离散编程,求偏序关系的极大元与极小元
- 格式:rtf
- 大小:5.40 KB
- 文档页数:2
离散数学试题(A 卷及答案)一、证明题(10分)1)(⌝P ∧(⌝Q ∧R))∨(Q ∧R)∨(P ∧R)⇔R证明: 左端⇔(⌝P ∧⌝Q ∧R)∨((Q ∨P)∧R)⇔((⌝P ∧⌝Q)∧R))∨((Q ∨P)∧R)⇔(⌝(P ∨Q)∧R)∨((Q ∨P)∧R)⇔(⌝(P ∨Q)∨(Q ∨P))∧R ⇔(⌝(P ∨Q)∨(P ∨Q))∧R ⇔T ∧R(置换)⇔R2)∃x(A(x)→B(x))⇔ ∀xA(x)→∃xB(x)证明 :∃x(A(x)→B(x))⇔∃x(⌝A(x)∨B(x))⇔∃x ⌝A(x)∨∃xB(x)⇔⌝∀xA(x)∨∃xB(x)⇔∀xA(x)→∃xB(x) 二、求命题公式(P ∨(Q ∧R))→(P ∧Q ∧R)的主析取范式和主合取范式(10分)证明:(P ∨(Q ∧R))→(P ∧Q ∧R)⇔⌝(P ∨(Q ∧R))∨(P ∧Q ∧R))⇔(⌝P ∧(⌝Q ∨⌝R))∨(P ∧Q ∧R) ⇔(⌝P ∧⌝Q)∨(⌝P ∧⌝R))∨(P ∧Q ∧R)⇔(⌝P ∧⌝Q ∧R)∨(⌝P ∧⌝Q ∧⌝R)∨(⌝P ∧Q ∧⌝R))∨(⌝P ∧⌝Q ∧⌝R))∨(P ∧Q ∧R) ⇔m0∨m1∨m2∨m7 ⇔M3∨M4∨M5∨M6三、推理证明题(10分)1) C ∨D, (C ∨D)→ ⌝E, ⌝E →(A ∧⌝B), (A ∧⌝B)→(R ∨S)⇒R ∨S证明:(1) (C ∨D)→⌝E(2) ⌝E →(A ∧⌝B)(3) (C ∨D)→(A ∧⌝B) (4) (A ∧⌝B)→(R ∨S) (5) (C ∨D)→(R ∨S)(6) C ∨D(7) R ∨S2) ∀x(P(x)→Q(y)∧R(x)),∃xP(x)⇒Q(y)∧∃x(P(x)∧R(x))证明(1)∃xP(x) (2)P(a)(3)∀x(P(x)→Q(y)∧R(x)) (4)P(a)→Q(y)∧R(a) (5)Q(y)∧R(a) (6)Q(y) (7)R(a) (8)P(a) (9)P(a)∧R(a) (10)∃x(P(x)∧R(x)) (11)Q(y)∧∃x(P(x)∧R(x))四、设m 是一个取定的正整数,证明:在任取m +1个整数中,至少有两个整数,它们的差是m 的整数倍证明 设1a ,2a ,…,1+m a 为任取的m +1个整数,用m 去除它们所得余数只能是0,1,…,m -1,由抽屉原理可知,1a ,2a ,…,1+m a 这m +1个整数中至少存在两个数s a 和t a ,它们被m 除所得余数相同,因此s a 和t a 的差是m 的整数倍。
第4章 习题解答4.1 A :⑤; B :③; C :①; D :⑧; E :⑩4.2 A :②; B :③; C :⑤; D :⑩; E :⑦4.3 A :②; B :⑦; C :⑤; D :⑧; E :④分析 题4.1-4.3 都涉及到关系的表示。
先根据题意将关系表示成集合表达式,然后再进行相应的计算或解答,例如,题4.1中的}2,2,1,2,2,1,1,1{},2,2,1,1{><><><><=><><=s s E I};2,2,2,1,1,1{><><><=s I而题4.2中的}.1,4,4,3,1,2,4,1,1,1{><><><><><=R为得到题4.3中的R 须求解方程123=+y x ,最终得到}.1,9,2,6,3,3{><><><=R求R R 有三种方法,即集合表达式、关系矩阵和关系图的主法。
下面由题4.2的关系分别加以说明。
1°集合表达式法将ranR ran domR domR,, 的元素列出来,如图4.3所示。
然后检查R 的每个有序对,若R y x >∈<,,则从domR 中的x 到ranR 中的y 画一个箭头。
若danR 中的x 经过2步有向路径到达ranR 中的y ,则R R y x >∈<,。
由图4.3可知}.1,3,4,2,1,2,4,4,1,44,1,1,1{><><><><>><<><=R R如果求G F ,则将对应于G 中的有序对的箭头画在左边,而将对应于F 中的有序对的箭头画在右边。
对应的三个集合分别为ranF domF ran domG ,, ,然后,同样地寻找domG 到ranF 的2步长的有向路径即可。
第一章部分习题及参考答案1 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
