5.6几何证明举例(3)
- 格式:doc
- 大小:69.00 KB
- 文档页数:2
5.6 几何证明举例学习目标1.熟练掌握AAS,HL 判判定理,等腰三角形 , 等边三角形性质与判判定理,并会运用这些定理进行证明相关题目;2.经过独立思虑,合作研究,研究出综合法证明几何问题的方法。
3.倾尽全力,达成目标,享受几何证明的多样性之美。
自主研究(一)直角三角形全等的判判定理假如一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应相等,那么这两个直角三角形全等。
( HL 定理)【典型例题】AEFB D C例 1. 已知如图, D是△ ABC的边 BC的中点, DE⊥ AC,DF⊥ AB,垂足分别是点E,F,DE=DF.求证:△ ABC是等腰三角形 .(二)等腰三角形的性质和判断命题一:等腰三角形底边上的高、中线及顶角的均分线重合.已知:求证:证明:命题二:有两个角相等的三角形是等腰三角形.已知:求证:证明:(三)角均分线与垂直均分线的性质与判断三角形全等的运用1. 已知,如图, AB=BC,AD=CD,求证:∠ A=∠C.CD BA2. 如图,已知AB=DC,∠ ABC=∠DCB,OE均分∠ BOC交 BC于点 E. 求证: OE垂直均分BC.ADOB E C3.已知:如图,在△ ABC中, AB=AC,D 是 AB 上一点, DE⊥ BC,垂足是 E,交 CA的延长线于点 F,求证: AD=AF.FADB E C能力提高4. 在△ ABC中, D 为 BC的中点, DE⊥ BC交∠ BAC的均分线 AE于 E,EF⊥AB 于 F,EG⊥ AC交 AC的延长线于点 G,求证: BF=CG.AFD CBGE。
高中数学几何证明方法总结几何证明是高中数学中重要的一部分,它要求学生能够运用几何知识和推理能力,以严密的逻辑和准确的推导,验证或证明几何性质和定理。
本文将总结高中数学几何证明的常用方法,并介绍一些实例说明。
一、直接证明法直接证明法是最常见的证明方法,它通过依次列举已知条件,逐步推导出要证明的结论。
例:已知△ABC中,∠ABC = ∠ACB,证明AB = AC。
证明过程:1. 根据已知条件,得到∠ABC = ∠ACB。
2. 再由等角的性质可得△ABC为等腰三角形,即AB = AC。
二、反证法反证法是通过假设要证明的结论不成立,然后推导出矛盾的结论,从而证明原命题成立。
例:已知直线l与平面P不平行,证明直线l与平面P只有一个公共点。
证明过程:1. 假设直线l与平面P有两个不同的公共点A和B。
2. 因为直线l经过A和B,所以直线l同时位于平面P中。
3. 根据平面的定义,平面上的任意两个不同点可以确定一条直线,矛盾于直线l与平面P只有一个公共点的假设。
4. 反证法证明了直线l与平面P只有一个公共点。
三、等腰三角形的证明对于等腰三角形的证明,常用的方法包括使用等腰三角形的定义、等角的性质以及构造辅助线等。
例:证明等腰三角形的腰上的角相等。
证明过程:1. 根据等腰三角形的定义,等腰三角形的两边相等,所以∆ABC为等腰三角形,AB = AC。
2. 假设∠B = ∠C,再根据等角的性质,∠BAC = ∠B,∠CAB = ∠C。
3. 说明∠A和∠BAC相等,即∠A = ∠BAC。
4. 根据等腰三角形的定义,∆ABC的腰上的角相等。
四、相似三角形的证明相似三角形的证明方法主要有AA相似法和AAA相似法。
例:证明两条平行线所形成的锐角和其它任意两条交线所形成的锐角相等。
证明过程:1. 假设两条平行线为l和m,两条交线为k和n,且k与l的交点为A,k与m的交点为B,n与l的交点为C,n与m的交点为D。
2. ∆ABC和∆ABD中,∠CAB = ∠DAB,因为是同旁内角,且自行画图观察,可以发现这两个三角形相似。
§5.6 几何证明举例(2)教学目标:1. 学生能够证明等腰三角形的性质定理和判定定理。
2. 会运用等腰三角形的性质和判定进行有关的证明和计算。
3. 应用等腰三角形的性质和判定进一步认识等边三角形。
4. 培养学生分析问题和逻辑推理的能力。
教学重、难点:重点:会证明等腰三角形的性质定理和判定定理。
难点:等腰三角形的性质定理和判定定理的应用。
教学准备:电子白板、直尺、圆规、直角三角板教学过程一、情境导入、复习回顾1、等腰三角形的性质是什么,这个命题的逆命题是什么?二、交流展示(鼓励学生自己写出证明的过程,注意几何证明的三步)(1)“等腰三角形的两个底角相等”是真命题吗?怎样证明。
证明:等腰三角形的两个底角相等。
已知:如图,在△ABC中,AB=AC求证:∠B=∠C法1证明:过点A作∠BAC的角平分线交BC于点D∴∠BAD = ∠CAD (角平分线定义)在△BAD与△CAD中∵AB = AC (已知)∠BAD = ∠CAD (已证)AD = AD (公共边)∴△BAD≌△CAD(SAS)∴∠ B = ∠ C (全等三角形对应角相等)法2证明:作BC边上的中线 AD∴ BD = CD (中线定义)在△BAD与△CAD中∵AB = AC (已知)BD = CD (已证)AD = AD (公共边)∴△BAD≌△CAD( SSS )∴∠B = ∠ C (全等三角形对应角相等)(2)“等腰三角形的两个底角相等”的逆命题是真命题吗,怎样证明它的正确性?证明:有两个角相等的三角形是等腰三角形。
已知:如图,在如图,在△ABC中,∠B=∠C求证:AB=AC证明:作AD⊥BC,垂足为D则∠ADB=∠ADC=90°(垂直的定义),在△ABD和△ACD中,∵∠B=∠C (已知),∠ADB=∠ADC=90°(已证)AD=AD (公共边)∴△ABD≌△ACD (AAS)∴AB=AC(全等三角形的对应边相等)(3) 利用等腰三角形的性质定理和判定定理证明:(鼓励学生当老师讲给其他同学听)①等边三角形的每个内角都是60°②三个角都相等的三角形是等边三角形。
