初中数学三角形全等证明综合题40含答案
- 格式:doc
- 大小:49.00 KB
- 文档页数:5
17.(7分)已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点, (1)求证:△AED ≌△EBC .(2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):18.(7分)如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F . 求证:BD =2CE .19、(10分)如图:DF=CE ,AD=BC ,∠D=∠C 。
求证:△AED ≌△BFC 。
20、(10分)如图:AE 、BC 交于点M ,F 点在AM 上,BE ∥CF ,BE=CF 。
求证:AM 是△ABC 的中线。
O ED C B A FE D C B AFAFE DCBA21、(10分)如图:在△ABC中,BA=BC,D是AC的中点。
求证:BD⊥AC。
22、(10分)AB=AC,DB=DC,F是AD的延长线上的一点。
求证:BF=CF23、(12分)如图:AB=CD,AE=DF,CE=FB。
求证:AF=DE。
DCBAF DCBAF BA24.公园里有一条“Z ”字形道路ABCD ,如图所示,其中AB ∥CD ,在AB ,CD ,BC 三段路旁各有一只小石凳E ,F ,M ,且BE =CF ,M 在BC 的中点,试说明三只石凳E ,F ,M 恰好在一条直线上.25.已知:点A 、F 、E 、C 在同一条直线上, AF =CE ,BE ∥DF ,BE =DF .求证:△ABE ≌△CDF .26.已知:如图所示,AB =AD ,BC =DC ,E 、F 分别是DC 、BC 的中点,求证: AE =AF 。
27.如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6.D A FE 654321E DCADCBAE28.已知AB ∥DE ,BC ∥EF ,D ,C 在AF 上,且AD =CF ,求证:△ABC ≌△DEF .29.已知:如图,AB =AC ,BD ⊥AC ,CE ⊥AB ,垂足分别为D 、E ,BD 、CE 相交于点F ,求证:BE =CD .30如图,△ABC 中,AD 是∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F .求证:(1)AD ⊥EF ;(2)当有一点G 从点D 向A 运动时,GE ⊥AB 于E ,GF ⊥AC 于F ,此时上面结论是否成立?31.已知:如图, AC ⊥BC 于C , DE ⊥AC 于E , AD ⊥AB 于A , BC =AE .若AB = 5 ,求AD 的长?AC B DEF AEBF32.如图:AB=AC ,ME ⊥AB ,MF ⊥AC ,垂足分别为E 、F ,ME=MF 。
1.已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 的长.解:延伸AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC在△ACD 和△BDE 中 AD=DE∠BDE=∠ADC BD=DC∴△ACD≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4即4-2<2AD <4+2 1<AD <3 ∴AD=22.已知:BC=ED,∠B=∠E,∠C=∠D,F 是CD 中点,求证:∠1=∠2证实:衔接BF 和EFADBC∵ BC=ED,CF=DF,∠BCF=∠EDF∴ 三角形BCF 全等于三角形EDF(边角边) ∴ BF=EF,∠CBF=∠DEF 衔接BE在三角形BEF 中,BF=EF ∴∠EBF=∠BEF. ∵∠ABC=∠AED. ∴∠ABE=∠AEB. ∴ AB=AE.在三角形ABF 和三角形AEF 中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴三角形ABF和三角形AEF全等.∴∠BAF=∠EAF (∠1=∠2).3.已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC过C 作CG∥EF 交AD 的延伸线于点G CG∥EF,可得,∠EFD=CGD DE =DC ∠FDE=∠GDC(对顶角)BA CDF2 1 E∴△EFD≌△CGDEF=CG ∠CGD=∠EFD 又,EF∥AB ∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC为等腰三角形, AC=CG 又EF=CG ∴EF=AC4.已知:AD等分∠BAC,AC=AB+BD,求证:∠B=2∠CA证实:延伸AB取点E,使AE=AC,衔接DE∵AD等分∠BAC∴∠EAD=∠C AD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C5.已知:AC等分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证实:在AE上取F,使EF=EB,衔接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF(SAS)∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC等分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC(SAS)∴AD=AF∴AE=AF+FE=AD+BE6. 如图,四边形ABCD中,AB∥DC,BE.CE分离等分∠ABC.∠BCD,且点E在AD上.求证:BC=AB+DC.在BC上截取BF=AB,衔接EF∵BE等分∠ABC∴∠ABE=∠FBE又∵BE=BE∴⊿ABE≌⊿FBE(SAS)∴∠A=∠BFE∵AB//CD∴∠A+∠D=180º∵∠BFE+∠CFE=180º∴∠D=∠CFE又∵∠DCE=∠FCE , CE等分∠BCD ,CE=CE∴⊿DCE≌⊿FCE(AAS)∴CD=CF∴BC=BF+CF=AB+CD7.已知:AB=CD,∠A=∠D,求证:∠B=∠C证实:设线段AB,CD地点的直线交于E,则:△AED是等腰三角形.∴AE=DE而AB=CD∴BE=CE∴△BEC是等腰三角形∴∠B=∠C.8.P是∠BAC等分线AD上一点,AC>AB,求证:PC-PB<AC-AB在AC上取点E, 使AE=AB. ∵A E=ABAP=AP∠EAP=∠BAE,∴△EAP≌△BAP∴PE=PB. PC<EC+PE ∴PC<(AC-AE)+PB ∴PC-PB<AC-AB.9.已知∠ABC=3∠C,∠1=∠2,BE⊥AE,求证:AC-AB=2BE证实:延伸BE交AC于点F,可证△ABE≌△AFE∴∠ABE=∠AFE,AB=AF,BE=FE∴AC –AB =FC,FB=2BE∵∠ABC=3∠C∴∠ABE+∠FBC=3∠C∴∠AFB+∠FBC=3∠C∵∠AFB=∠C+∠FBC∴∠C+∠FBC+∠FBC=3∠C∴∠FBC=2∠C即∠FBC=∠C∴FB=FC∴AC-AB=FB=2BE10.如图,在△ABC中,BD=DC,∠1=∠2,求证:AD⊥BC.解:延伸AD至BC于点E, ∵BD=DC ∴△BDC是等腰三角形∴∠DBC=∠DCB又∵∠1=∠2 ∴∠DBC+∠1=∠DCB+∠2即∠ABC=∠ACB ∴△ABC是等腰三角形∴AB=AC在△ABD和△ACD中{AB=AC ∠1=∠2BD=DC∴△ABD和△ACD是全等三角形(边角边)∴∠BAD=∠CAD∴AE是△ABC的中垂线∴AE⊥BC∴AD⊥BC11.如图,OM等分∠POQ,MA⊥OP,MB⊥OQ,A.B为垂足,AB交OM于点N.求证:∠OAB=∠OBA证实:∵OM等分∠POQ∴∠POM=∠QOM∵MA⊥OP,MB⊥OQ∴∠MAO=∠MBO=90∵OM=OM∴△AOM≌△BOM (AAS)∴OA=OB∵ON=ON∴△AON≌△BON (SAS)∴∠OAB=∠OBA,∠ONA=∠ONB∵∠ONA+∠ONB=180∴∠ONA=∠ONB=90∴OM⊥AB12.如图,已知AD∥BC,∠PAB的等分线与∠CBA的等分线订交于E,CE的连线交AP于D.求证:AD+BC=AB.做BE的延伸线,与AP订交于F点,∵PA//BC∴∠PAB+∠CBA=180°,又∵,AE,BE均为∠PAB和∠CBA的角等分线∴∠EAB+∠EBA=90°∴∠AEB=90°,EAB为直角三角形在三角形ABF中,AE⊥BF,且AE为∠FAB的角等分线∴三角形FAB为等腰三角形,AB=AF,BE=EF在三角形DEF与三角形BEC中,∠EBC=∠DFE,且BE=EF,∠DEF=∠CEB,∴三角形DEF与三角形BEC为全等三角形,∴DF=BC∴AB=AF=AD+DF=AD+BC13.如图,△ABC中,AD是∠CAB的等分线,且AB=AC+CD,求证:∠C=2∠B延伸AC到 E 使AE=AC 衔接 ED∵ AB=AC+CD∴ CD=CE 可得∠B=∠E△CDE为等腰∠ACB=2∠B14.