(1)p∨(q∧r)(2)(p↔r)∧(﹁q∨s)(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r)(4)(⌝r∧s)→(p∧⌝q)2.判断下面一段论述是否为真:“π是无理数。
并且,如果3是无理数,则2也是无理数。
另外6能被2整除,6才能被4整除。
”3.用真值表判断下列公式的类型:(1)(p→q) →(⌝q→⌝p)(2)(p∧r) ↔(⌝p∧⌝q)(3)((p→q) ∧(q→r)) →(p→r)4.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)5.用等值演算法证明下面等值式:(1)(p→q)∧(p→r)⇔(p→(q∧r))(2)(p∧⌝q)∨(⌝p∧q)⇔(p∨q) ∧⌝(p∧q)6.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)7.在自然推理系统P中构造下面推理的证明:(1)前提:p→q,⌝(q∧r),r结论:⌝p(2)前提:q→p,q↔s,s↔t,t∧r结论:p∧q8.在自然推理系统P中用附加前提法证明下面推理:前提:p→(q→r),s→p,q结论:s→r9.在自然推理系统P中用归谬法证明下面各推理:前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p参考答案:1.(1)p∨(q∧r)⇔0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0 (4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔12.p: π是无理数 1q: 3是无理数0r: 2是无理数 1s: 6能被2整除 1t: 6能被4整除0命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。
一、填空题1设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B=____________________; (A) - (B)= __________________________ .2. 设有限集合A, |A| = n, 则 |(A×A)| = __________________________.3.设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是__________________________ _____________, 其中双射的是__________________________.4. 已知命题公式G=(PQ)∧R,则G的主析取范式是_________________________________________________________________________________________.5.设G是完全二叉树,G有7个点,其中4个叶点,则G的总度数为__________,分枝点数为________________.6设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从AB =_________________________; AB=_________________________;A -B= _____________________ .7. 设R是集合A上的等价关系,则R所具有的关系的三个特性是______________________, ________________________,_______________________________.8. 设命题公式G=(P(QR)),则使公式G为真的解释有__________________________,_____________________________,__________________________.9. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R1 = {(2,1), (3,2),(4,3)}, 则 R1R2 = ________________________,R2R1=____________________________, R12=________________________.10. 