(完整word版)三角形全等证明题60题(有答案)
- 格式:doc
- 大小:521.04 KB
- 文档页数:29
人教版八年级数学上册 全等三角形单元练习(Word 版 含答案) 一、八年级数学轴对称三角形填空题(难)1.在直角坐标系中,O 为坐标原点,已知点 A (1,2),点 P 是 y 轴正半轴上的一点,且△AOP 为等腰三角形,则点 P 的坐标为_____________.【答案】5(0,5),(0,4),0,4⎛⎫ ⎪⎝⎭【解析】【分析】有三种情况:①以O 为圆心,以OA 为半径画弧交y 轴于D ,求出OA 即可;②以A 为圆心,以OA 为半径画弧交y 轴于P ,求出OP 即可;③作OA 的垂直平分线交y 轴于C ,则AC =OC ,根据勾股定理求出OC 即可.【详解】有三种情况:①以O 为圆心,以OA 为半径画弧交y 轴于D ,则OA =OD =22125+=;∴D (0,5);②以A 为圆心,以OA 为半径画弧交y 轴于P ,OP =2×y A =4,∴P (0,4);③作OA 的垂直平分线交y 轴于C ,则AC =OC ,由勾股定理得:OC =AC =()2212OC +-,∴OC =54, ∴C (0,54); 故答案为:5(0,5),(0,4),0,4⎛⎫ ⎪⎝⎭.【点睛】本题主要考查对线段的垂直平分线,等腰三角形的性质和判定,勾股定理,坐标与图形性质等知识点的理解和掌握,能求出符合条件的所有情况是解此题的关键.2.如图,在等边ABC ∆中取点P 使得PA ,PB ,PC 的长分别为3, 4, 5,则APC APB S S ∆∆+=_________.【答案】9364+【解析】【分析】把线段AP 以点A 为旋转中心顺时针旋转60︒得到线段AD ,由旋转的性质、等边三角形的性质以及全等三角形的判定定理SAS 证得△ADB ≌△APC ,连接PD ,根据旋转的性质知△APD 是等边三角形,利用勾股定理的逆定理可得△PBD 为直角三角形,∠BPD =90︒,由△ADB ≌△APC 得S △ADB =S △APC ,则有S △APC +S △APB =S △ADB +S △APB =S △ADP +S △BPD ,根据等边3S △ADP +S △BPD =34×32+12×3×4=364+. 【详解】将线段AP 以点A 为旋转中心顺时针旋转60︒得到线段AD ,连接PD∴AD =AP ,∠DAP =60︒,又∵△ABC 为等边三角形,∴∠BAC =60︒,AB =AC ,∴∠DAB +∠BAP =∠PAC +∠BAP ,∴∠DAB =∠PAC ,又AB=AC,AD=AP∴△ADB ≌△APC∵DA =PA ,∠DAP =60︒,∴△ADP 为等边三角形,在△PBD 中,PB =4,PD =3,BD =PC =5,∵32+42=52,即PD 2+PB 2=BD 2,∴△PBD 为直角三角形,∠BPD =90︒,∵△ADB ≌△APC ,∴S △ADB =S △APC ,∴S △APC +S △APB =S △ADB +S △APB =S △ADP +S △BPD =3×32+12×3×4=936+. 故答案为:936+.【点睛】本题考查了等边三角形的性质与判定,解题的关键是熟知旋转的性质作出辅助线进行求解.3.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.【答案】(-4,2)或(-4,3)【解析】【分析】【详解】把点C 向下平移1个单位得到点D (4,2),这时△ABD 与△ABC 全等,分别作点C ,D 关于y 轴的对称点(-4,3)和(-4,2),所得到的△ABD 与△ABC 全等.故答案为(-4,2)或(-4,3).4.如图,△ABC 中,AB =8,AC =6,∠ABC 与∠ACB 的平分线交于点F ,过点F 作DE ∥BC ,分别交AB 、AC 于点D 、E ,则△ADE 的周长为_____.【答案】14.【解析】【分析】先根据角平分线的定义及平行线的性质得BD =DF ,CE =EF ,则△ADE 的周长=AB +AC =14.【详解】∵BF 平分∠ABC ,∴∠DBF =∠CBF ,∵DE ∥BC ,∴∠CBF =∠DFB ,∴∠DBF =∠DFB ,∴BD =DF ,同理FE =EC ,∴△AED 的周长=AD +AE +ED =AB +AC =8+6=14.故答案为:14.【点睛】此题考查角平分线的性质,平行线的性质,等腰三角形的等角对等边的性质.5.如图,在△ABC 中,AB 的中垂线交BC 于D ,AC 的中垂线交BC 于E ,若∠BAC=126°,则∠EAD=_____°.【答案】72°【解析】【分析】根据AB 的中垂线可得BAD ∠,再根据AC 的中垂线可得EAC ∠,再结合∠BAC=126°即可计算出∠EAD .【详解】根据AB 的中垂线可得BAD ∠=B根据AC 的中垂线可得EAC ∠=C ∠18012654B C ︒︒︒∠+∠=-=又 126BAD DAE EAC BAC ︒∠+∠+∠=∠=+C+126B DAE ︒∴∠∠∠=72DAE ︒∴∠=【点睛】本题主要考查中垂线的性质,重点在于等量替换表示角度.6.如图,在△ABC 中,AB=AC ,D 、E 是△ABC 内的两点,AE 平分∠BAC ,∠D=∠DBC=60°,若BD=5cm ,DE=3cm ,则BC 的长是 ______cm .【答案】8.【解析】【分析】作出辅助线后根据等边三角形的判定得出△BDM 为等边三角形,△EFD 为等边三角形,从而得出BN 的长,进而求出答案.【详解】解:延长DE 交BC 于M ,延长AE 交BC 于N ,作EF ∥BC 于F ,∵AB=AC ,AE 平分∠BAC ,∴AN ⊥BC ,BN=CN ,∵∠DBC=∠D=60°,∴△BDM 为等边三角形,∴△EFD 为等边三角形,∵BD=5,DE=3,∴EM=2,∵△BDM 为等边三角形,∴∠DMB=60°,∵AN ⊥BC ,∴∠ENM=90°,∴∠NEM=30°,∴NM=1,∴BN=4,∴BC=2BN=8(cm ),故答案为8.【点睛】本题考查等边三角形的判定与性质;等腰三角形的性质.7.如图,已知,点E 是线段AB 的中点,点C 在线段BD 上,8BD =,2DC =,线段AC 交线段DE 于点F ,若AF BD =,则AC =__________.【答案】10.【解析】【分析】延长DE 至G ,使EG=DE ,连接AG ,证明BDE AGE ∆≅∆,而后证明AFG ∆、CDF ∆是等腰三角形,即可求出CF 的长,于是可求AC 的长.【详解】解:如图,延长DE 至G ,使EG=DE ,连接AG ,∵点E 是线段AB 的中点,∴AE=BE,∴在BDE∆和AGE∆中,BE AEBED AEGDE EG=⎧⎪∠=∠⎨⎪=⎩,∴BDE AGE∆≅∆,∴AG=BD, BDE AGE∠=∠,∵AF=BD=8,∴AG=AF,∴AFG AGE∠=∠∵AFG DFC∠=∠,∴BDE DFC∠=∠,∴FC=DC,∴FC=2,∴AC=AF+FC=8+2=10.【点睛】本题考查了等腰三角形的性质与判定以及全等三角形的判定与性质,能利用中点条件作辅助线构造全等三角形是解题的关键.8.如图:在ABC∆中,D,E为边AB上的两个点,且BD BC=,AE AC=,若108ACB∠=︒,则DCE∠的大小为______.【答案】036【解析】【分析】根据三角形内角和求出∠A+∠B,再根据AC=AE,BC=BD,用∠A表示∠AEC,用∠B表示∠BDC,然后根据内角和求出∠DCE的度数.【详解】∵∠ACB=1080,∴∠A+∠B=1800-1080=720,∵AC=AE,BC=BD,∴∠ACE=∠AEC,∠BCD=∠BDC,∴01(180)2AEC A ∠=-∠01902A =-∠ 01(180)2BDCB ∠=-∠ =01902B -∠ ∵∠DCE+∠CDE+∠DEC=1800,∴0180DCE CDE CED ∠=-∠-∠= 00011180(90)(90)22A B --∠--∠ =1122A B ∠+∠ =1()2A B ∠+∠ =360【点睛】此题考察等腰三角形的性质,注意两条等边所在三角形,依此判断对应的两个底角相等.9.如图,在四边形ABCD 中,∠A=60°, ∠ADC=∠ABC=90°,在AB 、AD 上分别找一点F 、E ,连接CE 、EF 、CF ,当△CEF 的周长最小时,则∠ECF 的度数为______.【答案】60°【解析】【分析】此题需分三步:第一步是作出△CEF 的周长最小时E 、F 的位置(用对称即可);第二步是证明此时的△CEF 的周长最小(利用两点之间线段最短);第三步是利用对称性求此时∠ECF 的值.【详解】分别作出C 关于AD 、AB 的对称点分别为C 1、C 2,连接C 1C 2,分别交AD ,AB 于点E 、F 再连接CE 、CF 此时△CEF 的周长最小,理由如下:在AD、AB上任意取E1、F1两点根据对称性:∴CE=C1E,CE1=C1E1,CF=C2F,CF1=C2F1∴△CEF的周长= CE+EF+CF= C1E+EF+C2F= C1C2而△CE1F1的周长= CE1+E1F1+CF1= C1E1+E1F1+C2F1根据两点之间线段最短,故C1E1+E1F1+C2F1>C1C2∴△CEF的周长的最小为:C1C2.∵∠A=60°,∠ADC=∠ABC=90°∴∠DCB=360°-∠A-∠ADC-∠ABC=120°∴∠C C1C2+∠C C2C1=180°-∠DCB=60°根据对称性:∠C C1C2=∠E CD,∠C C2C1=∠F CB∴∠E CD+∠F CB=∠C C1C2+∠C C2C1=60°∴∠ECF=∠DCB-(∠E CD+∠F CB)=60°故答案为:60°【点睛】此题考查的是周长最小值的作图方法(对称点),及周长最小值的证法:两点之间线段最短,掌握周长最小值的作图方法是解决此题的关键.10.如图,在△ABC 中,AD 是高,DE 是 AC 的垂直平分线,AE=4cm,△ABD 的周长为15cm,则△ABC 的周长为______【答案】23cm.【解析】【分析】根据线段垂直平分线的性质得到AC=2AE=8,DA=DC,根据三角形的周长公式计算即可.【详解】解:∵DE 是AC 的垂直平分线,∴AC=2AE=8,DA=DC ,∵△ABD 的周长=AB+BD+AD=AB+BD+DC=AB+BC=15,∴△ABC 的周长=AB+BC+AC=15+8=23cm ,故答案是:23cm .【点睛】本题考查的是线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.二、八年级数学轴对称三角形选择题(难)11.已知∠AOB =30°,点P 在∠AOB 内部,P 1与P 关于OB 对称,P 2与P 关于OA 对称,则P 1,O ,P 2三点构成的三角形是 ( )A .直角三角形B .钝角三角形C .等边三角形D .等腰三角形 【答案】C【解析】【分析】根据题意,作出相应的图形,然后对相应的角进行标记;本题先证明P 1,O ,P 2三点构成的三角形中1260POP ∠=︒,然后证边12OP OP OP ==,得到P 1,O ,P 2三点构成的三角形为等腰三角形,又因为该等腰三角形有一个角为60︒,故得证P 1,O ,P 2三点构成的三角形是等边三角形。
一、八年级数学全等三角形解答题压轴题(难)1.如图,已知△ABC中,AB=AC=20cm,BC=16cm,点D为AB的中点.(1)如果点P在线段BC上以6cm/s的速度由B点向C点运动,同时点Q在线段CA上由C向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?【答案】(1)①△BPD≌△CQP,理由见解析;②V7.5Q(厘米/秒);(2)点P、Q在AB边上相遇,即经过了803秒,点P与点Q第一次在AB边上相遇.【解析】【分析】(1)①先求出t=1时BP=BQ=6,再求出PC=10=BD,再根据∠B=∠C证得△BPD≌△CQP;②根据V P≠V Q,使△BPD与△CQP全等,所以CQ=BD=10,再利用点P的时间即可得到点Q的运动速度;(2)根据V Q>V P,只能是点Q追上点P,即点Q比点P多走AB+AC的路程,设运动x秒,即可列出方程1562202x x,解方程即可得到结果.【详解】(1)①因为t=1(秒),所以BP=CQ=6(厘米)∵AB=20,D为AB中点,∴BD=10(厘米)又∵PC=BC﹣BP=16﹣6=10(厘米)∴PC=BD∵AB=AC,∴∠B=∠C,在△BPD与△CQP中,BP CQ B C PC BD =⎧⎪∠=∠⎨⎪=⎩, ∴△BPD ≌△CQP (SAS ),②因为V P ≠V Q ,所以BP ≠CQ ,又因为∠B =∠C ,要使△BPD 与△CQP 全等,只能BP =CP =8,即△BPD ≌△CPQ ,故CQ =BD =10.所以点P 、Q 的运动时间84663BPt (秒), 此时107.543Q CQ V t (厘米/秒).(2)因为V Q >V P ,只能是点Q 追上点P ,即点Q 比点P 多走AB +AC 的路程设经过x 秒后P 与Q 第一次相遇,依题意得1562202x x , 解得x=803(秒) 此时P 运动了8061603(厘米) 又因为△ABC 的周长为56厘米,160=56×2+48, 所以点P 、Q 在AB 边上相遇,即经过了803秒,点P 与点Q 第一次在AB 边上相遇. 【点睛】此题考查三角形全等的证明,三角形与动点相结合的解题方法,再证明三角形全等时注意顶点的对应关系是证明的关键.2.(1)如图1,在Rt △ABC 中,AB AC =,D 、E 是斜边BC 上两动点,且∠DAE=45°,将△ABE 绕点A 逆时针旋转90后,得到△AFC ,连接DF .(1)试说明:△AED ≌△AFD ;(2)当BE=3,CE=9时,求∠BCF 的度数和DE 的长;(3)如图2,△ABC 和△ADE 都是等腰直角三角形,∠BAC=∠DAE=90°,D 是斜边BC 所在直线上一点,BD=3,BC=8,求DE 2的长.【答案】(1)略(2)∠BCF=90° DE=5 (3)34或130【解析】试题分析:()1由ABE AFC ≌, 得到AE AF =,BAE CAF ∠=∠,45,EAD ∠=45,BAE CAD ∴∠+∠=45,CAF CAD ∴∠+∠=即45.DAF ∠=EAD DAF ∠=∠,从而得到.AED AFD ≌ ()2 由△AED AFD ≌得到ED FD =,再证明90DCF ∠=︒,利用勾股定理即可得出结论. ()3过点A 作AH BC ⊥于H ,根据等腰三角形三线合一得,1 4.2AH BH BC === 1DH BH BD =-=或7,DH BH BD =+=求出AD 的长,即可求得2DE .试题解析:()1ABE AFC ≌,AE AF =,BAE CAF ∠=∠,45,EAD ∠=90,BAC ∠=45,BAE CAD ∴∠+∠=45,CAF CAD ∴∠+∠=即45.DAF ∠=在AED 和AFD 中,{AF AEEAF DAE AD AD ,=∠=∠=.AED AFD ∴≌()2AED AFD ≌,ED FD ∴=,,90.AB AC BAC =∠=︒45B ACB ∴∠=∠=︒,45ACF ,∠=︒ 90.BCF ∴∠=︒设.DE x =,9.DF DE x CD x ===- 3.FC BE ==222,FC DC DF +=()22239.x x ∴+-=解得: 5.x =故 5.DE = ()3过点A 作AH BC ⊥于H ,根据等腰三角形三线合一得,1 4.2AH BH BC === 1DH BH BD =-=或7,DH BH BD =+= 22217AD AH DH =+=或65.22234DE AD ==或130.点睛:D 是斜边BC 所在直线上一点,注意分类讨论.3.如图,∠BAD=∠CAE=90°,AB=AD ,AE=AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠FAE 的度数;(3)求证:CD=2BF+DE .【答案】(1)证明见解析;(2)∠FAE=135°;(3)证明见解析.【解析】【分析】(1)根据已知条件易证∠BAC=∠DAE ,再由AB=AD ,AE=AC ,根据SAS 即可证得△ABC ≌△ADE ;(2)已知∠CAE=90°,AC=AE ,根据等腰三角形的性质及三角形的内角和定理可得∠E=45°,由(1)知△BAC ≌△DAE ,根据全等三角形的性质可得∠BCA=∠E=45°,再求得∠CAF=45°,由∠FAE=∠FAC+∠CAE 即可得∠FAE 的度数;(3)延长BF 到G ,使得FG=FB ,易证△AFB ≌△AFG ,根据全等三角形的性质可得AB=AG ,∠ABF=∠G ,再由△BAC ≌△DAE ,可得AB=AD ,∠CBA=∠EDA ,CB=ED ,所以AG=AD ,∠ABF=∠CDA ,即可得∠G=∠CDA ,利用AAS 证得△CGA ≌△CDA ,由全等三角形的性质可得CG=CD ,所以CG=CB+BF+FG=CB+2BF=DE+2BF .【详解】(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE ,在△BAC 和△DAE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩, ∴△BAC ≌△DAE (SAS );(2)∵∠CAE=90°,AC=AE ,∴∠E=45°,由(1)知△BAC ≌△DAE ,∴∠BCA=∠E=45°,∵AF ⊥BC ,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF 到G ,使得FG=FB ,∵AF ⊥BG ,∴∠AFG=∠AFB=90°,在△AFB 和△AFG 中,BF F AFB AFG AF AF G =⎧⎪∠=∠⎨⎪=⎩, ∴△AFB ≌△AFG (SAS ),∴AB=AG ,∠ABF=∠G ,∵△BAC ≌△DAE ,∴AB=AD ,∠CBA=∠EDA ,CB=ED ,∴AG=AD ,∠ABF=∠CDA ,∴∠G=∠CDA ,在△CGA 和△CDA 中,GCA DCA CGA CDA AG AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△CGA ≌△CDA ,∴CG=CD ,∵CG=CB+BF+FG=CB+2BF=DE+2BF ,∴CD=2BF+DE .【点睛】本题考查全等三角形的判定与性质,解决第3问需作辅助线,延长BF到G,使得FG=FB,证得△CGA≌△CDA是解题的关键.4.如图,在△ABC中,∠ABC为锐角,点D为直线BC上一动点,以AD为直角边且在AD 的右侧作等腰直角三角形ADE,∠DAE=90°,AD=AE.(1)如果AB=AC,∠BAC=90°.①当点D在线段BC上时,如图1,线段CE、BD的位置关系为___________,数量关系为___________②当点D在线段BC的延长线上时,如图2,①中的结论是否仍然成立,请说明理由.(2)如图3,如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.探究:当∠ACB多少度时,CE⊥BC?请说明理由.【答案】(1)①垂直,相等.②都成立,理由见解析;(2)45°,理由见解析【解析】【分析】(1)①根据∠BAD=∠CAE,BA=CA,AD=AE,运用“SAS”证明△ABD≌△ACE,根据全等三角形性质得出对应边相等,对应角相等,即可得到线段CE、BD之间的关系;②先根据“SAS”证明△ABD≌△ACE,再根据全等三角形性质得出对应边相等,对应角相等,即可得到①中的结论仍然成立;(2)先过点A作AG⊥AC交BC于点G,画出符合要求的图形,再结合图形判定△GAD≌△CAE,得出对应角相等,即可得出结论.【详解】(1):(1)CE与BD位置关系是CE⊥BD,数量关系是CE=BD.理由:如图1,∵∠BAD=90°-∠DAC,∠CAE=90°-∠DAC,∴∠BAD=∠CAE.又 BA=CA,AD=AE,∴△ABD≌△ACE (SAS)∴∠ACE=∠B=45°且 CE=BD.∵∠ACB=∠B=45°,∴∠ECB=45°+45°=90°,即 CE⊥BD.故答案为垂直,相等;②都成立,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,∴∠BAD=∠CAE,在△DAB与△EAC中,AD AEBAD CAEAB AC⎧⎪∠∠⎨⎪⎩===∴△DAB≌△EAC,∴CE=BD,∠B=∠ACE,∴∠ACB+∠ACE=90°,即CE⊥BD;(2)当∠ACB=45°时,CE⊥BD(如图).理由:过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,∵∠ACB=45°,∠AGC=90°﹣∠ACB,∴∠AGC=90°﹣45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG,在△GAD与△CAE中,AC AGDAG EACAD AE⎧⎪∠∠⎨⎪⎩===∴△GAD≌△CAE,∴∠ACE=∠AGC=45°,∠BCE=∠ACB+∠ACE=45°+45°=90°,即CE⊥B C.5.如图1,在ABC ∆中,ACB ∠是直角,60B ∠=︒,AD 、CE 分别是BAC ∠、BCA ∠的平分线,AD 、CE 相交于点F .(1)求出AFC ∠的度数;(2)判断FE 与FD 之间的数量关系并说明理由.(提示:在AC 上截取CG CD =,连接FG .)(3)如图2,在△ABC ∆中,如果ACB ∠不是直角,而(1)中的其它条件不变,试判断线段AE 、CD 与AC 之间的数量关系并说明理由.【答案】(1)∠AFC =120°;(2)FE 与FD 之间的数量关系为:DF =EF .理由见解析;(3)AC =AE+CD .理由见解析.【解析】【分析】(1)根据三角形的内角和性质只要求出∠FAC ,∠ACF 即可解决问题;(2)根据在图2的 AC 上截取CG=CD ,证得△CFG ≌△CFD (SAS),得出DF= GF ;再根据ASA 证明△AFG ≌△AFE ,得EF=FG ,故得出EF=FD ;(3)根据(2) 的证明方法,在图3的AC 上截取AG=AE ,证得△EAF ≌△GAF (SAS)得出∠EFA=∠GFA ;再根据ASA 证明△FDC ≌△FGC ,得CD=CG 即可解决问题.【详解】(1)解:∵∠ACB =90°,∠B =60°,∴∠BAC =90°﹣60°=30°,∵AD 、CE 分别是∠BAC 、∠BCA 的平分线,∴∠FAC =15°,∠FCA =45°,∴∠AFC =180°﹣(∠FAC+∠ACF )=120°(2)解:FE 与FD 之间的数量关系为:DF =EF .理由:如图2,在AC 上截取CG =CD ,∵CE 是∠BCA 的平分线,∴∠DCF =∠GCF ,在△CFG和△CFD中,CG CDDCF GCFCF CF=⎧⎪∠=∠⎨⎪=⎩,∴△CFG≌△CFD(SAS),∴DF=GF.∠CFD=∠CFG由(1)∠AFC=120°得,∴∠CFD=∠CFG=∠AFE=60°,∴∠AFG=60°,又∵∠AFE=∠CFD=60°,∴∠AFE=∠AFG,在△AFG和△AFE中,AFE AFGAF AFEAF GAF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AFG≌△AFE(ASA),∴EF=GF,∴DF=EF;(3)结论:AC=AE+CD.理由:如图3,在AC上截取AG=AE,同(2)可得,△EAF≌△GAF(SAS),∴∠EFA=∠GFA,AG=AE∵∠BAC+∠BCA=180°-∠B=180°-60°=120°∴∠AFC=180°﹣(∠FAC+∠FCA)=180°-12(∠BAC+∠BCA)=180°-12×120°=120°,∴∠EFA=∠GFA=180°﹣120°=60°=∠DFC,∴∠CFG=∠CFD=60°,同(2)可得,△FDC≌△FGC(ASA),∴CD=CG,∴AC=AG+CG=AE+CD.【点睛】本题考查了全等三角形的判定和性质的运用,全等三角形的判定和性质是证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造全等三角形.6.综合实践如图①,90,,,ACB AC BC AD CE BE CE ∠=︒=⊥⊥,垂足分别为点D E 、,2.5, 1.7AD cm DE cm ==.(1)求BE 的长;(2)将CE 所在直线旋转到ABC ∆的外部,如图②,猜想AD DE BE 、、之间的数量关系,直接写出结论,不需证明;(3)如图③,将图①中的条件改为:在ABC ∆中,,AC BC D C E =、、三点在同一直线上,并且BEC ADC BCA α∠=∠=∠=,其中α为任意钝角.猜想AD DE BE 、、之间的数量关系,并证明你的结论.【答案】(1)0.8cm;(2)DE=AD+BE;(3)DE=AD+BE ,证明见解析.