已知:如图,DC∥AB,且DC=AE,E为AB的中点,(1)求证:△AED≌△EBC.(2)不雅看图前,在不添帮助线的情形下,除△EBC外,请再写出两个与△AED的面积相等的三角形.(直接写出成果,不请求证实):证实:∵DC∥AB∴∠CDE=∠AED∵DE=DE,DC=AE∴△AED≌△EDC∵E为AB中点∴AE=BE∴BE=DC∵DC∥AB∴∠DCE=∠BEC∵CE=CE∴△EBC≌△EDC∴△AED≌△EBC15.如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的等分线,BD 的延伸线垂直于过C点的直线于E,直线CE交BA的延伸线于F.求证:BD=2CE.证实:∵∠CEB=∠CAB=90°∴ABCE四点共元∵∠ABE=∠CBE∴AE=CE∴∠ECA=∠EAC取线段BD的中点G,衔接AG,则:AG=BG=DG∴∠GAB=∠ABG而:∠ECA=∠GBA (同弧上的圆周角相等)∴∠ECA=∠EAC=∠GBA=∠GAB而:AC=AB∴△AEC≌△AGB∴EC=BG=DG∴BE=2CE16.如图:DF=CE,AD=BC,∠D=∠C.求证:△AED≌△BFC.证实:∵DF=CE,∴DF-EF=CE-EF,即DE=CF,在△AED和△BFC中,∵ AD=BC, ∠D=∠C ,DE=CF ∴△AED≌△BFC(SAS)17.如图:AE.BC交于点M,F点在AM上,BE∥CF,BE=CF.求证:AM是△ABC的中线.证实:∵BE‖CF∴∠E=∠CFM,∠EBM=∠FCM∵BE=CF∴△BEM≌△CFM∴AM是△ABC的中线.18.如图:在△ABC中,BA=BC,D是AC的中点.求证:BD⊥AC.∵△ABD和△BCD的三条边都相等∴△ABD=△BCD∴∠ADB=∠CD∴∠ADB=∠CDB=90°∴BD⊥AC19.AB=AC,DB=DC,F是AD的延伸线上的一点.求证:BF=CF在△ABD与△ACD中AB=ACBD=DCAD=AD∴△ABD≌△ACD∴∠ADB=∠ADC∴∠BDF=∠FDC在△BDF与△FDC中BD=DC∠BDF=∠FDCDF=DF∴△FBD≌△FCD∴BF=FC20.如图:AB=CD,AE=DF,CE=FB.求证:AF=DE.AE=DF,CE=FBCE+EF=EF+FB∴△ABE=△CDF∵∠DCB=∠ABFAB=DC BF=CE△ABF=△CDE∴AF=DE21.公园里有一条“Z”字形道路ABCD,如图所示,个中AB∥CD,在AB,CD,BC三段路旁各有一只小石凳E,F,M,且BE=CF,M在BC的中点,试解释三只石凳E,F,M正好在一条直线上.证实:衔接EF ∵AB∥CD∴∠B=∠C∵M是BC中点∴BM=CM在△BEM和△CFM中BE=CF∠B=∠CBM=CM∴△BEM≌△CFM(SAS)22.已知:点 A.F.E.C 在统一条直线上, AF =CE,BE∥DF,BE=DF .求证:△ABE≌△CDF.∵AF=CE,FE=EF.∴AE=CF.∵DF//BE,∴∠AEB=∠CFD(两直线平行,内错角相等)∵BE=DF∴:△ABE≌△CDF(SAS )23.已知:如图所示,AB =AD,BC =DC,E.F 分离是DC.BC 的中点,求证: AE =AF.衔接BD;∵AB=ADBC=D∴∠ADB=∠ABD∠CDB=∠ABD;两角相加,∠ADC=∠ABC;∵BC=DCE \F 是中点∴DE=BF; ∵AB=ADDE=BF ∠ADC=∠ABC ∴AE=AF.24.如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6.证实:在△ADC,△ABC 中∵AC=AC,∠BAC=∠DAC,∠BCA=∠DCA ∴△ADC≌△ABC(两角加一边) ∵AB=AD,BC=CD 在△DEC 与△BEC 中∠BCA=∠DCA,CE=CE,BC=CD ∴△DEC≌△BEC(双方夹一角) ∴∠DEC=∠BEC25.已知AB∥DE,BC∥EF,D,C 在AF 上,且AD =CF,求证:△ABC≌△DEF. ∵AD=DF ∴AC =DF ∵AB//DE ∴∠A=∠EDF 又∵BC//EF∴∠F=∠BCA∴△ABC≌△DEF(ASA )26.已知:如图,AB=AC,BD AC,CE AB,垂足分离为D.E,BD.CE 订交于点F,求证:BE=CD .证实:ACDEF∵BD⊥AC∴∠BDC=90°∵CE⊥AB∴∠BEC=90°∴∠BDC=∠BEC=90°∵AB=AC∴∠DCB=∠EBC∴BC=BC∴Rt△BDC≌Rt△BEC(AAS) ∴BE=CD27.如图,在△AB C中,AD为∠BAC的等分线,DE⊥AB于E,DF⊥AC于F.求证:DE=DF.证实:∵AD是∠BAC的等分线∴∠EAD=∠FAD∵DE⊥AB,DF⊥AC∴∠BFD=∠CFD=90°∴∠AED与∠AFD=90°在△AED与△AFD中∠EAD=∠FAD AD=AD∠AED=∠AFD∴△AED≌△AFD(AAS ) ∴AE=AF在△AEO 与△AFO 中 ∠EAO=∠FAO AO=AO AE=AF∴△AEO≌△AFO (SAS )∴∠AOE=∠AOF=90° ∴AD⊥EF28.已知:如图, AC BC 于 C , DE AC 于 E , AD AB 于 A , BC=AE .若AB=5 ,求AD 的长?∵AD⊥AB ∴∠BAC=∠ADE 又∵AC⊥BC 于C,DE⊥AC 于 E 依据三角形角度之和等于180度∴∠ABC=∠DAED CBAE∵BC=AE,△ABC≌△DAE(ASA)∴AD=AB=529.如图:AB=AC,ME⊥AB,MF⊥AC,垂足分离为 E.F,ME=MF.求证:MB=MC证实:∵AB=AC∴∠B=∠C∵ME⊥AB,MF⊥AC∴∠BEM=∠CFM=90°在△BME和△CMF中∵∠B=∠C ∠BEM=∠CFM=90° ME=MF∴△BME≌△CMF(AAS)∴MB=MC.30.在△ABC中,,,直线经由点,且于,于.(1)当直线绕点扭转到图1的地位时,求证:①≌;②;(2)当直线绕点扭转到图2的地位时,(1)中的结论还成立吗?若成立,请给出证实;若不成立,解释来由.(1)①∵∠ADC=∠ACB=∠BEC=90°,∴∠CAD+∠ACD=90°,∠BCE+∠CBE=90°,∠ACD+∠BCE=90°.∴∠CAD=∠BCE. ∵AC=BC,∴△ADC≌△CEB. ②∵△ADC≌△CEB, ∴CE=AD,CD=BE. ∴DE=CE+CD=AD+BE.(2)∵∠ADC=∠CEB=∠ACB=90°, ∴∠ACD=∠CBE. 又∵AC=BC,∴△ACD≌△CBE. ∴CE=AD,CD=BE. ∴DE=CE﹣CD=AD ﹣BE31.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF(1)∵AE⊥AB,AF⊥AC, ∴∠BAE=∠CAF=90°,∴∠BAE+∠BAC=∠CAF+∠BAC, 即∠EAC=∠BAF,AE BM CF在△ABF和△AEC中,∵AE=AB,∠EAC=∠BAF,AF=AC,∴△ABF≌△AEC(SAS),∴EC=BF;(2)如图,依据(1),△ABF≌△AEC,∴∠AEC=∠ABF,∵AE⊥AB,∴∠BAE=90°,∴∠AEC+∠ADE=90°,∵∠ADE=∠BDM(对顶角相等),∴∠ABF+∠BDM=90°,在△BDM中,∠BMD=180°-∠ABF-∠BDM=180°-90°=90°,∴EC⊥BF.32.如图:BE⊥AC,CF⊥AB,BM=AC,CN=AB.求证:(1)AM=AN;(2)AM⊥AN.证实:(1)∵BE⊥AC,CF⊥AB∴∠ABM+∠BAC=90°,∠ACN+∠BAC=90°∴∠ABM=∠ACN∵BM=AC,CN=AB∴△ABM≌△NAC∴AM=AN(2)∵△ABM≌△NAC∴∠BAM=∠N∵∠N+∠BAN=90°∴∠BAM+∠BAN=90°即∠MAN=90°∴AM⊥AN33.如图,已知∠A=∠D,AB=DE,AF=CD,BC=EF.求证:BC∥EF在△ABF和△CDE中,AB=DE∠A=∠DAF=CD∴△ABF≡△CDE(边角边)∴FB=CE在四边形BCEF中FB=CEBC=EF∴四边形BCEF是平行四边形∴BC‖EF34.如图,已知AC∥BD,EA.EB分离等分∠CAB和∠DBA,CD过点E,则AB与AC+BD相等吗?请解释来由在AB上取点N ,使得AN=AC∵∠CAE=∠EAN∴AE为公共, ∴△CAE≌△EAN∴∠ANE=∠ACE又∵AC平行BD∴∠ACE+∠BDE=180而∠ANE+∠ENB=180∴∠ENB=∠BDE∠NBE=∠EBN∵BE为公共边∴△EBN≌△EBD∴BD=BN∴AB=AN+BN=AC+BD35.如图,已知: AD是BC上的中线 ,且DF=DE.求证:BE∥CF.证实:∵AD是△ABC的中线BD=CD ∵DF=DE(已知)∠BDE=∠FDC ∴△BDE≌△FDC 则∠EBD=∠FCD ∴BE∥CF(内错角相等,两直线平行).36.已知:如图,AB=CD,DE⊥AC,BF⊥AC,E,F是垂足,.求证:.证实:∵DE⊥AC,BF⊥AC∴∠CED=∠AFB=90º又∵AB=CD,BF=DE∴Rt⊿ABF≌Rt⊿CDE(HL )∴AF=CE∠BAF=∠DCE∴AB//CD37.