增加()A. 1倍B. 2倍C. 3倍D. 4倍答案:D5. 圆的半径为r,圆心角为θ(弧度制),则弧长为()A. rθB. 2πrC. πrD. 2rθ答案:A二、填空题6. 圆的半径为3cm,则圆的周长为________cm。
答案:18.84cm7. 圆的直径为10cm,则圆的面积为________cm²。
答案:78.5cm²8. 圆的周长为12.56cm,则圆的半径为________cm。
答案:2cm9. 圆的半径为5cm,圆心角为60°,则弧长为________cm。
答案:5πcm10. 圆的半径为r,圆心角为θ(弧度制),则扇形的面积为________cm²。
答案:1/2 * r² * θ cm²三、解答题11. 已知圆的半径为5cm,求圆的面积。
解:根据圆的面积公式,S = πr²,代入r = 5cm,得:S = π * 5² = 25π cm²。
12. 已知圆的周长为20πcm,求圆的半径。
解:根据圆的周长公式,C = 2πr,代入C = 20πcm,得:20π = 2πrr = 10cm。
13. 已知圆的直径为8cm,求圆的周长和面积。
解:根据圆的直径,求得半径r = 4cm。
周长C = 2πr = 2π * 4 = 8π cm。
面积S = πr² = π * 4² = 16π cm²。
14. 已知圆的半径为6cm,圆心角为90°,求弧长。
中考数学总复习《圆的综合题》专项测试卷-附参考答案一、单选题(共12题;共24分)1.已知⊙O的半径为5,点P到圆心O的距离为6,那么点P与⊙O的位置关系是A.点P在⊙O上B.点P在⊙O内C.点P在⊙O外D.无法确定2.如图,△ABC内接于⊙O,∠C=46°,连接OA,则∠OAB=()A.44°B.45°C.54°D.67°3.下列命题:①三点确定一个圆;②相等的圆周角所对的弧相等;③平分弦的直径垂直于弦;④等弧所对的圆心角相等;其中真命题的个数是()A.0B.1C.2D.34.若圆锥的底面半径长是5,母线长是13,则该圆锥的侧面面积是()A.60B.60πC.65D.65π5.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为()A.3π2B.4π3C.4D.2+ 3π26.下列命题正确的个数有()①长度相等的弧叫做等弧;②三点确定一个圆;③平分弦的直径垂直于弦;④弧相等,则弧所对的圆心角相等.A.1B.2C.3D.47.如图是一个几何体的三视图,则这个几何体的侧面积是()A.πcm2B.2 πcm2C.6πcm2D.3πcm28.如图,AB是⊙O的直径,DB、DE分别切⊙O于点B、C,若⊙ACE=25°,则⊙D的度数是()A.50°B.55°C.60°D.65°9.如图,一条公路的转变处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600米,E 为弧CD上一点,且OE⊙CD,垂足为F,OF=300√3米,则这段弯路的长度为A.200π米B.100π米C.400π米D.300π米10.如图,⊙O的直径AB与弦CD交于点,AE=6,BE=2,CD=2 ,则⊙AED的度数是()A.30°B.60°C.45°D.36°11.如图,AB是⊙O的直径,C,D是⊙O上的点,⊙CDB=30°,过点C作⊙O的切线交AB的延长线于点E,则sinE的值为()A.√32B.12C.√33D.√312.如图,⊙O的半径为3,四边形ABCD内接于⊙O,连接OB、OD,若⊙BOD=⊙BCD,则BD̂的长为()A.πB.32πC.2πD.3π二、填空题(共6题;共7分)13.如图,△ABC中AB=2,将△ABC绕点A逆时针旋转60°得到△AB1C1,AB1恰好经过点C,则阴影部分的面积为.14.如图,Rt⊙ABC中⊙C=90°,⊙A=30°,AB=4,以AC上的一点O为圆心OA为半径作⊙O,若⊙O与边BC始终有交点(包括B、C两点),则线段AO的取值范围是.15.