【解析】【分析】(1)本小题只要先证明ACD CBE ≅,得到AD CE =,CD BE =,再根据2.5, 1.7AD cm DE cm ==,CD CE DE =-,易求出BE 的值;(2)先证明ACD CBE ≅,得到AD CE =,CD BE =,由图②ED=EC+CD ,等量代换易得到AD DE BE 、、之间的关系;(3)本题先证明EBC DCA ∠=∠,然后运用“AAS”定理判定BEC CDA ≅,从而得到,BE CD EC AD ==,再结合图③中线段ED 的特点易找到AD DE BE 、、之间的数量关系.【详解】解:(1)∵,AD CD BE CE ⊥⊥∴90ADC E ︒∠=∠=∴90ACD DAC ︒∠+∠=∵90ACB ︒∠=∴90ACD BCE ︒∠+∠=∴ACD BCE ∠=∠在ACD 与CBE △中,90ADC E ACD BCEAC BC ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩∴ACD CBE ≅∴,AD CE CD BE ==又∵ 2.5, 1.7AD cm DE cm ==, 2.5 1.70.8()CD CE DE AD DE cm =-=-=-= ∴0.8BE cm =(2)∵,AD CD BE CE ⊥⊥∴90ADC E ︒∠=∠=∴90ACD DAC ︒∠+∠=∴90ACB ︒∠=∴90ACD BCE ︒∠+∠=∴ACD BCE ∠=∠在ACD 与CBE △中,90ADC E ACD BCE AC BC ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩∴ACD CBE ≅∴,AD CE CD BE ==又∵ED EC CD =+∴ED AD BE =+(3)∵BEC ADC BCA α∠=∠=∠=∴180BCE ACD a ︒∠+∠=-180BCE BCE a ︒∠+∠=-∴ACD BCE ∠=∠在ACD 与CBE △中, ADC E a ACD BCE AC BC ∠=∠=⎧⎪∠=∠⎨⎪=⎩∴ACD CBE ≅∴,AD CE CD BE ==又∵ED EC CD =+∴ED AD BE =+【点睛】本题考查的知识点是全等三角形的判定,确定一种判定定理,根据已知条件找到判定全等所需要的边相等或角相等的条件是解决这类题的关键.7.(1)问题发现:如图(1),已知:在三角形ABC ∆中,90BAC ︒∠=,AB AC =,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为点,D E ,试写出线段,BD DE 和CE 之间的数量关系为_________________.(2)思考探究:如图(2),将图(1)中的条件改为:在ABC ∆中, ,,,AB AC D A E =三点都在直线l 上,并且BDA AEC BAC α∠=∠=∠=,其中α为任意锐角或钝角.请问(1)中结论还是否成立?若成立,请给出证明;若不成立,请说明理由.(3)拓展应用:如图(3),,D E 是,,D A E 三点所在直线m 上的两动点,(,,D A E 三点互不重合),点F 为BAC ∠平分线上的一点,且ABF ∆与ACF ∆均为等边三角形,连接,BD CE ,若BDA AEC BAC ∠=∠=∠,试判断DEF ∆的形状并说明理由.【答案】(1)DE=CE+BD ;(2)成立,理由见解析;(3)△DEF 为等边三角形,理由见解析.【解析】【分析】(1)利用已知得出∠CAE=∠ABD ,进而根据AAS 证明△ABD 与△CAE 全等,然后进一步求解即可;(2)根据BDA AEC BAC α∠=∠=∠=,得出∠CAE=∠ABD ,在△ADB 与△CEA 中,根据AAS 证明二者全等从而得出AE=BD ,AD=CE ,然后进一步证明即可;(3)结合之前的结论可得△ADB 与△CEA 全等,从而得出BD=AE ,∠DBA=∠CAE ,再根据等边三角形性质得出∠ABF=∠CAF=60°,然后进一步证明△DBF 与△EAF 全等,在此基础上进一步证明求解即可.【详解】(1)∵BD ⊥直线l ,CE ⊥直线l ,∴∠BDA=∠AEC=90°,∴∠BAD+∠ABD=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∴∠CAE=∠ABD ,在△ABD 与△CAE 中,∵∠ABD=∠CAE ,∠BDA=∠AEC ,AB=AC ,∴△ABD ≌△CAE(AAS),∴BD=AE ,AD=CE ,∵DE=AD+AE ,∴DE=CE+BD ,故答案为:DE=CE+BD ;(2)(1)中结论还仍然成立,理由如下:∵BDA AEC BAC α∠=∠=∠=,∴∠DBA+∠BAD=∠BAD+∠CAE=180°−α,∴∠CAE=∠ABD ,在△ADB 与△CEA 中,∵∠ABD=∠CAE ,∠ADB=∠CEA ,AB=AC ,∴△ADB ≌△CEA(AAS),∴AE=BD ,AD=CE ,∴BD+CE=AE+AD=DE ,即:DE=CE+BD ,(3)DEF ∆为等边三角形,理由如下:由(2)可知:△ADB ≌△CEA ,∴BD=EA ,∠DBA=∠CAE ,∵△ABF 与△ACF 均为等边三角形,∴∠ABF=∠CAF=60°,BF=AF ,∴∠DBA+∠ABF=∠CAE+CAF ,∴∠DBF=∠FAE ,在△DBF 与△EAF 中,∵FB=FA ,∠FDB=∠FAE ,BD=AE ,∴△DBF ≌△EAF(SAS),∴DF=EF ,∠BFD=∠AFE ,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF 为等边三角形.【点睛】本题主要考查了全等三角形性质与判定的综合运用,熟练掌握相关概念是解题关键.8.如图,在ABC ∆中,5BC = ,高AD 、BE 相交于点O , 23BD CD =,且AE BE = . (1)求线段 AO 的长;(2)动点 P 从点 O 出发,沿线段 OA 以每秒 1 个单位长度的速度向终点 A 运动,动点 Q 从 点 B 出发沿射线BC 以每秒 4 个单位长度的速度运动,,P Q 两点同时出发,当点 P 到达 A 点时,,P Q 两点同时停止运动.设点 P 的运动时间为 t 秒,POQ ∆的面积为 S ,请用含t 的式子表示 S ,并直接写出相应的 t 的取值范围;(3)在(2)的条件下,点 F 是直线AC 上的一点且 CF BO =.是否存在t 值,使以点 ,,B O P 为顶 点的三角形与以点 ,,F C Q 为顶点的三角形全等?若存在,请直接写出符合条件的 t 值; 若不存在,请说明理由.【答案】(1)5;(2)①当点Q 在线段BD 上时,24QD t =-,t 的取值范围是102t <<;②当点Q 在射线DC 上时,42QD t =-,,t 的取值范围是152t <≤;(3)存在,1t =或53. 【解析】【分析】(1)只要证明△AOE ≌△BCE 即可解决问题;(2)分两种情形讨论求解即可①当点Q 在线段BD 上时,QD=2-4t ,②当点Q 在射线DC 上时,DQ=4t-2时;(3)分两种情形求解即可①如图2中,当OP=CQ 时,BOP ≌△FCQ .②如图3中,当OP=CQ 时,△BOP ≌△FCQ ;【详解】解:(1)∵AD 是高,∴90ADC ∠=∵BE 是高,∴90AEB BEC ∠=∠=∴90EAO ACD ∠+∠=,90EBC ECB ∠+∠=,∴EAO EBC ∠=∠在AOE ∆和BCE ∆中,EAO EBC AE BEAEO BEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴AOE ∆≌BCE ∆∴5AO BC ==;(2)∵23BD CD =,=5BC ∴=2BD ,=3CD ,根据题意,OP t =,4BQ t =,①当点Q 在线段BD 上时,24QD t =-,∴21(24)22S t t t t =-=-+,t 的取值范围是102t <<. ②当点Q 在射线DC 上时,42QD t =-,∴21(42)22S t t t t =-=-,t 的取值范围是152t <≤ (3)存在. ①如图2中,当OP=CQ 时,∵OB=CF ,∠POB=∠FCQ ,∴△BOP ≌△FCQ .∴CQ=OP ,∴5-4t ═t ,解得t=1,②如图3中,当OP=CQ 时,∵OB=CF ,∠POB=∠FCQ ,∴△BOP ≌△FCQ .∴CQ=OP ,∴4t-5=t ,解得t=53. 综上所述,t=1或53s 时,△BOP 与△FCQ 全等. 【点睛】 本题考查三角形综合题、全等三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.9.如图,ABC ∆是等腰直角三角形,090BAC ∠=,点D 是直线BC 上的一个动点(点D 与点B C 、不重合),以AD 为腰作等腰直角ADE ∆,连接CE .(1)如图①,当点D 在线段BC 上时,直接写出,BC CE 的位置关系,线段,BC CD ,CE 之间的数量关系;(2)如图②,当点D 在线段BC 的延长线上时,试判断线段BC ,CE 的位置关系,线段,,BC CD CE 之间的数量关系,并说明理由;(3)如图③,当点D 在线段CB 的延长线上时,试判断线段,BC CE 的位置关系,线段,,BC CD CE 之间的数量关系,并说明理由.【答案】(1)见解析;(2)BC CE ⊥,CE BC CD =+,理由见解析;(3),BC CE CD BC CE ⊥=+,理由见解析【解析】【分析】(1)根据条件AB=AC ,∠BAC=90°,AD=AE ,∠DAE=90°,判定△ABD ≌△ACE (SAS ),利用两角的和即可得出BC CE ⊥;利用线段的和差即可得出BC CE CD =+;(2)同(1)的方法根据SAS 证明△ABD ≌△ACE ,得出BD=CE ,∠ACE=∠ABD ,从而得出结论;(3)先根据SAS 证明△ABD ≌△ACE ,得出ADB AEC ∠=∠,BD CE =,从而得出结论.【详解】(1)∵△ABC 、△ADE 是等腰直角三角形,∴AB=AC ,AE =AD ,在△△ABD 和△ACE 中90AB AC BAC DAE AD AE ⎧⎪∠∠=︒⎨⎪⎩=== , ∴△ABD ≌△ACE (SAS ),∴∠B =∠ACE ,BD=CE,又∵△ABC 是等腰直角三角形,∴∠B+∠ACB=90︒,∴∠ACE +∠ACB=90︒,即BC CE ⊥,∵BC=BD+CD, BD=CE ,∴BC CE CD =+;(2)BC CE ⊥,CE BC CD =+,理由如下:∵ABC ∆、ADE ∆是等腰直角三角形,∴0,,90AB AC AD AE BAC DAE ==∠=∠=,∴BAC DAC DAE DAC ∠+∠=∠+∠即BAD CAE ∠=∠,在ABD ∆和ACE ∆中AB AC BAD CAE AD AE ⎧⎪∠=∠⎨⎪⎩== ∴()ABD ACE SAS ∆≅∆∴BD CE =∵BD BC CD =+∴CE BC CD =+,∴ABD ACE ∠=∠,∵090ABD ACE ∠+∠=∴090ACE ACB ∠+∠=∴BC CE ⊥.(3),BC CE CD BC CE ⊥=+,理由如下:∵ABC ADE ∆∆、是等腰直角三角形,∴0,,90AB AC AD AE BAC DAE ==∠=∠=,∴BAC BAE DAE BAE ∠-∠=∠-∠,即BAD CAE ∠=∠,在ABD ∆和ACE ∆中 AB AC BAD CAE AD AE ⎧⎪∠=∠⎨⎪⎩== ∴()ABD ACE SAS ∆≅∆,∴ADB AEC ∠=∠,BD CE =,∵CD BD BC =+,∴CD CE BC =+,∵090ADE AED ∠+∠=,即090ADB CDE AED ∠+∠+∠=∴090AEC CDE AED ∠+∠+∠=,∴090DCE ∠=,即BC CE ⊥.【点睛】考查了全等三角形的判定与性质以及等腰直角三角形的性质的运用,解题关键是根据利用两边及其夹角分别对应相等的两个三角形全等判定三角形全等.10.综合与实践:我们知道“两边及其中一边的对角分别对应相等的两个三角形不一定全等”.但是,乐乐发现:当这两个三角形都是锐角三角形时,它们会全等.(1)请你用所学知识判断乐乐说法的正确性.如图,已知ABC ∆、111A B C ∆均为锐角三角形,且11AB A B =,11BC B C =,1C C ∠=∠. 求证:111ABC A B C ∆∆≌.(2)除乐乐的发现之外,当这两个三角形都是______时,它们也会全等.【答案】(1)见解析;(2)钝角三角形或直角三角形.【解析】【分析】(1)过B 作BD ⊥AC 于D ,过B 1作B 1D 1⊥B 1C 1于D 1,得出∠BDA=∠B 1D 1A 1=∠BDC=∠B 1D 1C 1=90°,根据SAS 证△BDC ≌△B 1D 1C 1,推出BD=B 1D 1,根据HL 证Rt △BDA ≌Rt △B 1D 1A 1,推出∠A=∠A 1,根据AAS 推出△ABC ≌△A 1B 1C 1即可.(2)当这两个三角形都是直角三角形时,直接利用HL 即可证明;当这两个三角形都是钝角三角形时,与(1)同理可证.【详解】(1)证明:过点B 作BD AC ⊥于D ,过1B 作1111B D A C ⊥于1D ,则11111190BDA B D A BDC B D C ∠=∠=∠=∠=︒.在BDC ∆和111B D C ∆中,1C C ∠=∠,111BDC B D C ∠=∠,11BC B C =,∴111BDC B D C ∆∆≌,∴11BD B D =.在Rt BDA ∆和111Rt B D A ∆中,11AB A B =,11BD B D =,∴111Rt Rt (HL)BDA B D A ∆∆≌,∴1A A ∠=∠.在ABC ∆和111A B C ∆中,1C C ∠=∠,1A A ∠=∠,11AB A B =,∴111(AAS)ABC A B C ∆∆≌.(2)如图,当这两个三角形都是直角三角形时,∵11AB A B =,11BC B C =,190C C ∠==∠︒.∴Rt ABC ∆≌111Rt A B C ∆(HL );∴当这两个三角形都是直角三角形时,它们也会全等;如图,当这两个三角形都是钝角三角形时,作BD ⊥AC ,1111B D A C ⊥,与(1)同理,利用AAS 先证明111BDC B D C ∆∆≌,得到11BD B D =,再利用HL 证明111Rt Rt BDA B D A ∆∆≌,得到1A A ∠=∠,再利用AAS 证明111ABC A B C ∆∆≌;∴当这两个三角形都是钝角三角形时,它们也会全等;故答案为:钝角三角形或直角三角形.【点睛】本题考查了全等三角形的性质和判定的应用,主要考查学生的推理能力.解题的关键是熟练掌握证明三角形全等的方法.。
八年级数学上册全等三角形单元试卷(word版含答案)一、八年级数学轴对称三角形填空题(难)1.如图,在菱形ABCD中,∠ABC=120°,AB=10cm,点P是这个菱形内部或边上的一点.若以P,B,C为顶点的三角形是等腰三角形,则P,A(P,A两点不重合)两点间的最短距离为______cm.-【答案】10310【解析】解:连接BD,在菱形ABCD中,∵∠ABC=120°,AB=BC=AD=CD=10,∴∠A=∠C=60°,∴△ABD,△BCD都是等边三角形,分三种情况讨论:①若以边BC为底,则BC垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短”,即当点P与点D重合时,PA最小,最小值PA=10;②若以边PB为底,∠PCB为顶角时,以点C为圆心,BC长为半径作圆,与AC相交于一点,则弧BD(除点B外)上的所有点都满足△PBC是等腰三角形,当点P在AC上时,AP-;最小,最小值为10310③若以边PC为底,∠PBC为顶角,以点B为圆心,BC为半径作圆,则弧AC上的点A与点D均满足△PBC为等腰三角形,当点P与点A重合时,PA最小,显然不满足题意,故此种情况不存在;-(cm).综上所述,PA的最小值为10310-.故答案为:10310点睛:本题考查菱形的性质、等边三角形的性质,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.2.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P有_____个.【答案】4【解析】【分析】由A点坐标可得OA=22,∠AOP=45°,分别讨论OA为腰和底边,求出点P在x轴正半轴和负半轴时,△APO是等腰三角形的P点坐标即可.【详解】(1)当点P在x轴正半轴上,①如图,以OA为腰时,∵A的坐标是(2,2),∴∠AOP=45°,OA=22,当∠AOP为顶角时,OA=OP=22,当∠OAP为顶角时,AO=AP,∴OPA=∠AOP=45°,∴∠OAP=90°,∴OP=2OA=4,∴P的坐标是(4,0)或(22,0).②以OA为底边时,∵点A的坐标是(2,2),∴∠AOP=45°,∵AP=OP,∴∠OAP=∠AOP=45°,∴∠OPA=90°,∴OP=2,∴P点坐标为(2,0).(2)当点P在x轴负半轴上,③以OA为腰时,∵A的坐标是(2,2),∴OA=22,∴OA=OP=22,∴P的坐标是(﹣22,0).综上所述:P的坐标是(2,0)或(4,0)或(22,0)或(﹣22,0).故答案为:4.【点睛】此题主要考查等腰三角形的判定及坐标与图形性质的综合运用,注意分类讨论思想的运用是解题关键.3.在锐角三角形ABC中.BC=32,∠ABC=45°,BD平分∠ABC.若M,N分别是边BD,BC上的动点,则CM+MN的最小值是____.【答案】4【解析】【分析】过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC于N′,则CE即为CM+MN 的最小值,再根据32ABC=45°,BD平分∠ABC可知△BCE是等腰直角三角形,由锐角三角函数的定义即可求出CE的长.【详解】解:过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC于N′,则CE 即为CM+MN 的最小值,∵BC=32,∠ABC=45°,BD 平分∠ABC ,∴△BCE 是等腰直角三角形,∴CE=BC•cos45°=32×22=4. ∴CM+MN 的最小值为4.【点睛】本题考查了轴对称最短路线问题,难度较大,根据题意作出辅助线,构造出等腰直角三角形,利用锐角三角函数的定义求解是解答此题的关键.4.如图,在Rt ABC △中,AC BC =,D 是线段AB 上一个动点,把ACD 沿直线CD 折叠,点A 落在同一平面内的A '处,当A D '平行于Rt ABC △的直角边时,ADC ∠的大小为________.【答案】112.5︒或67.5︒【解析】【分析】当A D '平行于Rt ABC △的直角边时,有两种情况,一是当A D BC '时,二是当A D AC '时,两种情况根据折叠的性质及等腰三角形的性质进行角度的计算即可.【详解】如图1,当点D 在线段AB 上,且A D BC '时,45A DB B '∠=∠=︒,45180ADC A DC '∴∠+∠-=︒︒,解得112.5A DC ADC '∠=∠=︒.图1如图2,当A D AC '时,45A DB A '∠=∠=︒,45180ADC A DC '∴∠+∠+=︒︒,解得67.5A DC ADC '∠=∠=︒.图2【点睛】本题考查了翻折变换的性质,等腰直角三角形的性质,掌握折叠的性质是解题关键.5.如图,在四边形ABCD 中,∠A +∠C =180°,E 、F 分别在BC 、CD 上,且AB =BE ,AD =DF ,M 为EF 的中点,DM =3,BM =4,则五边形ABEFD 的面积是_____.【答案】12【解析】【分析】延长BM 至G ,使MG =BM ,连接FG 、DG ,证明△BME ≌△GMF (SAS ),得出FG =BE ,∠MBE =∠MGF ,证出AB =FG ,证明△DAB ≌△DFG (SAS ),得出DB =DG ,由等腰三角形的性质即可得DM ⊥BM ,由五边形ABEFD 的面积=△DBG 的面积,可求解.【详解】延长BM 至G ,使MG =BM =4,连接FG 、DG ,如图所示:∵M 为EF 中点,∴ME =MF ,在△BME 和△GMF 中,BM MG BME GMFME MF =⎧⎪∠=∠⎨⎪=⎩, ∴△BME ≌△GMF (SAS ),∴FG =BE ,∠MBE =∠MGF ,S △BEM =S △GFM ,∴FG ∥BE ,∴∠C =∠GFC ,∵∠A +∠C =180°,∠DFG +∠GFC =180°,∴∠A =∠DFG ,∵AB =BE ,∴AB =FG ,在△DAB 和△DFG 中,AB FG A DFGAD DF =⎧⎪∠=∠⎨⎪=⎩, ∴△DAB ≌△DFG (SAS ),∴DB =DG ,S △DAB =S △DFG ,∵MG =BM ,∴DM ⊥BM ,∴五边形ABEFD 的面积=△DBG 的面积=12×BG ×DM =12×8×3=12, 故答案为:12.【点睛】本题考查了全等三角形的判定与性质、平行线的性质、等腰三角形的判定与性质等知识;熟练掌握等腰三角形的判定由性质,证明三角形全等是解题的关键.6.如图,30AOB ∠=︒,P 是AOB ∠内一点,10PO =.若Q 、R 分别是边OA 、OB 上的动点,则PQR ∆周长的最小值为_______.【答案】10【解析】【分析】作点P 关于OB 的对称点P′,点P 关于OA 的对称点P″,连接P′P″交OB 于R ,交OA 于Q ,连接PR 、PQ ,如图3,利用对称的性质得到△PQR 周长=P′P″,根据两点之间线段最短可判断此时△PQR 周长最小,最小值为P′P″的长,再证明△P′OP″为等边三角形得到P′P″=OP′=OP=10,从而得到△PQR 周长的最小值【详解】解:作点P 关于OB 的对称点P′,点P 关于OA 的对称点P″,连接P′P″交OB 于R ,交OA 于Q ,连接PR 、PQ ,如图3,则OP=OP′,OP=OP″,RP=RP′,QP=QP″,∴△PQR 周长=PR+RQ+PQ=RP′+RQ+QP″=P′P″,∴此时△PQR 周长最小,最小值为P′P″的长,∵由对称性可知OP=OP′,OP=OP″,PP′⊥OB ,PP″⊥OA ,∴∠1=∠2,∠3=∠4,∴∠P′OP″=∠1+∠2+∠3+∠4=2∠2+2∠3=2∠BOA=60°,∴△P′OP″为等边三角形,∴P′P″=OP′=OP=10,故答案是:10.【点睛】本题考查了几何变换综合题:熟练掌握轴对称的性质和等边三角形的性质;会利用两点之间线段最短解决最短路径问题.7.如图,过边长为1的等边三角形ABC的边AB上一点P,作PE⊥AC于点E,Q为BC延长线上一点,当AP=CQ时,PQ交AC于D,则DE的长为______.【答案】1 2【解析】过点Q作AD的延长线的垂线于点F.因为△ABC是等边三角形,所以∠A=∠ACB=60°.因为∠ACB=∠QCF,所以∠QCF=60°.因为PE⊥AC,QF⊥AC,所以∠AEP=∠CFQ=90°,又因为AP=CQ,所以△AEP≌△CFQ,所以AE=CF,PE=QC.同理可证,△DEP≌△DFQ,所以DE=DF.所以AC=AE+DE+CD=DE+CD+CF=DE+DF=2DE,所以DE=12AC=12.故答案为1 2 .8.如图,∠BOC=60°,点A是BO延长线上的一点,OA=10cm,动点P从点A出发沿AB 以2cm/s的速度移动,动点Q从点O出发沿OC以1cm/s的速度移动,如果点P、Q同时出发,用t(s)表示移动的时间,当t=_____s时,△POQ是等腰三角形.【答案】103或10【解析】【分析】根据△POQ是等腰三角形,分两种情况进行讨论:点P在AO上,点P在BO上,分别计算,即可得解.【详解】当PO=QO时,△POQ是等腰三角形,如图1所示当点P在AO上时,∵PO=AO-AP=10-2t,OQ=t当PO=QO时,102t t-=解得103 t=当PO=QO 时,△POQ 是等腰三角形,如图2所示当点P 在BO 上时∵PO=AP-AO=2t-10,OQ=t当PO=QO 时,210t t -=解得10t =故答案为:103或10 【点睛】本题考查等腰三角形的性质及动点问题,熟练掌握等腰三角形的性质以及分类讨论思想是解题关键.9.如图,D 为ABC ∆内一点,CD 平分ACB ∠,BD CD ⊥,A ABD ∠=∠,若8AC =,5BC =,则BD 的长为_______.【答案】1.5【解析】【分析】延长BD 交AC 边于点E ,根据BD⊥CD,CD 平分∠ACB,得到三角形全等,由此求出AE 的长,再根据A ABD ∠=∠,求出BE 的长即可求得BD.【详解】延长BD 交AC 于点E ,∵BD⊥CD,∴∠BDC=∠EDC=900,∵CD 平分∠ACB,∴∠BCD=∠ECD又∵CD=CD∴△BCD≌△ECD∴BD=ED,CE=BC=5,∴AE=AC -CE=8-5=3,∵A ABD ∠=∠,∴BE=AE=3,∴BD=1.5【点睛】此题考察等腰三角形的性质,延长BD构建全等三角形是证明此题的关键.10.