如图,已知∠1=∠2,∠3=∠4,求证:AB=CD ∵,∠3=∠4∴OB=OC在△AOB 和△DOC 中∠1=∠2OB=OC∠AOB=∠DOC△AOB≌△DOC∴AO=DO AO+OC=DO+OB AC=DB在△ACB 和△DBC 中AC=DB A D ECBF,∠3=∠4BC=CB△ACB≌△DBC∴AB=CD38.如图,已知AC⊥AB,DB⊥AB,AC =BE,AE =BD,试猜测线段CE 与DE 的大小与地位关系,并证实你的结论.CE>DE.当∠AEB 越小,则DE 越小.证实:过D 作AE 平行线与AC 交于F,衔接FB由已知前提知AFDE 为平行四边形,ABEC 为矩形 ,且△DFB 为等腰三角形.RT△BAE 中,∠AEB 为锐角,即∠AEB<90°∵DF//AE ∴∠FDB=∠AEB<90°△DFB 中 ∠DFB=∠DBF=(180°-∠FDB)/2>45°RT△AFB 中,∠FBA=90°-∠DBF <45°∠AFB=90°-∠FBA>45°∴AB>AF∵AB=CE AF=DE∴CE>DE 39.(10分)如图,已知AB =DC,AC =DB,BE =CE,求证:AE =DE. ∵AB=DC,AC=DB,BC=BC∴△ABC≌△DCB,A CE D B A B E CD∴∠ABC=∠DCB又∵BE=CE,AB=DC∴△ABE≌△DCE∴AE=DE40.如图9所示,△ABC 是等腰直角三角形,∠ACB=90°,AD 是BC 边上的中线,过C 作AD 的垂线,交AB 于点E,交AD 于点F,求证:∠ADC=∠BDE.作CG ⊥AB,交AD 于H, 则∠ACH=45º,∠BCH=45º∵∠CAH=90º-∠CDA, ∠BCE=90º-∠CDA ∴∠CAH=∠BCE又∵AC=CB, ∠ACH=∠B=45º∴△ACH≌△CBE, ∴CH=BE 又∵∠DCH=∠B=45º, CD=DB∴△CFD≌△BED∴∠ADC=∠BDE AB CD E F图9。
1. 已知:AB=4,AC=2,D 是BC 中点,111749AD是整数,求AD解:延伸AD 到E,使AD=DE∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE=∠ADCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE∵AB=4即4-2<2AD <4+21<AD <3∴AD=22. 已知:D 是AB 中点,∠ACB=90°,求证:AD B C延伸CD与P,使D为CP中点.衔接AP,BP∵DP=DC,DA=DB∴ACBP为平行四边形又∠ACB=90∴平行四边形ACBP为矩形∴AB=CP=1/2AB3.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2证实:衔接BF和EF∵ BC=ED,CF=DF,∠BCF=∠EDF∴ 三角形BCF全等于三角形EDF(边角边)∴ BF=EF,∠CBF=∠DEF衔接BE在三角形BEF中,BF=EF∴∠EBF=∠BEF.∵∠ABC=∠AED.∴∠ABE=∠AEB.∴ AB=AE.在三角形ABF 和三角形AEF 中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴ 三角形ABF 和三角形AEF 全等.∴∠BAF=∠EAF (∠1=∠2). 4. 已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC过C 作CG∥EF 交AD 的延伸线于点GCG∥EF,可得,∠EFD =CGDDE =DC∠FDE =∠GDC (对顶角)∴△EFD≌△CGDEF =CG∠CGD =∠EFD 又,EF∥AB∴,∠EFD =∠1∠1=∠2∴∠CGD=∠2∴△AGC 为等腰三角形,AC =CG 又 EF =CG∴EF=AC5. 已知:AD 等分∠BAC,AC=AB+BD,求证:∠B=2∠CB ACDF21 E A证实:延伸AB取点E,使AE=AC,衔接DE∵AD等分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C6.已知:AC等分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证实:在AE上取F,使EF=EB,衔接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE =CE,∴△CEB≌△CEF∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC 等分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC(SAS )∴AD=AF∴AE=AF +FE =AD +BE7. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 解:延伸AD 到E,使AD=DE∵D 是BC 中点∴BD=DC 在△ACD 和△BDE 中AD=DE∠BDE=∠ADCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE 中 AB-BE <AE <AB+BE∵AB=4即4-2<2AD <4+21<AD <3∴AD=28. 已知:D 是AB 中点,∠ACB=90°,求证:AD B C∴BD=DC在△ACD和△BDE中AD=DE∠BDE=∠ADCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE中AB-BE<AE<AB+BE∵AB=4即4-2<2AD<4+21<AD<3∴AD=29.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2证实:衔接BF和EF.∵ BC=ED,CF=DF,∠BCF=∠EDF.∴ 三角形BCF全等于三角形EDF(边角边).∴ BF=EF,∠CBF=∠DEF.衔接BE.在三角形BEF中,BF=EF.∴∠EBF=∠BEF.又∵∠ABC=∠AED.∴ AB=AE.在三角形ABF 和三角形AEF 中,AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF.∴ 三角形ABF 和三角形AEF 全等.∴∠BAF=∠EAF (∠1=∠2).10. 已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC过C 作CG∥EF 交AD 的延伸线于点GCG∥EF,可得,∠EFD =CGDDE =DC∠FDE =∠GDC (对顶角)∴△EFD≌△CGDEF =CG∠CGD =∠EFD 又EF∥AB∴∠EFD =∠1∠1=∠2∴∠CGD=∠2∴△AGC 为等腰三角形,AC =CG 又 EF =CG∴EF=AC11. 已知:AD等分∠BAC,AC=AB+BD,求证:∠B=2∠C证实:延伸AB 取点E,使AE =AC,衔接DE∵AD 等分∠BACB ACDF21 ECD B A∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C12.已知:AC等分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE在AE上取F,使EF=EB,衔接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF∴∠B=∠CFE∵∠B+∠D=180°,∠CF E+∠CFA=180°∴∠D=∠CFA∵AC等分∠BAD∴∠DAC=∠FAC又∵AC=AC∴△ADC≌△AFC(SAS)∴AD=AF∴AE=AF+FE=AD+BE12. 如图,四边形ABCD中,AB∥DC,BE.CE分离等分∠ABC.∠BCD,且点E在AD上.求证:BC=AB+DC.在BC上截取BF=AB,衔接EF∵BE等分∠ABC∴∠ABE=∠FBE又∵BE=BE∴⊿ABE≌⊿FBE(SAS)∴∠A=∠BFE∵AB//CD∴∠A+∠D=180º∵∠BFE+∠CFE=180º∴∠D=∠CFE又∵∠DCE=∠FCECE 等分∠BCDCE=CE∴⊿DCE≌⊿FCE(AAS )∴CD=CF∴BC=BF+CF=AB+CD13.已知:AB//ED,∠EAB=∠BDE,AF=CD,EF=BC,求证:∠F=∠CAB‖ED,得:∠EAB+∠AED=∠BDE+∠ABD=180度,∵∠EAB=∠BDE,∴∠AED=∠ABD,∴四边形ABDE 是平行四边形.∴得:AE=BD,∵AF=CD,EF=BC,∴三角形AEF 全等于三角形DBC,∴∠F=∠C.14. 已知:AB=CD,∠A=∠D,求证:∠B=∠C DCB A FE证实:设线段AB,CD 地点的直线交于E,(当AD<BC 时,E 点是射线BA,CD 的交点,当AD>BC 时,E 点是射线AB,DC 的交点).则: △AED 是等腰三角形.∴AE=DE而AB=CD∴BE=CE (等量加等量,或等量减等量)∴△BEC 是等腰三角形∴∠B=∠C.15. P 是∠BAC 等分线AD 上一点,AC>AB,求证:PC-PB<AC-AB在AC 上取点E,使AE =AB.