如图所示一张圆形光盘,已知光盘内直径为2cm,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,则另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的外直径是cm,该光盘的面积是cm2.16.如图,⊙O是△ABC的外接圆OB=√13,BC=4则tanA的值为.R,则AC 17.已知半径为R的半圆O,过直径AB上一点C,作CD⊙AB交半圆于点D,且CD=√32的长为18.如图,在矩形ABCD中AB=2,BC=4点E为BC上一动点,过点B作AE的垂线交AE于点F,连接DF则DF的最小值是.三、综合题(共6题;共60分)19.如图,在△ABC中以△ABC的边AB为直径作⊙O,交AC于点D,DE是⊙O的切线,且DE⊥BC 垂足为点E.(1)求证:AB=BC;(2)若DE=3,CE=6,求直径AB长.20.如图,AB是⊙O的直径,点C在⊙O上,AD垂直于过点C的切线,垂足为D.(1)若⊙BAD=80°,求⊙DAC的度数;(2)如果AD=6,AB=8,求AC的长.21.如图,AB为⊙O的直径,点C是⊙O上的一点,AB=8cm,⊙BAC=30°,点D是弦AC上的一点.(1)若OD⊙AC,求OD长;(2)若CD=2OD,判断△ADO形状,并说明理由.22.如图,以⊙ABC的边AB为直径的⊙O与边AC相交于点D,BC是⊙O的切线,E为BC的中点,连接BD、DE.(1)求证:DE是⊙O的切线;(2)设⊙CDE的面积为S1,四边形ABED的面积为S2,若S2=5S1,求tan⊙BAC的值.23.如图,AB、AC是⊙O的两条弦,且AB=AC,点D是弧BC的中点,连接并延长BD、CD,分别交AC、AB的延长线于点E、F.(1)求证:DF=DE(2)若BD=6,CE=8求⊙O的半径.24.如图,AB是⊙O的直径,AC是弦,D是弧BC的中点,过点D作EF垂直于直线AC,垂足为F,交AB的延长线于点E.(1)求证: EF是⊙O的切线;(2)若AF=6,EF=8,求⊙O的半径.参考答案1.【答案】C 2.【答案】A 3.【答案】B 4.【答案】D 5.【答案】B 6.【答案】A 7.【答案】A 8.【答案】A 9.【答案】A 10.【答案】C 11.【答案】B 12.【答案】C 13.【答案】23π14.【答案】√3≤OA ≤43√3 15.【答案】10;24π 16.【答案】2317.【答案】12R 或32R 18.【答案】√17−119.【答案】(1)证明:连接OD .∵DE 是⊙O 的切线 ∴OD ⊥DE ∵DE ⊥BC ∴OD ∥BC ∴∠ODA =∠C又∵OD=OA∴∠ODA=∠OAD ∴∠OAD=∠C∴AB=BC(2)解:连接BD ∵AB为直径∴∠BDA=90°∴∠BDC=90°∴△DEB∼△CED∴DEBE=CEDE∴3BE=63∴BE=3 2∴BC=15 2∴AB=15 220.【答案】(1)解:如图,连接OC∵DC切⊙O于C∴OC⊙CF∴⊙ADC=⊙OCD=90°∴AD //OC∴⊙DAC=⊙OCA∵OA=OC∴⊙OAC=⊙OCA∴⊙DAC=⊙OAC∵⊙BAD=80°∴⊙DAC=12⊙BAD=12×80°=40°(2)解:连接BC.∵AB是直径∴⊙ACB=90°=⊙ADC ∵⊙DAC=⊙BAC∴⊙ADC⊙⊙ACB∴ACAB=ADAC∵AD=6,AB=8∴AC8=6AC∴AC=4 √3.21.【答案】(1)∵AB为⊙O的直径∴∠ACB=90°∵AB=8cm,⊙BAC=30°∴BC=4∵OD⊙AC∴OD//BC∵OA=OB∴OD=12BC=2(2)△ADO是等腰三角形.