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为_________【答案】8 5【解析】【分析】首先根据折叠可得CD=AC=6,B′C=BC=8,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,然后求得△ECF是等腰直角三角形,进而求得∠B′FD=90°,CE=EF=4.8,由勾股定理求出AE,得出BF 的长,即B′F的长.【详解】解:根据折叠的性质可知:DE=AE,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,B′F=BF,∴B′D=8-6=2,∠DCE+∠B′CF=∠ACE+∠BCF,∵∠ACB=90°,∴∠ECF=45°,∴△ECF是等腰直角三角形,∴EF=CE,∠EFC=45°,∴∠BFC=∠B′FC=135°,∴∠B′FE=90°,∵S △ABC =12AC•BC=12AB•CE , ∴AC•BC=AB•CE , ∵根据勾股定理得:22226810ABAC BC ∴ 4.8AC BC CE AB⋅== ∴EF=4.8,22 3.6AE AC EC =-=∴B′F=BF=AB -AE-EF=10-3.6-4.8=1.6=85,故答案是:85.【点睛】此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理等知识;熟练掌握翻折变换的性质,由直角三角形的性质和勾股定理求出CE 、AE 是解决问题的关键.二、八年级数学轴对称三角形选择题(难)11.如图,平面直角坐标系中存在点A (3,2),点B (1,0),以线段AB 为边作等腰三角形ABP ,使得点P 在坐标轴上.则这样的P 点有( )A .4个B .5个C .6个D .7个【答案】D【解析】【分析】 本题是开放性试题,由题意知A 、B 是定点,P 是动点,所以要分情况讨论:以AP 、AB 为腰、以AP 、BP 为腰或以BP 、AB 为腰.则满足条件的点P 可求.【详解】由题意可知:以AP 、AB 为腰的三角形有3个;以AP 、BP 为腰的三角形有2个;以BP 、AB 为腰的三角形有2个.所以,这样的点P 共有7个.故选D .【点睛】本题考查了等腰三角形的判定及坐标与图形的性质;分类别寻找是正确解答本题的关键.12.如图,在等边三角形ABC中,在AC边上取两点M、N,使∠MBN=30°.若AM=m,MN=x,CN=n,则以x,m,n为边长的三角形的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.随x,m,n的值而定【答案】C【解析】【分析】将△ABM绕点B顺时针旋转60°得到△CBH.连接HN.想办法证明∠HCN=120°HN=MN=x即可解决问题.【详解】将△ABM绕点B顺时针旋转60°得到△CBH.连接HN.∵△ABC是等边三角形,∴∠ABC=∠ACB=∠A=60°.∵∠MON=30°,∴∠CBH+∠CBN=∠ABM+∠CBN=30°,∴∠NBM=∠NBH.∵BM=BH,BN=BN,∴△NBM≌△NBH,∴MN=NH=x.∵∠BCH=∠A=60°,CH=AM=n,∴∠NCH=120°,∴x,m,n为边长的三角形△NCH是钝角三角形.故选C.【点睛】本题考查了等边三角形的性质、全等三角形的判定和性质、旋转的性质等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,属于中考常考题型.13.如图,△ABC中,AB=AC,且∠ABC=60°,D为△ABC内一点,且DA=DB,E为△ABC 外一点,BE=AB,且∠EBD=∠CBD,连DE,CE. 下列结论:①∠DAC=∠DBC;②BE⊥AC ;③∠DEB=30°. 其中正确的是()A .①...B .①③...C .② ...D .①②③【答案】B【解析】【分析】 连接DC,证ACD BCD DAC DBC ∠∠≅=得出①,再证BED BCD ≅,得出BED BCD 30∠∠==︒;其它两个条件运用假设成立推出答案即可.【详解】解:证明:连接DC ,∵△ABC 是等边三角形,∴AB=BC=AC ,∠ACB=60°,∵DB=DA ,DC=DC ,在△ACD 与△BCD 中,AB BC DB DA DC DC =⎧⎪=⎨⎪=⎩, ∴△ACD ≌△BCD (SSS ),由此得出结论①正确;∴∠BCD=∠ACD=1302ACB ∠=︒ ∵BE=AB ,∴BE=BC ,∵∠DBE=∠DBC ,BD=BD , 在△BED 与△BCD 中,BE BC DBE DBC BD BD =⎧⎪∠=∠⎨⎪=⎩, ∴△BED ≌△BCD (SAS ),∴∠DEB=∠BCD=30°.由此得出结论③正确;∵EC ∥AD ,∴∠DAC=∠ECA ,∵∠DBE=∠DBC ,∠DAC=∠DBC ,∴设∠ECA=∠DBC=∠DBE=∠1,∵BE=BA ,∴BE=BC ,∴∠BCE=∠BEC=60°+∠1,在△BCE 中三角和为180°,∴2∠1+2(60°+∠1)=180°∴∠1=15°,∴∠CBE=30,这时BE 是AC 边上的中垂线,结论②才正确.因此若要结论②正确,需要添加条件EC ∥AD.故答案为:B.【点睛】本题考查的知识点主要是全等三角形的判定与性质以及等边三角形的性质,通过已知条件作出恰当的辅助线是解题的关键点.14.如图,等腰ABC ∆中,AB AC =,120BAC ∠=,AD BC ⊥于点D ,点P 是BA 延长线上一点,点O 是线段AD 上一点,OP OC =.下列结论:①30APO DCO ∠+∠=;②APO DCO ∠=∠;③OPC ∆是等边三角形;④AB AO AP =+.其中正确结论的个数是( )A .1B .2C .3D .4【答案】D【解析】【分析】 ①②连接OB ,根据垂直平分线性质即可求得OB=OC=OP ,即可解题;③根据周角等于360°和三角形内角和为180°即可求得∠POC=2∠ABD=60°,即可解题;④AB 上找到Q 点使得AQ=OA ,易证△BQO≌△PAO,可得PA=BQ ,即可解题.【详解】连接OB ,∵AB AC =,AD ⊥BC ,∴AD 是BC 垂直平分线,∴OB OC OP ==,∴APO ABO ∠=∠,DBO DCO ∠=∠,∵AB=AC ,∠BAC =120∘∴30ABC ACB ∠=∠=︒∴30ABO DBO ∠+∠=︒,∴30APO DCO ∠+∠=.故①②正确;∵OBP ∆中,180BOP OPB OBP ∠=︒-∠-∠,BOC ∆中,180BOC OBC OCB ∠=︒-∠-∠,∴360POC BOP BOC OPB OBP OBC OCB ∠=︒-∠-∠=∠+∠+∠+∠,∵OPB OBP ∠=∠,OBC OCB ∠=∠,∴260POC ABD ∠=∠=︒,∵PO OC ,∴OPC ∆是等边三角形,故③正确;在AB 上找到Q 点使得AQ=OA ,则AOQ ∆为等边三角形,则120BQO PAO ∠=∠=︒,在BQO ∆和PAO ∆中,BQO PAO QBO APO OB OP ∠∠⎧⎪∠∠⎨⎪⎩===∴BQO PAO AAS ∆∆≌(),∴PA BQ =,∵AB BQ AQ =+,∴AB AO AP =+,故④正确.故选:D.【点睛】本题主要考查全等三角形的判定与性质、线段垂直平分线的性质,本题中求证BQO PAO ∆∆≌是解题的关键.15.如图,在△ABC 中,BC 的垂直平分线分别交AC ,BC 于点D ,E ,若△ABC 的周长为24,CE =4,则△ABD 的周长为( )A .16B .18C .20D .24【答案】A【解析】【分析】 根据线段的垂直平分线的性质和三角形的周长公式进行解答即可.【详解】解:∵DE 是BC 的垂直平分线,∴DB=DC ,BC=2CE=8又∵AABC 的周长为24,∴AB+BC+AC=24∴AB+AC=24-BC=24-8=16∴△ABD 的周长=AD+BD+AB=AD+CD+AB=AB+AC=16,故答案为A【点睛】本题考查的是线段的垂直平分线的性质,理解并应用线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.16.如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,在直线AC 上取一点P ,使得△PAB 为等腰三角形,则符合条件的点P 共有( )A .6个B .5个C .4个D .3个【答案】C【解析】【分析】根据等腰三角形的判定定理即可得到结论.【详解】解:根据题意,∵△PAB为等腰三角形,∴可分为:PA=PB,PA=AB,PB=AB三种情况,如图所示:∴符合条件的点P共有4个;故选择:C.【点睛】本题考查了等腰三角形的判定来解决实际问题,其关键是根据等腰三角形的判定定理解答.17.在平面直角坐标系中,等腰△ABC的顶点A、B的坐标分别为(1,0)、(2,3),若顶点C 落在坐标轴上,则符合条件的点C有( )个.A.9 B.7 C.8 D.6【答案】C【解析】【分析】要使△ABC是等腰三角形,可分三种情况(①若CA=CB,②若BC=BA,③若AC=AB)讨论,通过画图就可解决问题.【详解】①若CA=CB,则点C在AB的垂直平分线上.∵A(1,0),B(2,3),∴AB的垂直平分线与坐标轴有2个交点C1,C2.②若BC=BA,则以点B为圆心,BA为半径画圆,与坐标轴有3个交点(A点除外)C3,C4,C5;③若AC=AB,则以点A为圆心,AB为半径画圆,与坐标轴有4个交点C6,C7,C8,C9.而C8(0,-3)与A、B在同一直线上,不能构成三角形,故此时满足条件的点有3个.综上所述:符合条件的点C的个数有8个.故选C.【点睛】本题考查了等腰三角形的判定、垂直平分线的性质的逆定理等知识,还考查了动手操作的能力,运用分类讨论的思想是解答本题的关键.18.如图,已知△ABC与△CDE均是等边三角形,点B、C、E在同一条直线上,AE与BD 交于点O,AE与CD交于点G,AC与BD交于点F,连接OC、FG,则下列结论:①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC.其中正确结论的个数为( )A.1 B.2 C.3 D.4【答案】D【解析】【分析】根据题意,结合图形,对选项一一求证,即可得出正确选项.【详解】(1)△ABC和△DCE均是等边三角形,点B,C,E在同一条直线上,∴AC=BC,EC=DC,∠ACB=∠DCE=60°,∴∠ACE=∠BCD=120°.在△BCD和△ACE中,∵AC BCBCD ACECD CE=⎧⎪∠=∠⎨⎪=⎩,∴△BCD≌△ACE,∴AE=BD,故结论①正确;(2)∵△BCD≌△ECA,∴∠GAC=∠FBC.又∵∠ACG=∠BCF=60°,AC=BC,∴△ACG≌△BCF,∴AG=BF,故结论②正确;(3)∵△ACG≌△BCF,∴CG=CF.∵∠ACB=∠DCE=60°,∴∠ACD=60°,∴△FCG为等边三角形,∴∠FGC=60°,∴∠FGC=∠DCE,∴FG∥BE,故结论③正确;(4)过C作CN⊥AE于N,CZ⊥BD于Z,则∠CNE=∠CZD=90°.∵△ACE≌△BCD,∴∠CDZ=∠CEN.在△CDZ和△CEN中,CZD CNECDZ CENCD CE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CDZ≌△CEN,∴CZ=CN.∵CN⊥AE,CZ⊥BD,∴∠BOC=∠EOC,故结论④正确.综上所述:四个结论均正确.故选D.【点睛】本题综合考查了等边三角形的判定与性质,全等三角形的判定与性质,角平分线的判定定理等重要几何知识点,有一定难度,需要学生将相关知识点融会贯通,综合运用.19.如图,ABC△是等边三角形,ABD△是等腰直角三角形,∠BAD=90°,AE⊥BD于点E.连CD分别交AE,AB于点F,G,过点A做AH⊥CD交BD于点H,则下列结论:①∠ADC=15°;②AF=AG;③AH=DF;④△ADF≌△BAH;⑤DF=2EH.其中正确结论的个数为()A.5 B.4 C.3 D.2【答案】B【解析】【分析】①根据△ABC为等边三角形,△ABD为等腰直角三角形,可以得出各角的度数以及DA=AC,即可作出判断;②分别求出∠AFG和∠AGD的度数,即可作出判断;④根据三角形内角和定理求出∠HAB的度数,求证EHG DFA∠=∠,利用AAS即可证出两个三角形全等;③根据④证出的全等即可作出判断;⑤证明∠EAH=30°,即可得到AH=2EH,又由③可知AH DF=,即可作出判断.【详解】①正确:∵ABC △是等边三角形,∴60BAC ︒∠=,∴CA AB =.∵ABD △是等腰直角三角形,∴DA AB =.又∵90BAD ︒∠=,∴150CAD BAD BAC ︒∠=∠+∠=,∴DA CA =,∴()1180150152ADC ACD ︒︒︒∠=∠=-=; ②错误:∵∠EDF=∠ADB-∠ADC=30°∴∠DFE=90°-∠EDF=90°-30°=60°=∠AFG∵∠AGD=90°-∠ADG=90°-15°=75°∠AFG≠∠AGD∴AF≠AG③,④正确,由题意可得45DAF ABH ︒∠=∠=,DA AB =,∵AE BD ⊥,AH CD ⊥.∴180EHG EFG ︒∠+∠=.又∵180?DFA EFG ∠+∠=,∴EHG DFA ∠=∠,在DAF △和ABH 中 ()AFD BHA DAF ABHAAS DA AB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴DAF △≌ABH .∴DF AH =.⑤正确:∵150CAD ︒∠=,AH CD ⊥,∴75DAH ︒∠=,又∵45DAF ︒∠=,∴754530EAH ︒︒︒∠=-=又∵AE DB ⊥,∴2AH EH =,又∵=AH DF ,∴2DF EH =【点睛】本题考查了等边三角形的性质,等腰三角形的性质,三角形的内角和定理,三角形外角的性质,全等三角形的判定与性质,综合性较强,属于较难题目.20.如图,平面直角坐标系中,已知A(2,2)、B(4,0),若在x 轴上取点C ,使△ABC 为等腰三角形,则满足条件的点C 的个数是( )A .1B .2C .3D .4【答案】D【解析】【分析】由点A、B的坐标可得到AB=22,然后分类讨论:若AC=AB;若BC=AB;若CA=CB,确定C点的个数.【详解】∵点A、B的坐标分别为(2,2)、B(4,0).∴AB=22,如图,①若AC=AB,以A为圆心,AB为半径画弧与x轴有2个交点(含B点),即(0,0)、(4,0),∴满足△ABC是等腰三角形的C点有1个;②若BC=AB,以B为圆心,BA为半径画弧与x轴有2个交点,即满足△ABC是等腰三角形的C点有2个;③若CA=CB,作AB的垂直平分线与x轴有1个交点,即满足△ABC是等腰三角形的C点有1个;综上所述:点C在x轴上,△ABC是等腰三角形,符合条件的点C共有4个.故选D.【点睛】本题主考查了等腰三角形的判定以及分类讨论思想的运用,分三种情况分别讨论,注意等腰三角形顶角的顶点在底边的垂直平分线上.。
一、八年级数学全等三角形解答题压轴题(难)1.(1)已知△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A等于60°(如图①).求证:EB=AD;(2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其他条件不变(如图②),(1)的结论是否成立,并说明理由.【答案】(1)证明见解析(2)证明见解析【解析】试题分析:(1)作DF∥BC交AC于F,由平行线的性质得出∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠D CE,证明△ABC是等边三角形,得出∠ABC=∠ACB=60°,证出△ADF是等边三角形,∠DFC=120°,得出AD=DF,由已知条件得出∠FDC=∠DEC,ED=CD,由AAS证明△DBE≌△CFD,得出EB=DF,即可得出结论;(2)作DF∥BC交AC的延长线于F,同(1)证出△DBE≌△CFD,得出EB=DF,即可得出结论.试题解析:(1)证明:如图,作DF∥BC交AC于F,则△ADF为等边三角形∴AD=DF,又∵∠DEC=∠DCB,∠DEC+∠EDB=60°,∠DCB+∠DCF=60°,∴∠EDB=∠DCA ,DE=CD,在△DEB和△CDF中,120EBD DFCEDB DCFDE CD,,∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△DEB≌△CDF,∴BD=DF,∴BE=AD .(2).EB=AD成立;理由如下:作DF∥BC交AC的延长线于F,如图所示:同(1)得:AD=DF,∠FDC=∠ECD,∠FDC=∠DEC,ED=CD,又∵∠DBE=∠DFC=60°,∴△DBE≌△CFD(AAS),∴EB=DF,∴EB=AD.点睛:此题主要考查了三角形的综合,考查等边三角形的判定与性质,全等三角形的判定与性质,等腰三角形的判定与性质,等腰直角三角形的判定与性质,平行线的性质等知识,综合性强,有一定的难度,证明三角形全等是解决问题的关键.2.已知OP平分∠AOB,∠DCE的顶点C在射线OP上,射线CD交射线OA于点F,射线CE交射线OB于点G.(1)如图1,若CD⊥OA,CE⊥OB,请直接写出线段CF与CG的数量关系;(2)如图2,若∠AOB=120º,∠DCE=∠AOC,试判断线段CF与CG的数量关系,并说明理由.【答案】(1)CF=CG;(2)CF=CG,见解析【解析】【分析】(1)结论CF=CG,由角平分线性质定理即可判断.(2)结论:CF=CG,作CM⊥OA于M,CN⊥OB于N,证明△CMF≌△CNG,利用全等三角形的性质即可解决问题.【详解】解:(1)结论:CF=CG;证明:∵OP平分∠AOB,CF⊥OA,CG⊥OB,∴CF=CG(角平分线上的点到角两边的距离相等);(2)CF=CG.理由如下:如图,过点C作CM⊥OA,CN⊥OB,∵OP平分∠AOB,CM⊥OA,CN⊥OB,∠AOB=120º,∴CM=CN(角平分线上的点到角两边的距离相等),∴∠AOC=∠BOC=60º(角平分线的性质),∵∠DCE=∠AOC,∴∠AOC=∠BOC=∠DCE=60º,∴∠MCO=90º-60º =30º,∠NCO=90º-60º =30º,∴∠MCN=30º+30º=60º,∴∠MCN=∠DCE,∵∠MCF=∠MCN-∠DCN,∠NCG=∠DCE-∠DCN,∴∠MCF=∠NCG,在△MCF和△NCG中,CMF CNGCM CNMCF NCG∠=∠⎧⎪=⎨⎪∠=∠⎩∴△MCF≌△NCG(ASA),∴CF=CG(全等三角形对应边相等);【点睛】本题考查三角形综合题、角平分线的性质、全等三角形的判定和性质,解题的关键是掌握角平分线的性质的应用,熟练证明三角形全等.3.如图,在ABC∆中,ACB∠为锐角,点D为射线BC上一动点,连接AD.以AD为直角边且在AD的上方作等腰直角三角形ADF.(1)若AB AC =,90BAC ∠=︒①当点D 在线段BC 上时(与点B 不重合),试探讨CF 与BD 的数量关系和位置关系; ②当点D 在线段C 的延长线上时,①中的结论是否仍然成立,请在图2中面出相应的图形并说明理由;(2)如图3,若AB AC ≠,90BAC ∠≠︒,45BCA ∠=︒,点D 在线段BC 上运动,试探究CF 与BD 的位置关系.【答案】(1)①CF ⊥BD ,证明见解析;②成立,理由见解析;(2)CF ⊥BD ,证明见解析.【解析】【分析】(1)①根据同角的余角相等求出∠CAF=∠BAD ,然后利用“边角边”证明△ACF 和△ABD 全等,②先求出∠CAF=∠BAD ,然后与①的思路相同求解即可;(2)过点A 作AE ⊥AC 交BC 于E ,可得△ACE 是等腰直角三角形,根据等腰直角三角形的性质可得AC=AE ,∠AED=45°,再根据同角的余角相等求出∠CAF=∠EAD ,然后利用“边角边”证明△ACF 和△AED 全等,根据全等三角形对应角相等可得∠ACF=∠AED ,然后求出∠BCF=90°,从而得到CF ⊥BD .【详解】解:(1)①∵∠BAC=90°,△ADF 是等腰直角三角形,∴∠CAF+∠CAD=90°,∠BAD+∠ACD=90°,∴∠CAF=∠BAD ,在△ACF 和△ABD 中,∵AB=AC ,∠CAF=∠BAD ,AD=AF ,∴△ACF ≌△ABD(SAS),∴CF=BD ,∠ACF=∠ABD=45°,∵∠ACB=45°,∴∠FCB=90°,∴CF ⊥BD ;②成立,理由如下:如图2:∵∠CAB=∠DAF=90°,∴∠CAB+∠CAD=∠DAF+∠CAD,即∠CAF=∠BAD,在△ACF和△ABD中,∵AB=AC,∠CAF=∠BAD,AD=AF,∴△ACF≌△ABD(SAS),∴CF=BD,∠ACF=∠B,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∴∠BCF=∠ACF+∠ACB=45°+45°=90°,∴CF⊥BD;(2)如图3,过点A作AE⊥AC交BC于E,∵∠BCA=45°,∴△ACE是等腰直角三角形,∴AC=AE,∠AED=45°,∵∠CAF+∠CAD=90°,∠EAD+∠CAD=90°,∴∠CAF=∠EAD,在△ACF和△AED中,∵AC=AE,∠CAF=∠EAD,AD=AF,∴△ACF≌△AED(SAS),∴∠ACF=∠AED=45°,∴∠BCF=∠ACF+∠BCA=45°+45°=90°,∴CF⊥BD.【点睛】本题考查全等三角形的动点问题,综合性较强,有一定难度,需要熟练掌握全等三角形的判定和性质进行综合运用.4.如图1,在等边△ABC 中,E 、D 两点分别在边AB 、BC 上,BE =CD ,AD 、CE 相交于点F .(1)求∠AFE 的度数;(2)过点A 作AH ⊥CE 于H ,求证:2FH +FD =CE ;(3)如图2,延长CE 至点P ,连接BP ,∠BPC =30°,且CF =29CP ,求PF AF的值. (提示:可以过点A 作∠KAF =60°,AK 交PC 于点K ,连接KB )【答案】(1)∠AFE =60°;(2)见解析;(3)75【解析】【分析】 (1)通过证明 BCE CAD ≌ 得到对应角相等,等量代换推导出60AFE ∠=︒;(2)由(1)得到60AFE ∠=︒,CE AD = 则在Rt AHF △ 中利用30°所对的直角边等于斜边的一半,等量代换可得;(3)通过在PF 上取一点K 使得KF =AF ,作辅助线证明ABK 和ACF 全等,利用对应边相等,等量代换得到比值.(通过将ACF 顺时针旋转60°也是一种思路.)【详解】(1)解:如图1中.∵ABC 为等边三角形,∴AC =BC ,∠BAC =∠ABC =∠ACB =60°,在BCE 和CAD 中,60BE CDCBE ACDBC CA=⎧⎪∠=∠=︒⎨⎪=⎩,∴BCE CAD≌(SAS),∴∠BCE=∠DAC,∵∠BCE+∠ACE=60°,∴∠DAC+∠ACE=60°,∴∠AFE=60°.(2)证明:如图1中,∵AH⊥EC,∴∠AHF=90°,在Rt△AFH中,∵∠AFH=60°,∴∠FAH=30°,∴AF=2FH,∵EBC DCA≌,∴EC=AD,∵AD=AF+DF=2FH+DF,∴2FH+DF=EC.(3)解:在PF上取一点K使得KF=AF,连接AK、BK,∵∠AFK=60°,AF=KF,∴△AFK为等边三角形,∴∠KAF=60°,∴∠KAB=∠FAC,在ABK和ACF中,AB ACKAB ACFAK AF=⎧⎪∠=∠⎨⎪=⎩,∴ABK ACF≌(SAS),BK CF=∴∠AKB=∠AFC=120°,∴∠BKE=120°﹣60°=60°,∵∠BPC=30°,∴∠PBK=30°,∴29 BK CF PK CP===,∴79PF CP CF CP=-=,∵45()99AF KF CP CF PK CP CP CP==-+=-=∴779559CPPFAF CP== .【点睛】掌握等边三角形、直角三角形的性质,及三角形全等的判定通过一定等量代换为本题的关键.5.已知4AB cm=,3AC BD cm==.点P在AB上以1/cm s的速度由点A向点B运动,同时点Q在BD上由点B向点D运动,它们运动的时间为()t s.(1)如图①,AC AB⊥,BD AB⊥,若点Q的运动速度与点P的运动速度相等,当1t=时,ACP△与BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图②,将图①中的“AC AB⊥,BD AB⊥”为改“60CAB DBA∠=∠=︒”,其他条件不变.设点Q的运动速度为/xcm s,是否存在实数x,使得ACP△与BPQ 全等?若存在,求出相应的x、t的值;若不存在,请说明理由.【答案】(1)全等,PC与PQ垂直;(2)存在,11tx=⎧⎨=⎩或232tx=⎧⎪⎨=⎪⎩【解析】【分析】(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.