∵AE =ABAP =AP∠EAP =∠BAE,∴△EAP≌△BAP∴PE=PB.PC <EC +PE∴PC<(AC -AE )+PB∴PC-PB <AC -AB.16. 已知∠ABC=3∠C,∠1=∠2,BE⊥AE,求证:AC-AB=2BE证实:在AC 上取一点D,使得角DBC=角C∵∠ABC=3∠C∴∠ABD=∠ABC -∠DBC=3∠C -∠C=2∠C;∵∠ADB=∠C+∠DBC=2∠C;∴AB=AD∴AC – AB =AC-AD=CD=BD 在等腰三角形ABD 中,AE 是角BAD 的角等分线,∴AE 垂直BD∵BE⊥AE∴点E 必定在直线BD 上,在等腰三角形ABD PD A CB中,AB=AD,AE 垂直BD∴点E 也是BD 的中点∴BD=2BE∵BD=CD=AC -AB∴AC -AB=2BE17. 已知,E 是AB 中点,AF=BD,BD=5,AC=7,求DC∵作AG∥BD 交DE 延伸线于G∴AGE 全等BDE ∴AG=BD=5∴AGF∽CDF AF=AG=5∴DC=CF=218.如图,在△ABC 中,BD=DC,∠1=∠2,求证:AD⊥BC.解:延伸AD 至BC 于点E,∵BD=DC ∴△BDC 是等腰三角形∴∠DBC=∠DCB 又∵∠1=∠2 ∴∠DBC+∠1=∠DCB+∠2 即∠ABC=∠ACB∴△ABC 是等腰三角形∴AB=AC 在△ABD 和△ACD 中 {AB=AC∠1=∠2 BD=DC∴△ABD 和△ACD 是全等三角形(边角边)∴∠BAD=∠CAD∴AE 是△ABC 的中垂线∴AE⊥BC∴AD⊥BC19.如图,OM 等分∠POQ,MA⊥OP,MB⊥OQ,A.B 为垂足,AB 交OM 于点N .求证:∠OAB=∠OBA证实:∵OM 等分∠POQ∴∠POM=∠QOM∵MA⊥OP,MB⊥OQ∴∠MAO=∠MBO=90F A E DCB∵OM=OM∴△AOM≌△BOM (AAS)∴OA=OB∵ON=ON∴△AON≌△BON (SAS)∴∠OAB=∠OBA,∠ONA=∠ONB∵∠ONA+∠ONB=180∴∠ONA=∠ONB=90∴OM⊥AB20.(5分)如图,已知AD∥BC,∠PAB的等分线与∠CBA的等分线订交于E,CE的连线交AP于D.求证:AD+BC=AB.做BE的延伸线,与AP订交于F点,∵PA//BC∴∠PAB+∠CBA=180°,又∵,AE,BE均为∠PAB和∠CBA的角等分线∴∠EAB+∠EBA=90°∴∠AEB=90°,EAB为直角三角形在三角形ABF中,AE⊥BF,且AE为∠FAB的角等分线∴三角形FAB为等腰三角形,AB=AF,BE=EF在三角形DEF与三角形BEC中,∠EBC=∠DFE,且BE=EF,∠DEF=∠CEB,∴三角形DEF与三角形BEC为全等三角形,∴DF=BC∴AB=AF=AD+DF=AD+BC21.如图,△ABC中,AD是∠CAB的等分线,且AB=AC+CD,求证:∠C=2∠B延伸AC到E 使AE=AC 衔接 ED∵ AB=AC+CD∴ CD=CE可得∠B=∠E△CDE为等腰∠ACB=2∠B22.(6分)如图①,E.F分离为线段AC上的两个动点,且DE⊥AC 于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.(1)求证:MB=MD,ME=MF(2)当E.F两点移动到如图②的地位时,其余前提不变,上述结论可否成立?若成立请赐与证实;若不成立请解释来由.(1)衔接BE,DF.∵DE⊥AC于E,BF⊥AC于F,∴∠DEC=∠BFA=90°,DE∥BF,在Rt△DEC和Rt△BFA 中,∵AF=CE,AB=CD,∴Rt△DEC≌Rt△BFA(HL),∴DE=BF.∴四边形BEDF是平行四边形.∴MB=MD,ME=MF;(2)衔接BE,DF.∵DE⊥AC于E,BF⊥AC于F,∴∠DEC=∠BFA=90°,DE∥BF,在Rt△DEC和Rt△BFA 中,∵AF=CE,AB=CD,∴Rt△DEC≌Rt△BFA(HL),∴DE=BF.∴四边形BEDF是平行四边形.∴MB=MD,ME=MF.23.已知:如图,DC∥AB,且DC=AE,E为AB的中点,(1)求证:△AED≌△EBC.(2)不雅看图前,在不添帮助线的情形下,除△EBC外,请再写出两个与△AED的面积相等的三角形.(直接写出成果,不请求证实):证实:∵DC∥AB∴∠CDE=∠AED∵DE=DE,DC=AE∴△AED≌△EDC∵E为AB中点∴AE=BE∴BE=DC∵DC∥AB∴∠DCE=∠BEC∵CE=CE∴△EBC≌△EDC∴△AED≌△EBC24.(7分)如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的等分线,BD的延伸线垂直于过C点的直线于E,直线CE交BA的延伸线于F.求证:BD=2CE.证实:∵∠CEB=∠CAB=90°∴ABCE四点共元∵∠AB E=∠CB E∴AE=CE∴∠ECA=∠EAC取线段BD的中点G,衔接AG,则:AG=BG=DG∴∠GAB=∠ABG而:∠ECA=∠GBA (同弧上的圆周角相等)∴∠ECA=∠EAC=∠GBA=∠GAB而:AC=AB∴△AEC≌△AGB∴EC=BG=DG∴BE=2CE25.如图:DF=CE,AD=BC,∠D=∠C.求证:△AED≌△BFC.证实:∵DF=CE,∴DF-EF=CE-EF,即DE=CF,在△AED和△BFC中,∵ AD=BC, ∠D=∠C ,DE=CF ∴△AED≌△BFC(SAS)26.(10分)如图:AE.BC交于点M,F点在AM上,BE∥CF,BE=CF.求证:AM是△ABC的中线.证实:∵BE‖CF∴∠E=∠CFM,∠EBM=∠FCM∵BE=CF∴△BEM≌△CFM∴BM=CM∴AM是△ABC的中线.27.(10分)如图:在△ABC中,BA=BC,D是AC的中点.求证:BD⊥AC.∵△ABD和△BCD的三条边都相等∴△ABD=△BCD∴∠ADB=∠CD∴∠ADB=∠CDB=90°∴BD⊥AC28.(10分)AB=AC,DB=DC,F是AD的延伸线上的一点.求证:BF=CF在△ABD与△ACD中AB=ACBD=DCAD=AD∴△ABD≌△ACD∴∠ADB=∠ADC∴∠BDF=∠FDC在△BDF与△FDC中BD=DC∠BDF=∠FDCDF=DF∴△FBD≌△FCD∴BF=FC29.(12分)如图:AB=CD,AE=DF,CE=FB.求证:AF=DE.∵AB=DCAE=DF,CE=FBCE+EF=EF+FB∴△ABE=△CDF∵∠DCB=∠ABFAB=DC BF=CE△ABF=△CDE∴AF=DE30.公园里有一条“Z”字形道路ABCD,如图所示,个中AB∥CD,在AB,CD,BC三段路旁各有一只小石凳E,F,M,且BE=CF,M在BC的中点,试解释三只石凳E,F,M正好在一条直线上.证实:衔接EF∵AB∥CD∴∠B=∠C∵M是BC中点∴BM=CM在△BEM 和△CFM中BE=CF∠B=∠CBM=CM∴△BEM≌△CFM(SAS)∴CF=BE31.已知:点 A.F.E.C在统一条直线上, AF=CE,BE∥DF,BE=DF.求证:△ABE≌△CDF.∵AF=CE,FE=EF.∴AE=CF.∵DF//BE,∴∠AEB=∠CFD(两直线平行,内错角相等)∵BE=DF∴:△ABE≌△CDF(SAS)32.已知:如图所示,AB=AD,BC=DC,E.F分离是DC.BC的中点,求证: AE=AF.DEAF衔接BD;∵AB=ADBC=D∴∠ADB=∠ABD∠CDB=∠ABD;两角相加,∠ADC=∠ABC;∵BC=DCE\F是中点∴DE=BF;∵AB=ADDE=BF∠ADC=∠ABC∴AE=AF.33.如图,在四边形ABCD中,E是AC上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6.证实:在△ADC,△ABC中∵AC=AC,∠BAC=∠DAC,∠BCA=∠DCA∴△ADC≌△ABC(两角加一边)∵AB=AD,BC=CD在△DEC与△BEC中∠BCA=∠DCA,CE=CE,BC=CD∴△DEC≌△BEC(双方夹一角)∴∠DEC=∠BEC34.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:△ABC≌△DEF.∵AD=DF∴AC=DF∵AB//DE∴∠A=∠EDF又∵BC//EF∴∠F=∠BCA∴△ABC≌△DEF(ASA)35.已知:如图,AB=AC,BD AC,CE AB,垂足分离为D.E,BD.CE订交于点F,求证:BE=CD.证实:∵BD⊥AC∴∠BDC=90°∵CE⊥AB∴∠BEC=90°∴∠BDC=∠BEC=90°∵AB=AC∴∠DCB=∠EBC∴BC=BC∴Rt△BDC≌Rt△BEC(AAS)∴BE =CD36、如图,在△ABC 中,AD 为∠BAC 的等分线,DE⊥AB于E,DF⊥AC 于F.求证:DE=DF .证实:∵AD 是∠BAC 的等分线 ∴∠EAD=∠FAD∵DE⊥AB,DF⊥AC∴∠BFD=∠CFD=90°∴∠AED 与∠AFD=90°在△AED 与△AFD 中∠EAD=∠FADAC DE FAD=AD∠AED=∠AFD∴△AED≌△AFD(AAS )∴AE=AF在△AEO 与△AFO 中∠EAO=∠FAOAO=AOAE=AF∴△AEO≌△AF O (SAS )∴∠AOE=∠AOF=90°∴AD⊥EF37.