5.6 几何证明举例1. 如图,在△ABC中,BC的垂直平分线交BC于点D,交AB的延长线于点E,连接CE. 求证:∠BCE=∠A +∠ACB .(第1题图)2. 如图,在Rt△ABC中,∠C=90°,AB边的垂直平分线DE交BC于点E,垂足为D. 求证:∠CAB=∠AED.(第2题图)3. 如图,在△ABC中,分别作AB边,BC边的垂直平分线,两线相交于点P,分别交AB 边,BC边于点E,F.求证:AB,BC,AC的垂直平分线相交于点P.(第3题图)4. 如图,在△ABD中,∠BAC= 90°,AD⊥BC于点D,∠ABC的平分线BF交AD于点E,交AC于点F,FH⊥BC于点H. 求证:AE =FH.(第4题图)5. 如图,点D,E分别在△ABC的边AB,AC上,AB=AC.(1)如果DE∥BC,求证:AD=AE.(2)如果AD=AE,求证:DE∥BC.(第5题图)6. 如图,AB=AC,DB=DC. 求证:∠B=∠C.(第6题图)7. 如图,E,F是线段BC上两点,AB∥CD,AB=DC,CE=BF. 求证:AE=DF.(第7题图)8. 如图,DE∥BC,A是DE上一点,AD=AE,AB=AC. 求证:BE=CD.(第8题图)9. 如图,在△ABD中,AC⊥BD,垂足为C,AC=BC,点E在AC上,且CE=CD. 连接BE 并延长交AD于点F. 求证:BF⊥AD.(第9题图)10. 如图,AC与BD相交于点O,且AC=BD,AD=BC. 求证:OA=OB.(第10题图)答案1. 证明:∵BC 的垂直平分线交BC 于点D , ∴BE =CE , ∴∠BCE =∠CBE .∵∠CBE =∠A +∠ACB ,∴∠BCE =∠A +∠ACB .2. 证明:∵DE 是AB 的垂直平分线,∴EA =EB , ∴∠EAB =∠B .∵∠C =90°,∴∠CAB +∠B =90°.又∵∠AED +∠EAB =90°,∴∠CAB =∠AED .3.证明:∵P 是AB 边的垂直平分线上的一点, ∴P A = PB .同理可得,PB = PC .∴P A =PC .∴P 是AC 边的垂直平分线上的一点. ∴AB ,BC ,AC 的垂直平分线相交于点P .4. 证明:∵BF 平分∠ABC ,F A ⊥AB ,FH ⊥BC , ∴F A =FH ,∠ABF =∠EBD .又∵∠AFB +∠ABF = 90°,∠DEB +∠EBD = 90°, ∴∠AFB =∠DEB ,∴∠AFB =∠AEF .∴AF =AE .∴AE =FH .5. 证明:(1)∵AB =AC ,∴∠B =∠C .∵DE ∥BC ,∴∠B=∠ADE ,∠C=∠AED .∴∠ADE=∠AED ,∴AD =AE .(2)∵AD =AE ,∴∠ADE=∠AED=21(180°-∠A ). ∵AB =AC ,∴∠B =∠C=21(180°-∠A ). ∴∠B=∠ADE ,∴DE ∥BC .6. 证明:连接AD .在△ABD 和△ACD 中,⎪⎩⎪⎨⎧===,,,AD AD DC DB AC AB∴△ABD ≌△ACD (SSS ),∴∠B =∠C .7. 证明:∵CE =BF ,∴CE+EF =BF+EF ,即CF =BE .∵AB ∥CD ,∴∠B =∠C .在△ABE 和△DCF 中,⎪⎩⎪⎨⎧=∠=∠=,,,CF BE C B DC AB∴△ABE ≌△DCF (SSS ),∴AE =DF .8. 证明:∵AB =AC ,∴∠ABC =∠ACB .∵BC ∥DE ,∴∠DAB =∠ABC ,∠EAC =∠ACB , ∴∠DAB =∠EAC ,∴∠DAC =∠EAB .在△DAC 和△EAB 中,⎪⎩⎪⎨⎧=∠=∠=,,,AC AB EAC DAC AE AD∴△DAC ≌△EAB (SAS ),∴BE =CD .9. 证明:∵AC ⊥DB ,∴∠BCE =∠ACD = 90°.在△BCE 和△ACD 中,⎪⎩⎪⎨⎧=∠=∠=,,,AC BC BCE ACD CD CE∴△BCE ≌△ACD (SAS ),∴∠CBE=∠CAD . ∵在△ACD 中,∠CAD +∠ACD +∠D= 180°, 在△BDF 中,∠CBE +∠BFD +∠D= 180°,∴∠CAD +∠ACD +∠D=∠CBE +∠BFD +∠D= 180°, ∴∠ACD=∠BFD=90°,即BF ⊥AD .10. 证明:连接AB .在△ABD 和△BAC 中,⎪⎩⎪⎨⎧===,,,BA AB BC AD AC BD∴△ABD ≌△BAC (SSS ),∴∠BDA=∠ACB .在△AOD 和△BOC 中,⎪⎩⎪⎨⎧=∠=∠∠=∠,,,BC AD OCB ODA BOC AOD∴△AOD ≌△BOC (AAS ),∴OA=OB .。
精选2019-2020年数学八年级上册第5章几何证明初步5.6 几何证明举例青岛版巩固辅导第三篇第1题【单选题】某学生在暑假期间观察了x天的天气情况,其结果是:①共有7天上午是晴天;②共有5天下午是晴天;③共下了8次雨;④下午下雨的那天,上午是晴天.则x=( )A、8B、9C、10D、11【答案】:【解析】:第2题【单选题】气象爱好者孔宗明同学在x(x为正整数)天中观察到:①有7个是雨天;②有5个下午是晴天;③有6个上午是晴天;④当下午下雨时上午是晴天.则x等于( )A、7B、8C、9D、10【答案】:【解析】:第3题【单选题】A,B,C,D四个队赛球,比赛之前,甲和乙两人猜测比赛的成绩次序:甲:从第一名开始,名次顺序是A,D,C,B;乙:从第一名开始,名次顺序是A,C,B,D,比赛结果,两人都猜对了一个队的名次,已知第一名是B队,请写出四个队的名次顺序是( )A、B,A,C,DB、B,C,A,DC、D,B,A,CD、B,A,D,C【答案】:【解析】:第4题【单选题】成都七中学生网站是由成都七中四大学生组织共同管理的网站,该网站是成都七中历史上首次由四大学生组织共同合作建成的一个学生网站,其内容囊括了成都七中学生学习及生活的各个方面.某学生在输入网址“http:∥www.cdqzstu.com”中的“cdqzstu.com”时,不小心调换了两个字母的位置,则可能出现的错误种数是( )A、90B、45C、88D、44【答案】:【解析】:第5题【单选题】一同学在n天假期中观察:(1)下了7次雨,在上午或下午;(2)当下午下雨时,上午是晴天;(3)一共有5个下午是晴天;(4)一共有6个上午是晴天。
