高中数学第1章计数原理第10课时排列组合综合应用2导学案苏教版选修23
- 格式:doc
- 大小:60.50 KB
- 文档页数:5
高考数学轻松搞定排列组合难题二十一种方法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。
教学目标1.进一步理解和应用分步计数原理和分类计数原理。
2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。
提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题.复习巩固1.分类计数原理(加法原理)完成一件事,有n类办法,在第1类办法中有m种不同的方法,在第2类办法1中有m种不同的方法,…,在第n类办法中有n m种不同的方法,那么完成这件2事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n个步骤,做第1步有m种不同的方法,做第2步有2m1种不同的方法,…,做第n步有m种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,个位置.先排末位共有1C3443然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
2018年高中数学第1章计数原理1.3 组合教学案苏教版选修2-3 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年高中数学第1章计数原理1.3 组合教学案苏教版选修2-3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年高中数学第1章计数原理1.3 组合教学案苏教版选修2-3的全部内容。
1.3 组合第1课时组合与组合数公式从1,3,5,7中任取两个数相除或相乘.问题1:所得商和积的个数相同吗?提示:不相同.问题2:它们是排列吗?提示:从1,3,5,7中任取两个数相除是排列,而相乘不是排列.问题3:一个小组有7名学生,现抽调5人参加劳动.所抽出的这5人与顺序有关吗?提示:无关.问题4:你能举个这样的示例吗?提示:从班里选7名同学组成班委会.一般地,从n个不同元素中取出m(m≤n)个元素并成一组,叫做从n个元素中取出m个不同元素的一个组合。
从1,3,5,7中任取两个数相除.问题1:可以得到多少个不同的商?提示:A错误!=4×3=12种.问题2:如何用分步法理解“任取两个数相除”?提示:第一步,从这四个数中任取两个元素,其组合数为C错误!,第二步,将每一组合中的两个不同元素作全排列,有A错误!种排法.问题3:你能得出C错误!的结果吗?提示:因为A24=C错误!A错误!,所以C错误!=错误!=6。
问题4:试用列举法求得从1,3,5,7中任取两个元素的组合数?提示:1,3;1,5;1,7;3,5;3,7;5,7共6种.组合数与组合数公式组合数定义从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数表示法用符号C错误!表示组合数公式乘积形式C错误!=错误!阶乘形式C错误!=错误!性质C错误!=C错误!;C错误!=C错误!+C错误!备注①n,m∈N*且m≤n.②规定C错误!=11.组合的特点是只取不排组合要求n个元素是不同的,被取出的m个元素也是不同的,即从n个不同的元素中进行m次不放回地取出.2.组合的特性元素的无序性,即取出的m个元素不讲究顺序,没有位置的要求.3.相同的组合根据组合的定义,只要两个组合中的元素完全相同(不管顺序如何),就是相同的组合.[例1] 判断下列问题是排列问题还是组合问题?并计算出结果.(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?(2)高二年级数学课外小组有10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?[精解详析](1)①是排列问题,共通了A错误!=110封信;②是组合问题,共握手C211=55次.(2)①是排列问题,共有A错误!=90种选法;②是组合问题,共有C错误!=45种选法.[一点通] 区分排列与组合的关键是看取出元素后是按顺序排列还是无序地组在一起.而区分有无顺序的方法是:把问题的一个选择结果写出来,然后交换这个结果中任意两个元素的位置,看是否会产生新的变化.若有新变化,即说明有顺序,是排列问题;若无新变化,即说明无顺序,是组合问题.1.下列问题:①铁路线有5个车站,要准备多少车票?②铁路线有5个车站,有多少种票价?③有4个篮球队进行单循环比赛,有多少种冠亚军的情况?④从a,b,c,d 4名学生中选出2名学生,有多少种不同选法?⑤从a,b,c,d 4名学生中选出2名学生完成两件不同的工作有多少种不同选法?其中是组合问题的是________.(将正确的序号填在横线上)解析:来往的车票是不同的,因为它具有方向性,即有序;而来往的票价是相同的,没有方向性;单循环是无序的,但冠亚军却有明显的顺序;从4名学生中选出2名学生无顺序;而2名学生完成两件不同的工作是有序的.答案:②④2.求出问题1中组合问题的组合数.解:②铁路线有5个车站,有C错误!=10种不同的票价.④从a,b,c,d 4 名学生中选出2名学生,有C错误!=6种不同的选法。
轻松搞定摆列组合难题二十一种方法摆列合系生风趣,但型多,思路灵巧,所以解决摆列合,第一要真,弄清楚是摆列、合是摆列与合合;其次要抓住的本特色,采纳合理适合的方法来理。
复稳固1.分数原理 ( 加法原理 )达成一件事,有n 法,在第1法中有 m1种不一样的方法,在第 2 法中有m2种不一样的方法,⋯,在第n 法中有 m n种不一样的方法,那么达成件事共有:N m1m2L m n种不一样的方法.2.分步数原理(乘法原理)达成一件事,需要分红n 个步,做第1步有 m1种不一样的方法,做第 2 步有m2种不一样的方法,⋯,做第n 步有 m n种不一样的方法,那么达成件事共有:N m1m2L m n种不一样的方法.3.分数原理分步数原理区分数原理方法互相独立,任何一种方法都能够独立地达成件事。
分步数原理各步互相依存,每步中的方法达成事件的一个段,不可以达成整个事件.解决摆列合合性的一般程以下:1.真弄清要做什么事2.怎做才能达成所要做的事 , 即采纳分步是分 , 或是分步与分同行 , 确立分多少步及多少。
3.确立每一步或每一是摆列 ( 有序 ) 是合 ( 无序 ) , 元素数是多少及拿出多少个元素 .4.解决摆列合合性,常常与步交错,所以必掌握一些常用的解策略一 . 特别元素和特别地点先策略例 1. 由 0,1,2,3,4,5能够构成多少个没有重复数字五位奇数.解 : 因为末位和首位有特别要求 , 应当优先安排 , 免得不合要求的元素占了这两个地点 . 先排末位共有 C13而后排首位共有 C14C14A34C13最后排其余地点共有A43由分步计数原理得 C41C31 A43288地点剖析法和元素剖析法是解决摆列组合问题最常用也是最基本的方法, 若以元素剖析为主 , 需先安排特别元素 , 再办理其余元素 . 若以地点剖析为主 , 需先知足特别地点的要求, 再办理其余位置。
如有多个拘束条件,常常是考虑一个拘束条件的同时还要兼备其余条件练习题 :7 种不一样的花种在排成一列的花盆里, 若两种葵花不种在中间,也不种在两头的花盆里,问有多少不一样的种法?二 . 相邻元素捆绑策略例 2. 7人站成一排,此中甲乙相邻且丙丁相邻,共有多少种不一样的排法.解:可先将甲乙两元素捆绑成整体并当作一个复合元素,同时丙丁也当作一个复合元素,再与其余元素进行摆列,同时对相邻元素内部进行自排。
《排列(1)》导学案【学习目标】1. 理解排列、排列数的概念;2. 了解排列数公式的推导.【重点难点】1. 理解排列、排列数的概念;2. 了解排列数公式的推导.【学法指导】(预习教材P14~ P18,找出疑惑之处)复习1:交通管理部门出台了一种汽车牌照组成办法,每一个汽车牌照都必须有2个不重复的英文字母和4个不重复的阿拉伯数字,并且2个字母必须合成一组出现,4个数字也必须合成一组出现.那么这种办法共能给多少辆汽车上牌照?复习2:从甲,乙,丙3名同学中选出2名参加一项活动,其中1名同学参加上午的活动,另一名参加下午的活动,有多少种不同的选法?【教学过程】(一)导入探究任务一:排列问题1:上面复习1,复习2中的问题,用分步计数原理解决显得繁琐,能否对这一类计数问题给出一种简捷的方法呢?新知1:排列的定义一般地,从n个元素中取出m()个元素,按照一定的排成一排,叫做从个不同元素中取出个元素的一个排列.试试:写出从4个不同元素中任取2个元素的所有排列. 反思:排列问题有何特点?什么条件下是排列问题?探究任务二:排列数及其排列数公式新知2 排列数的定义从个元素中取出(nm≤)个元素的的个数,叫做从n个不同元素取出m元素的排列数,用符合表示.试试:从4个不同元素a,b, c,d中任取2个,然后按照一定的顺序排成一列,共有多少种不同的排列方法?问题:⑴从n个不同元素中取出2个元素的排列数是多少?⑵从n个不同元素中取出3个元素的排列数是少?⑶从n个不同元素中取出m(nm≤)个元素的排列数是多少?新知3 排列数公式从n个不同元素中取出m(nm≤)个元素的排列数=mnA新知4 全排列从n个不同元素中取出的一个排列,叫做n个元素的一个全排列,用公式表示为=nnA(二)深入学习例1计算:⑴410A;⑵218A; ⑶441010AA÷.变式:计算下列各式:⑴215A; ⑵66A⑶28382AA-; ⑷6688AA.例2若17161554mn A =⨯⨯⨯⨯⨯,则n = ,m = .变式:乘积(55)(56)(68)(69)n n n n ----用排列数符号表示 .(,n N ∈)例3 求证: 11--=m n m n nA A变式 求证: 7766778878A A A A =+-小结:排列数m n A 可以用阶乘表示为mn A =※ 动手试试 n 2 3 4 5 6 7n !练2. 从2,3,5,7,11这五个数字中,任取2个数字组成分数,不同值的分数共有多少个? .【当堂检测 】1. 计算:=+243545A A ;2.. 计算:=+++44342414A A A A ;3. 某年全国足球甲级(A 组)联赛共有14队参加,每队都要与其余各队在主客场分别比赛1次,共进行 场比赛;4. 5人站成一排照相,共有 种不同的站法;5. 从1,2,3,4这4个数字中,每次取出3个排成一个3位数,共可得到 个不同的三位数.1. 求证:11211--++=-n n n n n n A n A A2. 一个火车站有8股岔道,停放4列不同的火车,有多少种不同的停放方法(假设每股道只能停放1列火车)?3.一部记录片在4个单位轮映,每一单位放映1场,有多少种轮映次序?【反思 】1. 排列数的定义2. 排列数公式及其全排列公式《排列(2)》导学案【学习目标 】1熟练掌握排列数公式; 2. 能运用排列数公式解决一些简单的应用问题. 【重点难点 】 1熟练掌握排列数公式; 2. 能运用排列数公式解决一些简单的应用问题. 【学法指导 】 (预习教材P 5~ P 10,找出疑惑之处) 复习1:.