已知:如图, AC BC 于 C , DE AC 于 E , AD AB 于 A , BC=AE .若AB=5 ,求AD 的长? ∵AD⊥AB∴∠BAC=∠ADE 又∵AC⊥BC 于C,DE⊥AC 于E 依据三角形角度之和等于180度∴∠ABC=∠DAE∵BC=AE,△ABC≌△DAE(ASA )∴AD=AB=538.如图:AB=AC,ME⊥AB,MF⊥AC,垂足分离为 E.F,ME=MF.求证:MB=MC证实:∵AB=AC∴∠B=∠C DCB AE∵ME⊥AB,MF⊥AC∴∠BEM=∠CFM=90°在△BME和△CMF中∵∠B=∠C ∠BEM=∠CFM=90° ME=MF∴△BME≌△CMF(AAS)∴MB=MC.39.如图,给出五个等量关系:①②③④⑤.请你以个中两个为前提,另三个中的一个为结论,推出一个准确的结论(只需写出一种情形),并加以证实.已知:①AD=BC,⑤∠DAB=∠CBA求证:△DAB≌△CBA证实:∵AD=BC,∠DAB=∠CBA又∵AB=AB∴△DAB≌△CBA40.在△ABC中,,,直线经由点,且于,于.(1)当直线绕点扭转到图1的地位时,求证:①≌;②;(2)当直线绕点扭转到图2的地位时,(1)中的结论还成立吗?若成立,请给出证实;若不成立,解释来由.(1)①∵∠ADC=∠ACB=∠BEC=90°,∴∠CAD+∠ACD=90°,∠BCE+∠CBE=90°,∠ACD+∠BCE=90°.∴∠CAD=∠BCE.∵AC=BC,∴△ADC≌△CEB.②∵△ADC≌△CEB,∴CE=AD,CD=BE.∴DE=CE+CD=AD+BE.(2)∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE.又∵AC=BC,∴△ACD≌△CBE.∴CE=AD,CD=BE.∴DE=CE﹣CD=AD ﹣BE41.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF(1)∵AE⊥AB,AF⊥AC,∴∠BAE=∠CAF=90°,∴∠BAE+∠BAC=∠CAF+∠BAC,即∠EAC=∠BAF, AE B MCF在△ABF和△AEC中,∵AE=AB,∠EAC=∠BAF,AF=AC,∴△ABF≌△AEC(SAS),∴EC=BF;(2)如图,依据(1),△ABF≌△AEC,∴∠AEC=∠ABF,∵AE⊥AB,∴∠BAE=90°,∴∠AEC+∠ADE=90°,∵∠ADE=∠BDM(对顶角相等),∴∠ABF+∠BDM=90°,在△BDM中,∠BMD=180°-∠ABF-∠BDM=180°-90°=90°,∴EC⊥BF.42.如图:BE⊥AC,CF⊥AB,BM=AC,CN=AB.求证:(1)AM=AN;(2)AM⊥AN.证实:(1)∵BE⊥AC,CF⊥AB∴∠ABM+∠BAC=90°,∠ACN+∠BAC=90°∴∠ABM=∠ACN∵BM=AC,CN=AB∴△ABM≌△NAC∴AM=AN(2)∵△ABM≌△NAC∴∠BAM=∠N∵∠N+∠BAN=90°∴∠BAM+∠BAN=90°即∠MAN=90°∴AM⊥AN43.如图,已知∠A=∠D,AB=DE,AF=CD,BC=EF.求证:BC∥EF在△ABF和△CDE中,AB=DE∠A=∠DAF=CD∴△ABF≡△CDE(边角边)∴FB=CE在四边形BCEF中FB=CEBC=EF∴四边形BCEF是平行四边形∴BC‖EF44.如图,已知AC∥BD,EA.EB分离等分∠CAB和∠DBA,CD过点E,则AB与AC+BD相等吗?请解释来由在AB上取点N ,使得AN=AC∵∠CAE=∠EAN ∴AE为公共,∴△CAE≌△EAN∴∠ANE=∠ACE又∵AC平行BD∴∠ACE+∠BDE=180而∠ANE+∠ENB=180∴∠ENB=∠BDE∠NBE=∠EBN∵BE为公共边∴△EBN≌△EBD∴BD=BN∴AB=AN+BN=AC+BD45.(10分)如图,已知: AD是BC上的中线 ,且DF=DE.求证:BE∥CF.证实:∵AD是△ABC的中线BD=CD ∵DF=DE(已知)∠BDE=∠FDC ∴△BDE≌△FDC 则∠EBD=∠FCD ∴BE∥CF(内错角相等,两直线平行).46.(10分)已知:如图,AB=CD,DE⊥AC,BF⊥AC,E,F是垂足,.求证:.证实:∵DE⊥AC,BF⊥AC∴∠CED=∠AFB=90º又∵AB=CD,BF=DE∴Rt⊿ABF≌Rt⊿CDE(HL )∴AF=CE∠BAF=∠DCE∴AB//CD47.(10分)如图,已知∠1=∠2,∠3=∠4,求证:AB=CD∵,∠3=∠4∴OB=OC在△AOB 和△DOC 中∠1=∠2OB=OC∠AOB=∠DOC△AOB≌△DOC∴AO=DO AO+OC=DO+OB AC=DB在△ACB 和△DBC 中AC=DB A D ECBF,∠3=∠4BC=CB△ACB≌△DBC∴AB=CD48.(10分)如图,已知AC⊥AB,DB⊥AB,AC=BE,AE =BD,试猜测线段CE 与DE 的大小与地位关系,并证实你的结论.CE>DE.当∠AEB 越小,则DE 越小.证实:过D 作AE 平行线与AC 交于F,衔接FB由已知前提知AFDE 为平行四边形,ABEC 为矩形 ,且△DFB 为等腰三角形.RT△BAE 中,∠AEB 为锐角,即∠AEB<90°∵DF//AE ∴∠FDB=∠AEB<90°△DFB 中 ∠DFB=∠DBF=(180°-∠FDB)/2>45°RT△AFB 中,∠FBA=90°-∠DBF <45°∠AFB=90°-∠FBA>45°∴AB>AF∵AB=CE AF=DE∴CE>DE49.(10分)如图,已知AB =DC,AC =DB,BE =CE,求证:AE =DE. ∵AB=DC,AC=DB,BC=BCA CE D B A B E CD∴△ABC≌△DCB,∴∠ABC=∠DCB又∵BE=CE,AB=DC∴△ABE≌△DCE∴AE=DE50.如图9所示,△ABC 是等腰直角三角形,∠ACB=90°,AD 是BC 边上的中线,过C 作AD 的垂线,交AB 于点E,交AD 于点F,求证:∠ADC=∠BDE.作CG⊥AB,交AD 于H,则∠ACH=45º,∠BCH=45º∵∠CAH=90º-∠CDA, ∠BCE=90º-∠CDA ∴∠CAH=∠BCE 又∵AC=CB, ∠ACH=∠B=45º∴△ACH≌△CBE, ∴CH=BE 又∵∠DCH=∠B=45º, CD=DB∴△CFD≌△BED∴∠ADC=∠BDE AB CD E F图9。
全等三角形证明中考题精选[有答案解析]七年级数学下---全等三角形证明题1如图,已知人。
是厶ABC勺中线,分别过点B、C作BEL AD于点E,CF丄AD交AD的延长线于点F,求证:BE=CF2•如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中/(1)操作发现:如图2,固定△ ABC使厶DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是_____________②设△ BDC的面积为$,△ AEC的面积为S,则(2)猜想论证S与S2的数量关系是 _____________当厶DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S与S2的数量关系仍然成立,并尝试分别作出了△BDC ffiA AEC中BC CE边上的高,请你证明小明的猜想.(3)拓展探究已知/ABC=60,点D是角平分线上一点,BD=CD=, DE// AB交BC于点E (如图4).若在射线BA 上存在点F,使S A DC=S BDE,请直接写出相应的BF的长.3.如图,把一个直角三角形ACB(/ACB=90 )绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F, G分别是BD BE上的点,BF=BG延长CF与DG交于点H. (1)求证:CF=DG (2)求出/ FHG勺度数.全等三角形证明中考题精选[有答案解析]4•如图所示,在△ ABC 中,D E 分别是AB AC 上的点,DE// BQ 如图①,然后将厶ADE 绕A 点顺 时针旋转一定角度,得到图②,然后将 BD CE 分别延长至M N,使DM=BD EN=CE 得到图③, 请解答下列问题:(1)若AB=AC 请探究下列数量关系:① 在图②中,BD 与CE的数量关系是_ _ ;② 在图③中,猜想AM 与 AN 的数量关系、/ MAN 与/BAC 的数量关系,并证明你的猜想;(2)若AB=I?AC( k > 1),按上述操作方法,得到图④,请继续探究: AM 与 AN 的数量关系、/ MAN 与/BAC 的数量关系,直接写出你的猜想,不必证明.4. (1)如图,在△ ABC ffiA ADE 中, AB 二AC AD=AE Z BAC K DAE=90 .① 当点D 在AC 上时,如图1,线段BD CE 有怎样的数量关系和位置关系? 直接写出你猜想的结论;② 将图1中的△ ADE 绕点A 顺时针旋转口角(O °VaV 90°),如图2,线段BD CE 有怎样的数量 关系和位置关系?