专题十 计数原理第三十讲 排列与组合 (1)
- 格式:doc
- 大小:133.00 KB
- 文档页数:4
高中数学排列与组合的基本原理和应用排列与组合是高中数学中的重要概念,涉及到各种实际问题的解决方法。
本文将介绍排列与组合的基本原理和其应用。
一、排列的基本原理排列是从一组元素中,按照一定的顺序取出若干元素,然后按照规定的顺序排列的方式。
排列的基本原理是指对于n个不同的元素,取出m个进行排列的方法数公式为:P(n,m) = n!/(n-m)!其中n!表示n的阶乘,表示n*(n-1)*(n-2)*...*2*1。
以一个简单的例子来说明排列的基本原理。
假设有4个小球,分别用A、B、C、D表示,要求从中取出2个小球,按照一定的顺序排列。
根据排列的基本原理,可以计算出方法数为:P(4,2) = 4!/(4-2)! = 4!/(2!) = 12即从4个小球中取出2个小球排列的方法数为12。
二、组合的基本原理组合是从一组元素中,按照一定的顺序取出若干元素,但不考虑顺序排列的方式。
组合的基本原理是指对于n个不同的元素,取出m个进行组合的方法数公式为:C(n,m) = n!/(m!(n-m)!)以一个简单的例子来说明组合的基本原理。
假设有4个小球,分别用A、B、C、D表示,要求从中取出2个小球,不考虑顺序。
根据组合的基本原理,可以计算出方法数为:C(4,2) = 4!/(2!*(4-2)!) = 4!/(2!*2!) = 6即从4个小球中取出2个小球组合的方法数为6。
三、排列与组合的应用排列与组合在实际问题中具有广泛的应用,特别是在概率统计、密码学、计算机科学等领域。
1. 概率统计:排列与组合可以用于解决概率统计中的问题,如从一副扑克牌中取出若干张进行排列或组合的方法数,从而计算出某些特定情况的概率。
2. 密码学:排列与组合可以应用于密码学中,如构建密码、解密密码等。
通过排列与组合的方法,可以计算出可能的密码组合数,从而提高密码的安全性。
3. 计算机科学:排列与组合也是计算机科学中的基础概念之一。
在算法设计和数据结构中,排列与组合的方法可以应用于问题求解、排序算法等方面。
专题十 计数原理第三十讲 排列与组合答案部分1.C 【解析】不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,从中随机选取两个不同的数有210C 种不同的取法,这10个数中两个不同的数的和等于30的有3对,所以所求概率21031C 15==P ,故选C . 2.D 【解析】由题意可得,一人完成两项工作,其余两人每人完成一项工作,据此可得,只要把工作分成三份:有24C 种方法,然后进行全排列,由乘法原理,不同的安排方式共有2343C A 36⨯=种. 故选D .3.C 【解析】不放回的抽取2次有1198C C 9872=⨯=,如图 21,3,4,5,6,7,8,923,4,5,6,7,8,91可知(1,2)与(2,1)是不同,所以抽到的2张卡片上的数奇偶性不同有11542C C =40,所求概率为405728=. 4.B 【解析】由题意可知E F →有6种走法,F G →有3种走法,由乘法计数原理知,共有6318⨯= 种走法,故选B .5.D 【解析】由题意,要组成没有重复的五位奇数,则个位数应该为1、3、5中任选一个,有13A 种方法,其他数位上的数可以从剩下的4个数字中任选,进行全排列,有44A 种方法,所以其中奇数的个数为1434A A 72=,故选D . 6.B 【解析】据题意,万位上只能排4、5.若万位上排4,则有342A ⨯个;若万位上排5,则有343A ⨯个.所以共有342A ⨯343524120A +⨯=⨯=个,选B . 7.D 【解析】4422728P -==. 8.D 【解析】易知12345||||||||||x x x x x ++++=1或2或3,下面分三种情况讨论.其一:12345||||||||||x x x x x ++++=1,此时,从12345,,,,x x x x x 中任取一个让其等于1或-1,其余等于0,于是有115210C C =种情况;其二:12345||||||||||x x x x x ++++=2,此时,从12345,,,,x x x x x 中任取两个让其都等于1或都等于-1或一个等于1、另一个等于-1,其余等于0,于是有221552240C C C +=种情况;其三:12345||||||||||x x x x x ++++=3,此时,从12345,,,,x x x x x 中任取三个让其都等于1或都等于-1或两个等于1、另一个等于-1或两个等于-1、另一个等于1,其余等于0,于是有3313255353280C C C C C ++=种情况.由于104080130++=.9.C 【解析】直接法:如图,在上底面中选11B D ,四个侧面中的面对角线都与它成60︒,共8对,同样11A C 对应的也有8对,下底面也有16对,这共有32对;左右侧面与前后侧面中共有16对,所以全部共有48对.间接法:正方体的12条面对角线中,任意两条垂直、平行或成角为60︒,所以成角为60︒的共有21212648C --=. 10.A 【解析】分三步:第一步,5个无区别的红球可能取出0个,1个,…,5个,则有2345(1)a a a a a +++++种不同的取法;第二步,5个无区别的篮球都取出或都不取出,则有5(1)b +种不同的取法;第三步,5个有区别的黑球看作5个不同色,从5个不同色的黑球任取0个,1个,…,5个,有5(1)c +种不同的取法,所以所求的取法种数为2345(1)a a a a a +++++5(1)b +5(1)c +.11.B 【解析】能够组成三位数的个数是9×10×10=900,能够组成无重复数字的三位数的个数是9×9×8 =648.故能够组成有重复数字的三位数的个数为900648252-=.12.A 【解析】先安排1名教师和2名学生到甲地,再将剩下的1名教师和2名学生安排到乙地,共有122412C C =种. 13.D 【解析】和为偶数,则4个数都是偶数,都是奇数或者两个奇数两个偶数,则有44224545156066C C C C ++⋅=++=种取法.14.C 【解析】若没有红色卡片,则需从黄、蓝、绿三色卡片中选3张,若都不同色则有14C ⨯14C ⨯14C =64,若2张同色,则有21213244144C C C C ⨯⨯⨯=,若红色1张,其余21张不同色,则有12114344192C C C C ⨯⨯⨯=,其余2张同色则有11243472C C C ⨯⨯=,所以共有64+144+192+72=472.