什么叫排列?排列的定义包括两个方面分别是 和 ;两个排列相同的条件是 相同, 也复习2:排列数公式:mn A = (,,m n N m n *∈≤)全排列数:nn A = = . 复习3 从5个不同元素中任取2个元素的排列数是 ,全部取出的排列数是【教学过程 】 (一)导入 探究任务一:排列数公式应用的条件 问题1:⑴ 从5本不同的书中选3本送给3名同学,每人各1本,共有多少种不同的送法?⑵ 从5种不同的书中买3本送给3名同学,每人各1本,共有多少种不同的送法? 新知:排列数公式只能用在从n 个不同元素中取出m 个元素的的排列数,对元素可能相同的情况不能使用.探究任务二:解决排列问题的基本方法问题2:用0到9这10个数字,可以组成多少个没有重复数字的三位数?新知:解排列问题时,当问题分成互斥各类时,根据加法原理,可用分类法;当问题考虑先后次序时,根据乘法原理,可用位置法;这两种方法又称作直接法.当问题的反面简单明了时,可通过求差采用间接法求解;另外,排列中“相邻”问题可以用“捆绑法”;“分离”问题可能用“插空法”等. (二)深入学习 例1 (1)6男2女排成一排,2女相邻,有多少种不同的站法? (2)6男2女排成一排,2女不能相邻,有多少种不同的站法? (3)4男4女排成一排,同性者相邻,有多少种不同的站法? (4)4男4女排成一排,同性者不能相邻,有多少种不同的站法?变式::某小组6个人排队照相留念.(1) 若排成一排照相,甲、乙两人必须在一起,有多少种不同的排法? (2) 若排成一排照相,其中甲必在乙的右边,有多少种不同的排法? (3) 若排成一排照相,其中有3名男生3名女生,且男生不能相邻有多少种排法? (4) 若排成一排照相,且甲不站排头乙不站排尾,有多少种不同的排法? (5) 若分成两排照相,前排2人,后排4人,有多少种不同的排法?小结:对比较复杂的排列问题,应该仔细分析,选择正确的方法.例2 用0,1,2,3,4,5六个数字,能排成多少个满足条件的四位数.(1)没有重复数字的四位偶数?(2)比1325大的没有重复数字四位数?变式:用0,1,2,3,4,5,6七个数字,⑴能组成多少个没有重复数字的四位奇数?⑵能被5整除的没有重复数字四位数共有多少个?※动手试试练1.从4种蔬菜品种中选出3种,分别种植在不同土质的3块土地上进行实验,有多少种不同的种植方法?练2.在3000至8000之间有多少个无重复数字的奇数?【当堂检测】1. 某农场为了考察3个水稻品种和5个小麦品种的质量,要在土质相同的土地上进行试验,应该安排的试验区共有块.2. 某人要将4封不同的信投入3个信箱中,不同的投寄方法有种.3. 用1,2,3,4,5,6可组成比500000大、且没有重复数字的自然数的个数是.4. 现有4个男生和2个女生排成一排,两端不能排女生,共有种不同的方法.5. 在5天内安排3次不同的考试,若每天至多安排一次考试,则不同的排法有种.1..一个学生有20本不同的书.所有这些书能够以多少种不同的方式排在一个单层的书架上?2.学校要安排一场文艺晚会的11个节目的演出顺序.除第一个节目和最后一个节目已确定外,4个音乐节目要求排在第2,5,7,10的位置,3个舞蹈节目要求排在第3,6,9的位置,2个曲艺节目要求排在第4,8的位置,求共有多少种不同的排法?【反思 】1. 正确选择是分类还是分步的方法,分类要做到“不重不漏”,分步要做到“步骤完整.2..正确分清是否为排列问题满足两个条件:从不同元素中取出元素,然后排顺序.《组合(1)》导学案【学习目标 】1. 正确理解组合与组合数的概念;2. 弄清组合与排列之间的关系;3. 会做组合数的简单运算;. 【重点难点 】1. 正确理解组合与组合数的概念;2. 弄清组合与排列之间的关系;3. 会做组合数的简单运算; 【学法指导】(预习教材P 21~ P 23,找出疑惑之处)复习1:什么叫排列?排列的定义包括两个方面,分别是 和 . 复习2:排列数的定义:从 个不同元素中,任取 个元素的 排列的个数叫做从n 个元素中取出m 元素的排列数,用符号 表示复习3:排列数公式:mn A = (,,m n N m n *∈≤)【教学过程 】 (一)导入探究任务一:组合的概念问题:从甲,乙,丙3名同学中选出2名去参加一项活动,有多少种不同的选法?新知:一般地,从 个 元素中取出 ()m n ≤个元素 一组,叫做从n 个不同元素中取出m 个元素的一个组合.试试:试写出集合{}a,b,c,d,e 的所有含有2个元素的子集.反思:组合与元素的顺序 关,两个相同的组合需要 个条件,是 ;排列与组合有何关系? 探究任务二.组合数的概念:从n 个 元素中取出m ()m n ≤个元素的 组合的个数,叫做从n 个不同元素中取出m 个元素的组合数....用符号 表示. 探究任务三 组合数公式 m n C = =我们规定:=0nC (二)深入学习例1 甲、乙、丙、丁4个人,(1)从中选3个人组成一组,有多少种不同的方法?列出所有可能情况; (2)从中选3个人排成一排,有多少种不同的方法?变式: 甲、乙、丙、丁4个足球队举行单循环赛: (1)列出所有各场比赛的双方; (2)列出所有冠亚军的可能情况.小结:排列不仅与元素有关,而且与元素的排列顺序有关,组合只与元素有关,与顺序无关,要正确区分排列与组合.例2 计算:(1)47C ; (2)710C变式:求证:11+⋅-+=m n m nC mn m C※ 动手试试 练1.计算:⑴ 26C ; ⑵ 38C ;⑶ 2637C C -; ⑷ 253823C C -.练2. 已知平面内A ,B ,C ,D 这4个点中任何3个点都不在一条直线上,写出由其中每3点为顶点的所有三角形.练3. 学校开设了6门任意选修课,要求每个学生从中选学3门,共有多少种选法?【当堂检测 】1. 若8名学生每2人互通一次电话,共通 次电话.2. 设集合{}A a,b,c,d,e ,B A =⊂,已知a B ∈,且B 中含有3个元素,则集合B 有个. 3. 计算:310C = .4. 从2,3,5,7四个数字中任取两个不同的数相乘,有m 个不同的积;任取两个不同的数相除,有n 个不同的商,则m :n = .5.写出从a,b,c,d,e 中每次取3个元素且包含字母a ,不包含字母b 的所有组合 1.计算:⑴ 215C ; ⑵ 2836C C ÷;2. 圆上有10个点:⑴ 过每2个点画一条弦,一共可以画多少条弦?⑵ 过每3点画一个圆内接三角形,一共有多少个圆内接三角形? 、【反思 】1. 正确理解组合和组合数的概念2.组合数公式:(1)(2)(1)!m m n nm m A n n n n m C A m ---+==或者:)!(!!m n m n C mn -=),,(n m N m n ≤∈*且《 组合(2)》导学案【学习目标 】1.2. 进一步熟练组合数的计算公式,能够运用公式解决一些简单的应用问题; 【重点难点 】1.2. 进一步熟练组合数的计算公式,能够运用公式解决一些简单的应用问题; 【学法指导 】(预习教材P 24~ P 25,找出疑惑之处)复习1:从 个 元素中取出 ()m n ≤个元素 一组,叫做从n 个不同元素中取出m 个元素的一个组合;从 个 元素中取出 ()m n ≤个元素的 组合的个数,叫做从n 个不同元素中取出m 个元素的组合数....用符号 表示.复习2: 组合数公式: m n C = =【教学过程 】 (一)导入探究任务一:组合数的性质问题1:高二(6)班有42个同学⑴ 从中选出1名同学参加学校篮球队有多少种选法? ⑵ 从中选出41名同学不参加学校篮球队有多少种选法? ⑶ 上面两个问题有何关系?新知1:组合数的性质1:mn n m n C C -=.一般地,从n 个不同元素中取出m 个元素后,剩下n m -个元素.因为从n 个不同元素中取出m 个元素的每一个组合,与剩下的n - m 个元素的每一个组合一一对应....,所以从n 个不同元素中取出m 个元素的组合数,等于从这n 个元素中取出n - m 个元素的组合数,即:mn n m n C C -=试试:计算:1820C反思:⑴若y x =,一定有yn x n C C =?⑵若yn x n C C =,一定有y x =吗?问题2 从121,,,+n a a a 这n +1个不同元素中取出m 个元素的组合数是 ,这些组合可以分为两类:一类含有元素1a ,一类是不含有1a .含有1a 的组合是从132,,,+n a a a 这 个元素中取出 个元素与1a 组成的,共有 个;不含有1a 的组合是从132,,,+n a a a 这 个元素中取出 个元素组成的,共有 个.从中你能得到什么结论?新知2 组合数性质2 m n C 1+=m n C +1-m n C(二)深入学习例1(1)计算:69584737C C C C +++;变式1:计算2222345100C C C C ++++例2 求证:n m C 2+=n m C +12-n m C +2-n m C变式2:证明:111m m m n n n C C C ++++=小结:组合数的两个性质对化简和计算组合数中用用处广泛,但在使用时要看清公式的形式.例3解不等式()321010n n-C n -<∈+C N .练3 :解不等式:46n nC C <※ 动手试试练1.若542216444x x C -C C C -=+,求x 的值练2. 解方程: (1)3213113-+=x x C C(2)333222101+-+-+=+x x x x x A C C【当堂检测 】1. 908910099C -C =2. 若231212n n-C C =,则n =3.有3张参观券,要在5人中确定3人去参观,不同方法的种数是 ;4. 若7781n n n C C C +=+,则n = ;5. 化简:9981m m m C -C C ++= .1. 计算:⑴ 197200C ; ⑵ 21-+•n n n n C C2. 壹圆,贰圆,伍圆,拾圆的人民币各1张,一共可以组成多少种币值?3. 若128n n C C =,求21n C 的值【反思 】1. 组合数的性质1:mn n m n C C -=2. 组合数性质2:m n C 1+=m n C +1-m n C《组合(3)》导学案 【学习目标 】 1. 进一步理解组合的意义,区分排列与组合;2. 进一步巩固组合、组合数的概念及其性质;3. 熟练运用排列与组合,解较简单的应用问题.【重点难点 】1. 进一步理解组合的意义,区分排列与组合;2. 进一步巩固组合、组合数的概念及其性质;3. 熟练运用排列与组合,解较简单的应用问题.【学法指导 】(预习教材P 27~ P 28,找出疑惑之处)复习1:⑴ 从 个 元素中取出 ()m n ≤个元素的 组合的个数,叫做从n 个不同元素中取出m 个元素的组合数...,用符号 表示;从 个 元素中取出 (n m ≤)个元素的 的个数,叫做从n 个不同元素取出m 元素的排列数,用符合 表示. ⑵ mn A =mn C = =m n A 与mn C 关系公式是 复习2:组合数的性质1: .组合数的性质2: .【教学过程 】 (一)导入探究任务一:排列组合的应用问题:一位教练的足球队共有17名初级学员,他们中以前没有一人参加过比赛.按照足球比赛规则,比赛时一个足球队的上场队员是11人.问: ⑴ 这位教练从17位学员中可以形成多少种学员上场方案?