1.1-任意角和弧度制-教学设计-教案
- 格式:docx
- 大小:214.12 KB
- 文档页数:7
1.1 任意角和弧度制1.1.1 任意角【教学内容解析】本节课内容是《普通高中课程标准实验教科书数学》人教A版必修4第一章《三角函数》1.1《任意角和弧度制》中第1.1.1节《任意角》的第一课时,本节教学内容为任意角,主要学习任意角的推广、象限角、用几何和符号表示终边相同的角.本节内容为三角函数的第一节,终边相同的角的表示为后面证明恒等式、化简及利用诱导公式求三角函数的值奠定基础.由此确定本节课的教学重点为:教学重点:将0°~360°的角的概念推广到任意角.【学情分析】学生早在小学与初中学习过“角”,对角的概念有一定印象,但是过去接触过的角都在0°~360°,在对角的认识上已经形成一定的思维定势,所以在本小节要将角的概念推广可能会有一定的困难.用集合和符号来表示终边相同的角,涉及任意角、象限角、终边相同的角等新概念,对学生来说刚刚将角推广到任意角,然后就利用它来解决终边相同的角,是学习的主要难点.故确定本节课的教学难点为:教学难点:角的概念的推广,终边相同的角的表示.【教学目标设置】根据上述教学内容的地位和作用,结合课程标准与学情,确定了以下目标:1.结合生活中实例,认识角的概念推广的必要性;2.初步学会在平面直角坐标系中讨论任意角,并能熟练写出与已知角终边相同的角的集合.3.通过从特殊的三个角找关系,推广到一般的终边相同的角的集合的书写,体会类比的思想方法,同时利用直角坐标系作出角解决问题,渗透数形结合的数学思想.【教学策略分析】根据本节课的教学内容、学生情况和教学目标,教学中采用“教师设疑引导,学生自主探究”的教学方法.通过启发引导,激发学生的思维,鼓励学生发现、探究、合作、展示,使其在探究中对问题本质的思考逐步深入,思维水平不断提高.针对本节课的重点——将0°~360°的角的概念推广到任意角,教学中,通过“思考”提出拨手表指针问题,引导学生感受推广角的概念的必要性,使他们明白要正确表达“校准”手表的过程,需要同时说明分针的旋转量和旋转方向,教学时,让学生自己描述“校准”过程,让学生体会仅用0°~360°的角已经难以回答当前的问题,进而引出学习课题.同时还以体操转体运动为例,进一步说明引入新概念的必要性和实际意义.针对本节课的主要难点,教学中此处设置问题,让学生自己在直角坐标系中画30°,330°,-390°,(这一组角比教材上的那组角更容易找关系)通过观察这些角得出终边相同,然后提问这些角之间有怎样的数量关系?能不能用其中一个角表示这些角?让学生自己得出这一组角中任意两角之差是360°的整数倍,进一步类比得出所有与任意角α终边相同的角,连同α在内构成一个集合的表示.通过学生自己活动解决“探究”,经历由具体数值到一般值的抽象的过程,形成对“终边相同的角相差360°的整数倍”的直观感知.教学中同时多媒体,建立坐标系,画出任意角,并测出角的大小,旋转角的终边,观察角的变化规律,从而将数、形联系起来,使角的几何表示和集合表示相结合.对例题和习题的处理上,对教材上的例2改编为终边落在x轴上的角的集合,将终边落在y轴上的角的集合作为变式,变式设置了4个问题,让学生对终边落在各个坐标轴与象限角的表示有深刻认识,总结两种方法,为后面章节学习打下基础。
教学计划:《任意角和弧度制》一、教学目标1.知识与技能:学生能够理解并掌握任意角的概念,熟悉角度制与弧度制的转换方法,掌握利用弧度制进行简单三角函数的计算。
2.过程与方法:通过直观演示和抽象概括,引导学生自主探究任意角与弧度制的定义及性质;通过例题解析和课堂练习,提高学生的逻辑思维能力和数学运算能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生严谨的科学态度和探究精神;通过学习任意角和弧度制,让学生体会到数学知识的连续性和统一性。
二、教学重点和难点●教学重点:任意角的概念,角度制与弧度制的转换,弧度制下三角函数的基本性质。
●教学难点:理解并接受弧度制作为角的另一种度量方式,以及利用弧度制进行三角函数的计算。
三、教学过程1. 引入新课(约5分钟)●情境导入:以生活中的实例(如钟表指针的转动、体操运动员的旋转动作)为例,引导学生思考角的度量不仅仅局限于0°到360°之间,从而引出任意角的概念。
●定义揭示:明确任意角的定义,包括正角、负角和零角,强调角的旋转方向和度量范围。
●激发兴趣:简述历史上角度制与弧度制的发展过程,引起学生对弧度制的好奇心。