设有限集A, B,|A| = m, |B| = n, 则| |(AB)| =_____________________________.11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, xR}, B = {x |0≤x < 2, xR},则A-B = __________________________ , B-A =__________________________ ,A∩B = __________________________ , .13.设集合A={2, 3, 4, 5, 6},R是A上的整除,则R以集合形式(列举法)记为__________________________________________________________________.14. 设一阶逻辑公式G = xP(x)xQ(x),则G的前束范式是__________________________ _____.15.设G是具有8个顶点的树,则G中增加_________条边才能把G变成完全图。
北京交通大学2007-2008学年第二学期《离散数学基础(信科专业)》期末考试卷(A)学院:____________ _专业:___________________ 班级____________姓名:学号:□选修□必修一、填空题(共10分,每空1分)1.在推理理论中,推导过程中如果一个或多个公式重言蕴涵某个公式,则这个公式就可以引入推导过程中,这一推理规则叫做(T规则)。
2.设A={a,{b}},则A的幂集是P (A)= {Φ, a,{b}, {a,{b}};3.设R 是集合A上的二元关系,如果关系R同时具有自反性、反对称性和传递性,则称R是A上的一个偏序关系。
4.既是满射,又是单射的映射称为1-1映射(双射)。
5.设S为非空有限集,代数系统<P(S),∪>的单位元和零元分别为S和φ。
6.具有n个顶点的无向完全图共有n(n-1)/2条边。
7.简单图是指无环、无重边的图。
8.k-正则图是指所有顶点的度数均为k的的图。
9.Hamilton通路是指通过图中所有顶点一次且仅一次的通路。
10.设G=(E,V)是图,如果G是连通的,则P(G)= 1 。
11.命题公式(P→Q) ∧ (P→R)的主析取范式中包含极小项( A )A.P∧Q∧R;B.P∧Q∧⌝R;C .P ∧⌝Q ∧R ;D .P ∧⌝Q ∧⌝R12. 下列谓词公式中( A )不正确。
A .(∃x)(A(x) →B) ⇔ (∃x) A(x) →B ; B .(∃x)(B →A(x)) ⇔ B →(∃x) A(x);C .(∀x)(B →A(x)) ⇔ B →(∀x) A(x);D .(∀x)(A(x)∨B) ⇔(∀x)A(x)∨B ;13. 设S = {2,a ,{3},4},R ={{a},3,4,1},指出下面的写法中正确的是( D )(A )R=S ; (B ){a,3}⊆S ; (C ){a}⊆R ;(D )φ⊆R ;14. 下列命题公式不是重言式的是 C 。
第7章二元关系2主要内容1. 有序对与卡氏积2. 二元关系(包括空关系,恒等关系,全域关系等)及其表示(关系矩阵,关系图)3. 关系的五种性质(自反性,反自反性,对称性,反对称性,传递性)4. 二元关系的幂运算5. 关系的三种闭包(自反闭包,对称闭包,传递闭包)6. 等价关系和划分(包括等价类,商集,划分块等)7. 偏序关系(包括哈斯图,最大元,最小元,极大元,极小元,上界,下界,最小上界,最大下界等)学习要求1. 掌握:有序对及卡氏积的概念及卡氏积的性质2. 掌握:二元关系,A到B的二元关系,A上的二元关系,关系的定义域和值域,关系的逆,关系的合成,关系在集合上的限制,集合在关系下的象等概念,掌握关系的定义域、值域、逆、合成、限制、象等的主要性质3. 掌握:关系矩阵与关系图的概念及求法4. 掌握:集合A上的二元关系的主要性质(自反性,反自反性,对称性,反对称性,传递性)的定义及判别法,对某些关系证明它们有或没有中的性质5. 掌握:A上二元关系的n次幂的定义及主要性质6. 掌握A上二元关系的自反闭包、对称闭包、传递闭包的定义及求法7. 掌握:等价关系、等价类、商集、划分、等概念,以及等价关系与划分之间的对应8. 掌握:偏序关系、偏序集、哈斯图、最大元、最小元、极大元、极小元、上界、下界、上确界、下确界等概念典型习题1. 下列等式中哪些成立?哪些不成立?为什么?2. 设A={1,2,3}, R={<x,y>|x,y∈A且x+3y<8},S={<2,3>,<4,2>},求下列各式:3. 说明下列关系是否是自反的、对称的、传递的或反对称的。
4. 设R是二元关系,设S={<a,b>|存在某个c,使得<a,c>∈R且<c,b>∈R}。