另解1:472885607216614151641122434316=-=--⨯⨯=--C C C C ,答案应选C . 另解2:472122642202111241261011123212143431204=-+=⨯⨯+-⨯⨯=+-C C C C C . 15.B 【解析】B ,D ,E ,F 用四种颜色,则有441124A ⨯⨯=种涂色方法;B ,D ,E ,F 用三种颜色,则有334422212192A A ⨯⨯+⨯⨯⨯=种涂色方法;B ,D ,E ,F 用两种颜色,则有242248A ⨯⨯=种涂色方法;所以共有24+192+48=264种不同的涂色方法.16.B 【解析】分两类:一类为甲排在第一位共有4424A =种,另一类甲排在第二位共有133318A A =种,故编排方案共有241842+=种,故选B . 17.C .【解析】共有5!=120个不同的闪烁,每个闪烁要完成5次闪亮需用时间为5秒,共5⨯120=600秒;每两个闪烁之间的间隔为5秒,共5⨯(120—1)=595秒。
第十章计数原理、概率、随机变量及其分布1.计数原理(1)理解分类加法计数原理和分步乘法计数原理,能正确区分“类”和“步”,并能利用两个原理解决一些简单的实际问题.(2)理解排列的概念及排列数公式,并能利用公式解决一些简单的实际问题.(3)理解组合的概念及组合数公式,并能利用公式解决一些简单的实际问题.(4)会用二项式定理解决与二项展开式有关的简单问题.2.概率(1)事件与概率①了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别.②了解两个互斥事件的概率加法公式.(2)古典概型①理解古典概型及其概率计算公式.②会计算一些随机事件所含的基本事件数及事件发生的概率.(3)随机数与几何概型①了解随机数的意义,能运用模拟方法估计概率.②了解几何概型的意义.3.概率与统计(1)理解取有限个值的离散型随机变量及其分布列的概念,认识分布列刻画随机现象的重要性,会求某些取有限个值的离散型随机变量的分布列.(2)了解超几何分布,并能进行简单应用.(3)了解条件概率的概念,了解两个事件相互独立的概念;理解n次独立重复试验模型及二项分布,并能解决一些简单问题.(4)理解取有限个值的离散型随机变量的均值、方差的概念,会求简单离散型随机变量的均值、方差,并能利用离散型随机变量的均值、方差概念解决一些简单问题.(5)借助直观直方图认识正态分布曲线的特点及曲线所表示的意义.10.1两个计数原理、排列与组合1.分类加法计数原理完成一件事,有n类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法……在第n类方案中有m n种不同的方法.那么完成这件事共有N=________________种不同的方法.2.分步乘法计数原理完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法……做第n步有m n种不同的方法.那么完成这件事共有N=____________种不同的方法.3.两个计数原理的区别分类加法计数原理和分步乘法计数原理解决的都是有关做一件事的不同方法的种数问题,区别在于:分类加法计数原理针对的是“分类”问题,其中各种方法______________,用其中______________都可以做完这件事;分步乘法计数原理针对的是“分步”问题,各个步骤中的方法______________,只有______________才算做完这件事.4.两个计数原理解决计数问题时的方法最重要的是在开始计算之前要进行仔细分析——是需要分类还是需要分步.(1)分类要做到“______________”.分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.(2)分步要做到“______________”,即完成了所有步骤,恰好完成任务,当然步与步之间要______________,分步后再计算每一步的方法数,最后根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.5.排列(1)排列的定义:从n个不同元素中取出m(m≤n)个元素,按照____________排成一列,叫做从n个不同元素中取出m个元素的一个排列.(2)排列数的定义:从n个不同元素中取出m(m≤n)个元素的________________的个数叫做从n个不同元素中取出m个元素的排列数,用符号______表示.(3)排列数公式:A m n=________________________.这里n,m∈N*,并且________.(4)全排列:n个不同元素全部取出的一个____________,叫做n个元素的一个全排列.A n n=n×(n-1)×(n-2)×…×3×2×1=__________,因此,排列数公式写成阶乘的形式为A m n=,这里规定0!=________.6.组合(1)组合的定义:从n个不同元素中取出m(m≤n)个元素____________,叫做从n个不同元素中取出m个元素的一个组合.(2)组合数的定义:从n个不同元素中取出m(m≤n)个元素的____________的个数,叫做从n个不同元素中取出m个元素的组合数,用符号________表示.(3)组合数公式:C m n=A m nA m m=____________=____________.这里n∈N*,m∈N,并且m≤n.(4)组合数的两个性质:①C m n=____________;②C m n+1=____________+____________.自查自纠1.m1+m2+…+m n2.m1×m2×…×m n3.相互独立任何一种方法互相依存各个步骤都完成4.(1)不重不漏(2)步骤完整相互独立5.(1)一定的顺序(2)所有不同排列A m n(3)n(n-1)(n-2)…(n-m+1)m≤n(4)排列n!n!(n-m)!16.(1)合成一组(2)所有不同组合C m n(3)n (n -1)(n -2)…(n -m +1)m !n !m !(n -m )!(4)①C n -mn ②C m n C m -1n(2016·郑州模拟)某项测试要过两关,第一关有3种测试方案,第二关有5种测试方案,某人参加该项测试,不同的测试方法种数为( )A .8B .15C .125D .243 解:由分步计数原理知所求为3×5=15.故选B.