2. 讲授新知(约15分钟)●弧度制介绍:详细介绍弧度制的定义,即弧长与半径的比值,强调弧度制在三角学和微积分中的重要性。
●转换方法:讲解角度制与弧度制之间的转换公式,并通过具体例子演示转换过程。
●性质探讨:引导学生探讨弧度制下三角函数的基本性质,如正弦、余弦和正切函数的周期性、奇偶性等。
3. 直观演示与操作(约10分钟)●单位圆与弧度制:利用多媒体或实物教具展示单位圆上的角度与弧度的对应关系,加深学生对弧度制的理解。
●互动操作:让学生在纸上绘制单位圆,并尝试用尺子量取特定弧长,计算对应的弧度值,以增强感性认识。
●小组讨论:组织学生讨论角度制与弧度制的优缺点,促进知识的内化和吸收。
4. 例题解析与练习(约15分钟)●例题解析:选取典型例题,如角度制与弧度制的转换、利用弧度制计算三角函数值等,进行详细解析,展示解题步骤和思路。
《任意角和弧度制》教案篇一:人教A版高中数学必修四1.1《任意角和弧度制》1.1 《任意角和弧度制》教案【教学目的】1.理解任意角的概念.2.学会建立直角坐标系讨论任意角,推断象限角,掌握终边一样角的集合的书写.3.理解弧度制,能进展弧度与角度的换算.4.认识弧长公式,能进展简单应用.对弧长公式只要求理解,会进展简单应用,不必在应用方面加深.5.理解角的集合与实数集建立了一一对应关系,培养学生学会用函数的观点分析、处理征询题. 【导入新课】复习初中学习过的知识:角的度量、圆心角的度数与弧的度数及弧长的关系提出征询题:1.初中所学角的概念.2.实际生活中出现一系列关于角的征询题. 3.初中的角是如何度量的?度量单位是什么?4.1°的角是如何定义的?弧长公式是什么?5.角的范围是什么?如何分类的?新授课阶段一、角的定义与范围的扩大1.角的定义:一条射线绕着它的端点O,从起始位置OA旋转到终止位置OB,构成一个角?,点O是角的顶点,射线OA,OB分别是角?的终边、始边. 说明:在不引起混淆的前提下,“角?”或“??”能够简记为?.2.角的分类:正角:按逆时针方向旋转构成的角叫做正角;负角:按顺时针方向旋转构成的角叫做负角;零角:假设一条射线没有做任何旋转,我们称它为零角. 说明:零角的始边和终边重合. 3.象限角:在直角坐标系中,使角的顶点与坐标原点重合,角的始边与x轴的非负轴重合,那么(1)象限角:假设角的终边(端点除外)在第几象限,我们就说这个角是第几象限角. 例如:30?,390?,?330?都是第一象限角;300?,?60?是第四象限角.(2)非象限角(也称象限间角、轴线角):如角的终边在坐标轴上,就认为这个角不属于任何象限.例如:90?,180?,270?等等.说明:角的始边“与x轴的非负半轴重合”不能说成是“与x轴的正半轴重合”.由于x轴的正半轴不包括原点,就不完全包括角的始边,角的始边是以角的顶点为其端点的射线.4.终边一样的角的集合:由特别角30看出:所有与30角终边一样的角,连同30角本身在内,都能够写成30?k?360??????k?Z?的方式;反之,所有形如30??k?360??k?Z?的角都与30?角的终边一样.从而得出一般规律:所有与角?终边一样的角,连同角?在内,可构成一个集合S|?k?360?,k?Z?,即:任一与角?终边一样的角,都能够表示成角?与整数个周角的和. 说明:终边一样的角不一定相等,相等的角终边一定一样.例1在0与360范围内,找出与以下各角终边一样的角,并推断它们是第几象限角?(1)?120;(2)640;(3)?95012?.?????解:(1)?120?240?360,因而,与?120角终边一样的角是240,它是第三象限角;(2)640?280?360,因而,与640角终边一样的角是280角,它是第四象限角;(3)?95012??12948??3?360,??????????因而,?95012?角终边一样的角是12948?角,它是第二象限角.??例2 假设??k?360??1575?,k?Z,试推断角?所在象限. 解:∵??k?360??1575?(k?5)?360??225?, (k?5)?Z ∴?与225终边一样,因而,?在第三象限.?例3 写出以下各边一样的角的集合S,并把S中适宜不等式?360720?的元素? 写出来:(1)60;(2)?21;(3)36314?.?????解:(1)S??|??60?k?360,k?Z,??S中适宜?360720?的元素是60??1?360300?,60??0?360??60?,?60??1?360??420.??