【详解】解:(1)当t=1时,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP 和△BPQ 中,AP BQ A B AC BP =⎧⎪∠=∠⎨⎪=⎩,∴△ACP ≌△BPQ (SAS ).∴∠ACP=∠BPQ ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC 与线段PQ 垂直.(2)①若△ACP ≌△BPQ ,则AC=BP ,AP=BQ ,34t t xt =-⎧⎨=⎩, 解得11t x =⎧⎨=⎩, ②若△ACP ≌△BQP ,则AC=BQ ,AP=BP ,34xt t t =⎧⎨=-⎩, 解得232t x =⎧⎪⎨=⎪⎩, 综上所述,存在11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩使得△ACP 与△BPQ 全等. 【点睛】本题考查全等三角形的判定与性质,在解题时注意分类讨论思想的运用.6.如图1,在ABC ∆中,90ACB ∠=,AC BC =,直线MN 经过点C ,且AD MN ⊥于点D ,BE MN ⊥于点E .易得DE AD BE =+(不需要证明).(1)当直线MN 绕点C 旋转到图2的位置时,其余条件不变,你认为上述结论是否成立?若成立,写出证明过程;若不成立,请写出此时DE AD BE 、、之间的数量关系,并说明理由;(2)当直线MN 绕点C 旋转到图3的位置时,其余条件不变,请直接写出此时DE AD BE 、、之间的数量关系(不需要证明).【答案】(1) 不成立,DE=AD-BE ,理由见解析;(2) DE=BE-AD【解析】【分析】(1)DE 、AD 、BE 之间的数量关系是DE=AD-BE .由垂直的性质可得到∠CAD=∠BCE ,证得△ACD ≌△CBE ,得到AD=CE ,CD=BE ,即有DE=AD-BE ;(2)DE 、AD 、BE 之间的关系是DE=BE-AD .证明的方法与(1)一样.【详解】(1)不成立.DE 、AD 、BE 之间的数量关系是DE=AD-BE ,理由如下:如图,∵∠ACB=90°,BE ⊥CE ,AD ⊥CE ,AC CB =,∴∠ACD+∠CAD=90°,又∠ACD+∠BCE=90°,∴∠CAD=∠BCE ,在△ACD 和△CBE 中,90ADC CEB CAD BCE AC CB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBE(AAS),∴AD=CE ,CD=BE ,∴DE=CE-CD=AD-BE ;(2)结论:DE=BE-AD .∵∠ACB=90°,BE ⊥CE ,AD ⊥CE ,AC CB =,∴∠ACD+∠CAD=90°,又∠ACD+∠BCE=90°,∴∠CAD=∠BCE ,在△ACD 和△CBE 中,90ADC CEB CAD BCE AC CB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△CEB(AAS),∴AD=CE ,DC=BE ,∴DE=CD-CE=BE-AD .【点睛】本题考查了旋转的性质、直角三角形全等的判定与性质,旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角.7.如图1,Rt △ABC 中,∠A =90°,AB =AC ,点D 是BC 边的中点连接AD ,则易证AD =BD =CD ,即AD =12BC ;如图2,若将题中AB =AC 这个条件删去,此时AD 仍然等于12BC . 理由如下:延长AD 到H ,使得AH =2AD ,连接CH ,先证得△ABD ≌△CHD ,此时若能证得△ABC ≌△CHA ,即可证得AH =BC ,此时AD =12BC ,由此可见倍长过中点的线段是我们三角形证明中常用的方法.(1)请你先证明△ABC ≌△CHA ,并用一句话总结题中的结论;(2)现将图1中△ABC 折叠(如图3),点A 与点D 重合,折痕为EF ,此时不难看出△BDE 和△CDF 都是等腰直角三角形.BE =DE ,CF =DF .由勾股定理可知DE 2+DF 2=EF 2,因此BE 2+CF 2=EF 2,若图2中△ABC 也进行这样的折叠(如图4),此时线段BE 、CF 、EF 还有这样的关系式吗?若有,请证明;若没有,请举反例.(3)在(2)的条件下,将图3中的△DEF 绕着点D 旋转(如图5),射线DE 、DF 分别交AB、AC于点E、F,此时(2)中结论还成立吗?请说明理由.图4中的△DEF也这样旋转(如图6),直接写出上面的关系式是否成立.【答案】(1)详见解析;(2)有这样分关系式;(3)EF2=BE2+CF2.【解析】【分析】(1)想办法证明AB∥CH,推出∠BAC=∠ACH,再利用SAS证明△ABC≌△CHA即可.(2)有这样分关系式.如图4中,延长ED到H山顶DH=DE.证明△EDB≌△HD (SAS),推出∠B=∠HCD,BE=CH,∠FCH=90°,利用勾股定理,线段的垂直平分线的性质即可解决问题.(3)图5,图6中,上面的关系式仍然成立.【详解】(1)证明:如图2中,∵BD=DC,∠ADB=∠HDC,AD=HD,∴△ADB≌△HDC(SAS),∴∠B=∠HCD,AB=CH,∴AB∥CH,∴∠BAC+∠ACH=180°,∵∠BAC=90°,∴∠ACH=∠BAC=90°,∵AC=CA,∴△BAC≌△HCA(SAS),∴AH=BC,∴AD=DH=BD=DC,∴AD=12 BC.结论:直角三角形斜边上的中线等于斜边的一半.(2)解:有这样分关系式.理由:如图4中,延长ED到H山顶DH=DE.∵ED=DH,∠EDB=∠HDC,DB=DC,∴△EDB≌△HDC(SAS),∴∠B=∠HCD,BE=CH,∵∠B+∠ACB=90°,∴∠ACB+∠HCD=90°,∴∠FCH=90°,∴FH2=CF2+CH2,∵DF⊥EH,ED=DH,∴EF=FH,∴EF2=BE2+CF2.(3)图5,图6中,上面的关系式仍然成立.结论:EF2=BE2+CF2.证明方法类似(2).【点睛】本题属于几何变换综合题,考查了旋转变换,翻折变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.8.(1)在等边三角形ABC中,①如图①,D,E分别是边AC,AB上的点,且AE CD=,BD与EC交于点F,则BFE∠的度数是___________度;②如图②,D,E分别是边AC,BA延长线上的点,且AE CD=,BD与EC的延长线交于点F ,此时BFE ∠的度数是____________度;(2)如图③,在ABC ∆中,AC BC =,ACB ∠是锐角,点O 是AC 边的垂直平分线与BC 的交点,点D ,E 分别在AC ,OA 的延长线上,且AE CD =,BD 与EC 的延长线交于点F ,若ACB α∠=,求BFE ∠的大小(用含法α的代数式表示).【答案】(1)60;(2)60;(3)BFE α∠=【解析】【分析】(1)①只要证明△ACE ≌△CBD ,可得∠ACE=∠CBD ,推出∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°;②只要证明△ACE ≌△CBD ,可得∠ACE=∠CBD=∠DCF ,即可推出∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°;(2)只要证明△AEC ≌△CDB ,可得∠E=∠D ,即可推出∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【详解】解:(1)①如图①中,∵△ABC 是等边三角形,∴AC=CB ,∠A=∠BCD=60°,∵AE=CD ,∴△ACE ≌△CBD ,∴∠ACE=∠CBD ,∴∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°.故答案为60;②如图②,∵△ABC 是等边三角形,∴AC=CB ,∠A=∠BCD=60°,∴∠CAE=∠BCD=′120°∴△ACE≌△CBD,∴∠ACE=∠CBD=∠DCF,∴∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°.故答案为60;(2)如图③中,图③点O是AC边的垂直平分线与BC的交点,∴=,OC OA∴∠=∠=OAC ACOα=-,∴∠=∠︒EAC DCBα180=,AE CDAC BC=,∴∆≅∆,AEC CDB∴∠=∠,E D∴∠=∠+∠=∠+∠=∠=.BFE D DCF E ECA OACα【点睛】本题考查全等三角形的判定和性质和等腰三角形的性质和判定以及等边三角形的性质、线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题.9.操作发现:如图,已知△ABC和△ADE均为等腰三角形,AB=AC,AD=AE,将这两个三角形放置在一起,使点B,D,E在同一直线上,连接CE.(1)如图1,若∠ABC=∠ACB=∠ADE=∠AED=55°,求证:△BAD≌△CAE;(2)在(1)的条件下,求∠BEC的度数;拓广探索:(3)如图2,若∠CAB=∠EAD=120°,BD=4,CF为△BCE中BE边上的高,请直接写出EF的长度.【答案】(1)见解析;(2)70°;(3)2【解析】(1)根据SAS证明△BAD≌△CAE即可.(2)利用全等三角形的性质解决问题即可.(3)同法可证△BAD≌△CAE,推出EC=BD=4,由∠BEC=∠BAC=120°,推出∠FCE=30°即可解决问题.【详解】(1)证明:如图1中,∵∠ABC=∠ACB=∠ADE=∠AED,∴∠EAD=∠CAB,∴∠EAC=∠DAB,∵AE=AD,AC=AB,∴△BAD≌△CAE(SAS).(2)解:如图1中,设AC交BE于O.∵∠ABC=∠ACB=55°,∴∠BAC=180°﹣110°=70°,∵△BAD≌△CAE,∴∠ABO=∠ECO,∵∠EOC=∠AOB,∴∠CEO=∠BAO=70°,即∠BEC=70°.(3)解:如图2中,∵∠CAB=∠EAD=120°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴∠BAD=∠ACE,BD=EC=4,同理可证∠BEC=∠BAC=120°,∴∠FEC=60°,∵CF⊥EF,∴∠F=90°,∴∠FCE=30°,∴EF=12EC=2.【点睛】本题属于三角形综合题,考查了全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.10.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,求证:△DEF是等边三角形.【答案】(1)见解析;(2)成立,理由见解析;(3)见解析【解析】【分析】(1)因为DE=DA+AE ,故通过证BDA AEC ≅△△,得出DA=EC ,AE=BD ,从而证得DE=BD+CE.(2)成立,仍然通过证明BDA AEC ≅△△,得出BD=AE ,AD=CE ,所以DE=DA+AE=EC+BD.(3)由BDA AEC ≅△△得BD=AE ,=BDA AEC ∠∠,ABF 与ACF 均等边三角形,得==60BA AC ︒∠F ∠F ,FB=FA ,所以=BA BA AC AC ∠F +∠D ∠F +∠E ,即FBD FAB ≅∠∠,所以BDF AEF ≅△△,所以FD=FE ,BFD AFE ≅∠∠,再根据=60BFD FA BFA =︒∠+∠D ∠,得=60AF FA =︒∠E +∠D ,即=60FE =︒∠D ,故DFE △是等边三角形.【详解】证明:(1)∵BD ⊥直线m ,CE ⊥直线m∴∠BDA =∠CEA=90°,∵∠BAC =90°∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°∴∠CAE=∠ABD ,又AB=AC ,∴△ADB ≌△CEA∴AE=BD ,AD=CE ,∴DE=AE+AD= BD+CE(2)∵∠BDA =∠BAC=α,∴∠DBA+∠BAD=∠BAD +∠CAE=180°—α∴∠DBA=∠CAE ,∵∠BDA=∠AEC=α,AB=AC∴△ADB ≌△CEA ,∴AE=BD ,AD=CE∴DE=AE+AD=BD+CE(3)由(2)知,△ADB≌△CEA, BD=AE,∠DBA =∠CAE∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE∵BF=AF,∴△DBF≌△EAF∴DF=EF,∠BFD=∠AFE∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°∴△DEF为等边三角形.【点睛】利用全等三角形的性质证线段相等是证两条线段相等的重要方法.。
2015年 05月 03日初中数学三角形证明组卷.选择题(共 20 小题)1.( 2015? 涉县模拟)如图,在△ ABC 中,∠ C=90°, AB 的垂直平分线交 AB 与 D ,交 BC 于 E ,连接 AE ,若 CE=5, AC=12,则 BE 的长是( )2 .( 2015? 淄博模拟)如图,在△ ABC 中,AB=AC ,∠A=36°, BD 、CE 分别是∠ ABC 、∠BCD的角平分线,则图中的等腰三角形有( )4.( 2014?丹东)如图,在△ ABC 中, AB=AC ,∠ A=40°, AB 的垂直平分线交 AB 于点 D ,交AC 于点 E ,连接 BE ,则∠ CBE 的度数为( )C 12D53.( 2014 秋? 西城区校级期中)如图,在△ ABC 中, AD 是它的角平分线, A B=8cm ,AC=6cm ,C 16 : 9D 9: 163:4WORD格式可编辑A 70°B 80°C 40°D 30°度数为( )6.(2014? 山西模拟)如图,点 O 在直线 AB 上,射线 OC 平分∠ AOD ,若∠ AOC=3°5 , 则∠BOD7 .(2014? 雁塔区校级模拟)如图,在△ ABC 中,∠ ACB=90°, BA 的垂直平分线交 BC 边于8.(2014 秋? 腾冲县校级期末) 如图,已知 BD 是△ABC 的中线, AB=5,BC=3,△ABD 和△BCD 的周长的差是()5.( 2014? 南充)如图,在△ ABC 中, AB=AC ,且 D 为 BC 上一点,CD=AD , AB=BD ,则∠ B 的C 40D 45A 145°B 110C 70°D 35°60°的角的个数是(C4D5等于( )D ,若 AB=10, AC=5,则图中等于9.(2014春? 栖霞市期末) 在 Rt △ABC 中,如图所示,∠C=90°,∠CAB=60°,AD 平分∠CAB ,点 D 到 AB 的距离 DE=3.8cm ,则 BC 等于(10 .( 2014秋? 博野县期末)△ ABC 中,点 O 是△ABC 内一点,且点 O 到△ABC 三边的距离 相等;∠ A=40°,则∠ BOC (= )A 110°B 120°C 130°D 140°B3 C6D 不能确定B 7.6cm 11.4cmD 11.2cm11 .(2013秋? 潮阳区期末)如图,已知点 P 在∠ AOB 的平分线 OC 上,PF ⊥OA ,PE ⊥OB ,A 3.8cm若 PE=6,则 PF 的长为(12 .( 2013秋? 马尾区校级期末)如图,△ ABC 中, DE 是 AB 的垂直平分线,交 BC 于点 D , 交 AB 于点 E ,已知 AE=1cm ,△ACD 的周长为 12cm ,则△ ABC 的周长是( )16.(2014 秋? 万州区校级期中)如图,已知在△ ABC 中, AB=AC , D 为 BC 上一点, BF=CD ,C 15cmD 16cm13.(2013秋? 西城区期末) 如图,∠BAC=13°0 等于( )14.(2014 秋? 东莞市校级期中)如图,要用条件是( ), 若 MP 和 QN 分别垂直平分 AB 和 AC ,则∠ PAQ80°D 105°HL ”判定 Rt △ABC 和 Rt △A ′B ′C ′全等的B .∠A=∠A ′, AB=A ′B ′ D .∠B=∠B ′, BC=B ′C ′15.(2014 秋 ? 淄川区校级期中)如图, M N 是线段 AB 的垂直平分线, C 在 MN 外,且与 A 点在 MN 的同一侧, BC 交 MN 于 P 点,则( )A BC > PC+APB BC <PC+APC BC=PC+APD BC ≥ PC+APCE=BD,那么∠ EDF等于()不一定成立的是( )B . 90°﹣ ∠AC . 180°﹣∠AD45°∠A17.( 2014 秋 ? 泰山区校级期中)如图,在△ ABC 中, AB=AC ,AD 平分∠BAC ,那么下列结论A . △ABD ≌△ ACDC . AD 是△ ABC 的角平分线B . AD 是△ ABC 的高线D .△ABC 是等边三角18.(2014 秋? 晋江市校级月考)如图,点 P 是△ ABC 内的一点,若 PB=PC ,则(A .点 P 在∠ABC 的平分线上 C .点 P 在边 AB 的垂直平分线上 B . 点 P 在∠ ACB 的平分线上 D .点 P 在边 BC 的垂直平分线上19.( 2013? 河西区二模) 如图, 在∠ECF 的两边上有点 B ,A ,D ,BC=BD=D ,A 且∠ADF=75°, C 25° D 30°A 90°﹣∠A20 .(2013 秋? 盱眙县校级期中)如图, P 为∠ AOB 的平分线 OC 上任意一点, PM ⊥OA 于 M , PN ⊥OB 于 N ,连接 MN 交 OP 于点 D .则① PM=P ,N ②MO=N ,O ③OP ⊥MN ,④MD=N .D 其中正确 的有( ).解答题(共 10 小题)21 .(2014 秋? 黄浦区期末)如图,已知 ON 是∠AOB 的平分线, OM 、OC 是∠ AOB 外的射线.1)如果∠ AOC α= ,∠ BOC β= ,请用含有 α, 的式子表示∠ NOC . 那么∠ MON 的度数是多少?A 1 个2)如果∠ BOC=9°0 , OM 平分∠ AOC ,22.(2014 秋? 阿坝州期末)如图,已知: E 是∠AOB 的平分线上一点, EC ⊥OB ,ED ⊥OA , C 、 D 是垂足,连接 CD ,且交 OE 于点 F .(1)求证: OE 是 CD 的垂直平分线.23.(2014 秋? 花垣县期末)如图,在△ ABC 中,∠ ABC=2∠C , BD 平分∠ ABC ,DE ⊥AB( E 在 AB 之间),DF ⊥BC ,已知 BD=5,DE=3,CF=4,试求△ DFC 的周长.24 .( 2014 秋? 大石桥市期末) 如图, 点 D 是△ ABC 中 BC 边上的一点, 且 AB=AC=C ,DAD=BD , 求∠BAC 的度数.EF 之间有什么数量关系?并证明你的结论.25.(2014 秋? 安溪县期末)如图,在△ ABC 中,AB=AC,∠A=α.(1)直接写出∠ ABC的大小(用含α 的式子表示);分别交AC、AB于D、E两点,并连接BD、DE.若26.(2014 秋? 静宁县校级期中)如图,在△ABC中,AD平分∠ BAC,点D是BC的中点,DE⊥AB 于点E,DF⊥AC 于点F.求证:(1)∠B=∠C.27.(2012 秋? 天津期末)如图,AB=AC,∠ C=67°,AB的垂直平分线EF交AC于点D,求∠DBC的度数.28 .(2013秋? 高坪区校级期中)如图,△ ABC 中,AB=AD=A,E DE=EC,∠DAB=30°,求∠C 的度数.29.(2012 春? 扶沟县校级期中)阅读理解:“在一个三角形中,如果角相等,那么它们所对的边也相等.”简称“等角对等边”,如图,在△ ABC 中,已知∠ ABC 和∠ACB的平分线上交于点F,过点F作BC的平行线分别交AB、AC于点D、E,请你用“等角对等边”的知识说明DE=BD+C.E30.(2011? 龙岩质检)如图,AD是△ ABC的平分线,DE,DF分别垂直AB、AC于E、F,连接EF,求证:△ AEF 是等腰三角形.2015年 05 月 03 日初中数学三角形证明组卷参考答案与试题解析一.选择题(共 20 小题)1.( 2015? 涉县模拟)如图,在△ ABC 中,∠ C=90°, AB 的垂直平分线交 AB 与 D ,交 BC 于 E ,连接 AE ,若 CE=5, AC=12,则 BE 的长是( )考 线段垂直平分线的性质. 点:分 先根据勾股定理求出 AE=13,再由 DE 是线段 AB 的垂直平分线,得出BE=AE=13. 析:解解:∵∠ C=90°,答:∴A E=,∵DE 是线段 AB 的垂直平分线, ∴BE=AE=1;3 故选: A .点 本题考查了勾股定理和线段垂直平分线的性质;利用勾股定理求出 AE 是解题的关评: 键.2.( 2015? 淄博模拟)如图,在△ ABC 中, AB=AC ,∠ A=36°, BD 、CE 分别是∠ ABC 、∠BCD 的角平分线,则图中的等腰三角形有( )考 等腰三角形的判定;三角形内角和定理.C 12D5点:专证明题.题:分根据已知条件和等腰三角形的判定定理,对图中的三角形进行分析,析:解解:共有 5 个.答:(1)∵ AB=AC ∴△ABC是等腰三角形;(2)∵BD、CE分别是∠ ABC、∠BCD 的角平分线∴∠ EBC= ∠ABC,∠ECB= ∠BCD,∵△ABC是等腰三角形,∴∠ EBC=∠ ECB,∴△BCE是等腰三角形;(3)∵∠ A=36°,AB=AC,∴∠ ABC=∠ACB= (180°﹣36°)=72°,又BD是∠ ABC的角平分线,∴∠ ABD= ∠ABC=36°=∠A,∴△ABD是等腰三角形;同理可证△ CDE 和△ BCD是等腰三角形.故选:A.点此题主要考查学生对等腰三角形判定和三角形内角和定理的理解和掌握,评:题.3.(2014秋? 西城区校级期中)如图,在△ ABC 中,AD是它的角平分线,考角平分线的性质;三角形的面积.点:专计算题.题:C 16 :9 D 9:16即可得出答案.属于中档AB=8cm,AC=6cm,则S △ABD:S△ACD=()3:4分 首先过点 D 作 DE ⊥AB ,DF ⊥AC ,由 AD 是它的角平分线,根据角平分线的性质, 析: 即可求得 DE=DF ,由△ ABD 的面积为 12,可求得 DE 与 DF 的长,又由 AC=6,则 可求得△ ACD 的面积.解 解:过点 D 作 DE ⊥AB ,DF ⊥AC ,垂足分别为 E 、F ⋯( 1 分) 答: ∵AD 是∠ BAC 的平分线, DE ⊥AB ,DF ⊥AC ,∴DE=D ,F ⋯( 3 分) ∴S △ABD= ? DE? AB=12, ∴DE=DF=⋯3 ( 5 分)∴S △ADC= ? DF? AC= ×3×6=9⋯( 6 分)∴S △ABD : S △ACD =12: 9=4: 3.点 此题考查了角平分线的性质.此题难度不大,解题的关键是熟记角平分线的性 评: 质定理的应用,注意数形结合思想的应用,注意辅助线的作法.4.( 2014? 丹东)如图,在△ ABC 中, AB=AC ,∠A=40°, AB 的垂直平分线交 AB 于点 D ,交 AC 于点 E ,连接 BE ,则∠ CBE 的度数为( )考点:线段垂直平分线的性质;等腰三角形的性质. 专题: 几何图形问题.分析: 由等腰△ABC 中,AB=AC ,∠A=40°,即可求得∠ ABC 的度数,又由线段 AB 的垂直 平分线交 AB 于 D ,交 AC 于 E ,可得 AE=BE ,继而求得∠ ABE 的度数,则可求得答 案.解答: 解:∵等腰△ ABC 中, AB=AC ,∠ A=40°,∴∠ ABC=∠C==70°,∵线段 AB 的垂直平分线交 AB 于 D ,交 AC 于 E ,A 70°B 80°C 40D 30°故选 A .∴AE=BE,∴∠ABE=∠A=40°,∴∠CBE=∠ABC﹣∠ABE=30°.故选:D.点评:此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.5.(2014? 南充)如图,在△ ABC 中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A 30°B 36°C 40°D 45考等腰三角形的性质.点:分求出∠ BAD=2∠ CAD=∠2 B=2∠C 的关系,利用三角形的内角和是180°,求∠ B,析:解解:∵ AB=AC,答:∴∠ B=∠C,∵AB=BD,∴∠BAD=∠BDA,∵CD=A,D∴∠C=∠CAD,∵∠BAD+∠CAD+∠B+∠C=180°,∴5∠B=180°,∴∠B=36° 故选:B.点本题主要考查等腰三角形的性质,解题的关键是运用等腰三角形的性质得出评:∠BAD=2∠CAD=∠2 B=2∠C 关系.6.(2014? 山西模拟)如图,点O在直线AB上,射线OC平分∠ AOD,若∠ AOC=3°5 ,则∠BOD 等于()A 145°B 110C 70°D 35°考 角平分线的定义. 点:分 首先根据角平分线定义可得∠ AOD=∠2 AOC=7°0 ,再根据邻补角的性质可得∠ BOD 析: 的度数.解 解:∵射线 OC 平分∠ DOA . 