某校学生会由高一年级3人,高二年级3人,高三年级4人组成,现要选择不同年级的两名成员参加市里组织的活动,则共有选法( )A .27种B .33种C .36种D .81种解:由两个计数原理知,所求为3×3+3×4+3×4=33(种).故选B.(2016·四川)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( ) A .24 B .48 C .60 D .72解:由题可知,五位数要为奇数,则个位数只能是1,3,5;分为两步:先从1,3,5三个数中选一个作为个位数有C 13种方法,再将剩下的四个数字排列有A 44种方法,则满足条件的五位数有C 13A 44=72个.故选D.(2017河南五校质量监测改编)6名同学排成一排照相,甲不站两端,则不同的站法有________种.解:所求为A 14A 55=480种.故填480.现有4种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有____________种.解:按A →B →C →D 顺序分四步涂色,共有4×3×2×2=48(种).故填48.类型一 分类与分步的区别与联系甲同学有若干本课外参考书,其中有5本不同的数学书,4本不同的物理书,3本不同的化学书.现在乙同学向甲同学借书,试问:(1)若借一本书,则有多少种不同的借法? (2)若每科各借一本,则有多少种不同的借法? (3)若借两本不同学科的书,则有多少种不同的借法?解:(1)因为需完成的事情是“借一本书”,所以借给他数学、物理、化学书中的任何一本,都可以完成这件事情.故用分类计数原理,共有5+4+3=12(种)不同的借法.(2)需完成的事情是“每科各借一本书”,意味着要借给乙三本书,只有从数学、物理、化学三科中各借一本,才能完成这件事情.故用分步计数原理,共有5×4×3=60(种)不同的借法.(3)需完成的事情是“从三种学科的书中借两本不同学科的书”,要分三种情况:①借一本数学书和一本物理书,只有两本书都借,事情才能完成,由分步计数原理知,有5×4=20(种)借法;②借一本数学书和一本化学书,同理,由分步计数原理知,有5×3=15(种)借法;③借一本物理书和一本化学书,同理,由分步计数原理知,有4×3=12(种)借法.而上述的每一种借法都可以独立完成这件事情,由分类计数原理知,共有20+15+12=47(种)不同的借法.【点拨】仔细区分是“分类”还是“分步”是运用两个原理的关键.两个原理的区别在于一个与分类有关,一个与分步有关.如果完成一件事有n 类办法,这n 类办法彼此之间是相互独立的,无论哪一类办法中的哪一种方法都能单独完成这件事,求完成这件事的方法种数,就用分类加法计数原理;如果完成一件事需要分成n 个步骤,缺一不可,即需要依次完成n 个步骤,才能完成这件事,而完成每一个步骤各有若干种不同的方法,求完成这件事的方法种数,就用分步乘法计数原理.电视台在“欢乐在今宵”节目中拿出两个信箱,其中放着竞猜中成绩优秀的50位观众的来信,甲箱中有30封,乙箱中有20封.现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两箱剩下来信中各确定一名幸运观众,有多少种不同结果?解:①幸运之星在甲箱中抽取,选定幸运之星,再在两箱内各抽一名幸运观众,根据分步计数原理有30×29×20=17 400种结果.②幸运之星在乙箱中抽取,有20×19×30=11 400种结果. 根据分类计数原理共有不同结果17 400+11 400=28 800(种).类型二 排列数与组合数公式(1)解方程3A x 8=4A x -19;(2)解方程C x +1x +3=C x -1x +1+C x x +1+C x -2x +2.解:(1)利用3A x 8=38!(8-x )!,4A x -19=49!(9-x +1)!, 得到3×8!(8-x )!=4×9!(10-x )!.利用(10-x )!=(10-x )(9-x )(8-x )!,将上式化简后得到(10-x )(9-x )=4×3. 再化简得到x 2-19x +78=0.解方程得x 1=6,x 2=13.由于A x 8和A x -19有意义,所以x 满足x ≤8和x -1≤9.于是将x 2=13舍去,原方程的解是x =6.(2)由组合数的性质可得C x -1x +1+C x x +1+C x -2x +2=C 2x +1+C 1x +1+C 4x +2=C 2x +2+C 4x +2, 又C x +1x +3=C 2x +3,且C 2x +3=C 2x +2+C 1x +2, 即C 1x +2+C 2x +2=C 2x +2+C 4x +2.所以C 1x +2=C 4x +2,所以5=x +2,x =3.经检验知x =3符合题意且使得各式有意义,故原方程的解为x =3.【点拨】(1)应用排列、组合数公式解此类方程时,应注意验证所得结果能使各式有意义.(2)应用组合数性质C m n +1=C m -1n+C m n 时,应注意其结构特征:右边下标相同,上标相差1;左边(相对于右边)下标加1,上标取大.使用该公式,像拉手风琴,既可从左拉到右,越拉越长,又可以从右推到左,越推越短.(1)解方程:3A 3x =2A 2x +1+6A 2x ; (2)已知1C m 5-1C m 6=710C m 7,则C m8=____________. 解:(1)由3A 3x =2A 2x +1+6A 2x 得3x (x -1)(x -2)=2(x +1)x +6x (x -1), 由x ≠0整理得3x 2-17x +10=0.解得x =5或23(舍去).即原方程的解为x =5.(2)由已知得m 的取值范围为{m |0≤m ≤5,m ≤Z },m !(5-m )!5!-m !(6-m )!6!=7×(7-m )!m !10×7!,整理可得m 2-23m +42=0,解得m =21(舍去)或m =2.故C m 8=C 28=28.故填28.类型三 排列的基本问题5名男生、2名女生站成一排照相: (1)两名女生要在两端,有多少种不同的站法? (2)两名女生都不站在两端,有多少种不同的站法? (3)两名女生要相邻,有多少种不同的站法? (4)两名女生不相邻,有多少种不同的站法? (5)女生甲要在女生乙的右方,有多少种不同的站法? (6)女生甲不在左端,女生乙不在右端,有多少种不同的站法?