证明如果R是等价关系,则S也是等价关系。
5. 设R是Z上的模n等价关系,即x~y当且仅当x≡y(mod n),试给出由R确定的Z的划分π。
《离散数学》模拟题北航10秋学期《离散数学》模拟题⼀⼀、单项选择题(本⼤题共15⼩题,每⼩题2分,共30分)1.∑中所有有限长度的串形成的集合记为∑* ,容易证得∑*上的连接运算不满⾜交换律,但满⾜( A ) A .结合律 B .分配律 C .幂等律 D .吸收律 2.Klein 群中元素a,b,c 的阶为( B )。
A .1B .2C .3D .4 3.群G 的元素x 的所有幂的集合为G 的⼦群,称由x ⽣成的⼦群。
记为( A ). A . B .(x) C .x D .[x] 4.交换环是指乘法满⾜( A )。
A .交换律B .结合律C .分配律D .吸收律 5.⾄少有( B )元素的含单位元、⽆零因⼦环称为除环。
A .⼀ B .⼆ C .三 D .四 6.∨,∧满⾜( C )的格称为分配格A .交换律B .结合律C .分配律D .幂等律 7.若L 为有限布尔代数,则( B )正整数n ,L 与含有n 个元素的集合A 的幂集同构。
A .不存在 B .存在 C .有可能存在 8.有向图D 的顶点v 作为边的始点的次数之和称为v 的出度,记为d +(v), v 作为边的终点的次数之和称为v 的⼊度,记为d -(v),v 的度数d(v)= ( A )。
A .d +(v)+d -(v)B .d +(v)C .d -(v)D .d +(v)*d -(v) 9.若通路Г=v 0e 1v 1e 2…e 1v 1 中所有顶点互不相同(所有边⾃然互不相同)时称为( B ) A .初级回路 B .路径 C .复杂通路D .迹 10.在n 阶图中,若⼀顶点存在到⾃⾝的回路,则必存在从该顶点到⾃⾝的长度不超过( B )的回路。
A .n-1 B .n C .n+1 D .2n 11.“⼈总是要死的”谓词公式表⽰为( C )。
(论域为全总个体域)M(x):x 是⼈;Mortal(x):x 是要死的。
A .)()(x Mortal x M →; B .)()(x Mortal x M ∧C .))()((x Mortal x M x →?; D .))()((x Mortal x M x ∧?12. 公式))()((x Q x P x A →?=的解释I 为:个体域D={2},P(x):x>3, Q(x):x=4则A 的真值为( A )。
离散数学第二部分测试题一、 填空题1.D=}{φ,则幂集}}.{,{)(φφρ=D2. B={1,{2,3}},则幂集=)(B ρ}}}3,2{,1{}},3,2{{},1{,{φ3. 若集合A ,B 的元素个数分别为n B m A ==,,则A 到B 有 nm ⨯2种不同的二元关系。
4. A={φ,a ,{b}},B=}{φ,则{}><><><=⨯φφφφ},{,,,,b a B A5. 设A={1,2,3},则在A 上有 5 个不同的划分。
6.设P ={<1, 2>, <1, 4>, <2, 3>, <4, 4>}和Q ={ <1, 2>, <2, 3>,<4, 2>} 则dom(P ∪Q )= {1,2,4} ,ran(P ∪Q ) = { 2,3,4}7. A I 是集合A 上的恒等关系,A 上的关系R 具有 反对称 性当且仅当1A R R I -⋂⊆8. A I 是集合A 上的恒等关系,A 上的关系R 具有 反自反 性当且仅当Φ=⋂R I A9. 设R 为A 上的关系,R 在A 上具有 传递 当且仅当R R R ⊆ 。
10.设R 为A 上的关系,R 在A 上自反的当且仅当 A I R ⊆ 11.设R 为A 上的关系,R 在A 上对称的当且仅当1R R -=二、 选择题1.集合A={全班同学}上的同龄关系R 为( B )A .对称关系B .等价关系C .偏序关系D .三个都不是 2.在由3个元素组成的集合上,可以有( D )种不同的关系。
A . 3; B .8; C .9 ; D .5123.设集合{}c b a A ,,=,A 上的二元关系{}><><=b b a a R ,,,不具备关系( D )性质A .传递性B .反对称性C .对称性D .自反性三、 计算题1.设集合A={1,2,3},A 上的关系R={<1,1>,<1,2>,<2,2>,<3,2>,<3,3>}(1) 画出R 的关系图; (2) 写出R 的关系矩阵问R 具有关系的哪几些特殊性质(自反、对称、传递等)解 (1)(2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=110010011M 该关系是自反的但不是反自反的,因为每个顶点都有个环;它是反对称的但不是对称的,因为图中只有单向边;它也是传递的,因为不存在顶点x,y,z ,使得x 到y 有边,y 到z 有边,但x 到z 没边,其中}3,2,1{,,∈z y x 。