请说明理由.(2)当厶ABC^P ^ADE 满足下面甲、乙、丙中的哪个条件时,使线段 BD CE 在(1)中的位置关系 仍然成立?不必说明理由.甲: AB AC=AD AE=1, / BAC K DA 字90°;乙:AB AC=AD AE M 1,K BAC K DAE=90 ;丙: 6. CD 经过/ BCA 顶点C 的一条直线,CA=CB E, F 分别是直线CD 上两点,且/ BEC K CFA Ka.(1)若直线CD 经过/ BCA 的内部,且E, F 在射线CD 上,请解决下面两个问题:①如图 1,若/ BCA=90 , Ka =90°,则 BE ______________ CF; EF ___________ |BE - AF| (填“〉”, “v”或“=”);②如图2,若0°<Z BCA : 180°,请添加一个关于Ka 与/ BCA 关系的条件—AB: AC=AD AE M 1,/ BAC K DAE^ 90E__________ ,使①中的两个结论仍然成立,并证明两个结论成立.7. 如图,已知 AB=AC (1)若 CE=BD 求证:GE=G ;⑵若CE=mBD (m 为正数),试猜想GE 与 GD 有何关系.(只写结论,不证明)8. (1)已知:如图①,在△ AOBf^A COD 中, OA=OJ 3OC=OD / AOB M COD=60,求证:① AC=BD ②/ APB=6(度;(2)如图②,在△ AOBf^A COD 中,若 OA=OBOC=O , / AOB M COD a ,贝U AC 与 BD 间的等量关系式为 _____________ ; Z APB 的大小为 _____________ ;(3)如图③,在△ AOBf^ACOD 中,若 OA=?OBOC=?OD(k > 1),Z AOB ZCOD a ,贝U AC 与 BD间的等量关系式为 10.已知:EG// AF, AB=AC DE=DF 求证:BE=CF参考答案与试题解析(2)如图3,若直线CD 经过/ BCA 的外部,/ a =Z BCA 请提出EF, BE AF 三条线段数量关系的 合理猜想(不要求证明)•Z APB 的大小为 _____2. 解:(1)①DEC绕点C旋转点D恰好落在AB边上,••• AC=CD:/ BAC=90 -Z B=90°- 30° =60°,二厶ACD是等边三角形,•••/ ACD=60,又TZ CDE Z BAC=60 ,:Z ACD Z CDE 二DE// AC;②T Z B=30°,Z C=90,二CD=AC=AB /• BD=AD=AC2根据等边三角形的性质,△ ACD的边AC AD上的高相等,•••△ BDC的面积和△ AEC的面积相等(等底等高的三角形的面积相等),即S=S2;故答案为:DE// AC S=S;(2)如图,•「△ DEC是由厶ABC绕点C旋转得到,••• BC=CE AC=CD T Z ACN Z BCN=90,Z DCM Z BCN=180 - 90° =90°,•••Z ACN Z DCM T在厶ACNm DCM中,fZACM=ZDCHI ZCND=ZH=90°,[AC=CD•△ACN^A DCM( AAS, • AN=DM•△ BDC的面积和△ AEC的面积相等(等底等高的三角形的面积相等),即S i=S2;3、解(1)证明:•••在厶CBF ft^ DBG K答.fBC=BD答《二,:BF=BG•△CBF^A DBG( SAS , • CF=DQ(2)解:•••△ CBF^A DBG •Z BCF Z BDG又T Z CFB Z DFH •Z DHF Z CBF=60 ,•Z FHG=180 -Z DHF=180 - 60°=120°.4、解答:解:(1)①结论:BD=CE BDL CE②结论:BD=CE BDL CE;理由如下:T Z BAC Z DAE=90• Z BAC-Z DAC Z DAE-Z DAC 即Z BAD Z CAE ft^ ABD与△ ACE中, AB=ACT*4皿ZCAE •△ABD^A ACE(SAS • BD=CEb AD=AE延长BD交AC于F,交CE于H.在厶ABF 与厶HCF 中,T Z ABF=/ HCF Z AFB=/ HFC •Z CHF Z BAF=90••• BDL CE(2)结论:乙.AB AC=AD AE / BAC K DAE=905.6.解答:解:(1)①IK BCA=90,/a =90°,.・.K BCE K CBE=90,/ BCE K ACF=90 , • K CBE K ACF v CA=CB K BEC K CFA •△ BCE^A CAF •- BE=CF EF=|BE- AF|. ②所填的条件是:Ka +K BCA=180 . I AE=AD 卩. 7 •••△ CAE^A BAD( SAS , AC 二 AB • / ACE K ABD v DM=BD EN=CE • BM=CN 在厶 ABM ffiA ACN 中, r 瓏二 CN ••• ZAC14=ZAbr 〔AB 二AC • △ ABMm ACN( SAS , • AM=AN •/ BAM K CAN 即K MAN K BAC (2)AM=?AN 在厶BADfy CAE 中 解答: / CAE=/ BAD K MAN K BAC全等三角形证明中考题精选[有答案解析]证明:在厶 BCE 中,/ CBE# BCE=180 -Z BEC=180 — /a. v/ BCA=180 —/a,•••/ CBE Z BCE Z BCA 又v/ ACF Z BCE Z BCA CBE Z ACF又v BC=CA / BEC Z CFA •△BCE^A CAF( AAS •- BE=CF CE=AF又v EF=C- CE, • EF=|BE- AF|.(2) EF=BE+AF7.解证明:(1)过D作DF// CE交BC于F,答: 贝UZ E=Z GDF v AB=AC •/ ACB Z ABC/ DF/ CE •/ DFB Z ACB•Z DFB Z ACB Z ABC • DF=DB v CE=BD •- DF=CE 在厶GDF^ GEC中, (ZE 二ZGDFI ZDGF=ZEGC ,[DF=EC•△GDF^A GEC(AAS. • GE=GD• / AOB Z BOC Z COD Z BOC 即:/ AOC Z BOD 答:又v OA=OB OC=OD •△ AOC^A BOD • AC=BD②由①得:/ OAC Z OBDv/ AEO Z PEB / APB=180 — (/ BEP+Z OBD, / AOB=180 —(/ OAC Z AEO , • Z APB Z AOB=60 .(2) AC=BD a(3) AC=?BD 180°—a.。
八年级数学上册 第12章 全等三角形证明经典50题1.已知:AB=4,AC=2,D 是BC 中点,111749AD 是整数,求AD解:延长AD 到E,使AD=DE∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE=∠ADCBD=DC∴△ACD ≌△BDE∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE∵AB=4即4-2<2AD <4+21<AD <3∴AD=2AD B C1. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB延长CD 与P ,使D 为CP 中点。
连接AP,BP∵DP=DC,DA=DB∴ACBP 为平行四边形又∠ACB=90∴平行四边形ACBP 为矩形∴AB=CP=1/2AB2. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF∵ BC=ED,CF=DF,∠BCF=∠EDF∴ 三角形BCF 全等于三角形EDF(边角边)AB C D EF 2 1 DAB C∴ BF=EF,∠CBF=∠DEF连接BE在三角形BEF 中,BF=EF∴ ∠EBF=∠BEF 。
∵ ∠ABC=∠AED 。
∴ ∠ABE=∠AEB 。
∴ AB=AE 。
在三角形ABF 和三角形AEF 中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴ 三角形ABF 和三角形AEF 全等。
∴ ∠BAF=∠EAF (∠1=∠2)。
3. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG ∥EF 交AD 的延长线于点GCG ∥EF ,可得,∠EFD =CGDDE =DCB ACDF21 E∠FDE=∠GDC(对顶角)∴△EFD≌△CGDEF=CG∠CGD=∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC为等腰三角形,AC=CG又EF=CG∴EF=AC4.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠CA证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C5.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC平分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC(SAS)∴AD=AF∴AE=AF+FE=AD+BE6. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DE∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中 AD=DE∠BDE=∠ADC BD=DC∴△ACD ≌△BDE∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE∵AB=4即4-2<2AD <4+21<AD <3∴AD=2AD B C7. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB解:延长AD 到E,使AD=DE∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE=∠ADCBD=DC∴△ACD ≌△BDE∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE∵AB=4即4-2<2AD <4+21<AD <3∴AD=2DA B C8. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF 。
七年级下册数学三角形全等证明综合题北师版一、单选题(共9道,每道11分)1.如图,AE=BF,AD∥BC,AD=BC,试说明DF=CE,小明是这样做的,老师扣他了3分,大家帮他找一下,他到底那个地方扣分了?证明:∵AE=BF∴AE -EF= BF-EF,即AF=EB①又∵AD∥BC∴∠C=∠D②在△ADF和△BCE中③ ∴△ADF≌△BEC(SAS)④ ∴DF=CE 上面过程中出错的序号有()A.①②③④B.②③④C.①②③D.③④答案:B试题难度:三颗星知识点:证明题的书写步骤及定理应用考察2.已知如下左图,△ABC中,AB=AC,AD是角平分线,BE=CF,图中全等的三角形有()对A.1B.2C.3D.4答案:C试题难度:三颗星知识点:全等三角形的个数3.如图,已知BD、CE是△ABC的高,点P在BD的延长线上,BP=AC,点Q在CE上,CQ=AB.判断线段AP和AQ的关系,并证明.小红在做这道题目的时候部分分析思路如下:猜测AP和AQ的数量关系应该是相等的,证明线段AP=AQ,将这两条线段放到两个三角形中,即证明__≌__,题中已知BP=AC,CQ=AB,采取的判定方法是__,此时需要找的第三组条件=__.①△APD≌△QAE ②△APB≌△QAC ③SAS ④SSS ⑤AP=AQ⑥∠ABP=∠QCA ⑦∠PAB=∠AQC ⑧∠BPA=∠CAQA.①③⑧B.②③⑦C.②③⑥D.②④⑤答案:C试题难度:三颗星知识点:三角形全等解题思路4.已知,如图∠ACE=90°,AC=CE,B为AE上一点,ED⊥CB于D,AF⊥CB交CB的延长线于F.求证:DF=CF-AF.小强在做这道题目的时候部分分析思路如下:从图中知道DF=CF-CD,只需证明AF=CD,即证明△ACF≌△CED,题中已知AC=CE,ED⊥CB,AF⊥CB,采取的判定方法是AAS,此时需要找的第三组条件__=__.因为ED⊥CB,所以__+__=90°,而∠ACE=90°,即__+__=90°,根据等量代换即可得到第三组条件.①∠CAF=∠CED ②∠ACF=∠CED ③∠DBE+∠BED=90°④∠DCE+∠DEC=90° ⑤∠ACF+∠CAF=90° ⑥∠ACF+∠FCE=90°A.①③⑤B.①③⑥C.②④⑤D.②④⑥答案:D试题难度:三颗星知识点:三角形全等解题思路5.如图,在中,,AB=12,则中线AD的取值范围是()A.7<AD<17B.C.5<AD<12D.答案:B试题难度:三颗星知识点:倍长中线法6.如图,在△ABC中,AB>AC,∠1=∠2,P为AD上任意一点.则下列式子正确的是()A.AB-AC<PB-PCB.AB-AC≧PB-PCC.AB-AC=PB-PCD.AB-AC>PB-PC答案:D试题难度:三颗星知识点:截长补短法7.已知△ABC,∠BAD=∠CAD,AB=2AC,AD=BD,下列式子中正确的是()A.AB=2ADB.AD=CDC.AD⊥BDD.DC⊥AC答案:D解题思路:利用翻折的思想来进行解决,在AB上截取AE=AC,在AB上截取AE=AC,连接DE,∵AB=2AC,∴AE=BE,又∵AD=BD,∴DE⊥AB,再证明△ADE≌ADC,∴∠ACD=∠AED=90°,即DC⊥AC.试题难度:三颗星知识点:折叠与全等8.如图,已知△ABC,BD=EC≠DE,则对于AB+AC与AD+AE的大小关系正确的是()A.AB+AC=AD+AEB.AB+AC≧AD+AEC.AB+AC>AD+AED.AB+AC≦AD+AE答案:C解题思路:利用平移的思想来进行解题,可以将△AEC平移至BD处,使EC与BD重合,假设为△BDF,DF与AB交于点G,则可先证△BDF≌△ECA,则在△BGF和△DGA中,BG+FG >BF,DG+AG>AD,即AB+AC>AD+AE.解:过点B和D作BF∥AE,DF∥AC,BF与DF交于点F,DF 与AB交于点G,则△BDF≌△ECA(ASA),∴BF=AE,DF=AC,在△BGF和△DGA中,BG+FG >BF,DG+AG>AD,二式相加可得BG+FG+ DG+AG>BF+ AD 即AB+AC>AD+AE.试题难度:三颗星知识点:平移与全等9.如图,EF分别是正方形ABCD的边BC、CD上的点,且∠EAF=45°,AH⊥EF,H为垂足,则下列说法中正确的是()A.直接证明△ABE和△AHE全等可以证明AH=ABB.EF=BE+DFC.AE=AFD.∠AEB=∠AFE答案:B解题思路:利用旋转的思想来进行解题,延长EB使得BH=DF,易证△ABH≌△ADF(SAS)可得∠EAH=∠EAF=45°,进而求证△AEH≌△AEF可得EF=BE+DF解:延长EB到点H,使得BH=DF,连接AH,可得△ABH≌△ADF(SAS),∴∠DAF=∠BAH,AF=AH,∠EAH=∠EAF=45°∴△AEG≌△AEF(SAS)∴EF=EH=BE+DF试题难度:三颗星知识点:旋转与全等。
全等三角形证明经典50题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD2. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠24. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠CDAB B A CDF2 1 EAC D E F 21 A D BC A6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。
求证:BC=AB+DC 。
13.已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C14. P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB<AC-AB15. 已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC-AB=2BED C B A FE PD A CB16. 已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DC18.如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC .19.如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,A 、B 为垂足,AB 交OM 于点N .求证:∠OAB =∠OBA20.(5分)如图,已知AD ∥BC ,∠P AB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .21.如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B22.(6分)如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M .(1)求证:MB =MD ,ME =MF(2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.F AEDCB P E D CB A DC B A23.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点, (1)求证:△AED ≌△EBC . (2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):24.(7分)如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F .求证:BD =2CE .证明:25、如图:DF=CE ,AD=BC ,∠D=∠C 。