则n最小为( )A、7B、9C、10D、11.【答案】:【解析】:第6题【单选题】如图是一个风景区,A,B,C,D,E,F是这一风景区内的五个主要景点,现观光者聚于A点.假若你是导游,要带领游客欣赏这五个景点后再回到A点,但又不想多走“冤枉路”(不能走重复的路线和经过同一个景点),你认为可选择行走路线有( )种.?A、4B、5C、6D、7【答案】:【解析】:第7题【填空题】一个零件的形状如图所示,按规定∠A应等于90°,∠B、∠C应分别是21°和32°.当检验工人量得的∠BDC的度数不等于______度时,就可判定此零件不合格?【答案】:【解析】:第8题【填空题】在一次数学游戏中,老师在A、B、C三个盘子里分别放了一些糖果,糖果数依次为a0 ,b0 ,c0 ,记为G0=(a0 ,b0 ,c0).游戏规则如下:若三个盘子中的糖果数不完全相同,则从糖果数最多的一个盘子中拿出两个,给另外两个盘子各放一个(若有两个盘子中的糖果数相同,且都多于第三个盘子中的糖果数,则从这两个盘子字母序在前的盘子中取糖果),记为一次操作.若三个盘子中的糖果数都相同,游戏结束.n次操作后的糖果数记为G0=(a0 ,b0 ,c0).(1)若G0=(4,7,10),则第______次操作后游戏结束;(2)小明发现:若G0=(4,8,18),则游戏永远无法结束,那么G2015=______【答案】:【解析】:第9题【填空题】我市教研室对2008年嘉兴市中考数学试题的选择题作了错题分析统计,受污损的下表记录了n位同学的错题分布情况:已知这n人中,平均每题有11人答错,同时第6题答错的人数恰好是第5题答错人数的1.5倍,且第2题有80%的同学答对.则第5题有______人答对.?【答案】:【解析】:第10题【填空题】有100个人,其中至少有1人说假话,又知这100人里任意2人总有个说真话,则说真话的有______人.【答案】:【解析】:第11题【填空题】甲、乙、丙、丁、戊与小强六位同学参加乒乓球比赛,每两人都要比赛一场,到现在为止,已知甲赛了5场,乙赛了4场,丙赛了3场,丁赛了2场,戊赛了1场,则小强赛了______场.【答案】:【解析】:第12题【解答题】在学习中,小明发现:命题“当n=1,2,3时,n^2-6n的值都是负数”是真命题.于是小明判断:“当n为任意正整数时,n^2-6n的值都是负数”这个命题也是真命题.小明的判断正确吗?请简要说明你的理由.【答案】:【解析】:第13题【解答题】甲、乙、丙、丁四人比赛象棋,每两人都比一盘,结果乙胜丁,并且甲、乙、丙胜的盘数相同,问丁胜了几盘?【答案】:【解析】:第14题【解答题】某足球协会举办了一次足球联赛,其积分规则为:胜一场得3分,平一场得1分,负一场得0分,当全部比赛结束(每队平均比赛12场)时,A队共积19分,请通过计算,判断A队胜、平、负各几场.【答案】:【解析】:第15题【解答题】有一座三层楼房不幸起火,一个消防员搭梯子爬往三楼去救一个小孩子,当他爬到梯子正中1级时,二楼窗口喷出了火,他就往下退了3级,等到火过了,他又爬了7级,这时屋顶有两块杂物掉下来,他又往下退了2级,幸好没有打中他.他又向上爬了8级,这时他距离梯子最高层还有1级,问这个梯子共有几级?【答案】:【解析】:。
例题分析:几何证明选讲例1 如图,在△ABC 中,∠BAC =90°,E 为AC 中点,AD ⊥BC 于D ,DE 交BA 的延长线于F .求证:BF ∶DF =AB ∶AC .【分析】欲证AF DF AC AB =,虽然四条线段可分配于△ABC 和△DFB 中,由于△ABC 和△FBD 一个是直角三角形,一个是钝角三角形,不可能由这一对三角形相似直接找到对应边而得结论,故需借助中间比牵线搭桥,易证Rt△BAC ∽Rt△BDA ,得出=AC AB AD BD ,于是只需证出ADBD AF DF =,进而须证△DFB ∽△AFD 即可. 证明:∵AB ⊥AC ,AD ⊥BC ,∴Rt△ABD ∽Rt△CAD ,∠DAC =∠B ,∴AD BD AC AB =……① 又∵AD ⊥BC ,E 为AC 中点,∴DE =AE ,∠DAE =∠ADE ,∴∠B =∠ADE ,又∵∠F =∠F ,∴△FAD ∽△FDB ,∴DF BF AD BD =………②, 由①②得⋅=DFBF AC AB 【说明】由于△ABC 和△FBD 这两个三角形一个是直角三角形,一个是钝角三角形,明显不相似,不可能由这一对三角形相似直接找到对应边而得结论,且图中又没有相等的线段来代换,势必要找“过渡”的线段或线段比,这种寻找“中间”搭桥的线段或线段比是重要的解题技巧.此题用到直角三角形中斜边上的高这个“双垂直”的基本图形,这里有三对相似三角形,这个图形在证相似三角形中非常重要.例2 △ABC 中,∠A =60°,BD ,CE 是两条高,求证:BC DE 21= 【分析】欲证BC DE 21=,只须证21=BC DE . 由已知易得21=AB AD ,于是只须证明,ABAD BC DE = 进而想到证明△ADE ∽△ABC ,这可以由21==AC AE AB AD 证得. 证明:∵∠A =60°,BD ,CE 是两条高,∴∠ABD =∠ACE =30°∵AB AD 21=,AC AE 21=,∴21==AC AE AB AD ,又∠A =∠A ∴△ADE ∽△ABC ,∴BC DE AB AD BC DE 2121=∴==. 【说明】在判定相似三角形时,应特别注意应用“两边对应成比例且夹角相等,则两三角形相似”这条判定定理.例3 已知:如图,△ABC 中,AD ⊥BC 于D ,CE ⊥AB 于E ,AD 、EC 交于F ,求证BDFD AD CD =【分析】CD 、FD 在△FDC 中,AD 、BD 在△BDA 中,所以证△FDC 与△BDA 相似便可以得到结论.证明:∵AD ⊥BC 于D ,CE ⊥AB 于E ,∴∠ADC =∠ADB =90°,∵∠BAD +∠B =90°,∠BCE +∠B =90°,∴∠BAD =∠BCE ,∴△FDC ∽△BDA , ∴⋅=BDFD AD CD 【说明】为什么找到△FDC 与△BDA 相似呢?从求证的比例式出发,“竖看”,线段CD 、AD 在△ADC 中,但线段FD 、BD 却不在一个三角形中;那么“横瞧”,CD 、FD 在△FDC ,AD 、BD 在△BDA 中,所以证△FDC 与△BDA 相似便可以得到结论.小结为“横瞧竖看分配相似三角形”.例4 如图,平行四边形ABCD ,DE ⊥AB 于E ,DF ⊥BC 于F ,求证:AB ·DE =BC ·DF【分析】化求证的等积式为比例式:DE DF BC AB =,又因为CD =AB ,AD =BC ,即证明比例式DEDF AD CD = 证明:∵平行四边形ABCD ,∴∠C =∠A ,∵DE ⊥AB 于E ,DF ⊥BC 于F ,∴∠AED =∠DFC =90°,∴△CFD ∽△AED ,∴DE DF AD CD = ∵CD =AB ,AD =BC ,∴DE DF BC AB =即AB ·DE =BC ·DF . 【说明】DEDF BC AB =,“横瞧竖看”都不能分配在两个三角形中,但题中有相等的线段:CD =AB ,AD =BC 所以可横瞧竖看用相等线段代换过来的比例式:DEDF AD CD =,这个比例式中的四条线段可分配在两个相似三角形中.例5 AB 是⊙O 的直径,点C 在⊙O 上,∠BAC =60°,P 是OB 上一点,过P 作AB 的垂线与AC 的延长线交于点Q ,连结OC ,过点C 作CD ⊥OC 交PQ 于点D .(1)求证:△CDQ 是等腰三角形;(2)如果△CDQ ≌△COB ,求BP ∶PO 的值.