答: ∴∠ AOD=∠2 AOC ,∵∠ COA=3°5 , ∴∠ DOA=7°0 ,∴∠ BOD=18°0 ﹣70°=110°, 故选: B .点 此题主要考查了角平分线定义,关键是掌握角平分线把角分成相等的两部分. 评:7.( 2014? 雁塔区校级模拟)如图,在△ ABC 中,∠ ACB=90°, BA 的垂直平分线交 D ,若 AB=10, AC=5,则图中等于 60°的角的个数是( )考点: 线段垂直平分线的性质. 分析: 根据已知条件易得∠ B=30°, ∠ BAC=60°.根据线段垂直平分线的性质进一步求解.解答: 解:∵∠ ACB=90°, AB=10, AC=5,∴∠ B=30°.∴∠BAC=90°﹣30°=60° ∵DE 垂直平分 BC ,∴∠ BAC=∠ADE=∠BDE=∠CDA=9°0 ﹣30°=60°. ∴∠BDE 对顶角 =60°,∴图中等于 60°的角的个数是 4. 故选 C .点评: 此题主要考查线段的垂直平分线的性质等几何知识. 线段的垂直平分线上的点到 线段的两个端点的距离相等.由易到难逐个寻找,做到不重不漏.8.(2014 秋? 腾冲县校级期末) 如图,已知 BD 是△ABC 的中线, AB=5,BC=3,△ABD 和△BCD 的周长的差是( )BC 边于C4 D5考点:三角形的角平分线、中线和高.专题:计算题.分析:根据三角形的中线得出AD=CD,根据三角形的周长求出即可.解答:解:∵BD 是△ABC的中线,∴AD=C,D∴△ABD和△BCD的周长的差是:(AB+BD+A)D ﹣(BC+BD+C)D=AB﹣BC=5﹣3=2.故选A.点评:本题主要考查对三角形的中线的理解和掌握,能正确地进行计算是解此题的关键.9.(2014春? 栖霞市期末)在Rt△ABC中,如图所示,∠C=90°,∠CAB=60°,AD平分∠CAB,点 D 到AB的距离DE=3.8cm,则BC等于(考点:角平分线的性质.分析:由∠ C=90°,∠ CAB=60°,可得∠B 的度数,故BD=2DE=7.6,又AD平分∠ CAB,故DC=DE=3.8,由BC=BD+DC求解.解答:解:∵∠ C=90°,∠ CAB=60°,∴∠B=30°,在Rt△BDE中,BD=2DE=7.6,又∵AD平分∠ CAB,∴DC=DE=3.,8 ∴BC=BD+DC=7.6+3.8=11..4 故选C.点评:本题主要考查平分线的性质,由已知能够注意到D到AB 的距离DE即为CD长,是解题的关键.B3 C6 D 不能确定B 7.6cm 11.4cm D 11.2cmA 3.8cm10.(2014 秋? 博野县期末)△ ABC 中,点 O 是△ABC 内一点,且点 O 到△ABC 三边的距离相 等;∠ A=40°,则∠ BOC (= )A 110°B 120°C 130°D 140°角平分线的性质;三角形内角和定理;三角形的外角性质. 计算题.由已知, O 到三角形三边距离相等,得 O 是内心,再利用三角形内角和定理即可求 出∠BOC 的度数.解 解:由已知, O 到三角形三边距离相等,所以 O 是内心, 答: 即三条角平分线交点,AO , BO ,CO 都是角平分线,所以有∠ CBO ∠= ABO= ∠ABC ,∠ BCO ∠= ACO= ∠ACB , ∠ABC+∠ACB=18﹣0 40=140 ∠OBC ∠+ OCB=70 ∠BOC=18﹣0 70=110° 故选 A .点 此题主要考查学生对角平分线性质,三角形内角和定理,三角形的外角性质等知识 评: 点的理解和掌握,难度不大,是一道基础题.11.(2013 秋? 潮阳区期末)如图,已知点 P 在∠ AOB 的平分线 OC 上,PF ⊥OA ,PE ⊥OB ,若考点 : 角平分线的性质;全等三角形的判定与性质. 专题 : 计算题.分析: 利用角平分线性质得出∠ POF=∠POE ,然后利用 AAS 定理求证△ POE ≌△ POF ,即可 求出 PF 的长.考点专题分)4解答: 解:∵ OC 平分∠ AOB ,∴∠ POF=∠POE , ∵PF ⊥OA ,PE ⊥OB ,∴∠PFO=∠PEO , PO 为公共边,∴△ POE ≌△ POF , ∴PF=PE=6. 故选 C .点评: 此题考查学生对角平分线性质和全等三角形的判定与性质的理解和掌握,解答此 题的关键是求证△ POE ≌△ POF .12.(2013 秋? 马尾区校级期末)如图,△ ABC 中, DE 是 AB 的垂直平分线,交 BC 于点 D , 交 AB 于点 E ,已知 AE=1cm ,△ACD 的周长为 12cm ,则△ ABC 的周长是( )考 线段垂直平分线的性质. 点: 分 要求△ ABC 的周长,先有 AE 可求出 AB ,只要求出 AC+BC 即可,根据线段垂直平分线析: 的性质可知, AD=BD ,于是 AC+BC=AC+CD+A 等D 于△ ACD 的周长,答案可得. 解解:∵ DE 是 AB 的垂直平分线,答: ∴AD=BD , AB=2AE=2又∵△ ACD 的周长 =AC+AD+CD=AC+BD+CD=AC+BC=12 ∴△ ABC 的周长是 12+2=14cm . 故选 B点 此题主要考查线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端 评: 点的距离相等;进行线段的等效转移,把已知与未知联系起来是正确解答本题的关 键.13.(2013秋? 西城区期末)如图,∠BAC=13°0 ,若 MP 和 QN 分别垂直平分 AB 和 AC ,则∠PAQ 等于( )考点:线段垂直平分线的性质. 点:分析:根据线段垂直平分线性质得出 BP=AP ,CQ=AQ ,推出∠ B=∠BAP ,∠C=∠QAC ,求出 ∠B+∠C ,即可求出∠ BAP+∠QAC ,即可求出答案.C 15cmD 16cmC 80°D 105°A 13cmB 14cm A 50° B 75解 解:∵ MP 和 QN 分别垂直平分 AB 和 AC , 答: ∴BP=AP , CQ=AQ ,∴∠B=∠PAB ,∠C=∠QAC ,∵∠ BAC=13°0 , ∴∠B+∠C=180°﹣∠ BAC=50°,∴∠ BAP+∠CAQ=5°0 , ∴∠PAQ=∠BAC ﹣(∠ PAB+∠QAC )=130°﹣50°=80°, 故选: C .点 本题考查了等腰三角形的性质,线段垂直平分线性质,三角形的内角和定理,注 评: 意:线段垂直平分线上的点到线段两个端点的距离相等,等边对等角.14.(2014 秋? 东莞市校级期中)如图,要用“ HL ”判定AB=A ′B ′ . BC=B ′C ′考 直角三角形全等的判定. 点:分 根据直角三角形全等的判定方法( HL )即可直接得出答案. 析: 解 解:∵在 Rt △ ABC 和 Rt △A ′B ′C ′中,答: 如果 AC=A ′C ′, AB=A ′B ′,那么 BC 一定等于 B ′C ′,Rt △ ABC 和 Rt △A ′B ′C ′一定全等, 故选 C .点 此题主要考查学生对直角三角形全等的判定的理解和掌握,难度不大,是一道基 评: 础题.15.(2014 秋 ? 淄川区校级期中)如图, 在 MN 的同一侧, BC 交 MN 于 P 点,则(考点: 线段垂直平分线的性Rt △ABC 和 Rt △A ′B ′C ′全等的MN 是线段 AB 的垂直平分线,)C 在 MN 外,且与 A 点C BC=PC+APD BC ≥ PC+APC AC=A ′ C ′,D ∠ B=∠B ′,B BC < PC+AP分析: 从已知条件进行思考,根据垂直平分线的性质可得PA=PB ,结合图形知 BC=PB+P ,C通过等量代换得到答案.解答: 解:∵点 P 在线段 AB 的垂直平分线上, ∴PA=PB .∵BC=PC+B ,P ∴BC=PC+A .P 故选 C .点评: 本题考查了垂直平分线的性质: 线段的垂直平分线上的点到线段的两个端点的距离 相等;结合图形,进行线段的等量代换是正确解答本题的关键.16.(2014 秋? 万州区校级期中)如图,已知在△ ABC 中, AB=AC , D 为 BC 上一点, BF=CD , CE=BD ,那么∠ EDF 等于( )考点: 等腰三角形的性质.分析: 由 AB=AC ,利用等边对等角得到一对角相等,再由 BF=CD , BD=CE ,利用 SAS 得到三角形 FBD 与三角形 DEC 全等,利用全等三角形对应角相等得到一对角相等,即可表示出解答: 解:∵ AB=AC , ∴∠B=∠C °, 在△BDF 和△CED 中,,∴△ BDF ≌△CED ( SAS ), ∴∠ BFD=∠CDE ,∴∠FDB+∠EDC=∠FDB+∠BFD=180°﹣∠ B=180°﹣ 则∠ EDF=180°﹣(∠ FDB+∠EDC )=90°﹣ ∠A . 故选 B .点评: 此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的 关键.90° ﹣ ∠A∠A ,=90°BC 180°﹣∠A17.(2014 秋? 泰山区校级期中)如图,在△ ABC 中, AB=AC ,AD 平分∠BAC ,那么下列结论B AD 是△ ABC 的 . 高线D △ ABC 是等边 . 三角形考点 : 等腰三角形的性质.分析: 利用等腰三角形的性质逐项判断即可. 解答: 解:A 、在△ ABD 和△ ACD 中,,所以△ ABD ≌△ACD ,所以 A 正确;B 、因为 AB=AC , AD 平分∠ BAC ,所以 AD 是 BC 边上的高,所以 B 正确; C 、由条件可知 AD 为△ ABC 的角平分线;D 、由条件无法得出 AB=AC=B ,C 所以△ ABC 不一定是等边三角形,所以 D 不正确;故选 D .点评: 本题主要考查等腰三角形的性质,掌握等腰三角形“三线合一”的性质是解题的关键.18.(2014 秋? 晋江市校级月考)如图,点 P 是△ ABC 内的一点,若 PB=PC ,则(考点: 线段垂直平分线的性质.分析:根据到线段两端点的距离相等的点在这条线段的垂直平分线上由 线段 BC 的垂直平分线上. PC=PB 即可得出 P 在解答:解:∵ PB=PC ,∴P 在线段 BC 的垂直平分线上,.DC AD 是△ ABC的 . 角平分线A 点 P 在∠ ABC . 的平分线上C 点 P 在边AB . 的垂直平分 B 点 P 在∠ ACB . 的平分线上D 点 P 在边BC . 的垂直平不一定成立的是(故选 D .点评: 本题考查了角平分线的性质和线段垂直平分线定理,注意:到线段两端点的距离相等的点在这条线段的垂直平分线上,角平分线上的点到角的两边的距离相等.19.( 2013? 河西区二模) 如图, 在∠ECF 的两边上有点考 等腰三角形的性质. 点:分 根据等腰三角形的性质以及三角形外角和内角的关系,逐步推出∠ ECF 的度数. 析: 解解:∵ BC=BD=D ,A 答: ∴∠ C=∠BDC ,∠ ABD=∠BAD , ∵∠ABD=∠C+∠BDC ,∠ADF=75°,∴3∠ECF=75°,∴∠ECF=25°. 故选: C .点 考查了等腰三角形的性质:等腰三角形的两个底角相等,三角形外角和内角的运 评: 用.20.(2013 秋? 盱眙县校级期中)如图, P 为∠ AOB 的平分线 OC 上任意一点, PM ⊥OA 于 M ,PN ⊥OB 于 N ,连接 MN 交 OP 于点 D .则① PM=P ,N ②M O=NO ,③OP ⊥MN ,④MD=N .D其中正确考 角平分线的性质. 点:B ,A ,D ,BC=BD=D ,A 且∠ADF=75°,C 25°D 30°的有( )A 1 个分由已知很易得到△ OPM≌△ OPN,从而得角相等,边相等,进而得△ OM≌P △ ONP,析:△PMD≌△PND,可得MD=N,D ∠ ODN∠= ODM=9°O,答案可得.解解:P为∠AOB的平分线OC上任意一点,PM⊥OA 于M,PN⊥OB 于N答:连接MN交OP于点D,∴∠ MOP∠= NOP,∠OMP∠= ONP,OP=OP,∴△OPM≌△OPN,∴MP=N,POM=O,N 又OD=OD∴△OMD≌△OND,∴MD=N,D∠ ODN∠= ODM=9°O,∴OP⊥MN∴① PM=P,N ②MO=N,O③OP⊥MN,④MD=ND 都正确.故选D.点本题主要考查了角平分线的性质,即角平分线上的一点到两边的距离相等;发现并评:利用△ OM≌D △OND是解决本题的关键,证明两线垂直时常常通过证两角相等且互补来解决.二.解答题(共10 小题)21.(2014 秋? 黄浦区期末)如图,已知ON是∠AOB的平分线,OM、OC是∠AOB外的射线.(1)如果∠ AOCα= ,∠ BOCβ= ,请用含有α,β 的式子表示∠ NOC.(2)如果∠ BOC=9°0 ,OM平分∠ AOC,那么∠ MON的度数是多少?考点:角平分线的定义.分析:(1)先求出∠ AOB=α﹣β,再利用角平分线求出∠ AON,即可得出∠ NOC;(2)先利用角平分线求出∠ AOM= ∠AOC,∠ AON= ∠AOB,即可得出解答:解:(1)∵∠ AOCα= ,∠ BOCβ= ,∴∠AOB=α﹣β,∵ON是∠ AOB的平分线,∴∠AON= (α﹣β),∠NOCα= ﹣(α﹣β)= (α +β);(2)∵OM平分∠ AOC,ON平分∠ AOB,∴∠AOM= ∠AOC ,∠AON= ∠AOB , ∴∠MON ∠= AOM ﹣∠AON= (∠AOC ﹣∠AOB )点评: 本题考查了角平分线的定义和角的计算;弄清各个角之间的数量关系是解决问题的关键.22.(2014 秋? 阿坝州期末)如图,已知: E 是∠AOB 的平分线上一点, EC ⊥OB ,ED ⊥OA , C 、D 是垂足,连接 CD ,且交 OE 于点F .考点 : 线段垂直平分线的性质. 专题 : 探究型.分析: ( 1)先根据 E 是∠ AOB 的平分线上一点, EC ⊥OB ,ED ⊥OA 得出△ODE ≌△OCE , 可得出 OD=OC , DE=CE , OE=OE ,可得出△ DOC 是等腰三角形,由等腰三角形的性 质即可得出 OE 是 CD 的垂直平分线;( 2)先根据 E 是∠ AOB 的平分线,∠ AOB=6°0 可得出∠ AOE=∠BOE=3°0 ,由直 角三角形的性质可得出 OE=2DE ,同理可得出 DE=2EF 即可得出结论.解答: 解:( 1)∵E 是∠AOB 的平分线上一点, EC ⊥OB ,ED ⊥OA , ∴DE=C ,EOE=O ,E∴Rt △ODE ≌Rt △OCE , ∴OD=O ,C∴△DOC 是等腰三角形, ∵OE 是∠AOB 的平分线, ∴OE 是 CD 的垂直平分线; ( 2)∵ OE 是∠ AOB 的平分线,∠ AOB=6°0 , ∴∠ AOE=∠BOE=3°0 , ∵EC ⊥OB ,ED ⊥OA ,∴OE=2D ,E ∠ ODF=∠OED=6°0 , ∴∠EDF=30°, ∴DE=2EF , ∴OE=4E .F= ∠BOC= × 90° =45°EF 之间有什么数量关系?并证明你的结论.1)求证: OE 是 CD 的垂直平分线.点评:本题考查的是角平分线的性质及直角三角形的性质、等腰三角形的判定与性质,熟知以上知识是解答此题的关键.23.(2014 秋? 花垣县期末)如图,在△ ABC 中,∠ ABC=2∠C,BD平分∠ ABC,DE⊥AB ( E 在AB之间),DF⊥BC,已知BD=5,DE=3,CF=4,试求△ DFC的周长.考点:角平分线的性质.分析:根据角平分线的性质可证∠ ABD=∠CBD,即可求得∠ CBD=∠C,即BD=CD,再根据角平分线上的点到角两边距离相等即可求得DE=DF,即可解题.解答:解:∵∠ ABC=2∠C,BD平分∠ ABC,∴∠CBD=∠C,∴BD=C,D∵BD平分∠ ABC,∴DE=D,F∴△ DFC的周长=DF+CD+CF=DE+BD+CF=3+5+4=.12点评:本题考查了角平分线上点到角两边距离相等的性质,考查了角平分线平分角的性质,考查了三角形周长的计算,本题中求证DE=DF是解题的关键.24.(2014秋? 大石桥市期末)如图,点D是△ABC中BC边上的一点,且AB=AC=C,DAD=BD,求∠BAC的度数.考点:等腰三角形的性质.分析:由AD=BD得∠BAD=∠DBA,由AB=AC=CD得∠ CAD=∠CDA=∠2 DBA,∠DBA=∠C,从而可推出∠ BAC=3∠DBA,根据三角形的内角和定理即可求得∠DBA 的度数,从而不难求得∠BAC的度数.解答:解:∵ AD=BD∴设∠ BAD=∠DBA=x°,∵AB=AC=CD ∴∠CAD=∠CDA=∠BAD+∠DBA=2x°,∠ DBA=∠C=x°,∴∠BAC=3∠DBA=3x°,∵∠ABC+∠BAC+∠C=180°∴5x=180°,∴∠ DBA=36°∴∠ BAC=3∠DBA=10°8 .点评:此题主要考查学生对等腰三角形的性质及三角形内角和定理的综合运用能力;求得角之间的关系利用内角和求解是正确解答本题的关键.25.(2014 秋? 安溪县期末)如图,在△ ABC 中,AB=AC,∠A=α.(1)直接写出∠ ABC 的大小(用含α 的式子表示);(2)以点 B 为圆心、BC长为半径画弧,分别交AC、AB于D、E两点,并连接BD、DE.若=30°,求∠ BDE 的度数.考点:等腰三角形的性质.分析:(1)根据三角形内角和定理和等腰三角形两底角相等的性质即可求得∠ABC 的大小;(2)根据等腰三角形两底角相等求出∠ BCD=∠BDC,再求出∠ CBD,然后根据∠ABD=∠ABC﹣∠CBD,求得∠ ABD,再根据三角形内角和定理和等腰三角形两底角相等的性质计算即可得解.解答:解:(1)∠ABC的大小为×(180°﹣α)=90°﹣α;(2)∵AB=AC,∴∠ABC=∠C=90°﹣α=90°﹣ ×30°=75°,由题意得:BC=BD=B,E由BC=BD得∠ BDC=∠C=75°,∴∠CBD=18°0 ﹣75°﹣75°=30°,∴∠ABD=∠ABC﹣∠CBD=7°5 ﹣30°=45°,由BD=BE得故∠BDE的度数是67.5 °.点评:本题考查了三角形内角和定理、等腰三角形的性质,主要利用了等腰三角形两底角相等,熟记性质是解题的关键.26.(2014 秋? 静宁县校级期中)如图,在△ABC中,AD平分∠ BAC,点D是BC的中点,DE⊥AB 于点E,DF⊥AC 于点F.求证:(1)∠B=∠C.考等腰三角形的判定.点:分由条件可得出DE=DF,可证明△ BDE≌△ CDF,可得出∠ B=∠C,再由等腰三角形的析:判定可得出结论.解证明:(1)∵AD平分∠ BAC,DE⊥AB 于点E,DF⊥AC 于点F,答:∴DE=D,F在Rt △BDE和Rt △CDF中,,,∴Rt △BDE≌Rt △CDF(HF),∴∠ B=∠C;(2)由(1)可得∠ B=∠C,∴△ABC为等腰三角形.点本题主要考查等腰三角形的判定及全等三角形的判定和性质,利用角平分线的性质评:得出DE=DF是解题的关键.27.(2012 秋? 天津期末)如图,AB=AC,∠ C=67°,AB的垂直平分线EF交AC于点D,求∠DBC的度数.考点:线段垂直平分线的性质;等腰三角形的性质.分析:求出∠ ABC,根据三角形内角和定理求出∠ A,根据线段垂直平分线得出AD=BD,求出∠ ABD,即可求出答案.解答:解:∵ AB=AC,∠C=67°,∴∠ABC=∠C=67°,∴∠A=180°﹣67°﹣67°=46°,∵EF 是AB的垂直平分线,∴AD=BD,∴∠A=∠ABD=46°,∴∠DBC=6°7 ﹣46°=21°.点评:本题考查了线段垂直平分线,三角形的能或定理,等腰三角形的性质和判定等知识点,关键是求出∠ ABC 和∠ ABD的度数,题目比较好.28.(2013 秋? 高坪区校级期中)如图,△ ABC 中,AB=AD=A,E DE=EC,∠DAB=30°,求∠C 的度数.考点:等腰三角形的性质.分析:首先根据AB=AD=A,E DE=EC,得到∠ B=∠ADB,∠ADE=∠AED,∠ C=∠EDC,从而得到∠ADE=∠AED=∠C+∠EDC=∠2 C,根据∠ DAB=30°,求得∠B=∠ADB=75°,利用∠ADC=∠ADE+∠EDC=∠3 C=105°,求得∠C 即可.解答:解:∵ AB=AD=A,E DE=EC,∴∠B=∠ADB,∠ADE=∠AED,∠C=∠EDC,∴∠ ADE=∠AED=∠C+∠EDC=∠2 C,∵∠DAB=30°,∴∠B=∠ADB=75°,∴∠ ADC=∠ADE+∠EDC=∠3 C=105°,∴∠C=35°.点评:本题考查了等腰三角形的性质,解题的关键是利用等腰三角形的性质求得有关角的度数.29.(2012 春? 扶沟县校级期中)阅读理解:“在一个三角形中,如果角相等,那么它们所对的边也相等.”简称“等角对等边”,如图,在△ ABC 中,已知∠ ABC 和∠ACB的平分线上交于点F,过点F作BC的平行线分别交AB、AC于点D、E,请你用“等角对等边”的知识说明DE=BD+C.E考 等腰三角形的性质.点:专 证明题.题:分由 DE ∥BC , BF 平分∠ ABC , CF 平分∠ ACB 可知, DB=DF , CE=EF .便可得出结论.析:解 证明:∵ BF 平分∠ ABC (已知) , CF 平分∠ ACB (已知) ,答: ∴∠ ABF=∠CBF ,∠ ACF=∠FCB ;又∵ DE 平行 BC (已知)∴∠ DFB=∠FBC (两直线平行,内错角相等) ,∠ EFC=∠FCB (两直线平行,内错角 相等),∴∠DBF=∠DFB ,∠EFC=∠E CF (等量代换)∴DF=DB , EF=EC (等角对等边)∴DE=BD+C .E点 此题考查学生对等腰三角形的判定与性质和平行线的性质的理解和掌握,主要利 评: 用等腰三角形两边相等.稍微有点难度是一道中档题.DE , DF 分别垂直 AB 、 AC 于 E 、F ,连 考点:等腰三角形的判定;全等三角形的判定与性质. 专题:证明题. 分析: 根据角平分线的性质知∠ BAD=∠CAD ;然后根据已知条件“ DE , DF 分别垂直 AB 、 AC 于 E 、F ”得到∠ DEA=∠DFA=90°;再加上公共边 AD=AD ,从而证明,△ADE ≌△ ADF ;最后根据全等三角形的对应边相等证明△ AEF 的两边相等,所解答: 证明:∵ AD 是△ ABC 的平分线,∴∠ BAD=∠CAD ,( 3 分) 又∵DE , DF 分别垂直 AB 、AC 于 E ,F∴∠ DEA=∠ DFA=90°( 6 分)又∵ AD=AD ,∴△ ADE ≌△ ADF . (8分) ∴AE=AF ,即△ AEF 是等腰三角形( 10分)30.( 2011? 龙岩质检)如图, AD 是△ ABC 的平分线,点本题综合考查了等腰三角形的判定、全等三角形的判定与性质.解答此题时,根评:据全等三角形的判定定理ASA判定△ ADE≌△ADF.。