理由如下:如图,过O作OQ⊥AC于Q,连接OC,∵AB=8,∠BAC=30°∴AC=AB·cos30°=8×√32=4√3∴CQ=AQ=2√3∴OQ=12OA=2设OD=x,则CD=2OD=2x∴DQ=2x−2√3由勾股定理可得:x2=(2x−2√3)2+22∴(√3x−4)2=0∴x1=x2=4√3 3∴AD=4√3−2×4√33=4√33=OD∴△ADO是等腰三角形.22.【答案】(1)证明:连接OD∵OD=OB∴⊙ODB=⊙OBD.∵AB是直径∴⊙ADB=90°∴⊙CDB=90°.∵E为BC的中点∴DE=BE∴⊙EDB=⊙EBD∴⊙ODB+⊙EDB=⊙OBD+⊙EBD 即⊙EDO=⊙EBO.∵BC是以AB为直径的⊙O的切线∴AB⊙BC∴⊙EBO =90°∴⊙ODE =90°∴DE 是⊙O 的切线(2)解:连接AE∵S 2=5S 1,E 为BC 的中点∴S ⊙ACE =3S 1∴S ⊙ADE =2S 1∴AD =2DC∵⊙CBO =90°,⊙CDB =90° ∴⊙BDC⊙⊙ADB∴AD BD =DB DC∴DB 2=AD •DC ,即 DB =√2DC∴DB AD =√2DC 2DC =√22∴tan⊙BAC = DB AD =√2223.【答案】(1)解: ∵AB =AC AB ⏜=AC ⏜ ∵ 点 D 是 BC ⃗⃗⃗⃗⃗ 的中点∴BD ⏜=CD ⏜∴AB ⏜+BD ⏜=AC ⏜+CD ⏜∴ABD ⏜=ACD ⏜∴∠ACD =∠ABD =90°在 △ACF △ABE 中{∠A =∠A AB =AC ∠ABE =∠ACF∴△ACF ≌△ABE(ASA)∴CF =BE又 ∵BD ⏜=CD ⏜∴BD =CD∴CF −CD =BE −BD ,即 DF =DE (2)解:连接 AD由(1)知 ∠ACD =90°∴AD 是 ⊙O 的直径∴∠DCE =90°又 ∵CD =BD =6在 Rt △DCE 中令 AB =AC =x ,在 Rt △ABE 中由 AB 2+BE 2=AE 2 ,得 x 2+(6+10)2=(x +8)2 解得 x =12 ,即 AC =12在 Rt △ACD 中∴⊙O 的半径为 12AD =3√5 24.【答案】(1)证明:连接OD .∵EF⊙AF∴⊙F =90°.∵D 是 BC⌢ 的中点,∴BD ⌢=CD ⌢ . ∴⊙EOD =⊙DOC = 12⊙BOC ∵⊙A = 12⊙BOC ,∴⊙A =⊙EOD ∴OD⊙AF .∴⊙EDO =⊙F =90°.∴OD⊙EF∴EF 是⊙O 的切线;(2)解:在Rt⊙AFE 中∵AF =6,EF =8 ∴AE =√AF 2+EF 2 = √62+82 =10 设⊙O 半径为r ,∴EO =10﹣r . ∵⊙A =⊙EOD ,⊙E =⊙E∴⊙EOD⊙⊙EAF ,∴OD AF = OE EA ∴r 6=10−r 10 .∴r = 154 ,即⊙O 的半径为 154 .。
初三数学圆专项练习题大全圆是数学中一个重要的几何概念,它在几何题中经常出现。
为了帮助初三学生更好地掌握圆的知识,以下是一份初三数学圆专项练习题的大全,包括了常见的圆的性质、弧与弦的关系、切线与割线等内容。
希望同学们通过这些练习题的训练,能够熟练掌握圆的相关知识,并能灵活运用于解题中。
1. 圆的面积计算题(1) 已知圆的半径为r,求圆的面积。
(2) 已知圆的直径为d,求圆的面积。
2. 圆的周长计算题(1) 已知圆的半径为r,求圆的周长。
(2) 已知圆的直径为d,求圆的周长。
3. 相关性质题(1) 在一个圆内,连接圆心和圆上一点A,再连接另一点B在圆上,证明线段AB是圆的半径。
(2) 若两圆相交于点A和点B,那么点A、点B与两圆心连线的关系是什么?(3) 圆的切线与半径的关系是什么?(4) 圆的割线与半径的关系是什么?4. 圆的切线与弦的关系题(1) 若AB是圆的切线,C是弦上一点,证明AB与直径AC的夹角等于角ACB。
(2) 若AD是圆的直径,B是圆上一点,证明ACB是直角。