【分析】证明△CDQ 是等腰三角形,只需证明∠DCQ =∠Q ,利用题目中已有的相似三角形和等腰三角形把这两个角的关系建立起来.并可以得到各边的比例关系,不妨把圆的半径设为1,简化计算.(1)证明:由已知得∠ACB =90°,∠ABC =30°,∴∠Q =30°,∠BCO =∠ABC =30°.∵CD ⊥OC ,∴∠DCQ =∠BCO =30°,∴∠DCQ =∠Q ,∴△CDQ 是等腰三角形.(2)解:设⊙O 的半径为1,则AB =2,OC =1, .3,121===BC AB AC ∵等腰三角形CDQ 与等腰三角形COB 全等,∴CQ =BC =3. ∵31+=+=CQ AC AQ ,,23121+==AQ AP ∴=-=AP AB BP 2332312-=+- 231+=-=AO AP PO 2131-=-, ∴3:=PO BP .【说明】利用好相似三角形对应角相等的条件,进行角的转化是解题中常用的技巧. 例6 △ABC 内接于圆O ,∠BAC 的平分线交⊙O 于D 点,交⊙O 的切线BE 于F ,连结BD ,CD .求证:(1)BD 平分∠CBE ;(2)AB ·BF =AF ·DC .【分析】可根据同弧所对的圆周角及弦切角的关系推出.由条件及(1)的结论,可知BD =CD ,因此欲求AB ·BF =AF ·DC ,可求BFBD AF AB =,因此只须求△ABF ∽△BDF 即可. 证明:(1)∵∠CAD =∠BAD =∠FBD ,∠CAD =∠CBD ,∴∠CBD =∠FBD ,∴BD 平分∠CBE .(2)在△DBF 与△BAF 中,∵∠FBD =∠FAB ,∠F =∠F ,∴△ABF ∽△BDF ,BF BD AF AB ,∴AB ·BF =BD ·AF . 又∵BD =CD ,∴AB ·BF =CD ·AF . 例7 ⊙O 以等腰三角形ABC 一腰AB 为直径,它交另一腰AC 于E ,交BC 于D .求证:BC =2DE【分析】由等腰三角形的性质可得∠B =∠C ,由圆内接四边形性质可得∠B =∠DEC ,所以∠C =∠DEC ,所以DE =CD ,连结AD ,可得AD ⊥BC ,利用等腰三角形“三线合一”性质得BC =2CD ,即BC =2DE .证明:连结AD ∵AB 是⊙O 直径 ∴AD ⊥BC∵AB =AC ∴BC =2CD ,∠B =∠C∵⊙O 内接四边形ABDE∴∠B =∠DEC (四点共圆的一个内角等于对角的外角)∴∠C =∠DEC ∴DE =DC∴BC =2DE例8 ⊙O 内两弦AB ,CD 的延长线相交于圆外一点E ,由E 引AD 的平行线与直线BC 交于F ,作切线FG ,G 为切点,求证:EF =FG .【分析】由于FG 切圆O 于G ,则有FG 2=FB ·FC ,因此,只要证明FE 2=FB ·FC 成立即可.证明:∵在△BFE 与△EFC 中有∠BEF =∠A =∠C ,又 ∠BFE =∠EFC ,∴△BFE ∽△EFC ,FE FC FB FE ,∴FE 2=FB ·FC . 又∵FG 2=FB ·FC ,∴FE 2=FG 2,∴ FE =FG .。
5.6.5 几何证明举例1. 两个直角三角形全等的条件是( )A.一锐角对应相等;B.两锐角对应相等;C.一条边对应相等;D.两条边对应相等2. 如图,∠B=∠D=90°,BC=CD ,∠1=30°,则∠2的度数为( )A. 30°B. 60°C. 30°和60°之间D. 以上都不对12ABC D3. 如果两个直角三角形的两条直角边对应相等,那么两个直角三角形全等的依据是( )A. AASB.SASC.HLD.SSS4. 已知在△ABC 和△DEF 中,∠A=∠D=90°,则下列条件中不能判定△ABC 和△DEF 全等的是( ) A.AB=DE,AC=DF B.A C =EF ,BC=DF C.AB=DE,BC=EF D.∠C=∠F,BC=EF5. 如图,AB ∥EF ∥DC ,∠ABC=90°,AB=DC,那么图中有全等三角形( )A.5对;B.4对;C.3对;D.2对6.如图,已知AC ⊥BD 于点P ,AP=CP ,请增加一个条件,使△ABP ≌△CDP (不能添加辅助线),你增加的条件是_________________________________7.如图,在Rt △ABC 和Rt △DCB 中,AB=DC ,∠A=∠D=90°,AC 与BD 交于点O ,则有△________≌△________,其判定依据是________,还有△________≌△________,其判定依据是________.第6题图 第7题图 第8题图8.如图,在△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于点F ,若BF=AC ,则∠ABC=_______9. 如图 AB=AC ,CD ⊥AB 于D ,BE ⊥AC 于E ,BE 与CD 相交于点O .(1)求证AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.参考答案1.D 2.B 3.B 4.B 5.C6. BP=DP或AB=CD或∠A=∠C或∠B=∠D.7.ABC,DCB,HL,AOB,DOC,AAS. 8. 45°9.(1)证明:在△ACD与△ABE中,∵∠A=∠A,∠AD C=∠AEB=90°,AB=AC,∴△ACD≌△ABE,∴AD=AE.(2)互相垂直,在Rt△ADO与△AEO中,∵OA=OA,AD=AE,∴△ADO≌△AEO,∴∠DAO=∠EAO,即OA是∠BAC的平分线,又∵AB=AC,∴OA⊥BC.。
年级八年级学科数学第五单元第9 课时总计课时 2013年 11月 5日
§5.6 几何证明举例(3)
课程标准:了解线段垂直平分线及其性质。
学习目标:
1、证明线段垂直平分线的性质定理及其逆定理。
2、掌握基本的证明方法,会通过分析的方法探索证明的思路。
学习重点难点:
线段的垂直平分线的性质定理及其逆定理。
我的目标以及突破重难点的设想:
学前准备:
学情分析:
学案使用说明以及学法指导:
预习案
一、教材助读
1、线段垂直平分线的性质定理及其逆定理是什么?如何证明?
探究案
探究一:线段垂直平分线的性质定理
在前面,我们利用对折的方法得出线段垂直平分线的性质:“线段垂直平分线上的点到线段两端的距离相等”,怎样用推理的方法证明它的真实性?
1
课型:新授执笔:马海丽审核:滕广福韩增美
思考:为什么要分两种情况证明?
探究二:线段垂直平分线的性质定理的逆定理(合作交流)
(1)说出这个命题的逆命题?
(2)这个逆命题是真命题吗?怎样证明它的正确性?