全等三角形章末练习卷(Word版含解析)一、八年级数学轴对称三角形填空题(难)1.如图,已知△ABC和△ADE都是正三角形,连接CE、BD、AF,BF=4,CF=7,求AF的长_________ .【答案】3【解析】【分析】过点A作AF⊥CE交于I,AG⊥BD交于J,证明CAE≅BAD,再证明CAI≅BAJ,求出°7830∠=∠=,然后求出12IF FJ AF==,,通过设FJ x=求出x,即可求出AF的长.【详解】解:过点A作AF⊥CE交于I,AG⊥BD交于J在CAE和BAD中AC ABCAE BADAE AD=⎧⎪∠=∠⎨⎪=⎩∴CAE≅BAD∴ICA ABJ∠=∠∴BFE CAB∠=∠(8字形)∴°120CFD∠=在CAI和BAJ中°90ICA ABJ CAI BJA CA BA ∠=∠⎧⎪∠=∠=⎨⎪=⎩∴CAI ≅BAJ,AI AJ CI BJ ==∴°60CFA AFJ ∠=∠=∴°30FAI FAE ∠=∠=在RtAIF 和RtAJF 中°30FAI FAE ∠=∠=∴12IF FJ AF ==设FJ x = 7,4CF BF ==则47x x +=-32x ∴=2AF FJ =AF ∴=3【点睛】此题主要考查了通过做辅助线证明三角形全等,得出相关的边相等,学会合理添加辅助线求解是解决本题的重点.2.如图,线段AB ,DE 的垂直平分线交于点C ,且72ABC EDC ∠=∠=︒,92AEB ∠=︒,则EBD ∠的度数为 ________ .【答案】128︒【解析】【分析】连接CE ,由线段AB ,DE 的垂直平分线交于点C ,得CA=CB ,CE=CD ,ACB=∠ECD=36°,进而得∠ACE=∠BCD ,易证∆ACE ≅∆BCD ,设∠AEC=∠BDC=x ,得则∠BDE=72°-x ,∠CEB=92°-x ,BDE 中,∠EBD=128°,根据三角形内角和定理,即可得到答案.【详解】连接CE ,∵线段AB ,DE 的垂直平分线交于点C ,∴CA=CB ,CE=CD ,∵72ABC EDC ∠=∠=︒=∠DEC ,∴∠ACB=∠ECD=36°,∴∠ACE=∠BCD ,在∆ACE 与∆BCD 中,∵CA CB ACE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩,∴∆ACE ≅∆BCD (SAS ), ∴∠AEC=∠BDC ,设∠AEC=∠BDC=x ,则∠BDE=72°-x ,∠CEB=92°-x ,∴∠BED=∠DEC-∠CEB=72°-(92°-x )=x-20°,∴在∆BDE 中,∠EBD=180°-(72°-x )-(x-20°)=128°.故答案是:128︒.【点睛】本题主要考查中垂线的性质,三角形全等的判定和性质定理以及三角形内角和定理,添加辅助线,构造全等三角形,是解题的关键.3.等腰三角形顶角为30°,腰长是4cm ,则三角形的面积为__________【答案】4【解析】如图,根据30°角所对直角边等于斜边的一半的性质,可由等腰三角形的顶角为30°,腰长是4cm ,可求得BD=12AB =4×12=2,因此此三角形的面积为:S=12AC•BD=12×4×2=8×12=4(cm 2).故答案是:4.4.如图,在四边形ABCD 中,AB AD =,BC DC =,60A ∠=︒,点E 为AD 边上一点,连接BD .CE ,CE 与BD 交于点F ,且CE AB ∥,若8AB =,6CE =,则BC 的长为_______________.【答案】27【解析】【分析】由AB AD =,BC DC =知点A,C 都在BD 的垂直平分线上,因此,可连接AC 交BD 于点O ,易证ABD △是等边三角形,EDF 是等边三角形,根据等边三角形的性质对三角形中的线段进行等量转换即可求出OB,OC 的长度,应用勾股定理可求解.【详解】解:如图,连接AC 交BD 于点O∵AB AD =,BC DC =,60A ∠=︒,∴AC 垂直平分BD ,ABD △是等边三角形∴30BAO DAO ∠=∠=︒,8AB AD BD ===,4BO OD ==∵CE AB ∥∴30BAO ACE ∠=∠=︒,60CED BAD ∠=∠=︒∴30DAO ACE ∠=∠=︒∴6AE CE ==∴2DE AD AE =-=∵60CED ADB ∠=∠=︒∴EDF 是等边三角形∴2DE EF DF ===∴4CF CE EF =-=,2OF OD DF =-=∴2223OC CF OF =-=∴2227BC BO OC +=【点睛】本题主要考查了等边三角形的判定与性质、勾股定理,综合运用等边三角形的判定与性质进行线段间等量关系的转换是解题的关键.5.如图,在△ABC 中,AB=AC ,∠BAC=120°,D 为BC 上一点,DA ⊥AC ,AD=24 cm ,则BC的长________cm.【答案】72【解析】【分析】按照等腰三角形的性质、角的和差以及含30°直角三角形的性质进行解答即可.【详解】解:∵AB=AC,∠BAC=120°∴∠B=∠C=30°∵DA⊥AC,AD=24 cm∴DC=2AD=48cm,∵∠BAC=120°,DA⊥AC∴∠BAD=∠BAC-90°=30°∴∠B=∠BAD∴BD=AD=24cm∴BC=BD+DC=72cm故答案为72.【点睛】本题考查了腰三角形的性质、角的和差以及含30°直角三角形的性质,其中灵活运用含30°直角三角形的性质是解答本题的关键.6.在△ABC 中,∠ACB=90º,D、E 分别在 AC、AB 边上,把△ADE 沿 DE 翻折得到△FDE,点 F 恰好落在 BC 边上,若△CFD 与△BFE 都是等腰三角形,则∠BAC 的度数为_________.【答案】45°或60°【解析】【分析】根据题意画出图形,设∠BAC的度数为x,则∠B=90°-x,∠EFB =135°-x,∠BEF=2x-45°,当△BFE 都是等腰三角形,分三种情况讨论,即可求解.【详解】∵∠ACB=90º,△CFD是等腰三角形,∴∠CDF=∠CFD=45°,设∠BAC的度数为x,∴∠B=90°-x,∵△ADE 沿 DE 翻折得到△FDE,点 F 恰好落在 BC 边上,∴∠DFE=∠BAC=x,∴∠EFB=180°-45°-x=135°-x,∵∠ADE=∠FDE,∴∠ADE=(180°-45°)÷2=67.5°,∴∠AED=180°-∠ADE-∠BAC=180°-67.5° -x=112.5°-x,∴∠DEF=∠AED=112.5°-x,∴∠BEF=180°-∠AED-∠DEF=180°-(112.5°-x)-(112.5°-x)=2x-45°,∵△BFE 都是等腰三角形,分三种情况讨论:①当FE=FB时,如图1,则∠BEF=∠B,∴90-x=2x-45,解得:x=45;②当BF=BE时,则∠EFB=∠BEF,∴135-x=2x-45,解得:x=60,③当EB=EF时,如图2,则∠B=∠EFB,∴135-x=90-x,无解,∴这种情况不存在.综上所述:∠BAC 的度数为:45°或60°.故答案是:45°或60°.图1 图2【点睛】本题主要考查等腰三角形的性质定理,用代数式表示角度,并进行分类讨论,是解题的关键.7.如图,已知AB=A 1B ,A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4,…若∠A=70°,则锐角∠A n 的度数为______.【答案】1702n -︒ 【解析】【分析】根据等腰三角形的性质以及三角形的内角和定理和外角的性质即可得出答案.【详解】在△1ABA 中,AB=A 1B ,∠A=70°可得:∠1BAA =∠1BA A =70°在△112B A A 中,A 1B 1=A 1A 2可得:∠112A B A =∠121A A B根据外角和定理可得:∠1BA A =∠112A B A +∠121A A B∴∠112A B A =∠121A A B =702︒ 同理可得:∠232A A B =2702︒ ∠343A A B =3702︒ …….以此类推:∠A n =1702n -︒ 故答案为:1702n -︒. 【点睛】本题主要考查等腰三角形、三角形的基本概念以及规律的探索,准确识图,熟练掌握和灵活运用相关知识是解题的关键..8.如图,在△ABC 中,AB =BC =8,AO =BO ,点M 是射线CO 上的一个动点,∠AOC =60°,则当△ABM 为直角三角形时,AM 的长为______.【答案】7或34【解析】【分析】分三种情况讨论:①当M在AB下方且∠AMB=90°时,②当M在AB上方且∠AMB=90°时,③当∠ABM=90°时,分别根据含30°直角三角形的性质、直角三角形斜边的中线的性质或勾股定理,进行计算求解即可.【详解】如图1,当∠AMB=90°时,∵O是AB的中点,AB=8,∴OM=OB=4,又∵∠AOC=∠BOM=60°,∴△BOM是等边三角形,∴BM=BO=4,∴Rt△ABM中,AM22-3AB BM如图2,当∠AMB=90°时,∵O是AB的中点,AB=8,∴OM=OA=4,又∵∠AOC=60°,∴△AOM是等边三角形,∴AM=AO=4;如图3,当∠ABM=90°时,∵∠BOM=∠AOC=60°,∴∠BMO=30°,∴MO=2BO=2×4=8,∴Rt△BOM中,BM22-=43MO OB∴Rt△ABM中,AM22AB BM+47综上所述,当△ABM为直角三角形时,AM的长为3474.故答案为43 7或4.9.如图,ABC ∆中,AB AC =,点D 是ABC ∆内部一点,DB DC =,点E 是边AB 上一点,若CD 平分ACE ∠,100AEC =∠,则BDC ∠=______°【答案】80【解析】【分析】根据角平分线得到∠ACE=2∠ACD ,再根据角的和差关系得到∠ECB =∠ACB -2∠ACD ,然后利用外角定理得到∠ABC+∠ECB=100°,代换化简得出∠ACB -∠ACD=50°,即∠DCB=50°,从而求出∠BDC 即可.【详解】∵CD 平分∠ACE ,∴∠ACE=2∠ACD=2∠ECD ,∴∠ECB=∠ACB -∠ACE=∠ACB -2∠ACD ,∵∠AEC=100°,∴∠ABC+∠ECB=100°,∴∠ABC+∠ACB -2∠ACD=100°,∵AB=AC,∴∠ABC=∠ACB,∴2∠ACB-2∠ACD=100°,∴∠ACB-∠ACD=50°,即∠DCB=50°,∵DB=DC,∴∠DBC=∠DCB,∴∠BDC=180°-2∠DCB=180°-2×50°=80°.【点睛】本题考查了角平分线,三角形内角和,外角定理,及等边对等角的性质等知识,熟练掌握基本知识,找出角与角之间的关系是解题的关键.10.如图,在四边形ABCD中,∠A+∠C=180°,E、F分别在BC、CD上,且AB=BE,AD =DF,M为EF的中点,DM=3,BM=4,则五边形ABEFD的面积是_____.【答案】12【解析】【分析】延长BM至G,使MG=BM,连接FG、DG,证明△BME≌△GMF(SAS),得出FG=BE,∠MBE=∠MGF,证出AB=FG,证明△DAB≌△DFG(SAS),得出DB=DG,由等腰三角形的性质即可得DM⊥BM,由五边形ABEFD的面积=△DBG的面积,可求解.【详解】延长BM至G,使MG=BM=4,连接FG、DG,如图所示:∵M为EF中点,∴ME=MF,在△BME和△GMF中,BM MG BME GMFME MF =⎧⎪∠=∠⎨⎪=⎩, ∴△BME ≌△GMF (SAS ),∴FG =BE ,∠MBE =∠MGF ,S △BEM =S △GFM ,∴FG ∥BE ,∴∠C =∠GFC ,∵∠A +∠C =180°,∠DFG +∠GFC =180°,∴∠A =∠DFG ,∵AB =BE ,∴AB =FG ,在△DAB 和△DFG 中,AB FG A DFGAD DF =⎧⎪∠=∠⎨⎪=⎩, ∴△DAB ≌△DFG (SAS ),∴DB =DG ,S △DAB =S △DFG ,∵MG =BM ,∴DM ⊥BM ,∴五边形ABEFD 的面积=△DBG 的面积=12×BG ×DM =12×8×3=12, 故答案为:12.【点睛】本题考查了全等三角形的判定与性质、平行线的性质、等腰三角形的判定与性质等知识;熟练掌握等腰三角形的判定由性质,证明三角形全等是解题的关键.二、八年级数学轴对称三角形选择题(难)11.已知点M(2,2),且,在坐标轴上求作一点P ,使△OMP 为等腰三角形,则点P 的坐标不可能是( )A .B .(0,4)C .(4,0)D .)【答案】D【解析】【分析】分类讨论:OM=OP ;MO=MP ;PM=PO ,分别计算出相应的P 点,从而得出答案.【详解】∵M(2,2),且,且点P 在坐标轴上当22OM OP == 时P 点坐标为:()()22,0,0,22±± ,A 满足;当22MO MP ==时:P 点坐标为:()()4,0,0,4,B 满足;当PM PO =时:P 点坐标为:()()2,0,0,2,C 满足故答案选:D【点睛】本题考查动点问题构成等腰三角形,利用等腰三角形的性质分类讨论是解题关键.12.如图,ABC ,分别以AB 、AC 为边作等边三角形ABD 与等边三角形ACE ,连接BE 、CD ,BE 的延长线与CD 交于点F ,连接AF ,有以下四个结论:①BE CD =;②FA 平分EFC ∠;③FE FD =;④FE FC FA +=.其中一定正确的结论有( )A .1B .2C .3D .4【答案】C【解析】【分析】 根据等边三角形的性质证出△BAE ≌△DAC ,可得BE =CD ,从而得出①正确;过A 作AM ⊥BF 于M ,过A 作AN ⊥DC 于N ,由△BAE ≌△DAC 得出∠BEA =∠ACD ,由等角的补角相等得出∠AEM =∠CAN ,由AAS 可证△AME ≌△ANC ,得到AM =AN ,由角平分线的判定定理得到FA 平分∠EFC ,从而得出②正确;在FA 上截取FG ,使FG =FE ,根据全等三角形的判定与性质得出△AGE ≌△CFE ,可得AG =CF ,即可求得AF =CF +EF ,从而得出④正确;根据CF +EF =AF ,CF +DF =CD ,得出CD ≠AF ,从而得出FE ≠FD ,即可得出③错误.【详解】∵△ABD 和△ACE 是等边三角形,∴∠BAD =∠EAC =60°,AE =AC =EC .∵∠BAE +∠DAE =60°,∠CAD +∠DAE =60°,∴∠BAE =∠DAC ,在△BAE 和△DAC 中,∵AB ADBAE DACAE AC=⎧⎪∠=∠⎨⎪=⎩,∴△BAE≌△DAC(SAS),∴BE=CD,①正确;过A作AM⊥BF于M,过A作AN⊥DC于N,如图1.∵△BAE≌△DAC,∴∠BEA=∠ACD,∴∠AEM=∠ACN.∵AM⊥BF,AN⊥DC,∴∠AME=∠ANC.在△AME和△ANC中,∵∠AEM=∠CAN,∠AME=∠ANC,AE=AC,∴△AME≌△ANC,∴AM=AN.∵AM⊥BF,AN⊥DC,AM=AN,FA平分∠EFC,②正确;在FA上截取FG,使FG=FE,如图2.∵∠BEA=∠ACD,∠BEA+∠AEF=180°,∴∠AEF+∠ACD=180°,∴∠EAC+∠EFC=180°.∵∠EAC=60°,∴∠EFC=120°.∵FA平分∠EFC,∴∠EFA=∠CFA=60°.∵EF=FG,∠EFA=60°,∴△EFG是等边三角形,∴EF=EG.∵∠AEG+∠CEG=60°,∠CEG+∠CEF=60°,∴∠AEG=∠CEF,在△AGE和△CFE中,∵AE ACAEG CEFEG EF=⎧⎪∠=∠⎨⎪=⎩,∴△AGE≌△CFE(SAS),∴AG=CF.∵AF=AG+FG,∴AF=CF+EF,④正确;∵CF+EF=AF,CF+DF=CD,CD≠AF,∴FE≠FD,③错误,∴正确的结论有3个.故选C.【点睛】本题考查了等边三角形的判定与性质以及全等三角形的判定与性质,正确作辅助线是解答本题的关键.13.如图,已知一条线段的长度为a,作边长为a的等边三角形的方法是:①画射线AM;②连结AC、BC;③分别以A、B为圆心,以a的长为半径作圆弧,两弧交于点C;④在射线AM上截取AB=a;以上画法正确的顺序是()A.①②③④B.①④③②C.①④②③D.②①④③【答案】B【解析】【分析】根据尺规作等边三角形的过程逐项判断即可解答.【详解】解:已知一条线段的长度为a,作边长为a的等边三角形的方法是:①画射线AM;②在射线AM上截取AB=a;③分别以A、B为圆心,以a的长为半径作圆弧,两弧交于点C;④连结AC、BC.△ABC即为所求作的三角形.故选答案为B.本题考查了尺规作图和等边三角形的性质,解决本题的关键是理解等边三角形的作图过程.的正方形网格中,A,B是如图所示的两个格点,如果C也是格点,且14.在一个33ABC是等腰三角形,则符合条件的C点的个数是()A.6B.7C.8D.9【答案】C【解析】【分析】根据题意、结合图形,画出图形即可确定答案.【详解】解:根据题意,画出图形如图:共8个.故答案为C.【点睛】本题主要考查了等腰三角形的判定,根据题意、画出符合实际条件的图形是解答本题的关键.15.如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC 于F,AD交CE于G.则下列结论中错误的是( )A.AD=BE B.BE⊥ACC.△CFG为等边三角形D.FG∥BC【答案】B试题解析:A.ABC 和CDE △均为等边三角形,60AC BC EC DC ACB ECD ∴==∠=∠=︒,,,在ACD 与BCE 中,{AC BCACD BCE CD CF =∠=∠=,ACD BCE ∴≌,AD BE ∴=,正确.B .据已知不能推出F 是AC 中点,即AC 和BF 不垂直,所以AC BE ⊥错误,故本选项符合题意.C.CFG 是等边三角形,理由如下:180606060ACG BCA ∠=︒-︒-︒=︒=∠,ACD BCE ≌,CBE CAD ∴∠=∠,在ACG 和BCF 中,{CAG CBFAC BCBCF ACG ∠=∠=∠=∠,ACG BCF ∴≌,CG CH ∴=,又∵∠ACG=60° CFG ∴是等边三角形,正确.D.CFG 是等边三角形,60CFG ACB ∴∠︒=∠﹦,.FG BC ∴ 正确.故选B.16.如图,已知AD 为ABC ∆的高线,AD BC =,以AB 为底边作等腰Rt ABE ∆,连接ED ,EC ,延长CE 交AD 于F 点,下列结论:①DAE CBE ∠=∠;②CE DE ⊥;③BD AF =;④AED ∆为等腰三角形;⑤BDE ACE S S ∆∆=,其中正确的有( )A .①③B .①②④C .①③④D .①②③⑤【答案】D【解析】【分析】 ①根据等腰直角三角形的性质即可证明∠CBE =∠DAE ,再得到△ADE ≌△BCE ; ②根据①结论可得∠AEC =∠DEB ,即可求得∠AED =∠BEG ,即可解题;③证明△AEF ≌△BED 即可;④根据△AEF ≌△BED 得到DE=EF, 又DE ⊥CF ,故可判断;⑤易证△FDC 是等腰直角三角形,则CE =EF ,S △AEF =S △ACE ,由△AEF ≌△BED ,可知S △BDE =S △ACE ,所以S △BDE =S △ACE .【详解】①∵AD 为△ABC 的高线,∴CBE +∠ABE +∠BAD =90°,∵Rt △ABE 是等腰直角三角形,∴∠ABE =∠BAE =∠BAD +∠DAE =45°,AE =BE ,∴∠CBE +∠BAD =45°,∴∠DAE =∠CBE ,故①正确;在△DAE 和△CBE 中,AE BE DAE CBE AD BC ⎧⎪∠∠⎨⎪⎩===,∴△ADE ≌△BCE (SAS );②∵△ADE ≌△BCE ,∴∠EDA =∠ECB ,∵∠ADE +∠EDC =90°,∴∠EDC +∠ECB =90°,∴∠DEC =90°,∴CE ⊥DE ;故②正确;③∵∠BDE =∠ADB +∠ADE ,∠AFE =∠ADC +∠ECD ,∴∠BDE =∠AFE ,∵∠BED +∠BEF =∠AEF +∠BEF =90°,∴∠BED =∠AEF ,在△AEF 和△BED 中,BDE AFE BED AEF AE BE ∠∠⎧⎪∠∠⎨⎪⎩===,∴△AEF ≌△BED (AAS ),∴BD=AF故③正确;∵△AEF≌△BED∴DE=EF, 又DE⊥CF,∴△DEF为等腰直角三角形,故④错误;④∵AD=BC,BD=AF,∴CD=DF,∵AD⊥BC,∴△FDC是等腰直角三角形,∵DE⊥CE,∴EF=CE,∴S△AEF=S△ACE,∵△AEF≌△BED,∴S△AEF=S△BED,∴S△BDE=S△ACE.故④正确;故选:D.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△BFE≌△CDE是解题的关键.17.如图,已知等边△ABC的边长为4,面积为43,点D为AC的中点,点E为BC的中点,点P为BD上一动点,则PE+PC的最小值为()A.3 B.2C.3D.3【答案】C【解析】【分析】由题意可知点A、点C关于BD对称,连接AE交BD于点P,由对称的性质可得,PA=PC,故PE+PC=AE,由两点之间线段最短可知,AE即为PE+PC的最小值.【详解】解:∵△ABC是等边三角形,点D为AC的中点,点E为BC的中点,∴BD⊥AC,EC=2,连接AE,线段AE的长即为PE+PC最小值,∵点E是边BC的中点,∴AE⊥BC,∴PE+PC的最小值是22-=.4223-=22AC E C故选C.【点睛】本题考查的是轴对称-最短路线问题,熟知等边三角形的性质是解答此题的关键.18.如图所示,在四边ABCD中,∠BAD=120°,∠B=∠D=90°,若在BC和CD上分别找一点M,使得△AMN的周长最小,则此时∠AMN+∠ANM的度数为()A.110°B.120°C.140°D.150°【答案】B【解析】【分析】根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′M+∠A″=60°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案.【详解】作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.∵∠DAB=120°,∴∠AA′M+∠A″=180°-120°=60°,∵∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×60°=120°,故选B.【点睛】此题主要考查了平面内最短路线问题求法,以及三角形的外角的性质和垂直平分线的性质等知识的综合应用,根据轴对称的性质,得出M,N的位置是解题的关键.19.如图,O是正三角形ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO′=6+33;⑤S△AOC+S△AOB=6+934.其中正确的结论是()A.①②③⑤B.①③④C.②③④⑤D.①②⑤【答案】A【解析】试题解析:由题意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3,又∵OB=O′B,AB=BC,∴△BO′A≌△BOC,又∵∠OBO′=60°,∴△BO′A可以由△BOC绕点B逆时针旋转60°得到,故结论①正确;如图①,连接OO′,∵OB=O′B,且∠OBO′=60°,∴△OBO′是等边三角形,∴OO′=OB=4.故结论②正确;∵△BO′A≌△BOC,∴O′A=5.在△AOO′中,三边长为3,4,5,这是一组勾股数,∴△AOO′是直角三角形,∠AOO′=90°,∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,故结论③正确; S 四边形AOBO ′=S △AOO′+S △OBO′=12×3×4+3×42=6+43, 故结论④错误; 如图②所示,将△AOB 绕点A 逆时针旋转60°,使得AB 与AC 重合,点O 旋转至O″点.易知△AOO″是边长为3的等边三角形,△COO″是边长为3、4、5的直角三角形, 则S △AOC +S △AOB =S 四边形AOCO″=S △COO″+S △AOO″=123293, 故结论⑤正确.综上所述,正确的结论为:①②③⑤.故选A .20.如图,ABC △中,60BAC ∠=︒,ABC ∠、ACB ∠的平分线交于E ,D 是AE 延长线上一点,且120BDC ∠=︒.下列结论:①120BEC ∠=︒;②DB DE =;③2BDE BCE ∠=∠.其中所有正确结论的序号有( ).A .①②B .①③C .②③D .①②③【答案】D【解析】 分析:根据三角形内角和等于180°求出∠ABC+∠ACB ,再根据角平分线的定义求出∠EBC+∠ECB ,然后求出∠BEC=120°,判断①正确;过点D 作DF ⊥AB 于F ,DG ⊥AC 的延长线于G ,根据角平分线上的点到角的两边的距离相等可得DF=DG ,再求出∠BDF=∠CDG ,然后利用“角边角”证明△BDF 和△CDG 全等,根据全等三角形对应边相等可得BD=CD ,再根据等边对等角求出∠DBC=30°,然后根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义求出∠DBE=∠DEB ,根据等角对等边可得BD=DE ,判断②正确,再求出B ,C ,E 三点在以D 为圆心,以BD 为半径的圆上,根据同弧所对的圆周角等于圆心角的一半可得∠BDE=2∠BCE ,判断③正确.详解:∵60BAC ∠=︒,∴18060120ABC ACB ∠+∠=︒-︒=︒,∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,∴12EBC ABC ∠=∠,12ECB ACB ∠=∠, ∴11()1206022EBC ECB ABC ACB ∠+∠=∠+∠=⨯︒=︒, ∴180()18060120BEC EBC ECB ∠=︒-∠+∠=︒-︒=︒, 故①正确.如图,过点D 作DF AB ⊥于F ,DG AC ⊥的延长线于G ,∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,∴AD 为BAC ∠的平分线,∴DF DG =,∴36090260120FDG ∠=︒-︒⨯-︒=︒,又∵120BDC ∠=︒,∴120BDF CDF ∠+∠=︒,120CDG CDF ∠+∠=︒.∴BDF CDG ∠=∠,∵在BDF 和CDG △中,90BFD CGD DF DGBDF CDG ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩, ∴BDF ≌()CDG ASA ,∴DB CD =, ∴1(180120)302DBC ∠=︒-︒=︒, ∴30DBC DBC CBE CBE ∠=∠+∠=︒+∠,∵BE 平分ABC ∠,AE 平分BAC ∠,∴ABE CBE ∠=∠,1302BAE BAC ∠=∠=︒, 根据三角形的外角性质, 30DEB ABE BAE ABE ∠=∠+∠=∠+︒,∴DEB DBE ∠=∠,∴DB DE =,故②正确.∵DB DE DC ==,∴B 、C 、E 三点在以D 为圆心,以BD 为半径的圆上,∴2BDE BCE ∠=∠,故③正确,综上所述,正确结论有①②③,故选:D .点睛:本题考查了角平分线的性质,全等三角形的判定与性质,等角对等边的性质,圆内接四边形的判定,同弧所对的圆周角等于圆心角的一半性质,综合性较强,难度较大,特别是③的证明.。