1. 已知:AB=4,AC=2,D 是BC 中点,111749AD 是整数,求AD 之蔡仲巾千创作解:延长AD 到E,使AD=DE∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE=∠ADCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE∵AB=4即4-2<2AD <4+21<AD <3∴AD=22. 已知:D 是AB 中点,∠ACB=90°,求证:AD B C延长CD与P,使D为CP中点。
连接AP,BP∵DP=DC,DA=DB∴ACBP为平行四边形又∠ACB=90∴平行四边形ACBP为矩形∴AB=CP=1/2AB3.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2证明:连接BF和EF∵ BC=ED,CF=DF,∠BCF=∠EDF∴ 三角形BCF全等于三角形EDF(边角边)∴ BF=EF,∠CBF=∠DEF连接BE在三角形BEF中,BF=EF∴∠EBF=∠BEF。
∵∠ABC=∠AED。
∴∠ABE=∠AEB。
∴ AB=AE。
在三角形ABF 和三角形AEF 中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴ 三角形ABF 和三角形AEF 全等。
∴∠BAF=∠EAF (∠1=∠2)。
4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG∥EF 交AD 的延长线于点GCG∥EF ,可得,∠EFD =CGDDE =DC∠FDE =∠GDC (对顶角)∴△EFD≌△CGDEF =CG∠CGD =∠EFD 又,EF∥AB∴,∠EFD =∠1∠1=∠2∴∠CGD=∠2∴△AGC 为等腰三角形,AC =CG 又 EF =CG∴EF=AC5. 已知:AD 平分∠BAC,AC=AB+BD ,求证:∠B=2∠CB ACDF21 E A证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴B D=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C6.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE 上取F ,使EF =EB ,连接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF ,CE =CE ,∴△CEB≌△CEF∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC 平分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC(SAS )∴AD=AF∴AE=AF +FE =AD +BE7. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DE∵D 是BC 中点∴BD=DC 在△ACD 和△BDE 中AD=DE∠BDE=∠ADCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE 中 AB-BE <AE <AB+BE∵AB=4即4-2<2AD <4+21<AD <3∴AD=2AD B C8. 已知:D 是AB 中点,∠ACB=90°,求证:解:延长AD 到E,使AD=DE∵D 是BC 中点∴BD=DC 在△ACD 和△BDE 中AD=DE∠BDE=∠ADCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE 中 AB-BE <AE <AB+BE∵AB=4即4-2<2AD <4+21<AD <3∴AD=2 9. 已知:BC=DE ,∠B=∠E,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF 。
七年级下册数学三角形全等证明综合题北师版
一、单选题(共9道,每道11分)
1.如图,AE=BF,AD∥BC,AD=BC,试说明DF=CE,小明是这样做的,老师扣他了3分,大
家帮他找一下,他到底那个地方扣分了?
证明:∵AE=BF
∴AE -EF= BF-EF,即AF=EB①
又∵AD∥BC
∴∠C=∠D②
在△ADF和△BCE中③ ∴△ADF≌△BEC(SAS)④ ∴DF=CE 上面过程中出错的序号有()
A.①②③④
B.②③④
C.①②③
D.③④
答案:B
试题难度:三颗星知识点:证明题的书写步骤及定理应用考察
2.已知如下左图,△ABC中,AB=AC,AD是角平分线,BE=CF,图中全等的三角形有()
对
A.1
B.2
C.3
D.4
答案:C
试题难度:三颗星知识点:全等三角形的个数
3.如图,已知BD、CE是△ABC的高,点P在BD的延长线上,BP=AC,点Q在CE上,CQ=AB.判断线段AP和AQ的关系,并证明.小红在做这道题目的时候部分分析思路如下:猜测AP和AQ的数量关系应该是相等的,证明线段AP=AQ,将这两条线段放到两个三角形中,即证明__≌__,题中已知BP=AC,CQ=AB,采取的判定方法是__,此时需要找的第三组条件=__.
①△APD≌△QAE ②△APB≌△QAC ③SAS ④SSS ⑤AP=AQ
⑥∠ABP=∠QCA ⑦∠PAB=∠AQC ⑧∠BPA=∠CAQ
A.①③⑧
B.②③⑦
C.②③⑥
D.②④⑤
答案:C
试题难度:三颗星知识点:三角形全等解题思路
4.已知,如图∠ACE=90°,AC=CE,B为AE上一点,ED⊥CB于D,AF⊥CB交CB的延长线于F.求证:DF=CF-AF.小强在做这道题目的时候部分分析思路如下:从图中知道DF=CF-CD,只需证明AF=CD,即证明△ACF≌△CED,题中已知AC=CE,ED⊥CB,AF⊥CB,采取的判定方法是AAS,此时需要找的第三组条件__=__.因为ED⊥CB,所以__+__=90°,而∠ACE=90°,即__+__=90°,根据等量代换即可得到第三组条件.
①∠CAF=∠CED ②∠ACF=∠CED ③∠DBE+∠BED=90°
④∠DCE+∠DEC=90° ⑤∠ACF+∠CAF=90° ⑥∠ACF+∠FCE=90°
A.①③⑤
B.①③⑥
C.②④⑤
D.②④⑥
答案:D
试题难度:三颗星知识点:三角形全等解题思路
5.如图,在中,,AB=12,则中线AD的取值范围是()
A.7<AD<17
B.
C.5<AD<12
D.
答案:B
试题难度:三颗星知识点:倍长中线法
6.如图,在△ABC中,AB>AC,∠1=∠2,P为AD上任意一点.则下列式子正确的是()
A.AB-AC<PB-PC
B.AB-AC≧PB-PC
C.AB-AC=PB-PC
D.AB-AC>PB-PC
答案:D
试题难度:三颗星知识点:截长补短法
7.已知△ABC,∠BAD=∠CAD,AB=2AC,AD=BD,下列式子中正确的是()
A.AB=2AD
B.AD=CD
C.AD⊥BD
D.DC⊥AC
答案:D
解题思路:利用翻折的思想来进行解决,在AB上截取AE=AC,
在AB上截取AE=AC,连接DE,∵AB=2AC,∴AE=BE,又∵AD=BD,∴DE⊥AB,再证明△ADE≌ADC,∴∠ACD=∠AED=90°,即DC⊥AC.
试题难度:三颗星知识点:折叠与全等
8.如图,已知△ABC,BD=EC≠DE,则对于AB+AC与AD+AE的大小关系正确的是()
A.AB+AC=AD+AE
B.AB+AC≧AD+AE
C.AB+AC>AD+AE
D.AB+AC≦AD+AE
答案:C
解题思路:利用平移的思想来进行解题,可以将△AEC平移至BD处,使EC与BD重合,假设为△BDF,DF与AB交于点G,则可先证△BDF≌△ECA,则在△BGF和△DGA中,BG+FG >BF,DG+AG>AD,即AB+AC>AD+AE.
解:过点B和D作BF∥AE,DF∥AC,BF与DF交于点F,DF 与AB交于点G,则△BDF≌△ECA(ASA),∴BF=AE,DF=AC,在△BGF和△DGA中,BG+FG >BF,DG+AG>AD,二式相加可得BG+FG+ DG+AG>BF+ AD 即AB+AC>AD+AE.
试题难度:三颗星知识点:平移与全等
9.如图,EF分别是正方形ABCD的边BC、CD上的点,且∠EAF=45°,AH⊥EF,H为垂足,则下列说法中正确的是()
A.直接证明△ABE和△AHE全等可以证明AH=AB
B.EF=BE+DF
C.AE=AF
D.∠AEB=∠AFE
答案:B
解题思路:利用旋转的思想来进行解题,延长EB使得BH=DF,易证△ABH≌△ADF(SAS)可得∠EAH=∠EAF=45°,进而求证△AEH≌△AEF可得EF=BE+DF
解:延长EB到点H,使得BH=DF,连接AH,可得△ABH≌△ADF(SAS),
∴∠DAF=∠BAH,AF=AH,∠EAH=∠EAF=45°∴△AEG≌△AEF(SAS)∴EF=EH=BE+DF
试题难度:三颗星知识点:旋转与全等。