(3)求证:到一条线段两个端点的距离相等的点,在这条线段的垂直平分线上。
已知:
求证:
点拨:以后证明线段相等时,除利用三角形全等、等腰三角形的性质和判定外,还可以利用线段垂直平分线的性质。
二、课堂小结:
练习案
课本182页练习1,2题
我的反思:
2。
小学数学中的简单几何证明数学是一门基础学科,而几何学则是数学中的一部分,主要研究图形及其性质。
在小学阶段,几何学也是数学教学的重要内容之一。
通过学习几何,学生可以培养空间想象力、逻辑思维以及推理能力。
本文将介绍小学数学中的一些简单几何证明。
一、相等直角三角形的证明在学习几何的过程中,我们经常会遇到相等直角三角形的问题。
当我们需要证明两个三角形的两个直角边和斜边相等时,可以通过以下步骤进行证明。
首先,假设有两个直角三角形ABC和DEF,其中∠ABC = 90度,∠DEF = 90度,并且AB = DE,BC = EF。
我们需要证明AC = DF。
根据勾股定理,直角三角形中两条直角边的平方和等于斜边的平方。
因此,我们可以得到以下等式:AB^2 + BC^2 = AC^2DE^2 + EF^2 = DF^2由于AB = DE,BC = EF,我们可以将上述等式简化为:AB^2 + AB^2 = AC^2DE^2 + DE^2 = DF^2进一步简化等式,得到:2AB^2 = AC^22DE^2 = DF^2由于AB = DE,根据等式2AB^2 = AC^2,我们可以得到AC = AB。
同理,根据等式2DE^2 = DF^2,我们可以得到DF = DE。
因此,我们可以得出结论AC = DF。
通过以上步骤,我们证明了当直角边和斜边分别相等时,两个直角三角形的另一条边也相等。
二、垂直平分线的证明垂直平分线是指一条线将一条线段分成两个相等长度的部分,并且与线段垂直相交。
在小学几何学中,证明一条线段的垂直平分线可以通过以下步骤进行。
假设有一条线段AB,我们需要证明其垂直平分线。
首先,选取线段AB的中点C(即AC = BC)。
然后,以C为圆心,以任意小于AC的长度为半径画一个圆。
接下来,以A和B为圆心,以AC为半径画两条圆弧,在圆弧上分别选取两个点D和E。
然后,以D为圆心,DE为半径画一个圆。
同样,以E为圆心,ED为半径画一个圆。
立体几何证明方法总结及典例例1:平行类证明 【平行类证明方法总结】 线线平行的证明方法:三线间平行的传递性,三角形中位线,平行四边形对边平行且相等,梯形的上下底平行,棱柱圆柱的侧棱平行且相等,两平行面被第三面所截交线平行,成比例(相似)证平行等等。
线面平行的证明方法:面外线与面内线平行,两面平行则面内一线与另面平行等等 面面平行的证明方法:面内相交线与另面平行则面面平行,三面间平行的传递性等等。
【例】正方形ABCD 与正方形ABEF 所在平面相交于AB ,在AE 、BD 上各有一点P 、Q ,且AP=DQ.求证:PQ ∥面BCE.证法一:如图(1),作PM ∥AB 交BE 于M , 作QN ∥AB 交BC 于N,连接MN, 因为面ABCD ∩面ABEF=AB, 则AE=DB. 又∵AP=DQ, ∴PE=QB.又∵PM ∥AB ∥QN, ∴AE PE AB PM =,BD BQDC QN =. ∴DCQNAB PM =. ∴PM ∥QN.四边形PMNQ 为平行四边形. ∴PQ ∥MN.又∵MN ⊂面BCE ,PQ ⊄面BCE , ∴PQ ∥面BCE. 证法二:如图(2),连结AQ 并延长交BC 或BC 的延长线于点K ,连结EK. ∵AD ∥BC, ∴QKAQQB DQ =. 又∵正方形ABCD 与正方形ABEF 有公共边AB ,且AP=DQ , ∴PEAPQK AQ =.则PQ ∥EK. ∴EK ⊂面BCE ,PQ ⊄面BCE. ∴PQ ∥面BCE. 例2:垂直类证明 【垂直类证明方法总结】证垂直的几种方法:勾股定理、等腰(边)三角形三线合一、菱形对角线、矩形(含正方形)、90o 、相似三角形(与直角三角形)、圆直径对的圆周角、平行线、射影定理(三垂线定理)、线面垂直、面面垂直等【例】如图所示,ABCD 为正方形,SA ⊥平面ABCD ,过A 且垂直于SC 的平面分别交SB SC SD ,,于E F G ,,.求证:AE SB ⊥,AG SD ⊥.证明:∵SA ⊥平面ABCD ,∴SA BC ⊥. ∵AB BC ⊥,∴BC ⊥平面SAB . 又∵AE ⊂平面SAB , ∴BC AE ⊥. ∵SC⊥平面AEFG ,∴SC AE ⊥.∴AE ⊥平面SBC . ∴AE SB ⊥. 同理证AG SD ⊥. 例3:向量法解立体几何类 【量法解立体几何类公式总结】 基本公式若),,(),,,(222111z y x b z y x a ==,则①212121z z y y x x b a ++=⋅;②222222212121||,||z y x b z y x a ++=++=;③212121z z y y x x b a ++=⋅④222222212121212121,cos z y x z y x z z y y x x b a ++⋅++++>=<夹角公式:.||||cos 2121n n n n ⋅⋅-=θ距离公式:||||||n n AB CD d ⋅== 【例】已知两个正四棱锥P -ABCD 与Q -ABCD 的高都为2,AB =4. (1)证明:PQ ⊥平面ABCD ;(2)求异面直线AQ 与PB 所成的角; (3)求点P 到面QAD 的距离.简解:(1)略;(2)由题设知,ABCD 是正方形,且AC ⊥BD .由(1),PQ ⊥平面ABCD ,故可分别以直线CA DB QP ,,为x ,y ,z 轴建立空间直角坐标系(如图1),易得(2202)(0222)AQ PB =--=-,,,,,,1cos 3AQ PB AQ PB AQ PB<>==,. 所求异面直线所成的角是1arccos3. (3)由(2)知,点(0220)(22220)(004)D AD PQ -=--=-,,,,,,,,设n =(x ,y ,z )是平面QAD 的一个法向量,则00AQ AD ⎧=⎪⎨=⎪⎩,,n n 得200x z x y ⎧+=⎪⎨+=⎪⎩,,取x =1,得(112)--,,n =.点P到平面QAD 的距离22PQ d==n n.立体几何证明经典习题平行题目1、P是平行四边形ABCD所在平面外一点,Q是PA的中点.求证:PC∥面BDQ.2、如图(1),在直角梯形P1DCB中,P1D//BC,CD⊥P1D,且P1D=8,BC=4,DC=46,A是P1D的中点,沿AB把平面P1AB折起到平面PAB的位置(如图(2)),使二面角P—CD—B成45°,设E、F分别是线段AB、PD的中点.求证:AF//平面PEC;垂直题目3、如图2,P是△ABC所在平面外的一点,且PA⊥平面ABC,平面PAC⊥平面PBC.求证:BC⊥平面PAC.4、如图2,在三棱锥A-BCD 中,BC =AC ,AD =BD ,作BE ⊥CD ,E为垂足,作AH ⊥BE 于H.