编号 题目答案题型 分值 大纲难度 11 设集合A={a ,b ,c ,d}上的关系R={<a , b > ,< b , a > ,< b, c > , <c ,d >}用矩阵运算求出R 的传递闭包t (R)。
答: ⎪⎪⎪⎪⎪⎭⎫⎝⎛=0000100001010010R M , ⎪⎪⎪⎪⎪⎭⎫⎝⎛==00000000101001012R R R M M M ⎪⎪⎪⎪⎪⎭⎫⎝⎛==000000000101101023R R R M M M ⎪⎪⎪⎪⎪⎭⎫⎝⎛==000000001010010134R R R M M M ⎪⎪⎪⎪⎪⎭⎫⎝⎛=+++=0000100011111111432)(R R R R R t M M M M M∴t (R)={<a , a> , <a , b> , < a , c> , <a , d > , <b , a > , < b ,b > , < b , c . > , < b , d > , < c , d > }简答题8 32如以下图所示的赋权图表示某七个城市721,,,v v v 及预先算出它们之间的一些直接通信线路造价,试给出一个设计方案,使得各城市之间能够通信而且总造价最小。
答: 用Kruskal 算法求产生的最优树。
算法略。
结果如图:树权C(T)=23+1+4+9+3+17=57即为总造价。
简答题833设<Z6,+6>是一个群,这里+6是模6加法,Z6={[0 ],[1],[2],[3],[4],[5]},试求出<Z6,+6>的所有子群。
答: 子群有<{[0]},+6>;<{[0],[3]},+6>;<{[0],[2],[4]},+6>;<{Z6},+6> 简答题8 34权数1,4,9,16,25,36,49,64,81,100构造一棵最优二叉树。
1)设集合为{3,5,15},{1,2,3,6,12},{3,9,27,54},偏序关系为整除,画出这些关系的偏序关系图,并指出那些是全序关系。
解:若集合为{3,5,15}则:≤ ={<3,3>,<5,5>,<15,15>,<3,15>,<5,15>}哈斯图如下若集合为{1,2,3,6,12}则:≤={<1,1>,<2,2>,<3,3>,<6,6>,<12,12>,<1,2>,<1,3>,<1,6>,<1,12>,<2,6>,<3,6 >,<2,12>,<6,12>}哈斯图如下:该集合为全序关系若集合为{3,9,27,54},则:≤={<3,3,>,<9,9>,<27,27>,<54,54>,<3,9>,<3,27>,<3,54>,<9,27>,<9,54>,<27, 54>}哈斯图如下:该集合的关系为全序关系6)设集合P={x1,x2,x3,x4,x5}上的偏序关系如图3-12.10所示。
找出P的最大元素,最小元素,极小元素,极大元素。
找出子集{x2,x3,x4},{x3,x4,x5}和{x1,x2,x3}的上界,下界,上确界,下确界。
解:p的最大元素为:X1最小元素为: X4极小元为:X4,X5极大元为:X1集合{x2,x3,x4}的上界为:X2,X3下界为:X4上确界为:X4集合为{x3,x4,x5}的上界为:X3下界为:X4,X5下确界为:X3集合为{x1,x2,x3}的上界为:X1下界为:X2,X3下确界为:X17)图3-12-11给出了集合{1,2,3,4},上的四个偏序关系图,画出他们的哈斯图,并说明哪一个是全序关系,哪一个是良序关系。
《离散数学》试题及答案一、填空题1 设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B=____________________; (B)=__________________________ .2. 设有限集合A, |A| = n, 则| (A×A)| = __________________________.3. 设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是__________________________ _____________, 其中双射的是__________________________.4. 