⑵ 如果在选出11名上场队员时,还要确定其中的守门员,那么教练员有多少种方式做这件事?新知:排列组合在实际运用中,可以同时使用,但要分清他们的使用条件:排列与元素的顺序有关,而组合只要选出元素即可,不要考虑元素的顺序.试试:⑴平面内有10个点,以其中每2个点为端点的线段共有多少条? ⑵平面内有10个点,以其中每2个点为端点的有向线段多少条? 反思:排列组合在一个问题中能同时使用吗? (二)深入学习 例1 在100件产品中,有98件合格品,2件次品.从这100件产品中任意抽出3件.⑴ 有多少种不同的抽法?⑵ 抽出的3件中恰好有1件是次品的抽法有多少种?⑶ 抽出的3件中至少有1件是次品的抽法有多少种?变式:在200件产品中有2件次品,从中任取5件: ⑴ 其中恰有2件次品的抽法有多少种?⑵ 其中恰有1件次品的抽法有多少种?⑶ 其中没有次品的抽法有多少种? ⑷ 其中至少有1件次品的抽法有多少种?小结:对综合应用两个计数原理以及组合知识问题,思路是:先分类,后分步.例2 现有6本不同书,分别求下列分法种数:⑴分成三堆,一堆3本,一堆2本,一堆1本;⑵分给3个人,一人3本,一人2本,一人1本;⑶平均分成三堆.变式:6本不同的书全部送给5人,每人至少1本,有多少种不同的送书方法?例 3 现有五种不同颜色要对如图中的四个部分进行着色,要求有公共边的两块不能用一种颜色,问共有几种不同的着色方法?变式:某同学邀请10位同学中的6位参加一项活动,其中两位同学要么都请,要么都不请,共有多少种邀请方法?※动手试试练1. 甲、乙、丙三人值周,从周一至周六,每人值两天,但甲不值周一,乙不值周六,问可以排出多少种不同的值周表?练2. 高二(1)班共有35名同学,其中男生20名,女生15名,今从中取出3名同学参加活动, (1)其中某一女生必须在内,不同的取法有多少种?(2)其中某一女生不能在内, 不同的取法有多少种?(3)恰有2名女生在内,不同的取法有多少种?(4)至少有2名女生在内,不同的取法有多少种?(5)至多有2名女生在内,不同的取法有多少种?【当堂检测】1. 凸五边形对角线有条;2. 以正方体的顶点为顶点作三棱锥,可得不同的三棱锥有个;3.要从5件不同的礼物中选出3件送给3个同学,不同方法的种数是;4.有5名工人要在3天中各自选择1天休息,不同方法的种数是;5. 从1,3,5,7,9中任取3个数字,从2,4,6,8中任取2个数字,一共可以组成没有重复数字的五位数?1. 在一次考试的选做题部分,要求在第1题的4个小题中选做3个小题,在第2题的3个小题中选做2个小题,在第3题的2个小题中选做1个小题.有多少种不同的选法?路漫漫其修远兮,吾将上下而求索 - 百度文库2. 从5名男生和4名女生中选出4人去参加辩论比赛.⑴如果4人中男生和女生各选2名,有多少种选法?⑵如果男生中的甲和女生中的乙必须在内,有多少种选法?⑶如果男生中的甲和女生中的乙至少有1人在内,有多少种选法?⑷如果4人中必须既有男生又有女生,有多少种选法?【反思】1. 正确区分排列组合问题2. 对综合问题,要“先分类,后分步”,对特别元素,应优先考虑.1111。
1.3组合第1课时组合组合数公式1.理解组合的意义.(重点)2.掌握组合数的计算公式及其推导过程,并会用组合数公式求值.(重点、难点)[基础·初探]教材整理1组合与组合数的概念阅读教材P19,完成下列问题.1.组合一般地,从n个不同元素中取出m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合.2.组合数从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号Cm n表示.判断(正确的打“√”,错误的打“×”)(1)两个组合相同的充要条件是其中的元素完全相同.( )(2)从a1,a2,a3三个不同元素中任取两个元素组成一个组合,所有组合的个数为C23.( )(3)从甲、乙、丙3名同学中选出2名去参加某两个乡镇的社会调查,有多少种不同的选法是组合问题.( )(4)从甲、乙、丙3名同学中选出2名,有3种不同的选法.( )(5)现有4枚2015年抗战胜利70周年纪念币送给10人中的4人留念,有多少种送法是排列问题.( )【解析】(1)√因为只要两个组合的元素相同,不论元素的顺序如何,都是相同的组合.(2)√由组合数的定义可知正确.(3)×因为选出2名同学还要分到不同的两个乡镇,这是排列问题.(4)√因为从甲、乙、丙3人中选两名有:甲乙,甲丙,乙丙,共3个组合,即有3种不同选法.(5)× 因为将4枚纪念币送与4人并无顺序,故该问题是组合问题. 【答案】 (1)√ (2)√ (3)× (4)√ (5)× 教材整理2 组合数公式及性质 阅读教材P 20~P 22,完成下列问题. 1.组合数公式:Cm n =Am nAmm =错误!=错误!.2.组合数的性质:(1)Cm n =Cn -m n ;(2)Cm n +1=Cm n +Cm -1n .1.甲、乙、丙三地之间有直达的火车,相互之间的距离均不相等,则车票票价的种数是________种.【解析】 甲、乙、丙三地之间的距离不等,故票价不同,同距离两地票价相同,故该问题为组合问题,不同票价的种数为C23=3×22=3.【答案】 32.C26=________,C1718=________. 【解析】 C26=6×52=15, C1718=C118=18. 【答案】 15 183.方程Cx 14=C2x -414的解为________. 【导学号:29440009】【解析】由题意知⎩⎨⎧x =2x -4,2x -4≤14,x≤14或错误!解得x =4或6. 【答案】 4或64.从3,5,7,11这四个数中任取两个相乘,可以得到不相等的积的个数为________个. 【解析】 从四个数中任取两个数的取法为C24=6. 【答案】 6[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问1:解惑:疑问2:解惑:疑问3:解惑:[小组合作型](1)10支球队以单循环进行比赛(每两队比赛一次),这次比赛需要进行多少场次?(2)10支球队以单循环进行比赛,这次比赛冠、亚军获得者有多少种可能?(3)从10个人里选3个代表去开会,有多少种选法?(4)从10个人里选出3个不同学科的课代表,有多少种选法?【精彩点拨】要确定是组合还是排列问题,只需确定取出的元素是否与顺序有关.【自主解答】(1)是组合问题,因为每两个队比赛一次并不需要考虑谁先谁后,没有顺序的区别.(2)是排列问题,因为甲队得冠军、乙队得亚军与甲队得亚军、乙队得冠军是不一样的,是有顺序的区别.(3)是组合问题,因为3个代表之间没有顺序的区别.(4)是排列问题,因为3个人中,担任哪一科的课代表是有顺序的区别.1.根据排列与组合的定义进行判断,区分排列与组合问题,先确定完成的是什么事件,然后看问题是否与顺序有关,与顺序有关的是排列,与顺序无关的是组合.2.区分有无顺序的方法把问题的一个选择结果写出来,然后交换这个结果中任意两个元素的位置,看是否会产生新的变化,若有新变化,即说明有顺序,是排列问题;若无新变化,即说明无顺序,是组合问题.[再练一题]1.从5个不同的元素a,b,c,d,e中取出2个,写出所有不同的组合.【解】要想写出所有组合,就要先将元素按照一定顺序排好,然后按顺序用图示的方法将各个组合逐个标出来,如图所示:由此可得所有的组合为ab ,ac ,ad ,ae ,bc ,bd ,be ,cd ,ce ,de .(1)计算:(2)计算:C38-n 3n +C3n 21+n.【精彩点拨】 (1)直接运用组合数公式进行计算; (2)先求出n ,再按组合数公式进行运算.【自主解答】 (1)3C38-2C25=3×8×7×63×2×1-2×5×42×1=148. (2)由组合数的意义可得 ⎩⎨⎧0≤38-n≤3n ,0≤3n≤21+n , 即⎩⎪⎨⎪⎧192≤n≤38,0≤n≤212,∴192≤n ≤212. ∵n ∈N *,∴n =10,∴C38-n 3n +C3n 21+n =C2830+C3031=C230+C131 =30×292×1+31=466.关于组合数计算公式的选取1.涉及具体数字的可以直接用公式Cm n =Am nAmm =错误!计算. 2.涉及字母的可以用阶乘式Cm n =错误!计算.3.计算时应注意利用组合数的性质Cm n =Cn -m n 简化运算.[再练一题]2.求等式C5n -1+C3n -3C3n -3=195中的n 值. 【导学号:29440010】【解】 原方程可变形为C5n -1C3n -3+1=195,C5n -1=145C3n -3,即错误!=145·错误!,化简整理,得n 2-3n -54=0.解此二次方程,得n =9或n =-6(不合题意,舍去),所以n =9为所求.[探究共研型]探究1 5人中选出3人参加数学竞赛,2人参加英语竞赛,共有多少种选法?你有什么发现?你能得到一般结论吗?【提示】 法一:从5人中选出3人参加数学竞赛,剩余2人参加英语竞赛,共C35=5×4×33×2×1=10(种)选法.法二:从5人中选出2人参加英语竞赛,剩余3人参加数学竞赛,共C25=5×42=10(种)不同选法.经求解发现C35=C25.推广到一般结论有Cm n =Cn -m n .探究2 从含有队长的10名排球队员中选出6人参加比赛,共有多少种选法? 【提示】 共有C610=10×9×8×7×6×56×5×4×3×2×1=210(种)选法. 探究3在探究2中,若队长必须参加,有多少种选法?若队长不能参加有多少种选法?由探究2,3,你发现什么结论?你能推广到一般结论吗?【提示】 若队长必须参加,共C59=126(种)选法.若队长不能参加,共C69=84(种)选法. 由探究2,3发现从10名队员中选出6人可分为队长参赛与队长不参赛两类,由分类计数原理可得:C610=C59+C69.一般地:Cm n +1=Cm n +Cm -1n .(1)化简C34+C35+C36+…+C32 016的值为________. (2)解方程3Cx 7x -3=5A2x -4; (3)解不等式C4n >C6n .【精彩点拨】 恰当选择组合数的性质进行求值、解方程与解不等式. 【自主解答】 (1)C34+C35+C36+…+C32 016 =C44+C34+C35+…+C32 016-C44 =C45+C35+…+C32 016-1=… =C42 016+C32 016-1=C42 017-1.【答案】 C42 017-1(2)由排列数和组合数公式,原方程可化为 3·错误!=5·错误!,则错误!=错误!,即为(x -3)(x -6)=40. ∴x 2-9x -22=0, 解得x =11或x =-2.经检验知x =11是原方程的根,x =-2是原方程的增根. ∴方程的根为x =11. (3)由C4n >C6n ,得错误!⇒错误!⇒⎩⎨⎧-1<n <10,n≥6.又n ∈N *, ∴该不等式的解集为{6,7,8,9}.1.性质“Cm n =Cn -m n ”的意义及作用2.与排列组合有关的方程或不等式问题要用到排列数、组合数公式,以及组合数的性质,求解时,要注意由Cm n 中的m ∈N *,n ∈N *,且n ≥m 确定m ,n 的范围,因此求解后要验证所得结果是否适合题意.[再练一题]3.