解:(1)两端的两个位置,女生任意排,中间的五个位置男生任意排:A 22A 55=240(种); (2)中间的五个位置任选两个排女生,其余五个位置任意排男生:A 25A 55=2 400(种);(3)把两名女生当作一个元素,于是对六个元素任意排,然后解决两个女生的任意排列:A 66A 22=1 440(种); (4)把男生任意全排列,然后在六个空中(包括两端)有顺序地插入两名女生:A 55A 26=3 600(种); (5)七个位置中任选五个排男生问题就已解决,因为留下两个位置女生排法是既定的:A 57=2 520(种); (6)采用排除法,在七个人的全排列中,去掉女生甲在左端的A 66 个,再去掉女生乙在右端的A 66个,但女生甲在左端同时女生乙在右端的A 55 种排除了两次,要找回来一次.有A 77-2A 66+A 55=3 720(种).【点拨】(1)有约束条件的排列问题一般有以下几种基本类型与方法:①特殊元素优先考虑;②对于相邻问题采用“捆绑法”,整体参与排序后,再考虑整体内容排序;③对于不相邻问题,采用“插空”法,先排其他元素,再将不相邻元素插入空档;④对于定序问题,可先不考虑顺序限制,排列后再除以定序元素的全排列数.(2)解题的基本思路通常有正向思考和逆向思考两种.正向思考时,通过分步、分类设法将问题分解;逆向思考时,从问题的反面入手,然后“去伪存真”.3名女生和5名男生排成一排. (1)如果女生全排在一起,有多少种不同排法? (2)如果女生都不相邻,有多少种排法? (3)如果女生不站两端,有多少种排法?(4)其中甲必须排在乙前面(可不邻),有多少种排法? (5)其中甲不站左端,乙不站右端,有多少种排法?解:(1)(捆绑法)由于女生排在一起,可把她们看成一个整体,这样同五个男生合在一起有6个元素,排成一排有A 66种排法,而其中每一种排法中,三个女生又有A 33种排法,因此共有A 66·A 33=4 320(种)不同排法.(2)(插空法)先排5个男生,有A 55种排法,这5个男生之间和两端有6个位置,从中选取3个位置排女生,有A 36种排法,因此共有A 55·A 36=14 400(种)不同排法. (3)法一(位置分析法) 因为两端不排女生,只能从5个男生中选2人排列,有A 25种排法,剩余的位置没有特殊要求,有A 66种排法,因此共有A 25·A 66=14 400(种)不同排法.法二(元素分析法) 从中间6个位置选3个安排女生,有A 36种排法,其余位置无限制,有A 55种排法,因此共有A 36·A 55=14 400(种)不同排法. (4)8名学生的所有排列共A 88种,其中甲在乙前面与乙在甲前面各占其中的12,所以符合要求的排法种数为12A 88=20 160(种).(5)甲、乙为特殊元素,左、右两边为特殊位置.法一(特殊元素法) 甲在最右边时,其他的可全排,有A 77种;甲不在最右边时,可从余下6个位置中任选一个,有A 16种.而乙可排在除去最右边位置后剩余的6个中的任意一个上,有A 16种,其余人全排列,共有A 16·A 16·A 66种.由分类加法计数原理,共有A 77+A 16·A 16·A 66=30 960(种).法二(特殊位置法) 先排最左边,除去甲外,有A 17种,余下7个位置全排,有A 77种,但应剔除乙在最右边时的排法A 16·A 66种,因此共有A 17·A 77-A 16·A 66=30 960(种).法三(间接法) 8个人全排,共A 88种,其中,不合条件的有甲在最左边时,有A 77种,乙在最右边时,有A 77种,其中都包含了甲在最左边,同时乙在最右边的情形,有A 66种.因此共有A 88-2A 77+A 66=30 960(种).类型四 组合的基本问题课外活动小组共13人,其中男生8人,女生5人,并且男、女生各指定一名队长.现从中选5人主持某种活动,依下列条件各有多少种选法? (1)只有1名女生; (2)两队长当选; (3)至少有1名队长当选; (4)至多有2名女生当选; (5)既要有队长,又要有女生当选.解:(1)1名女生,4名男生,故共有C 15·C 48=350(种).(2)将两队长作为一类,其他11个作为一类,故共有C 22·C 311=165(种). (3)至少有1名队长当选含有两类:只有1名队长和2名队长.故共有:C 12·C 411+C 22·C 311=825(种). 或采用间接法:C 513-C 511=825(种).(4)至多有2名女生含有三类:有2名女生、只有1名女生、没有女生,故选法为:C25·C38+C15·C48+C58=966(种).(5)分两类:第一类女队长当选:有C412种选法;第二类女队长不当选:有C14·C37+C24·C27+C34·C17+C44种选法.故选法共有:C412+C14·C37+C24·C27+C34·C17+C44=790(种).【点拨】①分类时不重不漏;②注意间接法的使用,在涉及“至多”“至少”等问题时,多考虑用间接法(排除法);③应防止出现如下常见错误:如对(3),先选1名队长,再从剩下的人中选4人得C12·C412≠825,请同学们自己找错因.从7名男同学和5名女同学中选出5人,分别求符合下列条件的选法总数为多少?(1)A,B必须当选;(2)A,B都不当选;(3)A,B不全当选;(4)至少有2名女同学当选;(5)选出3名男同学和2名女同学,分别担任体育委员、文娱委员等五种不同的工作,但体育委员必须由男同学担任,文娱委员必须由女同学担任.解:(1)只要从其余的10人中再选3人即可,有C310=120(种).(2)5个人全部从另外10人中选,总的选法有C510=252(种).(3)直接法,分两类:A,B一人当选,有C12C410=420(种).A,B都不当选,有C510=252(种).所以总的选法有420+252=672(种).间接法:从12人中选5人的选法总数中减去从不含A,B的10人中选3人(即A,B都当选)的选法总数,得到总的选法有C512-C310=672(种).(4)直接法,分四步:选2名女生,有C25C37=10×35=350(种);选3名女生,有C35C27=210(种);选4名女生,有C45C17=35(种);选5名女生,有C55=1(种).所以总的选法有350+210+35+1=596(种).间接法:从12人中选5人的选法总数中减去不选女生与只选一名女生的选法数之和,即满足条件的选法有C512-(C57+C15C47)=596(种).(5)分三步:选1男1女分别担任体育委员、文娱委员的方法有C17C15=35(种);再选出2男1女,补足5人的方法有C26C14=60(种);最后为第二步选出的3人分派工作,有A33=6(种)方法.所以总的选法有35×60×6=12 600(种).