5. 多边形与圆的关系题(1) 若一个正多边形的每个顶点均位于同一个圆上,那么这个正多边形的内角和是多少度?(2) 若一个正多边形的内角和等于360度,那么这个正多边形的每个顶点都位于同一个圆上吗?6. 圆的切线长度计算题(1) 已知切点A到圆心的距离为r,切线段AB的长度为x,求x的值。
7. 圆的弦长计算题(1) 已知弦CD的长度为x,求弦AB的长度。
8. 圆的切线长与切点到圆心距离关系题(1) 切线段AB长为12,切点到圆心的距离为5,求切点到圆的切线的长度。
以上是一部分初三数学圆专项练习题的大全,希望同学们能够认真训练,掌握圆的相关性质和计算方法。
通过不断的练习和巩固,相信你们一定能够在数学中取得更大的进步!。
初中数学中考试题集锦(圆相关试题)一、选择题:1、(2009·浙江温州·模拟1) 图①、图②、图③是三种方法将6根钢管用钢丝捆扎的截面图,三种方法所用的钢丝长分别为, (不记接头部分),则a, b, c,的大小关系为( )。
A 、 >c B. C. a<b<c D. a>b>c 答案:B2、(2009·浙江温州·模拟2)如图,A 、B 是⊙O 上的两点,是⊙O 的切线,∠=70°,则∠等于( )A .20°B .10°C .70°D .35° 答案:A3、(2009·浙江温州·模拟3)一个圆锥的底面半径为3㎝,它的侧面积为15π㎝2,那么这个圆锥的高线长为A 、6㎝B 、8㎝C 、4㎝D 、4π㎝ 答案:C4、(2009·浙江温州·模拟4)如图,AB 是O e 的直径,20C ∠=o,则BOC ∠的度数是( ) A .10oB . 20oC . 30oD . 40o答案:D5、(2009·浙江温州·模拟5)在半径为18的圆中,120°的圆心角所对的弧长是( ) A .12π B .10π C .6π D .3π答案:A6、(2009·浙江温州·模拟6)如果圆锥的母线长为6,底面圆半径为3,则这个圆锥的侧面积为( )A. 29cm π B. 218cm πC. 227cm πD. 236cm π答案:B7、(2009·浙江温州·模拟6)如图,已知⊙O 的弦、相交于点E ,的度数为60°,的度数为100°,则∠等于 ( )(A )60° (B )100° (C )80° (D )130°答案:C8、(2009·浙江温州·模拟7)如图,在⊙O中,弦AB,CD相交于点E。
已知∠ECB=60°,图① 图②O ABC (第2题)CO第4题图∠AED=65°,那么∠ADE的度数是( )A. 40° B. 15° C. 55° D. 65° 答案:C9、(2009·浙江温州·模拟8)如图,已知直角坐标系中一条圆弧经过正方形网格的格点A 、B 、C 。
若A 点的坐标为(0,4),D 点的坐标为(7,0),那么圆心M 点的坐标( ).A .是(2,0)B .是(1,0)C .是(0,2)D .不在格点上(第7题图)A DCOBE(第8题图)答案:A10、(2009·浙江温州·模拟8)已知:如图,AB 为⊙O 的直径,AB AC =,BC 交⊙O 于点D ,AC 交⊙O 于点E ,45BAC ∠=o.给出以下五个结论:①22.5EBC ∠=o;②BD DC =;③2AE EC =;④劣弧AE 是劣弧DE 的2倍;⑤AE BC =.其中正确结论的序号是( ).A .①②③B .①②④C .①②⑤D .①②③⑤ 答案:B11、(2009·浙江温州·模拟9)如图,在Δ中,∠90°,8,10,点P 在上,2,若⊙O 的圆心在线段上,且⊙O 与、都相切,则⊙O 的半径是——( )A. 1B. 45C. 712D.94答案:A12、(2009·浙江温州·模拟11)如图3,圆弧形桥拱的跨度=12米,拱高=4米, 则拱桥的半径为( )A 、6.5米B 、9米C 、13米D 、15米答案:A 13、(2009·浙江温州·模拟11)钟表的轴心到分针针端的长为5,那么经过40分钟,分针针端转过的弧长是( )A 