(2)S??|21?k?360,k?Z,??S中适宜?360720?的元素是?21??0?36021?,?21??1?360??339?,?21??2?260??699???(3)S??|??36314??k?360,k?ZS中适宜?360720?的元素是363?14??2?360356?46?, 363?14??1?360??3?14?,?363?14??0?360??363?14.例4 写出第一象限角的集合M.分析:(1)在360内第一象限角可表示为090;(2)与0,90终边一样的角分别为0?k?360,90?k?360,(k?Z);(3)第一象限角的集合确实是夹在这两个终边一样的角中间的角的集合,我们表示为:?????????M|k?360?90??k?360?,k?Z?.学生讨论,归纳出第二、三、四象限角的集合的表示法:P|90??k?360?180??k?360?,k?Z?;N|90??k?360?180??k?360?,k?Z?;Q|270??k?360?360??k?360?,k?Z?.说明:区间角的集合的表示不唯一.例5写出y??x(x?0)所夹区域内的角的集合.??解:当?终边落在y?x(x?0)上时,角的集合为?|??45?k?360,k?Z;????当?终边落在y??x(x?0)上时,角的集合为?|45?k?360,k?Z;??因而,按逆时针方向旋转有集合:S??|?45?k?36045?k?360,k?Z.??二、弧度制与弧长公式1.角度制与弧度制的换算:∵360?=2?(rad),∴180?=? rad. ∴1?=?180rad?0.01745rad.??180 1rad?57.30?5718.oSl2.弧长公式:l?r?. 由公式:?ln?r?l?r??.比公式l?简单. r180lR,其中l是扇形弧长,R是圆的半径. 2弧长等于弧所对的圆心角(的弧度数)的绝对值与半径的积3.扇形面积公式S?留意几点:1.今后在详细运算时,“弧度”二字和单位符号“rad”能够省略,如:3表示3rad ,sin?表示?rad角的正弦;2.一些特别角的度数与弧度数的对应值应该记住:3.应确立如下的概念:角的概念推行之后,不管用角度制仍然弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系.任意角的集合实数集R例6 把以下各角从度化为弧度:(1)252?;(2)1115;(3) 30;(4)67?30. 解:(1)/71? (2)0.0625? (3) ? (4) 0.375? 56变式练习:把以下各角从度化为弧度:(1)22o30′;(2)-210o;(3)1200o. 解:(1) ?;(2)? 18720?;(3)?. 63例7 把以下各角从弧度化为度:(1)?;(2) 3.5;(3) 2;(4)35?. 4解:(1)108 o;(2)200.5o;(3)114.6o;(4)45o. 变式练习:把以下各角从弧度化为度:(1)?4?3?;(2)-;(3).12310解:(1)15 o;(2)-240o;(3)54o.例8 知扇形的周长为8cm,圆心角?为2rad,,求该扇形的面积. 解:由于2R+2R=8,因而R=2,S=4. 课堂小结1.弧度制的定义;2.弧度制与角度制的转换与区别;3.牢记弧度制下的弧长公式和扇形面积公式,并灵敏运用;篇二:(教案3)1.1任意角和弧度制1.1.1任意角教学目的:要求学生掌握用“旋转”定义角的概念,理解任意角的概念,学会在平面内建立适当的坐标系来讨论角;并进而理解“正角”“负角”“象限角”“终边一样的角”的含义。
1.1任意角和弧度制教学设计教案第一篇:1.1 任意角和弧度制教学设计教案教学准备1.教学目标1、知识与技能(1)推广角的概念、引入正角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4)掌握所有与角终边相同的角(包括角)的表示方法;(5)树立运动变化观点,深刻理解推广后的角的概念.2、过程与方法通过创设情境:“转体,逆(顺)时针旋转2周”,角有正角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示.3、情态与价值通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分.角的概念推广以后,知道角之间的关系.学会运用运动变化的观点认识事物.2.