类型五分堆与分配问题按下列要求分配6本不同的书,各有多少种不同的分配方式?(1)分成三份,1份1本,1份2本,1份3本;(2)甲、乙、丙三人中,一人得1本,一人得2本,一人得3本;(3)平均分成三份,每份2本;(4)平均分配给甲、乙、丙三人,每人2本; (5)分成三份,1份4本,另外两份每份1本;(6)甲、乙、丙三人中,一人得4本,另外两人每人得1本; (7)甲得1本,乙得1本,丙得4本. 解:(1)无序不均匀分组问题.先选1本,有C 16种选法;再从余下的5本中选2本,有C 25种选法;最后余下3本全选,有C 33种选法. 故共有C 16C 25C 33=60(种).(2)有序不均匀分组问题.由于甲、乙、丙是不同的三人,在(1)题基础上,还应考虑再分配,共有C 16C 25C 33A 33=360(种). (3)无序均匀分组问题.先分三步,则应是C 26C 24C 22种方法,但是这里出现了重复.不妨记六本书为A ,B ,C ,D ,E ,F ,若第一步取了AB ,第二步取了CD ,第三步取了EF ,记该种分法为(AB ,CD ,EF ),则C 26C 24C 22种分法中还有(AB ,EF ,CD ),(CD ,AB ,EF ),(CD ,EF ,AB ),(EF ,CD ,AB ),(EF ,AB ,CD ),共有A 33种情况,而这A 33种情况仅是AB ,CD ,EF 的顺序不同,因此只能作为一种分法,故分配方式有C 26C 24C 22A 33=15(种).(4)有序均匀分组问题.在(3)的基础上再分配给3个人,共有分配方式C 26C 24C 22A 33·A 33=C 26C 24C 22=90(种). (5)无序部分均匀分组问题.共有C 46C 12C 11A 22=15(种).(6)有序部分均匀分组问题. 在(5)的基础上再分配给3个人,共有分配方式C 26C 12C 11A 22·A 33=90(种). (7)直接分配问题.甲选1本,有C 16种方法;乙从余下的5本中选1本,有C 15种方法,余下4本留给丙,有C 44种方法,故共有分配方式C 16C 15C 44=30(种).【点拨】平均分配给不同人的分法等于平均分堆的分法乘以堆数的全排列.分堆到位相当于分堆后各堆再全排列,平均分堆不到指定位置,其分法数为:平均分堆到指定位置堆数的阶乘.对于分堆与分配问题应注意:①处理分配问题要注意先分堆再分配;②被分配的元素是不同的(像“名额”等则是相同元素,不适用),位置也应是不同的(如不同的“盒子”);③分堆时要注意是否均匀,如6分成(2,2,2)为均匀分组,分成(1,2,3)为非均匀分组,分成(4,1,1)为部分均匀分组.(1)6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有____________种不同的分派方法.解:先把6个毕业生平均分成3组,有C 26C 24C 22A 33种方法,再将3组毕业生分到3所学校,有A 33=6种方法,故6个毕业生平均分到3所学校,共有C 26C 24C 22A 33·A 33=90种分派方法.故填90.(2)(2015·广州调研)有4名优秀学生A ,B ,C ,D 全部被保送到甲、乙、丙3所学校,每所学校至少去一名,则不同的保送方案共有____________种.解:先把4名学生分为2、1、1的3组,有C 24C 12C 11A 22=6种分法,再将3组分到3个学校,有A 33=6种情况,则共有6×6=36种不同的保送方案.故填36.(3)(2015·江西模拟改编)若将6名教师分到3所中学任教,一所1名,一所2名,一所3名,则有____________种不同的分法.解:将6名教师分组,分三步完成:第1步,在6名教师中任取1名作为一组,有C 16种取法; 第2步,在余下的5名教师中任取2名作为一组,有C 25种取法; 第3步,余下的3名教师作为一组,有C 33种取法.6名教师分组共有C 16C 25C 33=60种取法.再把这3组教师分配到3所中学,有A 33=6种分法, 因此共有60×6=360种不同的分法.故填360.类型六 数字排列问题用0,1,2,3,4,5这6个数字. (1)能组成多少个无重复数字的四位偶数?(2)能组成多少个奇数数字互不相邻的六位数(无重复数字)? 解:(1)符合要求的四位偶数可分为三类: 第一类:0在个位时,有A 35个;第二类:2在个位时,千位从1,3,4,5中选定一个(A 14种),十位和百位从余下的数字中选,有A 24种,于是有A 14·A 24个; 第三类:4在个位时,与第二类同理,也有A 14·A 24个. 由分类加法计数原理得,共有A 35+2A 14·A 24=156(个).(2)先排0,2,4,再让1,3,5插空,总的排法共A 33·A 34=144(种),其中0在排头,将1,3,5插在后三个空的排法共A 22·A 33=12(种),此时构不成六位数, 故总的六位数的个数为A 33·A 34-A 22·A 33=144-12=132(种). 【点拨】本例是有限制条件的排列问题,先满足特殊元素或特殊位置的要求,再考虑其他元素或位置,同时注意题中隐含条件0不能在首位.(2015·山西模拟改编)用五个数字0,1,2,3,4组成没有重复数字的自然数,问: (1)四位数有几个?(2)比3 000大的偶数有几个?解:(1)首位数字不能是0,其他三位数字可以任意,所以四位数有C 14A 34=96个.(2)比3 000大的必是四位数或五位数. (Ⅰ)若是四位数,则首位数字必是3或4.①若4在首位,则个位数字必是0或2,有C 12A 23个数, ②若3在首位,则个位数字必是0或2或4,有C 13A 23个数,所以比3 000大的四位偶数有C12A23+C13A23=30个.(Ⅱ)若是五位数,则首位数字不能是0,个位数字必是0或2或4,①若0在个位,则有A44个;②若0不在个位,则有C12C13A33个数,所以比3 000大的五位偶数有A44+C12C13A33=60个.故比3 000大的偶数共有30+60=90个.1.解答计数应用问题的总体思路根据完成事件所需的过程,对事件进行整体分类,确定可分为几大类,整体分类以后,再确定在每类中完成事件要分几个步骤,这些问题都弄清楚了,就可以根据两个基本原理解决问题了,此外,还要掌握一些非常规计数方法,如:(1)枚举法:将各种情况一一列举出来,它适用于种数较少且计数对象不规律的情况;(2)转换法:转换问题的角度或转换成其他已知问题;(3)间接法:若用直接法比较复杂,难以计数,则可考虑利用正难则反的策略,先计算其反面情形,再用总数减去即得.2.