已知命题公式G=(P Q)∧R,则G的主析取范式是_________________________________________________________________________________________.6 设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A B=_________________________; A B=_________________________;A-B=_____________________ .7. 设R是集合A上的等价关系,则R所具有的关系的三个特性是______________________, ________________________,_______________________________.8. 设命题公式G=(P (Q R)),则使公式G为真的解释有__________________________,_____________________________,__________________________.9. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R2 = {(2,1),(3,2),(4,3)}, 则R1 R2 = ________________________,R2 R1 =____________________________, R12 =________________________.(A) -10. 设有限集A, B,|A| = m, |B| = n, 则| | (A B)| =_____________________________. 11 设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, x R}, B = {x | 0≤x 2, x R},则A-B =__________________________ , B-A = __________________________ , A∩B =__________________________ , .13. 设集合A={2, 3, 4, 5, 6},R是A上的整除,则R以集合形式(列举法)记为__________________________________________________________________.14. 设一阶逻辑公式G = xP(x) xQ(x),则G的前束范式是__________________________ _____.16. 设谓词的定义域为{a, b},将表达式xR(x)→ xS(x)中量词消除,写成与之对应的命题公式是__________________________________________________________________________.17. 设集合A={1, 2, 3, 4},A上的二元关系R={(1,1),(1,2),(2,3)}, S={(1,3),(2,3),(3,2)}。
《离散数学(上)》考试试卷(B 卷)(时间120分钟)院/系 专业 姓名 学号一、单选题(每小题2分,共20分)1. 若P :他聪明;Q :他用功;则“他虽聪明,但不用功”,可符号化为( )A.P ∨QB.P ∧┐QC.P →┐QD.P ∨┐Q2. 设个体域为{,}D a b =,(,)(,)0F a a F a b ==,(,)(,)1F b a F b b ==,则下列公式为真的是( )A. (,)x yF x y ∃∀;B. (,)x yF x y ∀∃;C.(,)x yF x y ∀∀;D.(,)x yF x y ∃∃¬。
3. 设B 是不含变元x 的公式,谓词公式(∀x)(A(x)→B)等价于( )A.(∃x)A(x)→BB.(∀x)A(x)→BC.A(x)→BD.(∀x)A(x)→(∀x)B 4. 对任意集合C B A ,,,下列各式中一定成立的是( )A.)()()(C A B A C B A ⋃⊕⋃=⊕⋃;B. )()()(C A B A C B A ⋃⋂⊕=⋂⊕;C. )()()(C A B A C B A ⋃⊗⋃=⊗⋃;D. )()(C B A C B A ⨯⨯=⨯⨯。