求证:AH ⊥平面BCD向量法解立体几何题目5、在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于C 、C 1的一点,EA ⊥EB 1.已知2AB =,BB 1=2,BC =1,∠BCC 1=3π.求二面角A -EB 1-A 1的平面角的正切值.立体几何证明经典习题答案1、证明:如图,连结AC 交BD 于点O . ∵ABCD 是平行四边形,∴A O =O C.连结O Q ,则O Q 在平面BDQ 内, 且O Q 是△APC 的中位线, ∴PC ∥O Q.∵PC 在平面BDQ 外, ∴PC ∥平面BDQ.2、证明:如图,设PC 中点为G ,连结FG ,则FG//CD//AE ,且FG=21CD=AE , ∴四边形AEGF 是平行四边形 ∴AF//EG ,又∵AF ⊄平面PEC ,EG ⊂平面PEC , ∴AF//平面PEC3、证明:在平面PAC 内作AD ⊥PC 交PC 于D . ∵平面PAC ⊥平面PBC ,且两平面交 于PC ,AD ⊂平面PAC ,且AD ⊥PC ,∴AD ⊥平面PBC . 又∵BC ⊂平面PBC , ∴AD ⊥BC .∵PA ⊥平面ABC ,BC ⊂平面ABC , ∴PA ⊥BC . ∵AD ∩PA =A , ∴BC ⊥平面PAC .4、证明:取AB 的中点F,连结CF ,DF . ∵ACBC =, ∴CFAB ⊥.∵AD BD =,(等腰三角形三线合一)∴DF AB ⊥. 又CFDF F =,∴AB ⊥平面CDF .∵CD ⊂平面CDF ,∴CD AB ⊥.又CD BE ⊥,BEAB B =,∴CD ⊥平面ABE ,CD AH ⊥.∵AH CD ⊥,AH BE ⊥,CD BE E =,∴ AH ⊥平面BCD .5、以B 为原点,分别以BB 1、BA 所在直线为y 轴、z 轴,过B 点垂直于平面AB 1的直线为x 轴建立空间直角坐标系. 由于BC =1,BB 1=2,AB =2,∠BCC 1=3π, ∴在三棱柱ABC -A 1B 1C 1中,有B (0,0,0)、A (0,0,2)、B 1(0,2,0)、31022c ⎛⎫-⎪ ⎪⎝⎭,,、133022C ⎛⎫ ⎪ ⎪⎝⎭,,.设302E a ⎛⎫ ⎪ ⎪⎝⎭,,且1322a -<<, 由EA ⊥EB 1,得10EA EB =,即3322022a a ⎛⎫⎛⎫---- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭,,,, 233(2)2044a a a a =+-=-+=,∴13022a a ⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭, 即12a =或32a =(舍去).故31022E ⎛⎫ ⎪ ⎪⎝⎭,,. 由已知有1EA EB ⊥,111B A EB ⊥,故二面角A -EB 1-A 1的平面角θ的大小为向量11B A 与EA 的夹角.因11(002)B A BA ==,,,31222EA ⎛⎫=-- ⎪ ⎪⎝⎭,, 故11112cos 3EA B A EA B A θ==,即2tan 2θ=。
数学几何证明在数学中,几何证明是一种通过使用推理和证据来验证几何命题的方法。
基于几何的性质和定理,通过逻辑推理和推导,我们可以得出结论,并证明其正确性。
本文将以数学几何证明为主题,介绍几个常见的几何证明方法和技巧。
1. 证明方法一:直接证明直接证明是最常用的证明方法之一,在几何证明中也是如此。
该方法通过运用已知事实和性质,以及基本几何定理来推导和证明所要证明的命题。
下面是一个直接证明的例子:【例子】证明三角形的内角和为180度。
解:已知三角形的一条内角为α,另一条内角为β,第三条内角为γ。
根据几何定理可知,直线上的两个对立角之和为180度。
由此可推导出:α + β = 180度α + γ = 180度将两个等式相加,得到:(α + β) + (α + γ) = 180度 + 180度2α + β + γ = 360度由于β + γ = 180度(同理可证),所以可得:2α + 180度 = 360度2α = 180度α = 90度同理可证,β和γ的度数也分别为90度。
因此,三角形的内角和为180度。
2. 证明方法二:间接证明间接证明是通过采用反证法来证明所要证明的命题。
假设所要证明的命题不成立,然后推出矛盾的结论,由此证明所要证明的命题是正确的。
以下是一个间接证明的例子:【例子】证明等腰三角形的底角相等。
解:假设存在一个等腰三角形,其底角不相等。
设底角A、B的度数分别为x和y(x≠y)。
根据等腰三角形的性质,等腰三角形的两个底角相等,也就是说x=y。
这与假设的底角不相等相矛盾。
因此,等腰三角形的底角是相等的。
3. 证明方法三:数学归纳法数学归纳法是一种常用于证明命题在整数集上成立的方法。
在几何证明中,我们可以利用数学归纳法证明一些具有递推关系的几何命题。
以下是一个使用数学归纳法的例子:【例子】证明正 n 边形的内角和为 (n-2) * 180 度。
解:对于 n = 3 的情况,三角形的内角和为 (3-2) * 180 = 180 度,符合题意。
数学认识几何证明几何证明是数学中的重要部分,它要求我们通过逻辑推理和严密推导来证明或解释几何定理。
在进行几何证明时,我们需要正确运用已知的几何定理、公理和性质,以及运用数学推理方法,如演绎推理和归纳推理等。
本文将介绍几何证明的基本概念和常见的证明方法,并结合实例进行说明。
一、几何证明的基本概念几何证明是指通过推理和演绎,用严格的逻辑方法陈述和证明几何命题。
在几何证明中,我们需要合理组织思路,运用相关几何性质和已知定理来推导结论,以达到严密合理的证明目的。
几何证明的基本要素包括:1.已知条件:即已知的几何信息或性质,作为推导的起点。
2.目标结论:即需要证明的几何命题或结论。
3.推导步骤:通过逻辑推理和演绎,运用已知条件和几何性质,推导出目标结论的过程。
4.证明过程:将推导步骤用文字和符号进行详细陈述,使得逻辑关系清晰、推理合理。
在进行几何证明时,我们需要注意以下几点:1.从已知条件出发,逐步推导,每一步都要经过严密的推理。
2.不要跳过关键的步骤,任何一步都不能省略。
3.使用几何术语和符号,确保表述准确清晰。
4.用图示辅助,以便更好地理解和展示证明过程。
5.对于不同的几何证明,可以选择合适的证明方法,如直接证明法、间接证明法和反证法等。
二、几何证明的常见方法1.直接证明法直接证明法是最常用的证明方法,它通过从已知条件出发,一步步推导出目标结论。
这种证明方法严谨明确,逻辑性强。
在进行直接证明时,我们需要根据已知条件和几何性质,运用相关的推理方法,逐步推导出目标结论。
例如,下面是一个直接证明的例子:已知:AB ⊥ BC,∠ABC = 90°证明:AB² + BC² = AC²证明过程:1.连接AC,并延长AB到D;2.∵ AB ⊥ BC,∠ABC = 90°∴△ABC 和△ACD 相似(正弦定理);3.设 AB = a,BC = b,AC = c;∴ AD = a + b;4.∵△ABC 和△ACD 相似∴ AB/AC = BC/AC = BC/AD = a/c = b/(a + b);5.∴ a/c = b/(a + b);∴ a(a + b)= bc;6.∴ a² + ab = bc;7.∴ a² + 2ab + b² = bc + 2ab + b²;∴ (a + b)² = AC²;8.∴ AB² + BC² = AC²;∴命题得证。