教学重点/难点重点: 理解正角、负角和零角的定义,掌握终边相同角的表示法.难点: 终边相同的角的表示.3.教学用具多媒体4.标签任意角教学过程【创设情境】思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25小时,你应当如何将它校准?当时间校准以后,分针转了多少度?[取出一个钟表,实际操作]我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于之间,这正是我们这节课要研究的主要内容——任意角.【探究新知】1.初中时,我们已学习了角的概念,它是如何定义的呢?[展示投影]角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图1.1-1,一条射线由原来的位置,绕着它的端点按逆时针方向旋转到终止位置,就形成角.旋转开始时的射线叫做角的始边,叫终边,射线的端点叫做叫的顶点.2.如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转体”(即转体2周),“转体”(即转体3周)等,都是遇到大于的角以及按不同方向旋转而成的角.同学们思考一下:能否再举出几个现实生活中“大于的角或按不同方向旋转而成的角”的例子,这些说明了什么问题?又该如何区分和表示这些角呢? [展示课件]如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角, 这些都说明了我们研究推广角概念的必要性.为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角(positive angle),按顺时针方向旋转所形成的角叫负角(negative angle).如果一条射线没有做任何旋转,我们称它形成了一个零角(zero angle).[展示课件]如教材图1.1.3(1)中的角是一个正角,它等于;图1.1.3(2)中,正角,负角;这样,我们就把角的概念推广到了任意角(any angle),包括正角、负角和零角.为了简单起见,在不引起混淆的前提下,“角”或“”可简记为.3.在今后的学习中,我们常在直角坐标系内讨论角,为此我们必须了解象限角这个概念.角的顶点与原点重合,角的始边与轴的非负半轴重合。
任意角和弧度制教案教案标题:任意角和弧度制教案教案目标:1. 了解任意角的概念,能够在坐标系中表示和定位任意角。
2. 理解弧度制的概念,能够在弧度制和度数制之间进行转换。
3. 掌握任意角的三角函数值的计算方法。
教学准备:1. 教师准备:教学投影仪、白板、笔记本电脑、教学PPT等。
2. 学生准备:纸和铅笔。
教学过程:Step 1: 引入1. 教师通过展示一张钟表图,引导学生思考角度的概念。
提问:你们平时见过哪些角度的度量方式?2. 学生回答后,教师解释度数制的概念,并引出本节课学习的内容:任意角和弧度制。
Step 2: 任意角的表示和定位1. 教师通过示意图和坐标系,解释任意角的表示方法。
提醒学生注意正角、负角和零角的特点。
2. 学生跟随教师的指导,在纸上练习绘制不同角度的示意图,并用坐标系表示和定位这些角。
Step 3: 弧度制的介绍和转换1. 教师给出弧度制的定义:1弧度是半径等于1的圆的弧所对应的角。
2. 教师通过示意图和实际物体(如一根铁丝弯成的圆弧),展示弧度制的概念和计算方法。
3. 教师引导学生进行度数制和弧度制之间的转换练习,提供一些常见的转换例题。
Step 4: 任意角的三角函数值的计算1. 教师复习正弦、余弦和正切的定义,并介绍任意角的三角函数值的计算方法。
2. 教师通过示例演示三角函数值的计算步骤,引导学生进行练习。
Step 5: 拓展应用1. 教师提供一些与任意角和弧度制相关的实际问题,引导学生运用所学知识解决问题。
2. 学生个别或小组合作完成拓展应用题。
Step 6: 总结和归纳1. 教师带领学生总结本节课所学内容,并强调重点和难点。
2. 学生将所学知识进行整理和归纳,完成课堂笔记。
Step 7: 作业布置1. 教师布置相关的课后作业,包括练习题和思考题。
2. 学生完成作业,以便巩固所学知识。
教学评估:1. 教师观察学生在课堂上的参与度和理解程度。
2. 教师检查学生完成的课堂练习和作业,评估学生的掌握情况。