、103cm π B 、203cm π C 、253cm π D 、503cm π答案:B14、(2009·浙江温州·模拟12)已知圆锥的侧面积为10π2,侧面展开图的圆心角为36º,则该圆锥的母线长为()A.100B.10C. 101010第11题 图3答案:A15、(2009年浙江温州龙港三中模拟试卷)圆锥的底面半径为3,母线为9cm ,则圆锥的侧面积为( )A .6π2cmB .9π2cmC .12 π2cmD .27π2cm 答:D 16、(2009江苏通州通西一模试卷)如图,正三角形的内切圆半径为1,那么三角形的边长为( )A .2B .32C .3D .3 答:B17、(2009江苏通州通西一模试卷)在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定( )A .与x 轴相离、与y 轴相切B .与x 轴、y 轴都相离C .与x 轴相切、与y 轴相离D .与x 轴、y 轴都相切答:A18、(2009泰兴市 济川实验初中 初三数学阶段试题)已知⊙O 1的半径r 为3,⊙O 2的半径R 为4,两圆的圆心距O 1O 2为1,则这两圆的位置关系是A .相交 B .内含 C .内切 D .外切答:C19、(2009年重庆一中摸底考数学试卷)1O e 和2O e 的半径分别为5和2,123,O O =则1O e α和2O e 的位置关系是( )A .内含B . 内切C .相交D .外切 答:B20、(2009年山东三维斋一模试题) 如图3,是⊙O 的直径,A 、B 是⊙O 上的两点,若∠=20°,则∠的度数为( ).A. 40°B. 50°C. 60°D. 70° 答:D21、(2009年湖北随州 十校联考数学试题)钟表的轴心到分针针端的长为5,经过40分钟,分针针端转过的弧长是( )A.103cm π B.203cm π C.253cm π D.503cm π答:B22、(2009年浙江温州龙港三中模拟试卷)如图,在⊙O 中,、为两条弦,且0APB=45∠,则AOB ∠=( )图3 ABCOPOB AA .450B .600C .750D .900答:D23、(2009年深圳市数学模拟试卷)如图3,一个宽为2 的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆两个交点处的读数恰好为“2”和“8”(单位:),那么该圆的半径为( )B.2516 C.3c m D.134答:D24、(2009年浙江温州龙港三中模拟试卷)已知两圆的半径分别为3㎝和5㎝,两个圆的圆心距为10㎝,则两圆的位置关系是( )A .内切 B.相交 C.外切 D.外离 答:D25.(2009年安徽桐城白马中学模拟二).如果等边三角形的边长为6,那么它的内切圆的半径为 ( ) A .3 B C . D .答案: B26.(2009年浙江省嘉兴市秀洲区素质评估卷11).已知⊙O 1与⊙O 2的半径分别为2和6,圆心距O 1O 2 =4,则两圆的位置关系是( )A .内切B .相交C .外切D .外离 答案:A27.(2009海南省琼海市年模拟考试(3).如图1,⊙O 的直径垂直于弦,垂足为E ,∠20°,则∠等于( )A .60°B . 50°C .40°D .20°答案.28.(2009年浙江省嘉兴市秀洲区素质评估卷8).如图,已知⊙O 的半径为1,AB 与⊙O 相切于点A ,OB 与⊙O 交于点C ,⊥,垂足为D ,则cos AOB 的值等于 ( )A .ODB .OAC .CD D .AB图32 468CABOD 图1(第4题)A BCPO29.(2009年浙江省嘉兴市秀洲区素质评估卷9).如图,是⊙O 的直径,∠30o,则∠A 的度数为( )A .60oB .45oC .30oD .75o答案:A30.