排列与组合的区别与联系排列、组合之间的主要区别在于是否要考虑选出元素的先后顺序,不需要考虑顺序的是组合问题,需要考虑顺序的是排列问题,排列是在组合的基础上对入选的元素进行全排列,因此,分析解决排列问题的基本思路是“先选,后排”.3.解排列、组合题的基本方法(1)限制元素(位置)优先法:①元素优先法:先考虑有限制条件的元素,再考虑其他元素;②位置优先法:先考虑有限制条件的位置,再考虑其他位置.(2)正难则反排异法:有些问题,正面考虑情况复杂,可以反面入手把不符合条件的所有情况从总体中去掉.(3)复杂问题分类分步法:某些问题总体不好解决时,常常分成若干类,再由分类加法计数原理解决或分成若干步,再由分步乘法计数原理解决.在解题过程中,常常既要分类,也要分步,其原则是先分类,再分步.(4)相离问题插空法:某些元素不能相邻或要在某特殊位置时可采用插空法,即先安排好没有限制条件的元素,然后再把有限制条件的元素按要求插入排好的元素之间.(5)相邻问题捆绑法:把相邻的若干个特殊元素“捆绑”为一个大元素,然后再与其余“普通元素”作全排列,最后再“松绑”——将“捆绑”元素在这些位置上作全排列.(6)相同元素隔板法:将n个相同小球放入m(m≤n)个盒子里,要求每个盒子里至少有一个小球的放法,等价于种放法.这是针对相同元素的将n个相同小球串成一串,从间隙里选m-1个结点,剪截成m段,共有C m-1n-1组合问题的一种方法.(7)定序问题用除法:对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一同进行排列,然后用总的排列数除以这几个元素的全排列数.4.解组合问题时应注意(1)在解组合应用题时,常会遇到“至少”“至多”“含”等词,要仔细审题,理解其含义.(2)关于几何图形的组合题目,一定要注意图形自身对其构成元素的限制,解决这类问题常用间接法(或排除法).(3)分组、分配问题:分组问题和分配问题是有区别的,前者组与组之间只要元素个数相同,是不可区分的,而后者则即使两组元素个数相同,但因元素不同,仍然是可区分的.对于这类问题必须先分组后排列,若平均分m 组,则分法=取法m !.1.现有6名同学去听同时进行的5个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是( )A .56B .65 C.5×6×5×4×3×22D .6×5×4×3×2解:因为每位同学均有5种讲座可供选择,所以6位同学共有5×5×5×5×5×5=56种选法.故选A.2.A 32n =10A 3n ,n =( )A .1B .8C .9D .10解:原式等价于2n (2n -1)(2n -2)=10n (n -1)(n -2),n >3且n ∈N *,整理得n =8.故选B.3.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( ) A .60种B .70种C .75种D .150种解:从中选出2名男医生的选法有C 26=15种,从中选出1名女医生的选法有C 15=5种,所以不同的选法共有15×5=75种,故选C.4.(2017·全国卷Ⅱ)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种解:由题意可得,一人完成两项工作,其余两人每人完成一项工作,据此可得,只要把工作分成三份:有C 24种方法,然后进行全排列A 33即可,由乘法原理,不同的安排方式共有C 24×A 33=36种方法.故选D.5.(2016·郑州二模)某校开设A 类选修课2门;B 类选修课3门,一位同学从中选3门,若要求两类课程中至少选一门,则不同的选法共有( )A .3种B .6种C .9种D .18种解:可分以下两种情况:①A 类选修课选1门,B 类选修课选2门,有C 12C 23种不同选法;②A 类选修课选2门,B 类选修课选1门,有C 22C 13种不同选法.所以根据分类加法计数原理知不同的选法共有:C 12C 23+C 22C 13=6+3=9(种).故选C.6.(2017·江西新余第一中学调研)西部某县将7位大学生志愿者(4男3女) 分成两组, 分配到两所小学支教, 若要求女生不能单独成组, 且每组最多5人, 则不同的分配方案共有( ) A .36种 B .68种 C .104种 D .110种解:分组的方案有3、4和2、5两类,第一类有(C 37-1)A 22=68(种);第二类有(C 27-C 23)A 22=36(种),所以共有68+36=104种不同的方案.故选C.7.(2017·天津)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有________个.(用数字作答)解:本题分两类:一类是一个数字是偶数,三个数字是奇数的四位数有C 14C 35A 44=960(个),二类是四个数字都是奇数的四位数有A 45=120(个),所以共有1 080个.故填1 080.8.(2017·浙江)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有________种不同的选法.(用数字作答)解:第一步,选出4人,由于至少1名女生,故有C 48-C 46=55种不同的选法;第二步,从4人中选出队长,。
排列与组合知识讲解排列与组合是概率论中的一个重要概念,用于描述集合中元素的不同排列方式和组合方式。
在数学中,排列和组合是两种基本的计数方法,它们在解决概率和组合问题时起着至关重要的作用。
首先,让我们来了解一下排列和组合的概念。
排列是指从给定的元素集合中取出一部分元素,按照一定的顺序排列的方式。
而组合是指从给定的元素集合中取出一部分元素,不考虑元素的排列顺序。
简而言之,排列考虑元素的顺序,组合不考虑元素的顺序。
接下来,让我们分别来看一下排列和组合的计算公式。
排列的计算公式为P(n, k) = n! / (n-k)!,其中n表示元素的总数,k表示取出的元素的个数。
组合的计算公式为C(n, k) = n! / (k!(n-k)!),其中n和k的含义同排列的计算公式。
举个例子来说明排列和组合的计算方法。
假设有5个不同的球,要从中选出3个球排成一列,这就是一个排列问题。
根据排列的计算公式,我们可以得到排列的结果为P(5, 3) = 5! / (5-3)! = 60。
也就是说,有60种不同的排列方式。