全等三角形的判断HL练习题1.在 Rt △ABC和 Rt △ DEF中,∠ ACB=∠DFE=90 ,AB=DE,AC=DF,那么 Rt △ ABC与 Rt △ DEF (填全等或不全等)2.如图,点 C 在∠ DAB的内部, CD⊥ AD于 D,CB⊥AB 于 B,CD=CB那么 Rt △ ADC≌ Rt △ ABC的原因是()A. SSS B. ASA C. SAS D. HLDCB CA┎ FB ME ┘A B┐ACD2 题图3 题图 6 题图3.如图,CE⊥ AB,DF⊥ AB,垂足分别为E、F,AC∥DB,且 AC=BD,那么 Rt △ AEC≌ Rt △ BFC的原因是().A. SSS B. AAS C. SAS D. HL4.以下说法正确的个数有().①有一角和一边对应相等的的两个直角三角形全等;②有两边对应相等的两个直角三角形全等;③有两边和一角对应相等的两个直角三角形全等;④有两角和一边对应相等的两个直角三角形全等.A . 1 个 B. 2 个 C. 3 个 D. 4 个5.过等腰△ ABC的极点 A 作底面的垂线,就获得两个全等三角形,其原因是.90 ,AM均分∠ CAB,CM=20cm,那么 M到 AB的距离是cm.6.如图,△ ABC中,∠ C=7.在△ ABC和△A B C中,假如 AB=A B,∠ B=∠B,AC=A C,那么这两个三角形().A .全等 B. 不必定全等 C. 不全等 D. 面积相等,但不全等8.已知,如图,△ ABC中, AB=AC, AD是角均分线, BE=CF,则以下说法正确的有几个()(1) AD均分∠ EDF;( 2)△ EBD≌△ FCD;( 3) BD=CD;( 4) AD⊥ BC.A. 1 个B.2个C.3个D.4个C AA BE FB CDD 8题图10题图11题图12题图9. 以下命题中正确的有()①两直角边对应相等的两直角三角形全等;②两锐角对应相等的两直角三角形全等;③斜边和一条直角边对应相等的两直角三角形全等;④一锐角和斜边对应相等的两直角三角形全等.A. 2 个B.3个C.4个D.1个10.如图,ABC 和EDF 中,B D 90 ,A E ,点 B 、 F 、C、 D 在同一条直线上,再增添一个条件,不可以判断ABC ≌EDF 的是()A.AB ED B.AC EF C.AC // EF D.BF DC11.如图,AB AC , BD AC 于D, CE AB 于E,图中全等三角形的组数是()A. 2B.3C.4D.512.如图,在△ABC和△ ABD中,∠ C=∠ D=90°,若利用“ AAS”证明△ ABC≌△ ABD,则需要加条件_______或;若利用“ HL”证明△ ABC≌△ ABD,则需要加条件或.113.已知如图,AB⊥ BD,CD⊥ BD,AB=DC,求证:AD∥ BC.DACB14. 如图,△ ABC 中, D 是 BC上一点, DE⊥AB,DF⊥AC,E、F 分别为垂足,且AE=AF,试说明: DE=DF,AD均分∠ BAC.15.如图, B、 E、 F、 C在同向来线上, AE⊥ BC, DF⊥ BC, AB=DC, BE=CF,试判断 AB 与 CD的地点关系,并证明 .AF ┐EB ┘ CD16.如图, AD是△ ABC的高, E 为 AC上一点, BE交 AD于 F,且有 BF=AC, FD=CD,尝试究 BE 与 AC的地点关系 .AEFBCD17.如图,在△ ABC中,∠ ACB=90,AC=BC,直线 DN经过点 C,且 AD⊥DN于 D,BE⊥DN于E,求证: DE=AD+BE.BAD CE N218. 如图, AB=CD, DF⊥ AC于 F, BE⊥ AC于 E, DF=BE,求证: AF=CE. DFA19.如图,△ ABC中,∠ C=90°, AB=2AC, M是 AB的中点,点 N 在 BC上, MN⊥ AB。
中考数学专练三角形的专题1.已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD1. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB2. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠23. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=ACADBC4. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C5. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE6. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD7. 已知:D 是AB 中点,∠ACB=90°,求证:12CD ABADB CBA CDF2 1 ECDB A8. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠29. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC10. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C11. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BEBA CDF2 1 ECDB A12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。
求证:BC=AB+DC 。
13.已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C14. 已知:AB=CD ,∠A=∠D ,求证:∠B=∠CDCBA FEAB C D15. P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB<AC-AB16. 已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC-AB=2BE17. 已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DC18.(5分)如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC .19.(5分)如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,A 、B 为垂足,AB 交OM 于点N .求证:∠OAB =∠OBAP D ACBFA ED C B20.(5分)如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .21.(6分)如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B22.(6分)如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M .(1)求证:MB =MD ,ME =MF(2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.PEDCBA D CBA23.(7分)已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点,(1)求证:△AED ≌△EBC .(2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):24.(7分)如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F . 求证:BD =2CE .25、(10分)如图:DF=CE ,AD=BC ,∠D=∠C 。
1. 如图① , 在△ ABC中 , ∠ ACB=90° ,AC=BC, 过点C 在△ ABC外作直线MN,AM⊥ MN于点M,BN⊥MN于点 N.(1)试说明 :MN=AM+BN.(2)如图② , 若过点 C作直线 MN与线段 AB订交 ,AM⊥MN 于点 M,BN⊥MN于点 N(AM>BN),(1) 中的结论能否仍旧建立 ?说明原因 .【答案】 (1) 答案看法析 ;(2) 不建立【分析】试题剖析:(1)利用互余关系证明∠ MAC =∠ NCB,又∠ AMC=∠CNB=90°, AC=BC,故可证△ AMC ≌△ CNB,进而有 AM=CN, MC=BN,即可得出结论;(2)近似于( 1)的方法,证明△ AMC ≌△ CNB,进而有 AM =CN ,MC =BN,可推出 AM 、 BN 与 MN 之间的数目关系.试题分析:解:( 1)∵ AM ⊥ MN , BN⊥ MN,∴∠ AMC=∠CNB=90°.∵∠ ACB=90°,∴∠ MAC +∠ ACM=90°,∠ NCB+∠ ACM=90°,∴∠ MAC=∠NCB.在△ AMC 和△ CNB 中,∵∠ AMC =∠ CNB,∠ MAC =∠ NCB, AC= CB,∴△ AMC ≌△ CNB(AAS ),∴ AM =CN ,MC =NB.∵MN =NC+CM ,∴ MN =AM+BN;(2)图( 1)中的结论不建立, MN =BN-AM.原因以下:∵AM ⊥ MN , BN⊥ MN ,∴∠ AMC=∠ CNB=90°.∵∠ ACB=90°,∴∠ MAC +∠ ACM=90°,∠ NCB+∠ ACM=90°,∴∠ MAC=∠NCB.在△ AMC 和△ CNB 中,∵∠ AMC =∠ CNB,∠ MAC =∠ NCB, AC= CB,∴△ AMC ≌△ CNB(AAS ),∴ AM =CN ,MC =NB.∵MN =CM -CN,∴ MN=BN-AM .点睛:此题考察了全等三角形的判断与性质.重点是利用互余关系推出对应角相等,证明三角形全等.2. 如图, BE、CF 是△ ABC 的高且订交于点 P,AQ∥ BC 交 CF 延伸线于点 Q,如有 BP=AC ,CQ=AB ,线段 AP 与 AQ 的关系怎样?说明原因。
相似三角形精选好题解答题学校:___________姓名:___________班级:___________考号:___________一、解答题(本大题共25小题,共200.0分)1.如图,在中,,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿着CA以每秒3cm的速度向A点运动,设运动时间为x秒.为何值时,;是否存在某一时刻,使∽?若存在,求出此时AP的长;若不存在,请说明理由;当时,求的值.2.如图,中,于是BC中点,连接AD与BE交于点F,求证:∽.3.如图,已知四边形ABCD中,的延长线与AD的延长线交于点E.若,求BC的长;若,求AD的长.注意:本题中的计算过程和结果均保留根号4.如图,在中,点D在BC边上,点E在AD边上,.求证:∽;若,求AE的长.5.如图,在四边形ABCD中,,交BC于点F,连接AF.求CF的长;若,求AB的长.6.如图,在锐角三角形ABC中,点分别在边上,于点于点.求证:∽;若,求的值.7.如图,在中,,点D是BC边的中点,.求AD和AB的长;求的值.8.从三角形不是等腰三角形一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.如图1,在中,CD为角平分线,,求证:CD为的完美分割线.在中,是的完美分割线,且为等腰三角形,求的度数.如图中,是的完美分割线,且是以CD为底边的等腰三角形,求完美分割线CD的长.9.如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为,测得大楼顶端A的仰角为点在同一水平直线上,已知,求障碍物两点间的距离结果精确到参考数据:10.如图是将一正方体货物沿坡面AB装进汽车货厢的平面示意图已知长方体货厢的高度BC为米,,现把图中的货物继续往前平移,当货物顶点D与C重合时,仍可把货物放平装进货厢,求BD 的长结果保留根号11.如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为沿坡面AB向上走到B处测得广告牌顶部C的仰角为,已知山坡AB的坡度:米,米:是指坡面的铅直高度BH与水平宽度AH的比求点B距水平面AE的高度BH;求广告牌CD的高度.测角器的高度忽略不计,结果精确到米参考数据:12.如图,在中,,动点P从点C出发,沿CA方向运动;动点Q同时从点B出发,沿BC方向运动,如果点P的运动速度为点的运动速度为,那么运动几秒时,和相似?13.如图所示,,点P从点B出发,沿BC向点C以的速度移动,点Q从点C出发沿CA向点A以的速度移动,如果P、Q分别从B、C同时出发,过多少时,以C、P、Q为顶点的三角形恰与相似?14.如图,小明在教学楼A处分别观测对面实验楼CD底部的俯角为,顶部的仰角为,已知教学楼和实验楼在同一平面上,观测点距地面的垂直高度AB为15m,求实验楼的垂直高度即CD长精确到参考值:.15.如图,某校数学兴趣小组为测量校园主教学楼AB的高度,由于教学楼底部不能直接到达,故兴趣小组在平地上选择一点C,用测角器测得主教学楼顶端A的仰角为,再向主教学楼的方向前进24米,到达点E处三点在同一直线上,又测得主教学楼顶端A的仰角为,已知测角器CD的高度为米,请计算主教学楼AB的高度,结果精确到米16.已知:如图,是等边三角形,点D、E分别在边BC、AC上,.求证:∽;如果,求DC的长.17.如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C点测得树顶A点的仰角,从平台底部向树的方向水平前进3米到达点E,在点E处测得树顶A点的仰角,求树高结果保留根号18.钓鱼岛自古就是中国的领土,中国有关部门已对钓鱼岛及其附属岛屿开展常态化监视监测一日,中国一艘海监船从A点沿正北方向巡航,其航线距钓鱼岛设N、M为该岛的东西两端点最近距离为15海里即海里,在A点测得岛屿的西端点M在点A的东北方向,航行4海里后到达B点,测得岛屿的东端点N在点B的北偏东方向其中N、M、C在同一条直线上,求钓鱼岛东西两端点MN之间的距离精确到海里参考数据:.19.探究证明:如图1,矩形ABCD中,点M、N分别在边上,,求证:.如图2,矩形ABCD中,点M在边BC上,分别交于点E、点F,试猜想与有什么数量关系?并证明你的猜想.拓展应用:综合、的结论解决以下问题:如图3,四边形ABCD中,,点分别在边上,求的值.20.如图,在某次数学活动课中,小明为了测量校园内旗杆AB的高度,站在教学楼CD上的E处测得旗杆底端B的仰角的度数为,测得旗杆顶端A的仰角的度数为,旗杆底部B处与教学楼底部C处的水平距离BC为9m,求旗杆的高度结果精确到.【参考数据:】21.已知,如图,在四边形ABCD中,,延长AD、BC相交于点求证:∽;.22.如图,在中,点D为BC边的任意一点,以点D为顶点的的两边分别与边交于点E、F,且与互补.如图1,若为BC的中点时,则线段DE与DF有何数量关系?请直接写出结论;如图2,若为BC的中点时,那么中的结论是否还成立?若成立,请给出证明;若不成立,请写出DE与DF的关系并说明理由;如图3,若,且,直接写出______ .23.放风筝是大家喜爱的一种运动,星期天的上午小明在市政府广场上放风筝如图,他在A处不小心让风筝挂在了一棵树梢上,风筝固定在了D处,此时风筝AD与水平线的夹角为,为了便于观察,小明迅速向前边移动,收线到达了离A处10米的B处,此时风筝线BD与水平线的夹角为已知点在同一条水平直线上,请你求出小明此时所收回的风筝线的长度是多少米?风筝线均为线段,,最后结果精确到1米.24.禁渔期间,我渔政船在A处发现正北方向B处有一艘可以船只,测得A、B两处距离为200海里,可疑船只正沿南偏东方向航行,我渔政船迅速沿北偏东方向前去拦截,经历4小时刚好在C处将可疑船只拦截求该可疑船只航行的平均速度结果保留根号.25.某市开展一项自行车旅游活动,线路需经A、B、C、D四地,如图,其中A、B、C三地在同一直线上,D地在A地北偏东方向,在C地北偏西方向,C地在A 地北偏东方向且,问沿上述线路从A地到D地的路程大约是多少?最后结果保留整数,参考数据:答案和解析【答案】1。
1.已知:AB=4 , AC=2 , D 是BC 中点,AD 是整数,求ADA 解:延长AD 至IJE,使AD=DE・・・D 是BC 中点BD=DC在厶ACD 和厶BDE 中AD=DEZBDE= ZADC BD=DCAA ACD A BDE•*. AC=BE=2・・•在△ ABE 中AB-BE < AE<AB+BE・・・AB=4即 4・2 <2AD < 4+21 < AD < 3・・・AD=2延长CD 与P,使D 为CP 中点。
连接VDP=DC,DA=DBA AC BP 为平行四边形又 Z ACB=90・・・平行四边形ACBP 为矩形AAB=CP=1/2AB 2.已知:D 是AB 中点,Z ACB=90 0,求证:CD [AB 2AAP,BP3.已知:BC=DE , Z B= ZE, Z C= ZD , F 是CD 中点,求证:Z 1= Z2证明:连接BF和EF・・・ BC=ED,CF=DF, Z BCF= Z EDF・・・三角形BCF全等于三角形EDF(边角边)・・・ BF=EF, ZCBF=Z DEF连接BE在三角形BEF中,BF=EF/. Z EBF=Z BEFo・・・ Z ABC= Z AED o・・・ Z ABE= Z AEBo/. AB=AE o在三角形ABF和三角形AEF屮AB=AE,BF=EF,ZABF= Z ABE+ Z EBF= ZAEB+ Z BEF= Z AEF・・・三角形ABF和三角形AEF全等。
・・・ Z BAF= Z EAF(Z 1= Z 2)o4. 己知:Z 1= Z 2 , CD=DE , EF//AB ,求证:EF=AC过C作CG〃EF交AD的延长线于点GCG// EF,可得,Z EFD= CGDDE= DCZFDE= Z GDC (对顶角)AA EFD^A CGDEF= CGZCGD = Z EFD又,EF// AB・・・,Z EFD= Z 1Z1= Z 2・・・Z CGD= Z 2・・・△ AGC为等腰三角形,AC= CG又EF=CG・・・EF= AC5.已知:AD 平分Z BAC, AC=AB+BD ,求证:Z B=2 Z C证明:延长AB取点E,使AE=AC,连接DEVAD 平分Z BACAZ EAD=Z CAD・・・AE=AC, AD = ADA A AED^A ACD ( SAS)AZ E=Z CVAC = AB+BD・・・AE= AB+BD・・・AE= AB+BEABD = BE・・・Z BDE=Z EVZ ABC=Z E+ Z BDEAZ ABC = 2 ZEAZ ABC = 2 ZC6.己知:AC 平分Z BAD , CE丄AB , Z B+ Z D=180 ° ,求证:AE=AD+BE・・・CE丄AB ・・・Z CEB=Z CEF= 90° ・・・EB=EF, CE = CE, AACEB^ACEF ・・・Z B=Z CFEVZ B+Z D= 180 ° , ZCFE+Z CFA= 180 0AZ D = Z CFAVAC 平分Z BAD・・・Z DAC = Z FACVAC = AC・・・△ ADC 竺△ AFC ( SAS)/.AD = AF ・・・AE= AF+ FE= AD + BE解:延长AD至IJE,使AD=DE・・・D是BC中点・・・BD=DC在厶ACD和厶BDE中AD=DEZBDE= Z ADCBD=DC7.已知:AB=4 , AC=2 , D是BC屮点, AD是整数,求ADA 证明:在AE上取F,使EF= EB,连接CFAAACD^ABDE•*. AC=BE=2・・•在△ ABE中AB-BE < AE<AB+BE・・・AB=4即4・2 < 2AD < 4+21 < AD < 3・・・AD=218.已知:D 是AB 中点,Z ACB=90 0,求证:CD -AB2解:延长AD到E,使AD=DE・・・D是BC屮点・・・BD=DC在厶ACD和厶BDE中AD=DEZBDE= Z ADCBD=DCAA ACD A BDE•*. AC=BE=2•・•在A ABE中9.已知:BC=DE , Z B= ZE, Z C= ZD , F 是CD 中点,求证:Z 1= Z2A证明:连接BF和EF。
全等三角形证明经典50题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DE∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE=∠ADCBD=DC∴△ACD ≌△BDE∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE∵AB=4即4-2<2AD <4+21<AD <3∴AD=22. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB延长CD 与P ,使D 为CP 中点。
连接AP,BP∵DP=DC,DA=DB∴ACBP 为平行四边形又∠ACB=90∴平行四边形ACBP 为矩形AD BC∴AB=CP=1/2AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF∵ BC=ED,CF=DF,∠BCF=∠EDF∴ 三角形BCF 全等于三角形EDF(边角边)∴ BF=EF,∠CBF=∠DEF连接BE在三角形BEF 中,BF=EF∴ ∠EBF=∠BEF 。
∵ ∠ABC=∠AED 。
∴ ∠ABE=∠AEB 。
∴ AB=AE 。
在三角形ABF 和三角形AEF 中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴ 三角形ABF 和三角形AEF 全等。
∴ ∠BAF=∠EAF (∠1=∠2)。
4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG ∥EF 交AD 的延长线于点GCG ∥EF ,可得,∠EFD =CGDDE =DC∠FDE =∠GDC (对顶角)B ACDF21 E∴△EFD≌△CGDEF=CG∠CGD=∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC为等腰三角形,AC=CG又EF=CG∴EF=AC5.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠CA证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE证明:在AE 上取F ,使EF =EB ,连接CF∵CE ⊥AB∴∠CEB =∠CEF =90°∵EB =EF ,CE =CE ,∴△CEB ≌△CEF∴∠B =∠CFE∵∠B +∠D =180°,∠CFE +∠CFA =180°∴∠D =∠CFA∵AC 平分∠BAD∴∠DAC =∠FAC∵AC =AC∴△ADC ≌△AFC (SAS )∴AD =AF∴AE =AF +FE =AD +BE7. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DE∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD BCAD=DE∠BDE=∠ADCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE中AB-BE<AE<AB+BE ∵AB=4即4-2<2AD<4+21<AD<3∴AD=28.已知:D是AB中点,∠ACB=90°,求证:12 CD AB9. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF 。