(1)化简:C9m -C9m +1+C8m =________; (2)已知C7n +1-C7n =C8n ,求n 的值.【解析】 (1)原式=(C9m +C8m )-C9m +1=C9m +1-C9m +1=0. 【答案】 0(2)根据题意,C7n +1-C7n =C8n ,变形可得C7n+1=C8n+C7n,由组合数的性质,可得C7n+1=C8n+1,故8+7=n+1,解得n=14.[构建·体系]1.给出下面几个问题,其中是组合问题的是________(填序号).(1)从1,2,3,4中选出2个构成的集合;(2)由1,2,3组成两位数的不同方法;(3)由1,2,3组成无重复数字的两位数.【解析】由题意知:(1)与顺序没有关系;(2)(3)与顺序有关,故是排列问题.【答案】(1)2.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有________人.【解析】设男生有n人,则女生有(8-n)人,由题意可得C2n C18-n=30,解得n=5或n =6,代入验证,可知女生有2人或3人.【答案】2或33.C58+C68的值为________.【解析】C58+C68=C69=9!6!×3!=9×8×73×2×1=84.【答案】844.6个朋友聚会,每两人握手1次,一共握手________次.【解析】每两人握手1次,无顺序之分,是组合问题,故一共握手C26=15次.【答案】155.已知C4n,C5n,C6n成等差数列,求C12n的值.【解】由已知得2C5n=C4n+C6n,所以2·错误!=错误!+错误!,整理得n2-21n+98=0,解得n=7或n=14,要求C12n的值,故n≥12,所以n=14,于是C1214=C214=14×132×1=91.我还有这些不足:(1)(2)我的课下提升方案:(1)(2)。
§1.1分类加法计数原理与分步乘法计数原理(一)【学习要求】1.理解分类加法计数原理与分步乘法计数原理.2.会用这两个原理分析和解决一些简单的实际计数问题【学法指导】两个计数原理是推导排列数、组合数计算公式的依据,其基本思想贯穿本章始终,理解两个原理的关键是分清分类与分步.【知识要点】两个计数原理1.分类加法计数原理:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=种不同的方法.2.分步乘法计数原理:完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=种不同的方法.【问题探究】探究点一分类加法计数原理问题1用一个大写的英文字母或一个阿拉伯数字给教室里的座位编号,总共能编出多少种不同的号码?问题2问题1中最重要的特征是什么?问题3由问题1你能归纳出一般结论吗?问题4分类加法计数原理中的“各种方法”与“完成这件事”有什么关系?例1在填写高考志愿表时,一名高中毕业生了解到A、B两所大学各有一些自己感兴趣的强项专业,具体情况如下:如果这名同学只能选一个专业,那么他共有多少种选择呢?问题5若还有C大学,其中强项专业为:新闻学、金融学、人力资源学,那么,这名同学可能的专业选择共有多少种?小结如果完成一件事有n类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,……,在第n类方案中有m n种不同的方法,那么完成这件事共有m1+m2+m3+…+m n种不同的方法.跟踪训练1某校高三共有三个班,其各班人数如下表:(1)从三个班中选一名学生会主席,有多少种不同的选法?(2)从(1)班、(2)班男生中或从(3)班女生中选一名学生任学生会生活部部长,有多少种不同的选法?探究点二分步乘法计数原理问题1如图,从丽水经杭州到上海的途径有多少种?问题2用前6个大写英文字母和1~9九个阿拉伯数字,以A1,A2,…,B1,B2,…的方式给教室里的座位编号,总共能编出多少个不同的号码?问题3由上述问题1,2,你能归纳猜想出一般结论吗?问题4分步乘法计数原理中的“各步方法”与“完成这件事”有什么关系?问题5如果完成一件事需要三个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,做第3步有m3种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事需要n个步骤,做每一步中都有若干种不同的方法,那么应当如何计数呢?例2某商店现有甲种型号电视机10台,乙种型号电视机8台,丙种型号电视机12台,从这三种型号的电视机中各选一台检验,有多少种不同的选法?小结利用分步乘法计数原理解决问题时,一定要正确设计“分步”的程序,即完成这件事共分几步,每一步的具体内容是什么,各步的方法、种数是多少,最后用分步乘法计数原理求解.跟踪训练2已知a∈{3,4,6},b∈{1,2,7,8},r∈{8,9},则方程(x-a)2+(y-b)2=r2可表示不同的圆的个数是多少?探究点三两个计数原理的综合应用问题比较分类加法计数原理和分步乘法计数原理,你能找出它们的区别与联系吗?例3书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书.(1)从书架上任取1本书,有多少种不同的取法?(2)从书架的第1、2、3层各取1本书,有多少种不同的取法?(3)从书架上任取两本不同学科的书,有多少种不同的取法?小结解两个计数原理的综合应用题时,最容易出现不知道应用哪个原理解题的情况,其思维障碍在于没有区分该问题是“分类”还是“分步”,突破方法在于认真审题,明确“完成一件事”的含义.具体应用时灵活性很大,要在做题过程中不断体会和思考,基本原则是“化繁为简”.跟踪训练3现有5幅不同的国画,2幅不同的油画,7幅不同的水彩画.(1)从中任选一幅画布置房间,有几种不同的选法?(2)从这些国画、油画、水彩画中各选一幅布置房间,有几种不同的选法?(3)从这些画中选出两幅不同种类的画布置房间,有几种不同的选法?(4)要从甲、乙、丙3幅不同的画中选出2幅,分别挂在左、右两边墙上的指定位置,问共有多少种不同的挂法?【当堂检测】1.现有4件不同款式的上衣和3条不同颜色的长裤,如果一条长裤与一件上衣配成一套,则不同的配法种数为( )A .7B .12C .64D .812.从A 地到B 地,可乘汽车、火车、轮船三种交通工具,如果一天内汽车发3次,火车发4次,轮船发2次,那么一天内乘坐这三种交通工具的不同走法为 ( ) A .1+1+1=3 B .3+4+2=9 C .3×4×2=24 D .以上都不对 3.十字路口来往的车辆,如果不允许回头,共有不同的行车路线 ( ) A .24种 B .16种 C .12种 D .10种4.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a ,b 组成复数a +b i ,其中虚数有________个. 5.将3封信投入6个信箱内,不同的投法有________种.【课堂小结】1.本课主要学习了两个重要的计数原理,应用两个原理时,要仔细区分原理的不同,加法原理关键在于分类,不同类之间互相排斥,互相独立;乘法原理关键在于分步,各步之间互相依存,互相联系. 2.通过对这两个原理的学习,要进一步体会分类讨论思想及等价转化思想在解题中的应用.【拓展提高】1.用前六个大写的英文字母和1~9九个阿拉伯数字,以,,,,,2121B B A A ⋅⋅⋅…的方式给教室的座位编号,总共能编出多少种不同的号码?2.一种号码拨号锁有4个拨号盘,每个拨号盘上有从0到9共10个数字,这4个拨号盘可以组成 个四位数号码.3.现有高一年级的学生3名,高二年级的学生5名,高三年级的学生4名. (1)从中任选1人参加接待外宾的活动,有多少种不同的选法?(2)从3个年级的学生中各选1人参加接待外宾的活动,有多少种不同的选法?【课后作业】§1.1分类加法计数原理与分步乘法计数原理(二)【学习要求】巩固分类加法计数原理和分步乘法计数原理,并能应用两个原理解决实际问题.【学法指导】用两个计数原理解决具体问题时,首先要分清是“分类”还是“分步”,其次要清楚“分类”或“分步”的具体标准,在“分类”时要做到“不重不漏”,在“分步”时要正确设计“分步”的程序,注意步与步之间的连续性.【双基检测】1.如图所示,在由开关组A 与B 所组成的并联电路中,接通电源,则只闭合一个开关能使电灯发光的方法种数为 ()A .6B .5C .30D .12.用4种不同的颜色涂入如图所示的矩形A ,B ,C ,D 中,每个矩形只涂入一种,要求相邻的矩形涂色不同,则不同的涂色方法共有 ( ) A .72种 B .48种 C .24种 D .12种3.在夏季,一个女孩有红、绿、黄3件上衣,红、绿、黄、白、黑5种裙子,这位女孩夏季某一天去学校上学,有________种不同的穿法.【题型解法】题型一 两个计数原理在排数中的应用 例1 数字不重复的四位偶数共有多少个?小结 排数问题实际就是分步问题,需要用乘法原理解决.此题中,由于数字0的出现,又进行了分类讨论,即在解决相关的排数问题时,要注意两个原理的综合应用. 跟踪训练1 用0,1,…,9这十个数字,可以组成多少个: (1)三位整数?(2)无重复数字的三位整数?(3)小于500的无重复数字的三位整数?题型二 两个计数原理的实际应用 例2 (1)给程序模块命名,需要用3个字符,其中首字符要求用字母A ~G 或U ~Z ,后两个要求用数字1~9,最多可以给多少个程序命名?(2)核糖核酸(RNA)分子是在生物细胞中发现的化学成分.一个RNA 分子是一个有着数百个甚至数千个位置的长链,长链中每个位置上都有一个称为碱基的化学成分所占据.总共有4种不同的碱基,分别用A 、C 、G 、U 表示(如图所示).在一个RNA 分子中,各种碱基能以任意次序出现,所以在任意一个位置上的碱基与其他位置上的碱基无关.假设有一类RNA 分子由100个碱基组成,那么能有多少种不同的RNA 分子?小结 以上两个问题分别表示两个原理在计算机字节与生物学中的应用,要解决好实际问题,首先要将问题与学习过的两个原理联系,确定用分类还是分步,或是分类和分步综合应用.跟踪训练2 电子元件很容易实现电路的通与断、电位的高与低等两种状态,而这也是最容易控制的两种状态,因此计算机内部就采用了每一位只有0或1两种数字的记数法,即二进制.为了使计算机能够识别字符,需要对字符进行编码,每个字符可以用一个或多个字节来表示,其中字节是计算机中数据存储的最小计量单位,每个字节由8个二进制位构成.问:(1)一个字节(8位)最多可以表示多少个不同的字符?(2)计算机汉字国标码(GB 码)包含了6 763个汉字,一个汉字为一个字符,要对这些汉字进行编码,每个汉字至少要用多少个字节表示?【当堂检测】1.某小组有8名男生,6名女生,从中任选男生、女生各一人去参加座谈会,则不同的选法有() A.48种B.24种C.14种D.12种2.已知函数y=ax2+bx+c为二次函数,其中a,b,c∈{0,1,2,3,4},则不同的二次函数的个数为() A.125 B.15 C.100 D.103.(a1+a2)·(b1+b2+b3)·(c1+c2+c3+c4)的展开式中有________项.4.由0,1,2,3这四个数字,可组成多少个:(1)无重复数字的三位数?