1、1任意角和弧度制一、教材说明:本节任意角和弧度制选自必修四第一章第一节二、三维目标(一)知识与技能(1)了解正、负角与零角的相关定义;(2)根据图形写出角及根据终边写出角的集合;(3)了解弧度制;(二)过程与方法(1)培养学生数型转化的思想;(2)训练学生思维活跃性,能够举一反三;(3)培养学生思维的抽象与具体转化的过程;(三)情感态度与价值观(1)增强学生观察生活中事物的规律能力;(2)在老师的引导下建立数学模型,把数学运用到生活中去;三、教学重难点(一)重点(1)根据图形写出任意角度数;(2)根据已知图形终边位置写出该终边所表示的角的集合;(二)难点根据终边写角的集合(三)教学设计(1)情境设计(2)教学过程(3)给出相关定义(4)举出例题,深化正负角定义(5)提出要点(6)提出关于终边相同,写出所有角所在集合(7)通过练习(教师引导,并作为主体练习),能够独立进行习题练习(8)学生自主练习、教师个别指导、师生互动(9)习题讲解(10)归纳总结(11)引出下堂课知识点:弧度制(12)布置作业四、教学过程(一)创设情境(1)墙上挂钟,在某段时间内,指针转过角度;(2)当手表不准时,我们旋转指针使之准时,这是指针转过的角度是多少?方向如何?(二)揭示课题(1)1、1任意角和弧度制(2)1、1、1任意角(三)复习旧知识顺时针、逆时针(四)给出例题(1)当指针快速顺时针由“12”调至“6”,指针转过多少度?(2)指针由“6”又调回到“12”是,转过角度如何?方向又怎样呢?(五)给出正角、负角定义(1)正角:逆时针方向旋转形成的角叫做正角;(2)负角:顺时针方向旋转形成的角叫做负角;(六)注意要点如果一条射线没有做任何旋转,则称它为零角。
(七)复习旧知识(1)0°—180°内所有角(2)周角(3)平角的整数倍所有角(八)新知识(1)任意角的表示方法;(2)判断当角的始变何种变相同时,角度是否相同.(九)给出任意角及象限角概念注意角的终边在轴上不叫做象限角。
《弧度制》教学设计教学内容:《普通高中课程标准试验教科书·数学》必修四第一章:三角函数§1.1任意角和弧度制§1.1.2弧度制课题:弧度制三维目标:1.通过类比长度、重量的不同度量制,使学生体会一个量可以用不同的单位制来度量,从而引出弧度制。
2.理解弧度制的意义,以及任意角的弧度数与弧长半径的关系。
3.能进行角度制与弧度制的互化。
4.通过探究使学生认识到角度制与弧度都是度量角的制度,从而使学生体会到事物之间总是相互联系的。
5.通过总结引入弧度制的好处,使学生学会归纳整理并认识到任何新知识的学习,都会为解决实际问题带来方便,从而激发学生的学习兴趣。
6.通过探究任意角的弧度数与弧长半径的关系,培养学生的合作意识和创新能力。
教学重点:理解弧度制的意义,能进行角度制与弧度制的互化教学难点:弧度制的概念及其与角度的换算课时安排:一课时教学过程一、课前布置任务完成导学案中的自主学习部分,并尝试解决其它部分内容。
二、类比引入1.由姚明的身高引入同一对象有不同的单位表示。
(设计意图是问题来源于实际生活,可以激发学生的兴趣,使得新知识的学习自然亲切)2.在初中几何里,我们学过角的度量,1度的角是怎样定义的呢?角还有没有新的度量方法?(教师顺势引导点明我们这节课要学习的内容,从而引出概念,这样以旧引新,符合学生的认知规律) 三、新知探究1.定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角.用符号rad 表示。
弧度制的定义:用弧度做单位来度量角的制度叫做弧度制 说明:(1)弧度制是以“弧度”为单位来度量角的单位制,角度制是以“度”为单位来度量角的单位制;(2)1弧度是弧长等于半径长的圆弧所对的圆心角的大小,而1度是圆周的 所对的圆心角的大小;1弧度≠1º;(3)弧度制是十进制,它的表示是用一个实数表示,而角度制是六十进制; (4)今后在用弧度制表示角的时候,弧度二字或rad 可以略去不写。
第五章三角函数5.1.2 弧度制(1 课时)【教学内容】弧度与角度的互化;特殊角的弧度制;弧长公式、扇形面积公式.【教学目标】(说明:不要写成三维目标的形式,点列,可以从知识技能、过程方法、数学核心素养等角度写目标)1.理解弧度制的定义,体会引入弧度制的必要性.(数学抽象)2.能进行弧度与角度的互化,熟悉特殊角的弧度制.(逻辑推理、数学运算)3.掌握弧度制中扇形的弧长和面积公式,体会弧度制下公式形式的简洁性,会应用公式解决简单的问题.(数学运算、数学模型)【教学重难点】教学重点:角度制与弧度制间的互相转化,弧长公式及扇形的面积公式的推导与证明.教学难点:能灵活运用弧长公式、扇形面积公式解决问题.【教学过程】(说明:本环节包括新授、小结、布置作业等)一、复习回顾,温故知新1.在平面几何里,度量角的大小用什么单位?【答案】角度制的单位有:度、分、秒。