几何定理证明范文要证明几何定理,通常需要使用几何性质和已知条件,以及运用几何推理和数学推断等方法。
本文选取了三个较为经典的几何定理进行证明,分别是直角三角形的勾股定理、垂线定理和相交弦定理。
下面分别对这三个定理进行证明。
一、直角三角形的勾股定理直角三角形的勾股定理是指在一个直角三角形中,直角边的平方等于两个直角边分别平方之和。
即若有一个直角三角形ABC,其中∠C=90°,则有AB²=AC²+BC²。
证明过程如下:设直角三角形ABC,其中∠C=90°。
连接AC和BC,延长AC到点D,使得CD=BC。
由于∠C=90°,则四边形ABCD是一个矩形。
根据矩形的性质,对角线互相平分。
即AC=BD,BC=AD。
根据勾股定理的推广形式,有AC²=AB²+BC²,以及BD²=AB²+AD²。
由于AC=BD,所以AB²+BC²=AB²+AD²。
消去AB²,得BC²=AD²。
因此,直角三角形的勾股定理得证。
二、垂线定理垂线定理是指在平面上,如果一直线段垂直于另一直线段,那么这两条直线段互相垂直。
即若有一直线段AB垂直于另一直线段CD,则有∠ABC=90°。
证明过程如下:设直线段AB垂直于CD,交于点M。
连接AM和BM。
根据垂线的性质,AM和BM分别垂直于CD,即∠CAM=90°和∠CBM=90°。
根据平行线的性质,互相平行的直线切割同一条直线时,所得的对应角相等。
因此,∠CAB=∠ACM=90°,即∠ABC=90°。
这样,垂线定理得证。
三、相交弦定理相交弦定理是指在一个圆内,两条相交弦的互补弦乘积相等。
即若有一圆内的两条弦AB和CD相交于点E,则有AE×EB=CE×ED。
5.6 几何证明举例证明:在Rt△ABC中,∠C=90°∴BC2=AB2-AC2(勾股定理).同理, B/C/2= A/B/2-A/C/ 2∵AB=A/B/,AC=A/C/∴BC=B/C/∴Rt△ABC≌Rt△A/B/C/(SSS)学生总结,得出命题。
体会文字、图形、符号的转换方法以及把命题的文字语言转换成几何图形和符号语言的重要性,发展学生推理能力和表达能力。
三、知识运用:例:如图,两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面两个木桩上,两个木桩离旗杆底部的距离BD与CD相等吗?请说明你的理由。
(学生思考并完成)四、知识巩固1、判断:满足下列条件的两个三角形是否全等?为什么?(1)一个锐角及这个锐角的对边对应相等的两个直角三角形。
(2)一个锐角及这个锐角相邻的直角边对应相等的两个直角三角形.(3)两直角边对应相等的两个直角三角形.2、如图,已知∠ACB=∠BDA=900, 要使△ABC≌△BAD, 还需要什么条件?CA BD五、小结同学们,通过本节课的学习,你都有哪些收获?通过互相讨论相互补充培养学生合作意识,体验成功的喜悦六、作业布置P188 9、10题2019-2020学年初二下学期期末数学模拟试卷一、选择题(每题只有一个答案正确)1.如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,已知AB ∥DC ,则添加下列结论中的一个条件后,仍不能判定四边形ABCD 是平行四边形的是( )A .AO=COB .AC=BDC .AB=CD D .AD ∥BC2.小明参加100m 短跑训练,2019年2~5月的训练成绩如下表所示:体育老师夸奖小明是“田径天才”.请你小明5年(60个月)后短跑的成绩为( ) (温馨提示:日前100m 短跑世界记录为9秒58) 月份2 3 4 5 成绩(秒)15.6 15.4 15.2 15 A .3s B .3.8s C .14.8s D .预测结果不可靠3.一元一次不等式组x a x b >⎧⎨>⎩的解集为x >a ,则a 与b 的关系为( ) A .a >bB .a <bC .a ≥bD .a ≤b 4.若分式x 2x 1-+的值为0,则x 的值为 A .﹣1 B .0 C .2 D .﹣1或25.函数2x -x 的取值范围为( )A .x≥0B .x≥﹣2C .x≥2D .x≤﹣26.一个盒子中装有20颗蓝色幸运星,若干颗红色幸运星和15颗黄色幸运星,小明通过多次摸取幸运星试验后发现,摸取到红色幸运星的频率稳定在0.5左右,若小明在盒子中随机摸取一颗幸运星,则摸到黄色幸运星的可能性约为( )A .34B .12C .314D .277.已知一元二次方程x 2-2x -1=0的两根分别为x 1,x 2,则1211+x x 的值为( ) A .2B .-1C .-12D .-28.如图是本地区一种产品30天的销售图像,图1是产品销售量y(件)与时间t(天)的函数关系,图2是一件产品的销售利润z(元)与时间t(天)的函数关系,已知日销售利润=日销售量×每件产品的销售利润,下列结论错误的是().A.第24天的销售量为200件B.第10天销售一件产品的利润是15元C.第12天与第30天这两天的日销售利润相等D.第30天的日销售利润是750元9.如图,已知菱形OABC的两个顶点O(0,0),B(2,2),若将菱形绕点O以每秒45°的速度逆时针旋转,则第2019秒时,菱形两对角线交点D的横坐标为()A.2B.-2C.1 D.﹣110.下列函数中,y随x的增大而减少的函数是()A.y=2x+8 B.y=-2+4x C.y=-2x+8 D.y=4x二、填空题11.如图,把正方形纸片对折得到矩形ABCD,点E在BC上,把△ECD沿ED折叠,使点C恰好落在AD上点C′处,点M、N分别是线段AC′与线段BE上的点,把四边形ABNM沿NM向下翻折,点A落在DE 的中点A′处.若原正方形的边长为12,则线段MN的长为_____.12.49的平方根为_______13.一次函数y=kx+b的图象如图所示,当y>0时,x的取值范围是_____.14.已知1a -+5b -=0,则(a ﹣b )2的平方根是_____.15.已知直角梯形ABCD 中,AD ∥BC ,∠A =90°,AB =532,CD =5,那么∠D 的度数是_____. 16.正方形111A B C O ,2221A B C C ,3332A B C C ,...按如图的方式放置,点1A ,2A ,3A ...和点1C ,2C ,3C ...分别在直线1y x =+和x 轴上,则点2019B 的坐标为_______.17.若23a b =,则2a b b +=________. 三、解答题18.如图所示,已知:Rt△ABC 中,∠ACB=90°.作∠BAC 的平分线AM 交BC 于点D ,在所作图形中,将Rt△ABC 沿某条直线折叠,使点A 与点D 重合,折痕EF 交AC 于点E ,交AB 于点F ,连接DE 、DF ,再展回到原图形,得到四边形AEDF.