(2)可以有重复数字的三位数?5.随着人们生活水平的提高,某城市家庭汽车拥有量迅速增长,汽车牌照号码需要扩容.交通管理部门出台了一种汽车牌照号码组成办法,每一个汽车牌照都必须有3个不重复的英文字母和3个不重复的阿拉伯数字,并且3个字母必须合成一组出现,3个数字也必须合成一组出现.那么按照这种办法共能给多少辆汽车上牌照?【课堂小结】本课时主要讲解了两个基本原理的应用,通过不同类型的题目,要仔细体会两个计数原理的具体用法,尤其是在自然科学、现代科技中处处都离不开两个计数原理的应用,从而深刻体会数学本身的重要性,进一步坚定学好数学的信念.【拓展提高】1.某商场有6个门,如果某人从其中的任意一个门进入商场,并且要求从其他的门出去,共有多少种不同的进出商场的方式?2.在在平面直角坐标系内,斜率在集合B={1,3,5,7}, y轴上的截距在集合C={2,4,6,8}内取值的不同直线共有条.3.将三封信投入4个邮箱,不同的投法有种.4.自然数2520有多少个约数?5.现要排一份5天的值班表,每天有1人值班,共有5个人,每个人都可以值多天或不值班,但相邻两天不准同一个人值班,问此值班表共有多少种不同的选法?6.用1,2,3三个数字,可组成个无重复数字的自然数.【课后作业】§1.1习题课分类加法计数原理与分步乘法计数原理【学习要求】1.进一步理解和掌握分类加法计数原理和分步乘法计数原理.2.能根据实际问题特征,正确选择原理解决实际问题.【知识要点】两个计数原理在解决计数问题中的用法在利用两个计数原理解决计数问题时,最重要的是在开始计算之前要进行仔细分析,是分类还是分步.【题型解法】题型一抽取(分配)问题例1高三年级的三个班到甲、乙、丙、丁四个工厂进行社会实践,其中工厂甲必须有班级去,每班去何工厂可自由选择,则不同的分配方案有()A.16种B.18种C.37种D.48种小结解决抽取(分配)问题的方法(1)当涉及对象数目不大时,一般选用枚举法、树状图法、框图法或者图表法.(2)当涉及对象数目很大时,一般有两种方法:①直接使用分类加法计数原理或分步乘法计数原理.一般地,若抽取是有顺序的就按分步进行;若是按对象特征抽取的,则按分类进行.②间接法:去掉限制条件,计算所有的抽取方法数,然后减去所有不符合条件的抽取方法数即可.跟踪训练13个不同的小球放入5个不同的盒子,每个盒子至多放一个小球,共有多少种方法?题型二涂色问题例2一个同心圆形花坛,分为两部分,中间小圆部分种植草坪和绿色灌木,周围的圆环分为n(n≥3,n∈N)等份,种植红、黄、蓝三色不同的花,要求相邻两部分种植不同颜色的花.(1)如图1,圆环分成的3等份为a1,a2,a3,有多少种不同的种植方法?(2)如图2,圆环分成的4等份为a1,a2,a3,a4,有多少种不同的种植方法?小结(1)涂色问题的基本要求是相邻区域不同色,但是不相邻的区域可以同色.因此一般以不相邻区域同色,不同色为分类依据,相邻区域可用分步涂色的办法涂色.(2)涂色问题往往涉及分类、分步计数原理的综合应用,因此,要找准分类标准,兼顾条件的情况下分步涂色.跟踪训练2如图所示的几何体是由一个正三棱锥P-ABC与正三棱柱ABC-A1B1C1组合而成的,现用3种不同颜色对这个几何体的表面染色(底面A1B1C1不涂色),要求相邻的面均不同色,则不同的染色方案共有________种.题型三 种植问题例3 从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,求有多少种不同的种植方法.小结 按元素性质分类,按事件发生过程分步是计数问题的基本思想方法,区分“分类”与“分步”的关键,是验证所提供的某一种方法是否完成了这件事情,分类中的每一种方法都完成了这件事情,而分步中的每一种方法不能完成这件事情,只是向事情的完成迈进了一步.跟踪训练3 将3种作物种植在如图所示的5块试验田里,每块种植一种作物且相邻的试验田不能种植同一种作物,不同的种植方法共有________种(以数字作答).【当堂检测】1.某电话局的电话号码为168*****,若后面的五位数字是由6或8组成的,则这样的电话号码一共有 ( ) A .20个 B .25个 C .32个 D .48个2.从集合{1,2,3,4,5}中任取2个不同的数,作为直线Ax +By =0的系数,则形成不同的直线最多有 ( ) A .18条 B .20条 C .25条 D .10条3.如图是5个相同的正方形,用红、黄、蓝、白、黑5种颜色涂这些正方形,使每个正方形涂一种颜色,且相邻正方形涂不同的颜色.如果颜色可反复使用,那么共有________种涂色方法.4.由0,1,2,3这四个数字,可组成多少个: (1)无重复数字的三位数? (2)可以有重复数字的三位数?【课堂小结】1.分类加法计数原理与分步乘法计数原理是两个最基本、也是最重要的原理,是解答排列、组合问题,尤其是较复杂的排列、组合问题的基础.2.应用分类加法计数原理要求分类的每一种方法都能把事件独立完成;应用分步乘法计数原理要求各步均是完成事件必须经过的若干彼此独立的步骤.3.一般是先分类再分步,分类时要设计好标准,设计好分类方案,防止重复和遗漏. 4.若正面分类,种类比较多,而问题的反面种类比较少时,则使用间接法会简单一些.【拓展提高】1.有4名同学分别报名参加学校的足球队,篮球队,乒乓球队,每人限报其中的一个运动队,不同的报名种数是2.如图6个扇形区域F E D C B A 、、、、、,现给这6个区域着色,要求同一区域涂同一种颜色,相邻的两个区域不得使用同一种颜色,现有4种不同的颜色可供选择,有多少种染色方法?3.将一个四棱锥S ABCD 的每个顶点染上一种颜色,并使同一条棱的两端点异色,如果只有5种颜色可供使用,那么不同的染色方法的总数是多少?§1.2.1排列(一)【学习要求】1.理解并掌握排列的概念.2.理解并掌握排列数公式,能应用排列知识解决简单的实际问题.【学法指导】排列是分步乘法计数原理的一个重要应用,学习中要理解排列数公式的推导过程,从中体会“化归”的数学思想.【知识要点】1.排列:一般地,从n 个不同元素中取出m (m ≤n )个元素,按照 排成一列,叫做从n 个不同元素中取出m 个元素的一个排列(arrangement).2.排列数:从n 个不同元素中取出m (m ≤n )个元素的 叫做从n 个不同元素中取出m 个元素的排列数,用符号 表示.3.排列数公式:A mn = (n ,m ∈N *,m ≤n )= .【问题探究】探究点一 排列(数)的概念问题1 从甲、乙、丙3名同学中选出2名参加一项活动,其中1名同学参加上午的活动,另1名同学参加下午的活动,有多少种不同的安排方法?问题2 从1,2,3,4这4个数字中,每次取出3个排成一个三位数,共可得到多少个不同的三位数? 问题3 怎样判断一个具体问题是否为排列问题? 例1 判断下列问题是否是排列问题.(1)从1、2、3、4四个数字中,任选两个做加法,其结果有多少种不同的可能? (2)从1、2、3、4四个数字中,任选两个做除法,其结果有多少种不同的可能? (3)会场有50个座位,要求选出3个座位安排3位客人就座,有多少种不同的方法?小结 判断一个问题是否为排列问题的依据是否是有顺序,有顺序且是从n 个不同的元素中任取m (m ≤n )个不同的元素的问题就是排列,否则就不是排列. 跟踪训练1 判断下列问题是否是排列问题:(1)某班共有50名同学,现要投票选举正、副班长各一人,共有多少种可能的选举结果? (2)从2,3,5,7,9中任取两数分别作对数的底数和真数,有多少不同对数值?(3)从1到10十个自然数中任取两个数组成点的坐标,可得多少个不同的点的坐标?探究点二 排列的列举问题问题 对于简单的排列问题,怎样写出从n 个不同元素中取出m 个元素的所有排列? 例2 写出下列问题的所有排列:(1)从1,2,3,4四个数字中任取两个数字组成两位数,共有多少个不同的两位数? (2)写出从4个元素a ,b ,c ,d 中任取3个元素的所有排列.小结 在写出所要求的排列时,可采用“树形”图或“框”图一一列出,一定保证不遗漏.跟踪训练2 写出下列问题的所有排列:(1)北京、广州、南京、天津4个城市相互通航,应该有多少种机票?(2)A 、B 、C 、D 四名同学排成一排照相,要求自左向右,A 不排第一,B 不排第四,共有多少种不同的排列方法?探究点三 排列数公式的推导及应用问题1 由例2中两个问题知:A 24=4×3=12,A 34=4×3×2=24,你能否得出A 2n 的意义和A 2n 的值? 问题2 由以上规律,你能写出A m n 吗?有什么特征?若m =n 呢?例3 (1)计算:2A 58+7A 48A 88-A 59. (2)求证:A m n +1=m ·A m -1n +A m n .小结 利用排列数公式进行运算时,要注意排列数之间的关系,两种形式中,一种形式用于化简,证明等,而另一种形式常用于求解.跟踪训练3 (1)某年全国足球甲级(A 组)联赛共有10个队参加,每队要与其余各队在主、客场分别比赛一次,共进行多少场比赛?(2)解不等式:2996->x X A A【当堂检测】1.下列问题属于排列问题的是 ( ) ①从10个人中选2人分别去种树和扫地; ②从10个人中选2人去扫地;③从班上30名男生中选出5人组成一个篮球队; ④从数字5,6,7,8中任取两个不同的数作幂运算. A .①④ B .①② C .④ D .①③④2.从甲、乙、丙三人中选两人站成一排的所有站法为( )A .甲乙,乙甲,甲丙,丙甲B .甲乙丙,乙丙甲C .甲乙,甲丙,乙甲,乙丙,丙甲,丙乙D .甲乙,甲丙,乙丙 3.设m ∈N *,且m <15,则(15-m )(16-m )…(20-m )等于( )A .A 615-mB .A 15-m 20-mC .A 620-m D .A 520-m4.8种不同的菜种,任选4种种在不同土质的4块地上,有________种不同的种法(用数字作答).【课堂小结】1.排列有两层含义:一是“取出元素”,二是“按照一定顺序排成一列”.这里“一定的顺序”是指每次取出的元素与它所排的“位置”有关,所以,取出的元素与“顺序”有无关系就成为判断问题是否为排列问题的标准.2.排列数公式有两种形式,可以根据要求灵活选用.【拓展提高】1.(1)215A;(2)66A(3)28382AA -;(4)6688A A .2.某年全国足球甲级(A 组)联赛共有14队参加,每队都要与其余各队在主客场分别比赛1次,共进行 场比赛;3.一个火车站有8股岔道,停放4列不同的火车,有多少种不同的停放方法(假设每股道只能停放1列火车)?【课后作业】§1.2.1排列(二)【学习要求】1.进一步加深对排列概念的理解.2.掌握几种有限制条件的排列,能应用排列数公式解决简单的实际问题.【双基检测】1.4×5×6×…×(n -1)×n 等于( )A .A 4nB .A n -4nC .n !-4!D .A n -3n2.6名学生排成两排,每排3人,则不同的排法种数为( ) A .36 B .120 C .720 D .2403.从集合M ={1,2,…,9}中,任取两个元素作为a ,b , ①可以得到多少个焦点在x 轴上的椭圆方程x 2a 2+y 2b 2=1?②可以得到多少个焦点在x 轴上的双曲线方程x 2a 2-y 2b2=1?其中属于排列问题的是________,其结果为________.4.