(2)1/2
14
11.2 排队服务系统的数学建模
排队服务系统的建模方法
排队律的数学模型
先到先服务:服务首先提供给等待时间最长的顾客。 后到先服务:服务首先提供给最后到达的顾客。 优先服务律:中断或强占服务。服务提供给优先级最
高的顾客。 随机律:对所有等待的顾客进行随机选择服务。 其它:到超时、超长离去
补充:存储的输入。生产或订货。但需要时间。 费用:各种消耗费用。存储费h、订货费S、生产费
c、缺货费d。 存储策略
循环策略:每隔t0时间进行补充存储量Q。 (x,S)策略:每当x<=S时补充存储量Q=S-x。 混合策略:每隔t0时间检查存储量,然后实行(x,S)策略
18
11.3 存储系统的数学建模
形式化描述:M=(X,Y,S,,,ta)。
这里:X 外部事件(输入事件);Y输出事件,S 序贯状态;状态转移函数;输出函数和ta时间 推进函数。
4
11.1 离散事件系统的数学描述 方法
实体:顾客、服务台
进程 排队活动
服务活动
顾客到达事件
服务开始事件
服务结束事件
离散事件系统中的实体、事件、活动和进程
(k1)!
到达分布函数为
A0(t)ekt
k1 n0
(kt)n
n!
k为大于零的正整数
13
11.2 排队服务系统的数学建模
排队服务系统的建模方法
服务过程的数学模型
定长的服务时间。一般情况 随机分布:一般按指数分布。特殊情况可按爱尔朗分
布或超指数分布。 正态分布:密度函数为
f(z) 1 ez2/2
排队服务系统的建模方法
到达模式的数学模型
定长分布:顾客在等距离时间间隔到达。