(2009年浙江省嘉兴市评估5)、已知⊙O1与⊙O2相切,它们的半径分别为2和5,则O1O2的长是( )A. 5B. 3C.3或5D.3或7 答案 31.(2009年浙江省嘉兴市秀洲区6).如图2,在△中,4,以点A 为圆心,2为半径的⊙A与相切于点D ,交于E ,交于F ,点P 是⊙A 上一点,且∠40°, 则图中阴影部分的面积是( )(A )984π- (B )94π-(C )948π- (D )988π-答案32.(2009年浙江省嘉兴市秀洲区素质评估7). 如图,⊙O 是等边的外接圆,是⊙O 上一点,则CPB ∠等于( ) A.30oB.45oC.60o D.90o答案:C33.(2009年浙江省嘉兴市秀洲区素质评估7).如图3,甲顺着大半圆从A 地到B 地,乙顺着两个小半圆从A 地到B 地,设甲乙走过的路程分别为a 、b 则( ) A. a =b B. a <b C. a >bD. 不能确定PA EFDCB图2 AB甲乙图3B答案: A34.(2009年浙江省嘉兴市秀洲区素质评估7)已知⊙O 1的直径为6,⊙O 2的直径为8,圆心距O 1O 2=1 .则⊙O 1与⊙O 2的位置关系是( )11A .外离B .外切C .相交D .内切答案:D 35.(09河南扶沟县模拟)如图, ⊙O 是等边三角形ABC 的外接圆,⊙O 的半径为2, 则等边三角形ABC 的边长为( ) A .23 B .5 C .3D .25答案: A36、(09黄陂一中分配生素质测试)在锐角ABC ∆中,030B ∠=,以A 为圆心,AB 长为半径作⊙A ;以C 为圆心,AC 长为半径作⊙C ,则⊙A 与⊙C 的位置关系为( ) A 、外切 B 、相交 C 、内切 D 、内含 答案:B37、(09枝江英杰学校模拟)如图为半圆的直径,C 为半圆上的一点,⊥于D ,连接,,则与∠互余有A 、1个B 、 2个C 、3个D 、4个 答案:B38. (09武冈市福田中学一模)已知⊙O 的半径为3,点P 是直线l 上一点,长为5,则直线l 与⊙O 的位置关系为( )A. 相交B. 相切C. 相离D. 相交、相切、相离都有可能 答案:D39.(09上浦镇中学九年级“回头看”试题)如图,A 、B 是⊙O 上的两点,是⊙O 的切线,∠=70°,则∠等于( )A .20°B .10°C .70°D .35° 答案:A40.(09綦江县三江中一模)已知⊙O 1的半径r 为3,⊙O 2的半径R 为4,两圆的圆心距O 1O 2为1,则这两圆的位置关系是( )D A OABC (第15题)(第11题)ABCOABDCOE (A )相交 (B )内含 (C )内切 (D )外切 答案:C二、填空题:1、(2009年通州杨港模拟试卷)如图,矩形中,=2,=23,以的中点E 为圆心,以长为半径作⌒))N 与及交于M 、N ,与相切于H ,则图中阴影部分的面积是 . 答:43π 2、(2009江苏通州通西一模试卷)已知⊙O 1与⊙O 2的圆心距为5,⊙O 1的半径为2,当⊙O 2的半径r 满足条件 时,两圆相离... 解:0<r <3或r >73、(2009江苏通州通西一模试卷)如图,将半径为1、圆心角为60°的扇形纸片,在直线l 上向右作无滑动的滚动至扇形A’O’B’处,则顶点O 经过的路线总长为 . 解:43π4、(2009年辽宁铁岭西丰二中中考模拟考试)如图,一扇形纸扇完全打开后,外侧两竹条和的夹角为120°,长为30,贴纸部分的宽为20,则贴纸部分的面积为 .解:3800π25、(2009年通州杨港模拟试卷)相交两圆的半径分别为5和3,请你写出一个符合条件的圆心距为 .答:答案不惟一取2<d <8之间任意一个数均可6、(2009江苏通州通西一模试卷)已知圆锥的底面半径为1cm ,母线长为3cm ,则圆锥的侧面展开图面积是 . 解:3π27、(2009年江苏苏港数学综合试题)在△中,∠90°,D 是中点,⊙O 经过A 、B 、D 三点,的延长线交⊙O 于E ,连接、。