有5名男生和3名女生,从中选出5人分别担任语文、数学、英语、物理、化学学科的科代表,若某女生必须担任语文科代表,则不同的选法共有________种(用数字作答).【题型解法】题型一 无限制条件的排列问题例1 (1)有5本不同的书,从中选3本送给3名同学,每人各1本,共有多少种不同的送法? (2)有5种不同的书,要买3本送给3名同学,每人各1本,共有多少种不同的送法?小结 本题两小题的区别在于:第(1)小题是从5本不同的书中选出3本分别送给3名同学,各人得到的书不同,属于求排列数问题;而第(2)小题中,给每人的书均可以从5种不同的书中任选1本,各人得到哪本书相互之间没有联系,要用分步乘法计数原理进行计算.跟踪训练1 (1)某信号兵用红、黄、蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以任意挂1面、2面或3面,并且不同的顺序表示不同的信号,一共可以表示多少种不同的 信号?(2)将4位司机、4位售票员分配到四辆不同班次的公共汽车上,每一辆汽车分别有一位司机和一位售票员,共有多少种不同的分配方案?题型二 元素“在”与“不在”问题例2 用0到9这10个数字,可以组成多少个没有重复数字的三位数?小结解决排列应用题,常用的思考方法有直接法和间接法.排列问题的实质是“元素”占“位子”问题,有限制条件的排列问题的限制条件主要表现在某元素不排在某个位子上或某个位子不排某些元素,解决该类排列问题的方法主要是按“优先”原则,即优先排特殊元素或优先满足特殊位子.跟踪训练2五个学生和一个老师站成一排照相,问老师不排在两端的排法有多少种?题型三元素“相邻”与“不相邻”问题例37人站成一排.(1)甲、乙两人相邻的排法有多少种?(2)甲、乙两人不相邻的排法有多少种?(3)甲、乙、丙三人必相邻的排法有多少种?(4)甲、乙、丙三人两两不相邻的排法有多少种?小结处理元素“相邻”“不相邻”问题应遵循“先整体,后局部”的原则.元素相邻问题,一般用“捆绑法”,先把相邻的若干个元素“捆绑”为一个大元素与其余元素全排列,然后再松绑,将这若干个元素内部全排列.元素不相邻问题,一般用“插空法”,先将不相邻元素以外的“普通”元素全排列,然后在“普通”元素之间及两端插入不相邻元素.跟踪训练3对于本例中的7人,(1)甲、乙两人之间只有1人的排法有多少种?(2)甲、乙、丙排序一定时,有多少种排法?(3)甲在乙的左边(不一定相邻)有多少种不同的排法?【当堂检测】1.用1,2,3,4,5这5个数字,组成无重复数字的三位数,其中奇数共有()A.30个B.36个C.40个 D.60个2.6人站成一排,甲、乙、丙3个人不能都站在一起的排法种数为()A.720 B.144 C.576 D.6843.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目,如果将这两个节目插入原节目单中,那么不同的插法种数为()A.42 B.30 C.20 D.124.将红、黄、蓝、白、黑5种颜色的小球,分别放入红、黄、蓝、白、黑5种颜色的小口袋中,若不允许有空袋,且红口袋中不能装入红球,则有________种不同的放法.【课堂小结】1.对有特殊限制的排列问题,优先安排特殊元素或特殊位置.2.对从正面分类繁杂的排列问题,可考虑使用间接法.3.对要求某些元素相邻或不相邻的排列问题,可使用“捆绑法”、“插空法”.【拓展提高】1.(1)6男2女排成一排,2女相邻,有多少种不同的站法?(2)6男2女排成一排,2女不能相邻,有多少种不同的站法?(3)4男4女排成一排,同性者相邻,有多少种不同的站法?(4)4男4女排成一排,同性者不能相邻,有多少种不同的站法?2.用0到9这10个数字,可以组成多少个没有重复数字的三位数?3.用0,1,2,3,4,5六个数字,能排成多少个满足条件的四位数.(1)没有重复数字的四位偶数?(2)比1325大的没有重复数字四位数?4.有4位男学生3位女学生排队拍照,根据下列要求,各有多少种不同的排列结果?(1)4个男学生必须连在一起;(2)其中甲、乙两人之间必须间隔2人.(3)若三女生互不相邻(4)若甲、乙两位同学必须排两端(5)若甲、乙两位同学不得排两端(6)若甲、乙两女生相邻且不与第三女生相邻5.学校要安排一场文艺晚会的11个节目的演出顺序.除第一个节目和最后一个节目已确定外,4个音乐节目要求排在第2,5,7,10的位置,3个舞蹈节目要求排在第3,6,9的位置,2个曲艺节目要求排在第4,8的位置,求共有多少种不同的排法?6.一条铁路原有n个车站,为适应客运需要新增)1(mm个车站,客运车票增加62种,问原有多少个车站,现有多少个?【课后作业】§1.2.2组合(一)【学习要求】1.理解组合及组合数的概念.2.能利用计数原理推导组合数公式,并会应用公式解决简单的组合问题.【学法指导】组合研究的问题与排列是平行的,两者的区别是有无“顺序”.学习中可和排列相比较,领悟概念的本质,组合数公式推导中要研究组合与排列的关系.【知识要点】1.组合:一般地,从n个不同元素中,叫做从n个不同元素中取出m个元素的一个组合(combination).2.组合数:从n个不同元素中取出m (m≤n)个元素的的个数,叫做从n个不同元素中取出m个元素的组合数,用符号表示.3.组合数公式:C m n=A m nA m m==(n,m∈N*,m≤n).【问题探究】探究点一组合的概念问题1从3名同学甲、乙、丙中选2名去参加一项活动,有多少种不同选法?问题2问题1和“从3名同学中选出2名去参加一项活动,其中1名参加上午的活动,1名参加下午的活动”有何区别?问题3排列与组合有什么联系和区别?例1判断下列各事件是排列问题,还是组合问题.(1)10个人相互各写一封信,共写了多少封信?(2)10个人规定相互通一次电话,共通了多少次电话?(3)10支球队以单循环进行比赛(每两队比赛一次),这次比赛需要进行多少场次?。
[对应学生用书P24]一、两个计数原理的应用1.分类计数原理首先要根据问题的特点确定一个合适的分类标准,然后在这个标准下分类;其次,完成这件事的任何一种方法必须属于某一类.分别属于不同类的两种方法是不同的方法.2.分步计数原理首先根据问题的特点确定一个分步的标准.其次分步时要注意,完成一件事必须并且只有连续完成这n个步骤后,这件事才算完成.二、排列与组合概念及公式1.定义从n个不同元素中取出m(m≤n)个元素,若按照一定的顺序排成一列,则叫做从n个不同元素中取出m个元素的一个排列;若合成一组,则叫做从n个不同元素中取出m个元素的一个组合.即排列和顺序有关,组合与顺序无关.2.排列数公式(1)A错误!=n(n-1)(n-2)…(n-m+1),规定A错误!=1。
当m=n时,A错误!=n(n-1)(n-2)·…·3·2·1。
(2)A错误!=错误!,其中A错误!=n!,0!=1.三、排列与组合的应用1.在求解排列与组合应用问题时,应注意:(1)把具体问题转化或归结为排列或组合问题;(2)通过分析确定运用分类计数原理还是分步计数原理;(3)分析题目条件,避免“选取”时重复和遗漏;(4)列出式子计算并作答.2.处理排列组合的综合性问题,一般思想方法是先选元素(组合),后排列.按元素的性质“分类”和按事件发生的连续过程“分步”,始终是处理排列组合问题的基本方法和原理,通过解题训练注意积累分类和分步的基本技能.3.解排列组合应用题时,常见的解题策略有以下几种:(1)特殊元素优先安排的策略;(2)合理分类和准确分步的策略;(3)排列、组合混合问题先选后排的策略;(4)正难则反、等价转化的策略;(5)相邻问题捆绑处理的策略;(6)不相邻问题插空处理的策略;(7)定序问题除法处理的策略;(8)分排问题直排处理的策略;(9)“小集团”排列问题中先整体后局部的策略;(10)构造模型的策略.四、二项式定理及二项式系数的性质1.二项式定理公式(a+b)n=C错误!a n+C错误!a n-1b+…+C错误!a n-r b r+…+C错误!b n,其中各项的系数C错误!(r=0,1,2,…,n)称为二项式系数,第r+1项C r,n a n-r b r称为通项.[说明](1)二项式系数与项的系数是不同的概念,前者只与项数有关,而后者还与a,b的取值有关.(2)运用通项求展开式的特定值(或特定项的系数),通常先由题意列方程求出r,再求所需的项(或项的系数).2.二项式系数的性质(1)对称性:与首末两端“等距离”的两个二项式系数相等,体现了组合数性质C错误!=C错误!.(2)增减性与最大值:当r<错误!时,二项式系数C错误!逐渐增大;当r>错误!时,二项式系数C错误!逐渐减小.当n是偶数时,展开式中间一项T错误!+1的二项式系数C错误!n 最大;当n是奇数时,展开式中间两项T错误!与T错误!+1的二项式系数C错误!n,C错误!n相等且最大.(3)各项的二项式系数之和等于2n,即C0n+C错误!+C错误!+…+C n,n=2n;奇数项的二项式系数的和等于偶数项的二项式系数的和,即C错误!+C错误!+C错误!+…=C错误!+C错误!+C错误!+….[说明] 与二项展开式各项系数的和或差有关的问题,一般采用赋值法求解.错误!(时间120分钟,满分160分)一、填空题(本大题共14个小题,每小题5分,共70分,把正确答案填在题中横线上)1.从4名女同学和3名男同学中选1人主持本班的某次班会,则不同的选法种数为________.解析:由题意可得不同的选法为C17=7种.答案:72.(湖南高考改编)错误!5的展开式中x2y3的系数是________.解析:由二项展开式的通项可得,第四项T4=C错误!错误!2(-2y)3=-20x2y3,故x2y3的系数为-20.答案:-203.现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学、物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是________.解析:设男学生有x人,则女学生有(8-x)人,则C错误!C错误!A错误!=90,即x(x-1)(8-x)=30=2×3×5,所以x=3,8-x=5。