5. 设A={a,b,c},A 上二元关系R={〈a,a 〉,〈b,b 〉,〈a,c 〉},则关系R 的对称闭包S(R)是( )A.R ∪I AB.RC.R ∪{〈c,a 〉}D.R ∩I A6. 设X={a,b,c},Ix 是X 上恒等关系,要使I x ∪{〈a,b 〉,〈b,c 〉,〈c,a 〉,〈b,a 〉}∪R 为X 上的等价关系,R 应取( )A. {〈c,a 〉,〈a,c 〉}B.{〈c,b 〉,〈b,a 〉}C. {〈c,a 〉,〈b,a 〉}D.{〈a,c 〉,〈c,b 〉} 7. 下列式子正确的是( )A. ∅∈∅B.∅⊆∅C.{∅}⊆∅D.{∅}∈∅8. 以下命题公式中,为永假式的是( )A.p →(p ∨q ∨r)B.(p →┐p)→┐pC.┐(q →q)∧pD.┐(q ∨┐p)→(p ∧┐p) 9. 设1π和2π是非空集合A 的划分,则下列集合一定是A 的划分的是( )A.12ππ B.12ππ C.12ππ- D.1211()ππππ-10. 设N 和R 分别为自然数和实数集合,则下列集合中与其他集合的基数不同的集合是( )A.RB.NN C.()N ρ D.nN (n N ∈)二、判断题(每小题2分,共10分。
求偏序集中的极大元与极小元
成绩: 10 / 折扣: 0.9
输入
输入偏序集 <A, £ > , A 中的元素数不超过 20 个,分别用单个小写的英文字母表示。
输入的第一行给出 A 中的各个元素,两个相邻的元素之间用逗号隔开。
输入的第二行给出偏序关系£,用有序对的形式给出,如 <a,b>,<c,a> 等等,两个相邻的有序对之间用逗号隔开。
输出
输出 A 的极小元与极大元。
输出的第一行给出各个极小元,两个相邻元素之间用逗号隔开,输出的元素要求按照英文字母的自然顺序排列输出。
输出的第二行给出各个极大元,两个相邻元素之间用逗号隔开,输出的元素要求按照英文字母的自然顺序排列输出。
测试输入期待的输出时间限制内存限制额外进程
测试用例 1 以文本方式显示
1.a,b,c,d↵
2.<a,b>,<c,d>,<a,a>,<b,b>,<c,c>,<d,d>↵
以文本方式显示
1.a,c↵
2.b,d↵
无限制 1024KB 0
测试用例 2 以文本方式显示
1.a,b,c,d,e,f↵
2.<a,b>,<c,d>,<e,f>,<a,a>,<b,b>,<c,c>,<d,d>,<e,e>,<f,f>↵
以文本方式显示
1.a,c,e↵
2.b,d,f↵
无限制 1024KB 0
源程序
#define N 100
#include"stdio.h"
#include"string.h"
int main( )
{ char b[N],c[N],d[N],e[N]; /* b放元素,c放偏序关系,d放极小元,e放极大元 */ int i,j,m=0,n=0,len1,len2,s;
scanf ( "%s%s",b,c );
len1 = strlen( b );
len2 = strlen( c );
for ( i=0;i<len1; ) /* 求极小元,则它除自反关系外不在关系的后者中出现 */ { for ( j=3;j<len2; )
{ s=j-2;
if ( (( c[s]==c[j] ) || ( b[i]!=c[j] )) && j!=(len2-2) ) j=j+6;
else if ( (( c[s]==c[j] ) || ( b[i]!=c[j] )) && (len2-j==2) )
{ d[m]=b[i];
m++;
i=i+2;
j=j+6;
}
else
{ i=i+2;
break;
}
}
}
for ( i=0;i<len1; ) /* 求极大元,则它除自反关系外不在关系的前者中出现*/
{ for ( j=1;j<len2; )
{ s=j+2;
if ( (( b[i]!=c[j] )||( c[j]==c[s] )) && j!=(len2-4) ) j=j+6;
else if ( (( b[i]!=c[j] ) || ( c[j]==c[s] )) && ( len2-j==4 ) )
{ e[n]=b[i];
i=i+2;
n++;
j=j+6;
}
else
{ i=i+2;
break;
}
}
}
m=m-1;n=n-1;
for ( i=0;i<m; )
{ printf ( "%c",d[i] );
printf ( "," );
i++;
}
printf ( "%c\n",d[i] );
for ( i=0;i<n; )
{ printf ( "%c",e[i] );
printf ( "," );
i++;
}
printf ( "%c\n",e[i] );
}。