2.1 的角是如何定义的?【答案】规定:圆周1/360 的圆心角称作1 角.这种用度做单位来度量角的制度叫做角度制.日常生活中,度量长度可用不同的单位,如:一张课桌长80 厘米,也可以说长0.8 米,显然两种结果出现了不同的数值. 在数学和其他科学研究中还经常用到另一种度量角的制度—弧度制,它是如何定义呢?二、探索新知探究:在圆内,圆心角的大小和半径大小有关系吗?角度为60的圆心角,半径r 1,2,3 时,(1)分别计算相对应的弧长l ;(2)分别计算对应弧长与半径之比.思考:通过上面的计算,你发现了什么规律?【答案】①.圆心角不变,比值不变;比值的大小与所取的圆的半径大小无关;②圆心角改变,比值改变;比值的大小只与圆心角的大小有关;1.弧度的概念把长度等于半径长的弧所对的圆心角叫做1 弧度(radian)的角.弧度制:这种以弧度作为单位来度量角的单位制叫做弧度制,它的单位是弧度,单位符号是 rad. 约定: 正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为 0.思考 1:圆的半径为 r,弧长分别为 2r 、πr,则它们所对圆心角的弧度 数是多少?【答案】2rad, πrad.思考 2:如果半径为 r 的圆的圆心角α所对的弧长为l ,那么,角α的弧度数的绝对值如何计算?l【答案】|α| =r2. 角度与弧度的换算思考 3:一个周角以度为单位度量是多少度, 以弧度为单位度量是多少弧度?由此可得角度与弧度有怎样的换算关系?【答案】360º, 2π. 360︒= 2πrad,180︒ = πrad思考 4:根据上述关系,1°等于多少弧度, 1 rad 等于多少度? 【答案】1︒ =π180︒≈ 0.01745rad 1rad = 180)︒≈ 57.30︒(π三、典型例题例 1. 把下列各角的度数化为弧度。
任意角的概念与弧度制教案一、任意角的概念:1.任意角的定义:在坐标平面上,如果将终边与正半轴之间的交点记作点A,即A=(1,0),以正向旋转方向将终边与正半轴旋转到位时所转过的角叫做任意角。
任意角由初始边和终边两部分构成。
2.任意角的位置:任意角不限于0到360度之间,可以是任意大小的角度。
旋转方向可以是正向(逆时针)或反向(顺时针)。
3.任意角的度数:任意角的度数即为终边与正半轴的夹角的度数,用角度符号°表示。
4.任意角的象限:根据终边在哪个象限上,可以将任意角分为一、二、三、四象限。
二、弧度制的概念:1.弧度的定义:将半径等于1的圆的周长分成等份,每份叫做一个弧度。
如果圆上的一段弧的长度等于半径的长度,则该弧对应的角叫做一弧度。
2.弧度与度数的关系:360°对应的弧度为2π,即一周对应2π弧度。
所以,任意角对应的弧度数等于该角度数乘以π/180。
3.弧度制的优势:在三角函数的计算中,弧度制比度数制更为方便和精确,有利于进行各种数学计算。
三、教学步骤:教学目标:学生了解任意角的概念与弧度制的定义,掌握任意角的度数与弧度的转化关系。
教学步骤:Step 1:导入新知识通过出示一个角的图片,提问学生这个角是什么角,是否为任意角。
引导学生思考任意角的含义与特点。
Step 2:任意角的概念解释与举例教师对任意角的概念进行解释,并用实际生活中的例子来说明。
比如:针对绕场地跑的运动员,可以将终点的方向与正北方向之间的夹角视为任意角。
Step 3:弧度制的引入教师让学生回忆以前学过的圆的知识,引出弧度的概念。
通过实际的展示,向学生展示单位圆上的一个弧度与该弧度对应的角。
Step 4:弧度与度数的转化通过一个表格或示例,教师向学生解释弧度与度数之间的转化关系。
提醒学生要掌握好π、角度、弧度之间的换算。
Step 5:练习与巩固提供一些练习题,让学生进行弧度与度数之间的互相转化,巩固所学知识。
Step 6:拓展应用教师提出一些与弧度制相关的实际问题,让学生运用所学知识解决问题。
1.1-任意角和弧度制-教学设计-教案
教学准备
1. 教学目标
1、知识与技能
(1)推广角的概念、引入正角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4)掌握所有与角终边相同的角(包括角)的表示方法;(5)树立运动变化观点,深刻理解推广后的角的概念.