第1课时排列与排列数公式1.了解排列及排列数的意义.2.理解排列数公式的推导并应用.3.掌握排列数公式并会运用.1.排列的定义一般地,从n个不同的元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.2.排列数一般地,从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号A m n表示.3.排列数公式A m n=n(n-1)(n-2)…(n-m+1),其中n,m∈N*,且m≤n.4.全排列与n的阶乘(1)n个不同元素全部取出的一个排列,叫做n个不同元素的一个全排列,在排列数公式中,当m=n时,即有A n n=n(n-1)(n-2)·…·3·2·1.(2)正整数1到n的连乘积,叫做n的阶乘,用n!表示,即有A n n=n!.5.排列数公式的阶乘形式A m n=n!(n-m)!(n≥m),规定0!=1.1.判断(正确的打“√”,错误的打“×”)(1)a,b,c与b,a,c是同一个排列.( )(2)同一个排列中,同一个元素不能重复出现.( )(3)在一个排列中,若交换两个元素的位置,则该排列不发生变化.( )(4)从4个不同元素中任取三个元素,只要元素相同得到的就是相同的排列.( ) 答案:(1)×(2)√(3)×(4)×2.下面问题中,是排列问题的是( )A.由1,2,3,4四个数字组成无重复数字的四位数B.从60人中选11人组成足球队C.从100人中选2人抽样调查D.从1,2,3,4,5中选2个数组成集合答案:A3.从甲、乙、丙三人中选两人站成一排的所有站法为________.答案:甲乙,甲丙,乙甲,乙丙,丙甲,丙乙4.A24=________,A33=________.答案:12 6排列的有关概念判断下列问题是否为排列问题:(1)北京、上海、天津三个民航站之间的直达航线的飞机票的价格(假设来回的票价相同);(2)选2个小组分别去植树和种菜;(3)选2个小组去种菜;(4)选10人组成一个学习小组;(5)选3个人分别担任班长、学习委员、生活委员;(6)某班40名学生在假期相互通信.【解】(1)中票价只有三种,虽然机票是不同的,但票价是一样的,不存在顺序问题,所以不是排列问题.(2)植树和种菜是不同的,存在顺序问题,属于排列问题.(3)(4)不存在顺序问题,不属于排列问题.(5)中每个人的职务不同,例如甲当班长或当学习委员是不同的,存在顺序问题,属于排列问题.(6)A给B写信与B给A写信是不同的,所以存在着顺序问题,属于排列问题.所以在上述各题中(2)(5)(6)属于排列问题,(1)(3)(4)不是排列问题.判断一个具体问题是否为排列问题的方法1.判断下列问题是否是排列问题:(1)从1到10十个自然数中任取两个数组成直角坐标平面内的点的坐标,可得多少个不同的点的坐标?(2)从10名同学中任抽两名同学去学校开座谈会,有多少种不同的抽取方法?(3)某商场有四个大门,若从一个门进去,购买物品后再从另一个门出来,不同的出入方式共有多少种?解:(1)由于取出的两数组成点的坐标与哪一个数作横坐标,哪一个数作纵坐标的顺序有关,所以这是一个排列问题.(2)因为从10名同学中抽取两人去学校开座谈会的方式不用考虑两人的顺序,所以这不是排列问题.(3)因为从一门进,从另一门出是有顺序的,所以是排列问题.综上,(1)、(3)是排列问题,(2)不是排列问题.“树形图”解决排列问题四个人A,B,C,D坐成一排照相有多少种坐法?将它们列举出来.【解】先安排A有4种坐法,安排B有3种坐法,安排C有2种坐法,安排D有1种坐法,由分步计数原理,有4×3×2×1=24种.画出树形图:由“树形图”可知,所有坐法为ABCD,ABDC,ACBD,ACDB,ADBC,ADCB,BACD,BADC,BCAD,BCDA,BDAC,BDCA,CABD,CADB,CBAD,CBDA,CDAB,CDBA,DACB,DABC,DBAC,DBCA,DCAB,DCBA.1.若本例条件再增加一条“A不坐排头”,则结论如何?解:画出树形图:由“树形图”可知,所有坐法为BACD,BADC,BCAD,BCDA,BDAC,BDCA,CABD,CADB,CBAD,CBDA,CDAB,CDBA,DACB,DABC,DBAC,DBCA,DCAB,DCBA,共18种坐法.2.若在本例条件中再增加一条“A,B不相邻”,则结论如何?解:画出树形图:由“树形图”可知,所有坐法为ACBD,ACDB,ADBC,ADCB,BCAD,BCDA,BDAC,BDCA,CADB,CBDA,DACB,DBCA共12种.利用“树形图”法解决简单排列问题的适用范围及策略(1)适用范围:“树形图”在解决排列元素个数不多的问题时,是一种比较有效的表示方式.(2)策略:在操作中先将元素按一定顺序排出,然后以先安排哪个元素为分类标准进行分类,再安排第二个元素,并按此元素分类,依次进行,直到完成一个排列,这样能做到不重不漏,然后再按树形图写出排列.2.将语文、数学、英语书各一本分给甲、乙、丙三人,每人一本,共有多少种不同的分法?请将它们列举出来.解:按分步计数原理的步骤:第一步,分给甲,有3种分法;第二步,分给乙,有2种分法;第三步,分给丙,有1种分法. 故共有3×2×1=6种不同的分法. 列出树形图,如下:所以,按甲乙丙的顺序分的分法为:语数英,语英数,数语英,数英语,英语数,英数语.排列数公式及其应用(1)计算2A 58+7A 48A 88-A 59;(2)解方程3A 3x =2A 2x +1+6A 2x . 【解】 (1)2A 58+7A 48A 88-A 59=2×8×7×6×5×4+7×8×7×6×58×7×6×5×4×3×2×1-9×8×7×6×5=8×7×6×5×(8+7)8×7×6×5×(24-9)=1.(2)由3A 3x =2A 2x +1+6A 2x ,得3x (x -1)(x -2)=2(x +1)x +6x (x -1). 因为x ≥3,且x ∈N *,所以3(x -1)(x -2)=2(x +1)+6(x -1), 即3x 2-17x +10=0. 解得x =5,x =23(舍去).所以x =5.利用排列数公式①A m n =n (n -1)(n -2)…(n -m +1)或②A mn =n !(n -m )!解题时,要注意题目特点,当m 较小时,用公式①较方便,第②个公式常用在化简或证明问题中.3.已知3A n -18=4A n -29,则n 等于________.解析:由已知3×8!(9-n )!=4×9!(11-n )!,即4×3(11-n )(10-n )=1,因为n ≤9,所以解得n =7. 答案:71.排列定义的两个要素一是“取出元素”,二是“将元素按一定顺序排列”,这是排列的两个要素. 2.对排列数公式的说明(1)这个公式是在m ,n ∈N *,m ≤n 的情况下成立的,m >n 时不成立.(2)公式右边是m 个数的连乘积,形式较复杂,其特点是:从n 开始,依次递减1,连乘m 个.3.排列与排列数的区别排列与排列数是两个不同的概念,一个排列就是完成一件事的一种方法,不是数;排列数是指所有排列的个数,它是一个数.符号A m n 中,m ,n 均为正整数,且m ≤n ,A mn 是一个整体.10个人走进只有6把不同椅子的屋子,若每把椅子必须且只能坐一人,共有多少种不同的坐法?【解】 坐在椅子上的6个人是走进屋子的10个人中的任意6个人,若把人抽象地看成元素,将6把不同的椅子当成不同的位置,则原问题抽象为从10个元素中取6个元素占据6个不同的位置.显然是从10个元素中任取6个元素的排列问题.从而,共有A 610=151 200(种)坐法.(1)本题易出现以下错解:10个人坐6把不同的椅子,相当于从含10个元素的集合到含6个元素的集合的映射,故有610种不同的坐法.该错解是没弄清题意,题中要求每把椅子必须并且只能坐一个,是从10个人中取出6个人的一个排列问题.(2)在用排列数公式求解时需先对问题是否是排列问题做出判断.1.4×5×6×…×(n -1)×n 等于( ) A .A 4n B .A n -4n C .n !-4!D .A n -3n解析:选D.4×5×6×…×(n -1)×n 中共有n -4+1=n -3个因式,最大数为n ,最小数为4,故4×5×6×…×(n -1)×n =A n -3n .2.从1,2,3,4这四个数字中任取两个不同的数字,则可组成不同的两位数有( ) A .9个 B .12个 C .15个D .18个解析:选B.用树形图表示为:由此可知共有12个. 3.5A 35+4A 24=________.解析:原式=5×5×4×3+4×4×3=348. 答案:3484.若A m 10=10×9×…×5,则m =________. 解析:10-m +1=5,得m =6. 答案:6[A 基础达标]1.已知下列问题:①从甲、乙、丙三名同学中选出两名分别参加数学、物理兴趣小组;②从甲、乙、丙三名同学中选出两人参加一项活动;③从a ,b ,c ,d 中选出3个字母;④从1,2,3,4,5这五个数字中取出2个数字组成一个两位数.其中是排列问题的有( )A .1个B .2个C .3个D .4个 解析:选B.由排列的定义知①④是排列问题. 2.计算A 67-A 56A 45=( )A .12B .24C .30D .36解析:选D.A 67-A 56A 45=7×6×5×4×3×2-6×5×4×3×25×4×3×2=7×6-6=36.3.若α∈N *,且α<27,则(27-α)(28-α)…(34-α)等于( ) A .A 827-α B .A 27-α34-α C .A 734-αD .A 834-α解析:选D.从27-α到34-α共有34-α-(27-α)+1=8个数.所以(27-α)(28-α)…(34-α)=A 834-α.4.甲、乙、丙三人排成一排照相,甲不站在排头的所有排列种数为( ) A .6 B .4 C .8 D .10解析:选B.列树形图如下:5.不等式A 2n -1-n <7的解集为( ) A .{n |-1<n <5} B .{1,2,3,4} C .{3,4}D .{4}解析:选C.由不等式A 2n -1-n <7, 得(n -1)(n -2)-n <7, 整理得n 2-4n -5<0, 解得-1<n <5.又因为n -1≥2且n ∈N *, 即n ≥3且n ∈N *, 所以n =3或n =4,故不等式A 2n -1-n <7的解集为{3,4}. 6.A n +32n +A n +14=________.解析:由⎩⎪⎨⎪⎧n +3≤2n ,n +1≤4,n ∈N *,得n =3,所以A n +32n +A n +14=6!+4!=744. 答案:7447.给出的下列四个关系式中,其中正确的个数是________.①A mn =(n -m )!n !;②A m -1n -1=n -1!(m -n )!;③A m n =n A m -1n -1;④n !=(n +1)!n +1.解析:①②不成立,③④成立. 答案:28.从a ,b ,c ,d ,e 五个元素中每次取出三个元素,可组成________个以b 为首的不同的排列,它们分别是____________________.解析:画出树状图如下:可知共12个,它们分别是bac ,bad ,bae ,bca ,bcd ,bce ,bda ,bdc ,bde ,bea ,bec ,bed .答案:12 bac ,bad ,bae ,bca ,bcd ,bce ,bda ,bdc ,bde ,bea ,bec ,bed 9.求证:12!+23!+34!+…+n -1n !<1.证明:因为n -1n !=n n !-1n !=1(n -1)!-1n !, 所以12!+23!+34!+…+n -1n !=11!-12!+12!-13!+13!-14!+…+1(n -1)!-1n ! =1-1n !<1. 所以原式得证. 10.计算下列各题. (1)A 215; (2)A 66; (3)A m -1n -1·A n -mn -m A n -1n -1;(4)1!+2·2!+3·3!+…+n ·n !. 解:(1)A 215=15×14=210.(2)A 66=6!=6×5×4×3×2×1=720.(3)原式=(n -1)![n -1-(m -1)]!·(n -m )!·1(n -1)!=(n -1)!(n -m )!·(n -m )!·1(n -1)!=1.(4)因为n ·n !=[(n +1)-1]·n! =(n +1)n !