如果是组合问题,要从5个不同的球中选出3个球,不考虑排列顺序,这就是一个组合问题。
根据组合的计算公式,我们可以得到组合的结果为C(5, 3) = 5! / (3!(5-3)!) = 10。
也就是说,有10种不同的组合方式。
排列和组合的应用非常广泛,特别是在概率论和组合数学中。
在解决排列和组合问题时,需要根据具体情况选择合适的计算方法,正确应用排列和组合的计算公式。
排列和组合的概念和计算方法,不仅在数学中有重要的意义,也在实际生活中有着广泛的应用,是我们理解和解决各种概率和组合问题的基础。
组合和排列知识点总结1. 组合和排列的定义组合和排列是两种基本的组合数学概念,它们都与集合相关。
在数学中,集合是由一些互不相同的对象组成的整体,而排列和组合则是从一个给定的集合中选取一定数量的对象并按照一定的规则进行排列或组合。
排列是指从一个集合中取出一定数量的对象,并按照一定的顺序进行排列,即排列是有序的。
假设集合中有n个对象,要从中取出m个对象按照一定的顺序进行排列,符合条件的排列个数称为排列数。
通常用P(n, m)表示排列数。
组合是指从一个集合中取出一定数量的对象,但不考虑其排列顺序,即组合是无序的。
假设集合中有n个对象,要从中取出m个对象,符合条件的组合个数称为组合数。
通常用C(n, m)表示组合数。
2. 排列的性质排列具有一些基本的性质,这些性质在排列的计算中具有重要的意义。
(1)排列的计算公式在排列中,通过一个简单的计算公式可以求出排列数。
假设集合中有n个对象,要从中取出m个对象按照一定的顺序进行排列,则排列数可以用以下公式计算:P(n, m) = n! / (n-m)!其中,n!表示n的阶乘,即n! = n × (n-1) × (n-2) × … × 2 × 1。
(2)排列的性质排列具有如下的性质:- P(n, m) = n × (n-1) × … × (n-m+1)- P(n, n) = n!3. 组合的性质组合也具有一些基本的性质,这些性质在组合的计算中同样具有重要的意义。
(1)组合的计算公式在组合中,同样可以通过一个简单的计算公式求出组合数。
假设集合中有n个对象,要从中取出m个对象,组合数可以用以下公式计算:C(n, m) = n! / [m! × (n-m)!](2)组合的性质组合具有如下的性质:- C(n, m) = C(n, n-m)- C(n, 0) = 1- C(n, n) = 1- C(n, 1) = n- C(n, m) = C(n-1, m-1) + C(n-1, m)4. 组合和排列的应用组合和排列在实际中有着广泛的应用,它们在数学、计算机科学、统计学等领域都有着重要的作用。
《排列与组合》的说课稿引言概述:排列与组合是数学中重要的概念,它们在各个领域都有着广泛的应用。
通过排列与组合的学习,可以帮助我们解决各种实际问题,提高我们的逻辑思维能力和数学素养。
本文将从排列与组合的定义、性质、应用等方面进行详细阐述。
一、排列的概念1.1 排列的定义:排列是指从给定的元素中按照一定的顺序选取若干个元素进行排列的方式。
1.2 排列的计算公式:排列的计算公式为A(n,m)=n!/(n-m)!,其中n表示总元素个数,m表示选取的元素个数。
1.3 排列的性质:排列的个数随着元素个数和选取个数的增加而增加,排列的顺序不同则视为不同的排列。
二、组合的概念2.1 组合的定义:组合是指从给定的元素中按照一定的规则选取若干个元素进行组合的方式。
2.2 组合的计算公式:组合的计算公式为C(n,m)=n!/(m!(n-m)!),其中n表示总元素个数,m表示选取的元素个数。
2.3 组合的性质:组合的个数不受元素的排列顺序影响,组合的个数随着选取的元素个数的增加而减少。
三、排列组合的应用3.1 排列组合在概率统计中的应用:排列组合可以帮助我们计算事件发生的可能性,从而进行概率统计的分析。
3.2 排列组合在密码学中的应用:排列组合可以帮助我们设计安全的密码算法,保护信息的安全性。
3.3 排列组合在工程设计中的应用:排列组合可以帮助我们设计出更加合理的工程结构,提高工程的效率和可靠性。
四、排列组合的解题方法4.1 利用计算公式:根据排列组合的计算公式,可以直接计算出排列组合的个数。
4.2 利用递推关系:通过递推关系可以简化排列组合的计算过程,提高解题效率。
4.3 利用实际问题进行练习:通过解决实际问题,可以更好地理解排列组合的概念和应用。
五、总结排列与组合作为数学中的重要概念,具有广泛的应用价值。
通过学习排列与组合,可以提高我们的逻辑思维能力和解决问题的能力,为我们的学习和工作带来更多的帮助。
希望大家能够认真学习排列与组合的知识,不断提升自己的数学素养。
专题十 计数原理
第三十讲 排列与组合
一、选择题
1.(2018全国卷Ⅱ)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥
德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是
A .112
B .114
C .115
D .118
2.(2017新课标Ⅱ)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人
完成,则不同的安排方式共有
A .12种
B .18种
C .24种
D .36种
3.(2017山东)从分别标有1,2,⋅⋅⋅,9的9张卡片中不放回地随机抽取2次,每次抽取
1张.则抽到的2张卡片上的数奇偶性不同的概率是
A .518
B .49
C .59
D .79 4.(2016年全国II)如图,小明从街道的
E 处出发,先到
F 处与小红会合,再一起到位于G
处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为
A .24
B .18
C .12
D .9
5.(2016四川)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为
A .24
B .48
C .60
D .72
6.(2015四川)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的
偶数共有
A .144个
B .120个
C .96个
D .72个
7.(2014新课标1)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周
日都有同学参加公益活动的概率为
A .