2、过程与方法
通过创设情境:“转体,逆(顺)时针旋转2周”,角有正角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示.
3、情态与价值
通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分.角的概念推广以后,知道角之间的关系.学会运用运动变化的观点认识事物.
2. 教学重点/难点
重点: 理解正角、负角和零角的定义,掌握终边相同角的表示法.
难点: 终边相同的角的表示.
3. 教学用具
多媒体
4. 标签
任意角
教学过程
【创设情境】
思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25小时,你应
当如何将它校准?当时间校准以后,分针转了多少度?
[取出一个钟表,实际操作]我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于之间,这正是我们这节课要研究的主要内容——任意角.
【探究新知】
1.初中时,我们已学习了角的概念,它是如何定义的呢?
[展示投影]角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图1.1-1,一条射线由原来的位置,绕着它的端点按逆时针方向旋转到终止位置,就形成角.旋转开始时的射线叫做角的始边,叫终边,射线的端点叫做叫的顶点.
2.如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转体”(即转体2周),“转体”(即转体3周)等,都是遇到大于的角以及按不同方向旋转而成的角.同学们思考一下:能否再举出几个现实生活中“大于的角或按不同方向旋转而成的角”的例子,这些说明了什么问题?又该如何区分和表示这些角呢?
[展示课件]如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角, 这些都说明了我们研究推广角概念的必要性. 为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角(positive angle),按顺时针方向旋转所形成的角叫负角(negative angle).如果一条射线没有做任何旋转,我们称它形成了一个
零角(zero angle).
[展示课件]如教材图1.1.3(1)中的角是一个正角,它等于;图1.1.3(2)中,正角,负角;这样,我们就把角的概念推广到了任意角(any angle),包括正角、负角和零角. 为了简单起见,在不引起混淆的前提下,“角”或“”可简记为.
3.在今后的学习中,我们常在直角坐标系内讨论角,为此我们必须了解象限角这个概念.
角的顶点与原点重合,角的始边与轴的非负半轴重合。
那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角(quadrant angle).如教材图1.1-4中的角、角分别是第一象限角和第二象限角.要特别注意:如果角的终边在坐标轴上,就认为这个角不属于任何一个象限,称为非象限角.
4.[展示投影]练习:
(1)(口答)锐角是第几象限角?第一象限角一定是锐角吗?再分别就直角、钝角来回答这两个问题.
(2)(回答)今天是星期三,那么天后的那一天是星期几? 天前的那一天是星期几?100天后的那一天是星期几?
5.探究:将角按上述方法放在直角坐标系中后,给定一个角,就有唯一的一条终
边与之对应.反之,对于直角坐标系中任意一条射线(如图1.1-5),以它为终边的角是否唯一?如果不惟一,那么终边相同的角有什么关系?请结合4.(2)口答加以分析.
[展示课件]不难发现,在教材图1.1-5中,如果的终边是,那么
角的终边都是,而
,.
设,则角都是的元素,角也是的元素.因此,所有与角终边相同的角,连同角在内,都是集合的元素;反过来,集合的任一元素显然与角终边相同.
一般地,我们有:所有与角终边相同的角,连同角在内,可构成一个集合
,即任一与角终边相同的角,都可以表示成角
与整数个周角的和.
6.[展示投影]例题讲评
例1.在范围内,找出与角终边相同的角,并判定它是第几象限角.(注:是指)
例2.写出终边在轴上的角的集合.
例3.写出终边直线在上的角的集合,并把中适合不等式
的元素写出来.
课堂小结
(1) 你知道角是如何推广的吗?
(2) 象限角是如何定义的呢?
(3) 你熟练掌握具有相同终边角的表示了吗?会写终边落在轴、轴、直线
上的角的集合.
课后习题
板书。