(1)试判断四边形AEDF 的形状,并证明;(2)若AB=10,BC=8,在折痕EF 上有一动点P ,求PC+PD 的最小值.19.(6分)已知一次函数y=2x 和y=-x+4.(1)在平面直角坐标中作出这两函数的函数图像(不需要列表);(2)直线l 垂直于x 轴,垂足为点P (3,0).若这两个函数图像与直线l 分别交于点A ,B .求AB 的长. 20.(6分)如图,ABC ∆中,90C ∠=︒.(1)用尺规作图法在BC 上找一点D ,使得点D 到边AC 、AB 的距离相等(保留作图痕迹,不用写作法);(2)在(1)的条件下,若1CD =,30B ∠=︒,求AB 的长.21.(6分)阅读材料:小华像这样解分式方程572x x =- 解:移项,得:5702x x -=- 通分,得:5(2)70(2)x x x x --=- 整理,得:2(5)0(2)x x x +=-分子值取0,得:x+5=0 即:x =﹣5经检验:x =﹣5是原分式方程的解.(1)小华这种解分式方程的新方法,主要依据是 ;(2)试用小华的方法解分式方程2216124x x x --=+-22.(8分)解方程:(1)1277x x x-=-- (2)2x 2﹣2x ﹣1=023.(8分)用无刻度的直尺绘图.(1)如图1,在ABCD 中,AC 为对角线,AC=BC ,AE 是△ABC 的中线.画出△ABC 的高CH (2)如图2,在直角梯形ABCD 中,90o D ∠=,AC 为对角线,AC=BC ,画出△ABC 的高CH . 24.(10分)如图,函数(0,0)k y x k x=>>的图象经过(1,4)A ,(,)B m n ,其中1m ,过点A 作x 轴的垂线,垂足为C ,过点B 作y 轴的垂线,垂足为D ,连结AD ,DC ,CB ,AC 与BD 相交于点E .(1)若ABD △的面积为4,求点B 的坐标;(2)四边形ABCD 能否成为平行四边形,若能,求点B 的坐标,若不能说明理由;(3)当AC BD =时,求证:四边形ABCD 是等腰梯形.25.(10分)(1)分解因式:a 3-2a 2b +ab 2;(2)解方程:x 2+12x +27=0参考答案一、选择题(每题只有一个答案正确)1.B【解析】根据平行四边形的判定定理依次判断即可.【详解】∵AB ∥CD ,∴∠ABD=∠BDC ,∠BAC=∠ACD ,∵AO=CO ,∴△ABO ≌△CDO ,∴AB=CD ,∴四边形ABCD 是平行四边形,故A 正确,且C 正确;∵AB ∥CD ,AD ∥BC ,∴四边形ABCD 是平行四边形,故D 正确;由AC=BD 无法证明四边形ABCD 是平行四边形,且平行四边形的对角线不一定相等,∴B 错误;故选:B.【点睛】此题考查了添加一个条件证明四边形是平行四边形,正确掌握平行四边形的判定定理并运用解题是关键. 2.D【解析】【分析】由表格中的数据可知,每加1个月,成绩提高0.2秒,所以y 与x 之间是一次函数的关系,可设y=kx+b ,利用已知点的坐标,即可求解.【详解】解:(1)设y=kx+b 依题意得215.6315.4k b k b +=⎧⎨+=⎩, 解得0.216k b =-⎧⎨=⎩, ∴y= -0.2x+1.当x=60时,y= -0.2×60+1=2.因为目前100m 短跑世界纪录为9秒58,显然答案不符合实际意义,故选:D .本题考查了一次函数的应用、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.3.C【解析】【分析】根据不等式解集的确定方法,“大大取大”,可以直接得出答案.【详解】∵一元一次不等式组x ax b>⎧⎨>⎩的解集是x>a,∴根据不等式解集的确定方法:大大取大,∴a≥b,故选C.【点睛】本题考查了不等式解集的确定方法,熟练掌握不等式组解集的确定方法“大大取大,小小取小,大小小大中间找,大大小小无处找”是解题的关键,也可以利用数形结合思想利用数轴来确定.4.C【解析】【分析】根据分式值为零的条件可得x﹣2=0,再解方程即可.【详解】解:由题意得:x﹣2=0,且x+1≠0,解得:x=2,故选C.5.C【解析】∵函数y∴x-2≥0,∴x≥2;故选C。
5.6.几何证明举例(3)
学习目标:
1、能够推理证明线段垂直平分线的性质定理和判定定理,掌握命题证明的方法。
2、能运用证明定理的方法和定理本身内容解决问题。
3、培养学生的逻辑思维能力。
学习重点:线段垂直平分线的性质定理及其逆定理的内涵和证明
学习难点:线段垂直平分线性质定理及其逆定理的应用。
课前预习
1、什么叫线段的垂直平分线? 如何用尺规作出一条线段的垂直平分线?
2、线段垂直平分线有什么性质?
课内探究
一、定理的证明
(一)、段垂直平分线的性质的证明
任务一:(自主学习)我们在学习第二章图形的轴对称时学习的线段的垂直平分线的性质,同学们还记得当时是怎样进行探究的吗(课本45页)?你能用逻辑推理的方法证实它的真实性吗?
完成线段垂直平分线的性质证明
已知:
求证:
证明:(二)、段垂直平分线的性质的逆命题的证明
任务二:(合作探究)你能说出线段垂直平分线的性质定理的逆命题吗?
你认为它的逆命题正确吗?如果你认为正确,能加以证明吗?
完成线段垂直平分线的性质的逆定理证明
已知:
求证:
证明:
二、应用定理解题
例1、已知:如图,DE是△ABC的AB边的垂直平分线,分别交AB、BC于D、E,AE平分∠BAC
求证∠CAE=∠B 。
练习:
1、已知:AD⊥BC,BD=DC,点C在AE的垂直平分
线上
求证:①AB=AC=CE②DE =AB+BD
2、已知:如图AB=AC ,MB=MC .求证:直线AM 是线段BC 的垂直平分线
课堂小结 本节课有何收获? 这节课我学会了 当堂检测 1、下列说法:①若直线PE 是线段AB 的垂直平分线,则EA =EB ,PA =PB ;②若PA =PB ,EA =EB ,则直线PE 垂直平分线段AB ;③若PA =PB ,则点P 必是线段AB 的垂直平分线上的点;④若EA =EB ,则过点E 的直线垂直平分线段AB .其中正确的个数有( ) A .1个 B .2个 C .3个 D .4个 2、已知:如图,在ABC ∆中,BAC ∠的平分线交BC 于D ,且AB DE ⊥,
AC DF ⊥,垂足分别是E 、F . 求证:AD 是EF 的垂直平分线
.
课后提升 1、如图,在△ABC 中,AD 是∠BAC 平分线,AD 的垂直平分线分别交AB 、BC 延长线于F 、E 求证:(1)∠EAD=∠EDA ; (2)DF ∥AC (3)∠EAC=∠B 2、如图在△ABC 中,AB=AC, BC=12,∠BAC =120°,AB 的垂直平分线交BC 边于点E, AC 的垂直平分线交BC 边于点N. (1) 求△AEN 的周长. (2) 求∠EAN 的度数.(3) 求证:△AEN 是等腰三角形
3、已知,如图,在Rt △ABC 中,∠ACB=90°,AC=BC ,D 为BC 中点,CE ⊥AD 于E ,BF ∥AC 交CE 的延长线于点F ,求证:AB 垂直平分DF .
F
E D C B A A B C D E M N。