-n! =(n +1)!-n !,所以原式=(2!-1)+(3!-2!)+(4!-3!)+…+[(n +1)!-n !]=(n +1)!-1.[B 能力提升]1.若S =A 11+A 22+A 33+A 44+…+A 100100,则S 的个位数字是( ) A .8 B .5 C .3D .0解析:选C.因为当n ≥5时,A nn 的个位数字是0,故S 的个位数取决于前四个排列数.又A 11+A 22+A 33+A 44=33,故选C.2.若2<(m +1)!A m -1m -1≤42,则满足条件的m 的集合是________. 解析:原不等式可化为2<(m +1)!(m -1)!≤42.即2<m 2+m ≤42.所以⎩⎪⎨⎪⎧m 2+m -2>0m 2+m -42≤0,解不等式组得,-7≤m <-2或1<m ≤6,又m ∈N *,所以满足题意的m 的集合为{2,3,4,5,6}. 答案:{2,3,4,5,6}3.一条铁路有n 个车站,为适应客运需要,新增了m 个车站,且知m >1,客运车票增加了62种,问原有多少个车站?现在有多少个车站?解:由题意可知,原有车票的种数是A 2n 种,现有车票的种数是A 2n +m 种,所以A 2n +m -A 2n =62,即(n +m )(n +m -1)-n (n -1)=62,所以m (2n +m -1)=62=2×31,因为m <2n +m -1,且n ≥2,m ,n ∈N *,所以⎩⎪⎨⎪⎧m =2,2n +m -1=31, 解得m =2,n =15,故原有15个车站,现有17个车站.4.(选做题)A ,B ,C ,D 四名同学重新换位(每个同学都不能坐其原来的位子),试列出所有可能的换位方法.解:假设A ,B ,C ,D 四名同学原来的位子分别为1,2,3,4号,树形图如下:换位后,原来1,2,3,4号座位上坐的同学的所有可能排法有:BADC ,BCDA ,BDAC ,CADB ,CDAB ,CDBA ,DABC ,DCAB ,DCBA .。
2018年高中数学第1章计数原理1.2 排列教学案苏教版选修2-3 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年高中数学第1章计数原理1.2 排列教学案苏教版选修2-3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年高中数学第1章计数原理1.2 排列教学案苏教版选修2-3的全部内容。
1。
2 排列第1课时排列与排列数公式1.甲、乙两名同学参加一项活动,其中一名参加上午的活动,另外一名参加下午的活动.问题1:甲在上午和乙在上午是相同的安排法吗?提示:不是.问题2:有几种不同的排法?提示:两种.甲上午,乙下午;甲下午,乙上午.2.若从甲、乙、丙三名同学中选出两名参加一项活动,其中1名同学参加上午的活动,另1名同学参加下午的活动.问题3:让你去安排这项活动,需要几步?提示:分两步.问题4:它们是什么?提示:第一步确定上午的同学,第二步确定下午的同学.问题5:有几种排法?提示:上午有3种,下午有2种,因分步完成共3×2=6种.问题6:这些排法相同吗?提示:不相同,它们是有顺序的.3.从a、b、c中任取两个元素,按照一定的顺序排成一列.问题7:共有多少种不同的排列方法?提示:3×2=6种.问题8:试写出它们的排列.提示:ab,ac,ba,bc,ca,cb.排列的定义一般地,从n个不同的元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
已知数字1,2,3,4,5,6。
问题1:从1,2,3,4,5,6中选出两个数字,能构成多少个没有重复数字的两位数?提示:有6×5=30(个).问题2:从1,2,3,4,5,6中选出三个数字,能构成多少个没有重复数字的三位数?提示:有6×5×4=120(个).问题3:从1,2,3,4,5,6中选出四个数字,能构成多少个没有重复数字的四位数?提示:有6×5×4×3=360(个).问题4:若从n个不同元素中取出m(m≤n)个元素排成一列,有多少种不同的排法?提示:有n(n-1)(n-2)…(n-m+1)(个).排列数全排列定义从n不同元素中取出m个(m≤n)元素的所有n个不同元素全部取出的一个排列,叫做n个不排列的个数,叫做从n个不同元素中取出m个元素的排列数同元素的一个全排列表示法A错误!A错误!公式乘积形式A m n=n(n-1) (n-2)…(n-m+1)A错误!=n(n-1)(n-2)·…·3·2·1阶乘形式A错误!=错误!A错误!=n!性质A0,n=1;0!=1备注n,m∈N*,且m≤n1.判断一个具体问题是不是排列问题主要看从n个元素中取出m个元素后,在安排m个元素时,是有序还是无序,有序是排列,无序就不是排列.也就是说排列与元素的顺序有关,与元素顺序无关的不是排列.2.排列与排列数是两个不同的概念,排列是一个具体的排法,不是数;排列数是所有排列的个数,它是一个数.[例1] 下列哪些问题是排列问题:(1)从10名学生中抽2名学生开会;(2)从2,3,5,7,11中任取两个数相乘;(3)以圆上的10个点为端点作弦;(4)10个车站,站与站间的车票.[思路点拨]利用排列的定义去判断,关键是看取出的元素是否与顺序有关.[精解详析] (1)2名学生开会没有顺序,不是排列问题.(2)两个数相乘,与这两个数的顺序无关,不是排列问题.(3)弦的端点没有先后顺序,不是排列问题.(4)车票使用时,有起点和终点之分,故车票的使用是有顺序的,是排列问题.[一点通] 判断一个具体问题是否有顺序的方法:变换元素的位置,看结果有无变化,若有变化,则与元素的顺序有关,是排列问题;否则,为非排列问题.1.更改例题的各条件如下,请重新判断是不是排列问题:(1)抽2名学生当正、副班长;(2)取两个数相除;(3)以圆上10个点为端点作有向线段;(4)10个车站间站与站的票价.解:(1)2名学生当正、副班长是有顺序的,故是排列问题.(2)两个数有除数和被除数之分,有顺序,是排列问题.(3)有向线段有起点和终点之分,有顺序,是排列问题.(4)两车站间来回的票价一样,故与顺序无关,不是排列问题.2.判断下列问题是否为排列问题.(1)北京、上海、天津三个民航站之间的直达航线的飞机票的价格(假设来回的票价相同);(2)选2个小组分别去植树和种菜;(3)选2个小组去种菜;(4)选10人组成一个学习小组;(5)选3个人分别担任班长、学习委员、生活委员;(6)某班40名学生在假期相互通信.解:(1)中票价只有三种,虽然机票是不同的,但票价是一样的,不存在顺序问题,所以不是排列问题.(2)植树和种菜是不同的,存在顺序问题,属于排列问题.(3)、(4)不存在顺序问题,不属于排列问题.(5)中每个人的职务不同,例如,甲当班长与当学习委员是不同的,存在顺序问题,属于排列问题.(6)A给B写信与B给A写信是不同的,所以存在着顺序问题,属于排列问题.所以在上述各题中(2)、(5)、(6)属于排列问题。
第10课时排列组合综合应用(2)
【教学目标】
1.强化综合运用两个计数原理解决计数问题的能力。
2.能运用排列组合知识分析实际问题,提高分析问题和解决问题的能力。
【基础训练】
1.在1到500的自然数中含数字4的有________个.
2.三位数中,7的倍数或9的倍数的数有________个.
3.从1到20的自然数中取出不同的3个数,使三个数构成等差数列,则这样的等差数列共有________个.
4.从1到9这9个数中任取两个数分别做对数的底数和真数,可得到________个不同的对数值.
【展示点拨】
例1. 平面上有11个点,过其中任意两点的直线共48条.
(1)这11个点中,含3个或3个以上的点的直线有几条?
(2)这11个点能确定几个三角形?
例2. 由1,1,2,2,3,3,4,4,5,5这十个数字卡片能组成多少个不同的五位数?
例3. 方程12347x x x x +++=的正整数解有多少组?
变式1:方程12347x x x x +++=的非负整数解有多少组?
变式2:不等式12347x x x x +++?的正整数解有多少组?
例4.异面直线12l l 和上分别有m 个和n 个(m≥3,n≥3)不同的点,若以这些点为顶点,则可以构成多少个三角形,多少个四面体?
变:在∠AOB 的边OA 上取m 个点,在OB 边上取n 个点(除点O ),连同点O 共m+n+1个点,现任取其中三个点为顶点作为三角形的顶点,这样的三角形的有多少个?
【学以致用】
1.甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一台阶上的人不区分站的位置,则不同的站法种数是_________种.
2.从高二年级的六个班中选10人参加数学竞赛,每班至少一人,名额分配方案有多少种?
3.把2008个相同的兵乓球放进10个不同的箱子里,使第i(i=1,2,…,10)个箱子里至少有i 个兵乓球,共有多少种不同的放法?
4.一个口袋内有4个不同的红球,6个不同的白球.
①从中任取4个球,红球个数不少于白球的取法有多少种?
②若取到一个红球记2分,取到一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种?
5. (2002年全国高考)
圆上有2n 个等分点,从这2n 个点中任取3个点作为三角形的顶点,能构成直角三角形的取法共有多少种?
第10课时 排列组合综合应用(2)
【基础训练】
1.4名同学报名参加数、理、化竞赛,规定每人只能报一科,有_______种不同的报名方法.
2.已知集合{1,4,5,6},{1,2,3},M N ==若分别从集合,M N 中各取1个元素作为点的横、纵
坐标,则能确定不同点的个数是_______.
3.设x Z Î,则方程2
551616C C x x x --=的解集为_____________. 4.若某班学生中选出3个组长的总方法数与只选出正、副班长的总方法数之比为14:3,则该班有学生________人.
5.若3位教师教6个班的数学,每人任教2个班,则有_____种不同的分配方案.
6.9件产品中有4件一等品,3件二等品,2件三等品,现在要从中抽出4件产品来检查,至少有两件事一等品的抽查方法有_______种.
【思考应用】
7.将9人排成3排,每排3人,求其中甲在第三排且乙、丙在第二排的不同的排法种数.
8.车队有7辆车,现要调出4辆车按顺序取执行任务,如果要求A,B 两车必须参加,且A 车要在B 车之前出发,那么共有多少种不同的调度方案?
9.用数字1,2,3,4,5,6组成无重复数字的四位数,然后把它们从大到小排成一个数列.
(1)3145是这个数列的第几项?
(2)这个数列的第200项是多少?
10.有10秒乒乓球运动员,其中6名男运动员,4名女运动员.现从男、女运动员中各选两名组成两组混合双打,问:有多少种不同的搭配方案?
【拓展提升】
11.对某种产品中的6件不同的正品和4件不同的次品依次进行测试,每次测试1件,直至区分出所有次品为止,若在第五次测试中发现了最后一件次品,则这样的测试方法有多少种可能?
12.已知数列{a n }共有11项,11110,4,1(1,2,...10)k k a a a a k +==-==.问:这样数列共有多少个?。