18 B .38 C .58 D .78 8.(2014广东)设集合(){}12345=,,,,{1,0,1},1,2,3,4,5i A x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为
A .60
B .90
C .120
D .130
9.(2014安徽)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60︒的共
有
A .24对
B .30对
C .48对
D .60对
10.(2014福建)用a 代表红球,b 代表蓝球,c 代表黑球,由加法原理及乘法原理,从1
个红球和1个篮球中取出若干个球的所有取法可由()()b a ++11的展开式ab b a +++1表示出来,如:“1”表示一个球都不取、“a ”表示取出一个红球,面“ab ”用表示把红球和篮球都取出来.以此类推,下列各式中,其展开式可用来表示从5个无区别的红球、从5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的篮球都取出或都不取出的所有取法的是
A .()()()5
55432111c b a a a a a +++++++ B .()()()5
54325111c b b b b b a +++++++ C .()()()554325
111c b b b b b a +++++++ D .()()()
543255111c c c c c b a +++++++ 11.(2013山东)用0,1,…,9十个数学,可以组成有重复数字的三位数的个数为
A .243
B .252
C .261
D .279
12.(2012新课标)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会
实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有
A .12种
B .10种
C .9种
D .8种
13.(2012浙江)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,
则不同的取法共有
A .60种
B .63种
C .65种
D .66种
14.(2012山东)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中
任取3张,要求这3张卡片不能是同一种颜色,并且红色卡片至多1张,不同取法的种数是
A .232
B .252
C .472
D .484
15.(2010天津)如图,用四种不同颜色给图中的A,B,C,D,E,F 六个点涂色,要求每个点涂
一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法用
A .288种
B .264种
C .240种
D .168种
16.(2010山东)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前
两位、节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有
A.36种B.42种C.48种D.54种
17.(2010广东)为了迎接2010年广州亚运会,某大楼安装5个彩灯,它们闪亮的顺序不固定.每个彩灯闪亮只能是红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯闪亮的颜色各不相同,记这5个彩灯有序地闪亮一次为一个闪烁.在每个闪烁中,每秒钟有且只有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒。
如果要实现所有不同的闪烁,那么需要的时间至少是
A.1205秒B.1200秒C.1195秒D.1190秒
18.(2010湖北)现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。
甲、乙不会开车但能从事其他三项工作,丙丁戌都能胜任四项工作,则不同安排方案的种数是
A.152 B.126 C.90 D.54
二、填空题
19.(2018全国卷Ⅰ)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有___种.(用数字填写答案)
20.(2018浙江)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成个没有重复数字的四位数.(用数字作答)
21.(2017浙江)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有种不同的选法.(用数字作答)
22.(2017天津)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有___________个.(用数字作答)23.(2015广东)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了条毕业留言.(用数字作答)
24(2014浙江)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种(用数字作答).
25.(2014北京)把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有_______种.
26.(2014广东)从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的
概率为 .
27.(2014江西)10件产品中有7件正品、3件次品,从中任取4件,则恰好取到1件次品
的概率是________.
28.(2013北京)将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少一张,
如果分给同一人的两张参观券连号,那么不同的分法种数是 .
29.(2012湖北)回文数是指从左到右读与从右到左读都一样的正整数.如22,121,3443,
94249等.显然2位回文数有9个:11,22,33,…,99.3位回文数有90个:101,111,121,…,191,202,…,999.则
(Ⅰ)4位回文数有 个;
(Ⅱ)21()n n ++∈N 位回文数有 个.
30.给n 个自上而下相连的正方形着黑色或白色.当4n ≤时,在所有不同的着色方案中,
黑色正方形互不相邻....
的着色方案如下图所示: 由此推断,当6n =时,黑色正方形互不相邻....
的着色方案共有 种,至少有两个黑色正方形相邻..
的着色方案共有 种,(结果用数值表示) 31.(2013新课标2)从n 个正整数1,2,…,n 中任意取出两个不同的数,若取出的两数
之和等于5的概率为114
,则n =________. 32.(2013浙江)将F E D C B A ,,,,,六个字母排成一排,且B A ,均在C 的同侧,则不同的
排法共有________种(用数字作答).
33.(2010浙江)有4位同学在同一天的上、下午参加“身高与体重”、“立定跳远”、“肺活量”、
“握力”、“台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复. 若上午不测“握力”项目,下午不测“台阶”项目,其余项目上、下午都各测试一人. 则不同的安排方式共有______________种(用数字作答).。