九年级中考数学考点提升训练——专题:《三角形综合:全等与相似》(四)1.如图1,在平面直角坐标系中,直线AB分别交y轴、x轴于点A(0,a),点B(b,0),且a、b满足a2﹣4a+4+=0.(1)求a,b的值;(2)以AB为边作Rt△ABC,点C在直线AB的右侧且∠ACB=45°,求点C的坐标;(3)若(2)的点C在第四象限(如图2),AC与x交于点D,BC与y轴交于点E,连接DE,过点C作CF⊥BC交x轴于点F.①求证CF=BC;②直接写出点C到DE的距离.2.已知:如图,点P是等边△ABC内一点,连接PC,以PC为边作等边三角形△PDC,连接PA,PB,BD.(1)求证:∠APC=∠BDC;(2)当∠APC=150°时,试猜想△DPB的形状,并说明理由;(3)当∠APB=100°且DB=PB,求∠APC的度数.3.如图,在△ABC中,AB=AC,AD⊥BC于点D.点E为AD上一点,点F为BE延长线上一点,且AF=AC.(1)如图1,若∠FBC=∠BAC=30°.①判断△BAF的形状,并证明;②若AE=(+1)BE,则=.(直接写出结果)(2)如图2,若∠FBC=45°,作AG⊥BF于G,求证:EF=BE+2AG.4.如图1,Rt△ABC中,点D,E分别为直角边AC,BC上的点,若满足AD2+BE2=DE2,则称DE为Rt△ABC的“完美分割线”.显然,当DE为△ABC的中位线时,DE是△ABC的一条完美分割线.(1)如图1,AB=10,cos A=,AD=3,若DE为完美分割线,则BE的长是.(2)如图2,对AC边上的点D,在Rt△ABC中的斜边AB上取点P,使得DP=DA,过点P画PE⊥PD交BC于点E,连结DE,求证:DE是直角△ABC的完美分割线.(3)如图3,在Rt△ABC中,AC=10,BC=5,DE是其完美分割线,点P是斜边AB的中点,连结PD、PE,求cos∠PDE的值.5.如图1,张老师在黑板上画出了一个△ABC,其中AB=AC.让同学们进行探究.(1)探究一:如图2,小明以BC为边在△ABC内部作等边△BDC,连接AD.请直接写出∠ADB的度数;(2)探究二:如图3,小彬在(1)的条件下,又以AB为边作等边△ABE,连接CE.判断CE与AD的数量关系,并说明理由;(3)探究三:如图3,小聪在(2)的条件下,连接DE.若∠DEC=60°,DE=2,求AE的长.6.如图1,在Rt△ABC中,∠ACB=90°,AB=20,AC=16,CD是斜边AB上的中线,P是边AC上一点,连接DP,以DP为直角边作等腰直角三角形DPE(点E始终在直线AB右侧).(1)求点D到边AC的距离;(2)当△PEC是以PE为腰的等腰三角形时,求所有满足要求的AP长.(3)如图2,当斜边DE与AC有交点时,记交点为Q,若AP=CQ,则S△DPE =.(直接写出答案)7.如图,在Rt△ABC中,∠ACB=90°,AC=BC,E为BC上一点,连接AE,作AF ⊥AE且AF=AE,BF交AC于D.(1)如图1,求证:D为BF中点;(2)如图1,求证:BE=2CD;(3)如图2,若=,直接写出的值.8.在△ABC中,AC=BC=4,∠ACB=90°,E为BC上一个动点,CF⊥AE于G,交AB于F.(1)如图1,当AE平分∠CAB时,求BE的长.(2)如图2,当E为BC中点时.①求CG的长.②连接EF,求GF+EF的值.(3)如图3,在E运动过程中,连接BG,则BG的最小值为.9.已知在四边形ABCD中,∠ABC+∠ADC=180°,AB=BC.(1)连接BD,如图1,若∠BAD=90°,AD=3,求DC的长;(2)点E,F分别在射线DC,DA上.①如图2,若点E,F分别在线段CD,AD上,且满足∠EBF=90°﹣∠ADC,求证:EF=AF+CE;②如图3,若点E,F分别在线段DC延长线与DA延长线上,且满足EF=AF+CE,请直接写出∠EBF与∠ADC之间的数量关系.10.(1)已知△ABC中,AB=AC,∠BAC=120°.①如图1,点M、N在底边BC上,且∠ANB=45°,∠MAN=60°.请在图中作出∠NAD=60°,且AD=AM,连接ND、CD;并直接写出BM与CN的数量关系.②如图2,点M在BC上,点N在BC的上方,且∠MBN=∠MAN=60°,求证:MC=BN+MN;(2)如图3,在四边形ABCD中,∠CAB=50°,BD平分∠ABC,若∠ADC与∠ABD互余,则∠DAC的大小为(直接写出结果).参考答案1.解:(1)∵,∴,∵(a﹣2)2≥0,,∴a﹣2=0,2b+2=0,∴a=2,b=﹣1;(2)由(1)知a=2,b=﹣1,∴A(0,2),B(﹣1,0),∴OA=2,OB=1,∵△ABC是直角三角形,且∠ACB=45°,∴只有∠BAC=90°或∠ABC=90°,Ⅰ、当∠BAC=90°时,如图1,∵∠ACB=∠ABC=45°,∴AB=CB,过点C作CG⊥OA于G,∴∠CAG+∠ACG=90°,∵∠BAO+∠CAG=90°,∴∠BAO=∠ACG,在△AOB和△BCP中,,∴△AOB≌△CGA(AAS),∴CG=OA=2,AG=OB=1,∴OG=OA﹣AG=1,∴C(2,1),Ⅱ、当∠ABC=90°时,如图2,同Ⅰ的方法得,C(1,﹣1);即:满足条件的点C(2,1)或(1,﹣1)(3)①如图3,由(2)知点C(1,﹣1),过点C作CL⊥y轴于点L,则CL=1=BO,在△BOE和△CLE中,,∴△BOE≌△CLE(AAS),∴BE=CE,∵∠ABC=90°,∴∠BAO+∠BEA=90°,∵∠BOE=90°,∴∠CBF+∠BEA=90°,∴∠BAE=∠CBF,在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴BE=CF,∴;②点C到DE的距离为1.如图4,过点C作CK⊥ED于点K,过点C作CH⊥DF于点H,由①知BE=CF,∵BE=BC,∴CE=CF,∵∠ACB=45°,∠BCF=90°,∴∠ECD=∠DCF,∵DC=DC,∴△CDE≌△CDF(SAS),∴∠BAE=∠CBF,∴CK=CH=1.2.解:(1)如图,∵△ABC,△PDC是等边三角形,∴AC=BC,PC=PD=CD,∠ACB=∠PCD=60°,∴∠ACP=∠BCD,且AC=BC,PC=CD,∴△ACP≌△BCD(SAS)∴∠APC=∠BDC;(2)△DPB是直角三角形.理由:∵∠BDC=∠APC=150°,∠PDC=60°∴∠BDP=∠BDC﹣∠PDC=90°,∴△DPB是直角三角形;(3)设∠APC=x,则∠BPD=200°﹣x,∠BDP=x﹣60°∵PB=DB,∴∠BPD=∠BDP,∴200°﹣x=x﹣60°,∴x=130°,∴∠APC=130°3.解:(1)①△BAF为等腰直角三角形.证明:∵AB=AC,AD⊥BC,∠FBC=∠BAC=30°,∴∠ABC=∠C=75°,∠BAD=∠CAD=15°,∵AF=AC,∴AB=AF,∴∠ABF=45°,∴△BAF为等腰直角三角形;②如图1,过点A作AM⊥BF于点M,设BE=x,则AE=(+1)x,∵∠FBC=30°,∴DE=BE=x,∠BED=∠AEF=60°,∴∠EAM=30°,∴EM=AE(+1)x,∵△ABF为等腰直角三角形,AM⊥BF,∴AM=MF=BM,∴BM=EB+EM=x+x=x,∴EF=EM+MF=x=(2+)x,∴=4+2.故答案为:4+2.(2)证明:如图2,过点A作AH⊥AE,交BC于点H,∵∠FBC=45°,AD⊥BC,∴∠BED=∠AEH=45°,∴∠AHE=∠AEH=45°,AE=AH,∴∠AEB=∠AHF=135°,∵AF=AC,∴AB=AF,∠ABF=∠F,在△ABE和△AFH中,,∴△ABE≌△AFH(AAS),∴BE=FH,∴AG=EG=GH,∴EH=2AG,∴EF=FH+EH=BE+2AG.4.解:(1)∵AB=10,cos A=,∴cos A=,∴AC=8,CD=5,∴==6,设BE=x,则CE=6﹣x,在Rt△CDE中,DE2=CD2+CE2=52+(6﹣x)2,∵DE为完美分割线,∴AD2+BE2=DE2,∴32+x2=52+(6﹣x)2,解得:x=.∴BE=.故答案为:.(2)证明:如图2,∵DA=DP,∴∠DAP=∠DPA,∵PE⊥PD,∴∠DPA+∠EPB=90°,又∠A=∠B,∴∠EPB=∠B,∴EP=EB,∴AD2+BE2=DP2+EP2=DE2,∴DE是直角△ABC的完美分割线.(3)解:延长DP至F,使PF=PD,连接BF,EF,∵AP=BP,∠APD=∠BPF,∴△APD≌△BPF(SAS),∴AD=BF,∠A=∠FBP,∴∠EBF=∠CBA+∠FBP=∠CBA+∠A=90°,∵DE是完美分割线,∴DE2=AD2+BE2=BF2+BE2=EF2,即ED=EF.又PD=PF,∴∠EPD=90°,过点P作PM⊥AC,PN⊥BC,则∠MPD=∠NPE=90°﹣∠MPE,∴△MPD∽△NPE,∴,设PD=a,则PE=2a,则DE==a,∴cos∠PDE==.5.解:(1)探究一:∵△BDC是等边三角形,∴BD=DC,∠BDC=60°,在△ADB和△ADC中,,∴△ADB≌△ADC(SSS),∴∠ADB=∠ADC,∵∠ADB+∠ADC=360°﹣60°,∴∠ADB=150°,故答案为:150°.(2)探究二:结论:CE=AD.理由:∵△BDC、△ABE都是等边三角形∴∠ABE=∠DBC=60°,AB=BE,BD=DC.∴∠ABE﹣∠DBE=∠DBC﹣∠DBE∴∠ABD=∠EBC,在△ABD和△EBC中,∴△ABD≌△EBC(SAS).∴AD=CE.(3)探究三:∵△ABD≌△EBC,∴∠BDA=∠ECB=150°,∵∠BCD=60°,∴∠DCE=90°,∵∠DEC=60°,∴∠CDE=30°,∵DE=2,∴CE=1,由勾股定理得,DC=BC=,∵∠BDE=60°+30°=90°,DE=2,BD=.由勾股定理得,BE==.∵△ABE是等边三角形∴AE=BE=.6.解:(1)过D用DF⊥AC于点H,如图1,则DF∥BC,∵D是AB的中点,∴AF=CF,∴DF=,∵BC=,∴DF=6,故点D到边AC的距离为6;(2)当PE=CE时,如图1,过点E作EG⊥PC于点G,∴PG=CG,∵∠DPE=90°,∴∠DPF+∠EPG=∠DPF+∠PDF=90°,∴∠PDF=∠EPG,∵PD=EP,∠DFP=∠PGE=90°,∴△DPF≌△PEG(AAS),∴DF=PG=CG=6,∴AP=AC﹣PC=16﹣6﹣6=4;当PE=PC时,如备用图1,过D作DF⊥AC于点F,过点E作EG⊥AC于点G,则DF∥BC,AF=CF=8,DF=BC=6,∵∠DPE=90°,∴∠DPF+∠EPG=∠DPF+∠PDF=90°,∴∠PDF=∠EPG,∵∠DFP=∠PGE=90°,DP=EP,∴△PDF≌△EPG(AAS),∴DPG=6,PF=EG,设PE=PC=x,则EG=FP=8﹣x,由勾股定理得,PE2﹣EG2=PG2,∴x2﹣(8﹣x)2=62,解得,x=,即PC=,∴AP=AC﹣PC=16﹣,综上,AP=4或;(3)过点D作DF⊥AC于点F,过点E作EG⊥AC于G,则DF∥EG∥BC,∵D是AB的中点,∴AF=CF=8,DF=,∵AP=CQ,∴PF=QF,设AP=CQ=x,则PF=QF=,∵∠DPE=90°,∠DFP=90°,∴∠DPF+∠EPG=∠DPF+∠PDF=90°,∴∠PDF=∠EPF,∵∠DFP=∠PGE=90°,DP=PE,∴△DPF≌△PEG(AAS),∴DF=PG=6,PF=EG=8﹣x,∴QG=PG﹣PQ=6﹣2(8﹣x)=2x﹣10,∵DF∥EG,∴△DFQ∽△EGQ,∴,即,解得,x=14+6>16(舍),或x=14﹣6,∴PF=QF=EG=8﹣x=6﹣6,∴=.另一解法:过D作DF⊥AC于点F,延长DF至M,使得DF=FM,过M作MN⊥DE,与DE的延长线交于点N,如图2,则DF∥BC,∴QD=QM,∴∠QDM=∠QMD,∵D是AB的中点,DF∥BC,∴AF=CF=8,DF=,∴DM=12,∵AP=CQ,∴PF=QF,∴DP=DQ,∴∠PDF=∠QDF,∴∠PDF=∠QMF,∴DP∥QM,∴∠MQN=∠PDE=45°,∴∠NMQ=45°=∠MQN,∴MN=QN,不妨设MN=QN=x,则DP=QD=QM=,∵DN2+MN2=DM2,∴,解得,,∴,∴,∴.故答案为:72﹣36.7.证明:(1)如图1,过F点作FG⊥AC于点G,∵∠FAG+∠CAE=90°,∠FAG+∠AFG=90°,∴∠CAE=∠AFG,在△AGF和△ECA中,,∴△AGF≌△ECA(AAS),∴AG=EC,FG=AC,∵AC=BC,∴BC=FG,又∵∠FGD=∠DCB=90°,∠FDG=∠CDB,∴△FGD≌△BCD(AAS),∴DF=BD,即D为BF的中点;(2)证明:∵△FGD≌△BCD,∴DC=GD,∴CG=2CD,∵AG=CE,AC=BC,∴CG=BE,∴BE=2CD;(3)解:如图2,过F点作FG⊥AC于点G,∵,∴,∵AC=CB,∴,由(1),(2)可知△AGF≌△ECA,△FGD≌△BCD,∴CE=AG,CD=DG,∴,∴,∴,∴.∴.8.解:(1)∵AE平分∠CAB,∴点E到AC,AB的距离相等,∴,∵AC=BC=4,∠ACB=90°,∴AB=AC=4,∴,∴,∴BE=×4=4(2﹣)=8,即BE=8﹣4;(2)①∵点E是BC的中点,∴CE=BE=BC=2,∴AE==2,∵CF⊥AE,∴S△ACE=AE•CG=AC•CE,∴CG=.②过点B作BM⊥BC交CF延长线于点M,∵BM⊥BC,∴∠CBM=90°,∴∠CBM=∠ACE=90°,∵∠ACG+∠BCM=90°,∠ACG+∠CAE=90°,∴∠BCM=∠CAE,在△CBM和△ACE中,,∴△CBM≌△ACE(ASA),∴AE=CM=2,CE=BM,∵CE=BE,∴BM=BE,∵∠CAB=∠CBA=45°,∴∠EBF=∠MBF=45°,在△EBF和△MBF中,,∴△EBF≌△MBF(SAS),∴EF=MF,∴GF+EF=GF+MF=GM=CM﹣CG=2﹣.∴GF+EF=.(3)取AC的中点N,连接NG,BN,∵点N是AC的中点,∴AN=CN=AC=2,∴BN==2,∵CF⊥AE,∴∠AGC=90°,∴NE=AC=2,∴BG≥BN﹣NG,当且仅当B,G,N三点共线时,BG取得最小值,∴BG的最小值为2﹣2.故答案为:2﹣2.9.(1)解:∵∠ABC+∠ADC=180°,∴∠A+∠C=180°,又∵∠A=90°,∴∠C=90°=∠A,在Rt△ABD和Rt△CBD中,,∴Rt△ABD≌Rt△CBD(HL),∴DC=DA=3;(2)证明:如图2,延长DC到G,使得CG=AF,连接BG,∵∠ABC+∠BCD+∠ADC+∠A=360°,∠ABC+∠ADC=180°,∴∠A+∠BCD=180°,且∠BCD+∠BCG=180°,∴∠A=∠BCG,∵AB=BC,CG=AF,∴△ABF≌△CBG(SAS),∴BF=BG,∠ABF=∠CBG,又∵∠ABC+∠ADC=180°,∴∠EBF=90°﹣∠ADC=∠ABC=∠ABF+∠EBC=∠CBG+∠EBC=∠EBG,∵BE=BE,∴△EBF≌△EBG(SAS),∴EF=EG=EC+CG=CE+AF;(3)解:∠EBF与∠ADC之间的数量关系为:∠EBF=90°+∠ADC.在CD的延长线上截取CH=AE,连接BH,∵∠ABC+∠BCD+∠ADC+∠DAB=360°,∠ABC+∠ADC=180°,∴∠DAB+∠BCD=180°,且∠DAB+∠EAB=180°,∴∠BCD=∠EAB,且AB=BC,AE=CH,∴△AEB≌△CHB(SAS),∴BE=BH,∠EBA=∠HBC,∵EF=AE+CF,∴EF=CH+CF=HF,且BF=BF,BE=BH,∴△EBF≌△HBF(SSS),∴∠EBF=∠HBF,∵∠EBF+∠HBF+∠EBA+∠ABH=360°,∴2∠EBF+∠HBC+∠ABH=360°,∴2∠EBF+∠ABC=360°,∴2∠EBF+180﹣∠ADC=360°,∴∠EBF=90°+∠ADC.10.解:(1)①BM=2CN.如图1,作出∠NAD=60°,且AD=AM,连接ND、CD;∵∠MAN=60°,∠BAC=120°,∴∠BAM+∠CAN=60°,∵∠CAD+∠CAN=60°,又∵AD=AM,AB=AC,∴△ABM≌△ACD(SAS),∴BM=CD,∠B=∠ACD=30°,∵AM=AD,∠MAN=∠DAN,AN=AN,∴△AMN≌△ADN(SAS),∴∠ANM=∠AND=45°,∴∠MND=90°,又∵∠DCN=∠ACB+∠ACD=60°,∴∠CDN=30°,∴CD=2CN,∴BM=2CN.故答案为:BM=2CN.②如图2,在CB上截取CG=BN,连接AG,∵AB=AC,∠BAC=120°,∴∠C=∠ABC=30°,∵∠NBM=60°,∴∠ABN=30°,在△ABN和△ACG中,,∴△ABN≌△ACG(SAS),∴∠BAN=∠CAG,AN=AG,∴∠BAN+∠BAM=∠BAM+∠CAG=∠MAN=60°,∴∠MAG=∠BAC﹣∠BAM﹣∠CAG=60°,在△AMN和△AMG中,,∴△AMN≌△AMG(SAS),∴MN=MG,∴MC=MG+GC=MN+BN.(2)如图3,过点D作DM⊥BA于点M,DN⊥BC于点N,在AM上截取MK=CN,连接DK,∵BD平分∠ABC,∴∠ABC=2∠ABD,DM=DN,∵∠ADC=90°﹣∠ABD,∠MDN=180°﹣2∠ABD,∴∠MDN=2∠ADC,在△DMK和△DNC中,,∴△DMK≌△DNC(SAS),∴DC=DK,∠MDK=∠CDN,∴∠NDC+∠ADM=∠MDK+∠ADM=∠ADC,∴∠ADC=∠ADK,∵AD=AD∴△ADC≌△ADK(SAS),∴∠DAC=∠DAM=.故答案为:65°.。
全等三角形易错题(Word版含答案)一、八年级数学轴对称三角形填空题(难)1.在等腰△ABC中,AD⊥BC交直线BC于点D,若AD=12BC,则△ABC的顶角的度数为_____.【答案】30°或150°或90°【解析】试题分析:分两种情况;①BC为腰,②BC为底,根据直角三角形30°角所对的直角边等于斜边的一半判断出∠ACD=30°,然后分AD在△ABC内部和外部两种情况求解即可.解:①BC为腰,∵AD⊥BC于点D,AD=12 BC,∴∠ACD=30°,如图1,AD在△ABC内部时,顶角∠C=30°,如图2,AD在△ABC外部时,顶角∠ACB=180°﹣30°=150°,②BC为底,如图3,∵AD⊥BC于点D,AD=12 BC,∴AD=BD=CD,∴∠B=∠BAD,∠C=∠CAD,∴∠BAD+∠CAD=12×180°=90°,∴顶角∠BAC=90°,综上所述,等腰三角形ABC的顶角度数为30°或150°或90°.故答案为30°或150°或90°.点睛:本题考查了含30°交点直角三角形的性质,等腰三角形的性质,分类讨论是解题的关键.2.在直角坐标系中,O 为坐标原点,已知点 A(1,2),点 P 是 y 轴正半轴上的一点,且△AOP 为等腰三角形,则点P 的坐标为_____________.【答案】5 4),0,4⎛⎫⎪⎝⎭【解析】【分析】有三种情况:①以O为圆心,以OA为半径画弧交y轴于D,求出OA即可;②以A为圆心,以OA为半径画弧交y轴于P,求出OP即可;③作OA的垂直平分线交y轴于C,则AC=OC,根据勾股定理求出OC即可.【详解】有三种情况:①以O为圆心,以OA为半径画弧交y轴于D,则OA=OD==∴D(0);②以A为圆心,以OA为半径画弧交y轴于P,OP=2×y A=4,∴P(0,4);③作OA的垂直平分线交y轴于C,则AC=OC,由勾股定理得:OC=AC,∴OC=54,∴C(0,54);故答案为:5 4),0,4⎛⎫⎪⎝⎭.【点睛】本题主要考查对线段的垂直平分线,等腰三角形的性质和判定,勾股定理,坐标与图形性质等知识点的理解和掌握,能求出符合条件的所有情况是解此题的关键.3.△ABC与△DEF是两个全等的等腰直角三角形,∠BAC=∠D=90°,AB=AC=6.现将△DEF与△ABC按如图所示的方式叠放在一起,使△ABC保持不动,△DEF运动,且满足点E在边BC上运动(不与B,C重合),边DE始终经过点A,EF与AC交于点M.在△DEF 运动过程中,若△AEM能构成等腰三角形,则BE的长为______.【答案】363【解析】【分析】分若AE=AM 则∠AME=∠AEM=45°;若AE=EM;若MA=ME 则∠MAE=∠AEM=45°三种情况讨论解答即可;【详解】解:①若AE=AM 则∠AME=∠AEM=45°∵∠C=45°∴∠AME=∠C又∵∠AME>∠C∴这种情况不成立;②若AE=EM∵∠B=∠AEM=45°∴∠BAE+∠AEB=135°,∠MEC+∠AEB=135°∴∠BAE=∠MEC在△ABE和△ECM中,BBAE CENAE EIIC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ECM(AAS),∴CE=AB=6,∵AC=BC=2AB=23,∴BE=23﹣6;③若MA=ME 则∠MAE=∠AEM=45°∵∠BAC=90°,∴∠BAE=45°∴AE平分∠BAC∵AB=AC,∴BE=12BC=3.故答案为23﹣6或3.【点睛】本题考查了等腰三角形的判定,掌握分类讨论的数学思想是解答本题的关键.4.如图,在ABC∆中,点D是BC的中点,点E是AD上一点,BE AC=.若70C∠=︒,50DAC∠=︒则EBD∠的度数为______.【答案】10︒【解析】【分析】延长AD 到F 使DF AD =,连接BF ,通过ACD FDB ≅,根据全等三角形的性质得到CAD BFD ∠=∠,AC BF =, 等量代换得BF BE =,由等腰三角形的性质得到F BEF ∠=∠,即可得到BEF CAD ∠=∠,进而利用三角形的内角和解答即可得.【详解】如图,延长AD 到F ,使DF AD =,连接BF :∵D 是BC 的中点∴BD CD =又∵ADC FDB ∠=∠,AD DF =∴ACD FDB ≅∴AC BF =, CAD F ∠=∠,C DBF ∠=∠∵AC BE =, 70C ︒∠=, 50CAD ︒∠=∴BE BF =, 70DBF ︒∠=∴50BEF F ︒∠=∠=∴180180505080EBF F BEF ︒︒︒︒︒∠=-∠-∠=--=∴807010EBD EBF DBF ︒︒︒∠=∠-∠=-=故答案为:10︒【点睛】本题主要考查的知识点有全等三角形的判定及性质、等腰三角形的性质及三角形的内角和定理,解题的关键在于通过倍长中线法构造全等三角形.5.如图,已知△ABC 中,AB=AC ,∠BAC=90°,直角∠EPF 的顶点P 是BC 中点,两边PE 、PF 分别交AB 、AC 于点E 、F ,给出下列四个结论:①AE=CF ;②△EPF 是等腰直角三角形;③EF=AB;④12ABCAEPFS S∆=四边形,当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),上述结论中始终正确的有________(把你认为正确的结论的序号都填上).【答案】①②④【解析】试题分析:∵∠APE、∠CPF都是∠APF的余角,∴∠APE=∠CPF,∵AB=AC,∠BAC=90°,P是BC中点,∴AP=CP,∴∠PAE=∠PCF,在△APE与△CPF中,{?PAE PCFAP CPEPA FPC∠=∠=∠=∠,∴△APE≌△CPF(ASA),同理可证△APF≌△BPE,∴AE=CF,△EPF是等腰直角三角形,S四边形AEPF=12S△ABC,①②④正确;而AP=12BC,当EF不是△ABC的中位线时,则EF不等于BC的一半,EF=AP,∴故③不成立.故始终正确的是①②④.故选D.考点:1.全等三角形的判定与性质;2.等腰直角三角形.6.如图,在ABC∆中,AB AC=,点D和点A在直线BC的同侧,,82,38BD BC BAC DBC=∠=︒∠=︒,连接,AD CD,则ADB∠的度数为__________.【答案】30°【解析】【分析】先根据等腰三角形的性质和三角形的内角和定理以及角的和差求出ABD ∠的度数,然后作点D 关于直线AB 的对称点E ,连接BE 、CE 、AE ,如图,则BE=BD ,∠EBA=∠DB ,∠BEA =∠BDA ,进而可得∠EBC=60°,由于BD=BC ,从而可证△EBC 是等边三角形,可得∠BEC =60°,EB=EC ,进一步即可根据SSS 证明△AEB ≌△AEC ,可得∠BEA 的度数,问题即得解决.【详解】解:∵AB AC =,82BAC ∠=︒,∴180492BAC ABC ︒-∠∠==︒, ∵38DBC ∠=︒,∴493811ABD ∠=︒-︒=︒,作点D 关于直线AB 的对称点E ,连接BE 、CE 、AE ,如图,则BE=BD ,∠EBA=∠DBA =11°,∠BEA =∠BDA ,∴∠EBC=11°+11°+38°=60°,∵BD=BC ,∴BE=BC ,∴△EBC 是等边三角形,∴∠BEC =60°,EB=EC ,又∵AB=AC ,EA=EA ,∴△AEB ≌△AEC (SSS ),∴∠BEA =∠CEA =1302BEC ∠=︒, ∴∠ADB =30°.【点睛】本题考查了等腰三角形的性质、三角形的内角和定理、等边三角形的判定和性质、全等三角形的判定和性质以及轴对称的性质等知识,涉及的知识点多、综合性强,难度较大,作点D 关于直线AB 的对称点E ,构造等边三角形和全等三角形的模型是解题的关键.7.如图,BD 是ABC 的角平分线,AE BD ⊥,垂足为F ,且交线段BC 于点E ,连结DE ,若50C ∠=︒,设 ABC x CDE y ∠=︒∠=︒,,则y 关于x 的函数表达式为_____________.【答案】80y x =-【解析】【分析】 根据题意,由等腰三角形的性质可得BD 是AE 的垂直平分线,进而得到AD =ED ,求出BED ∠的度数即可得到y 关于x 的函数表达式.【详解】∵BD 是ABC ∆的角平分线,AE BD ⊥∴1122ABD EBD ABC x ∠=∠=∠=︒,90AFB EFB ∠=∠=︒ ∴1902BAF BEF x ∠=∠=︒-︒ ∴AB BE =∴AF EF =∴AD ED =∴DAF DEF ∠=∠∵180BAC ABC C ∠=︒-∠-∠,50C ∠=︒∴130BAC x ∠=︒-︒∴130BED BAD x ∠=∠=︒-︒∵CDE BED C ∠=∠-∠∴1305080y x x ︒=-︒-︒=︒-︒∴80y x =-,故答案为:80y x =-.【点睛】本题主要考查了等腰三角形的性质及判定,三角形的内角和定理,三角形外角定理,角的和差倍分等相关知识,熟练运用角的计算是解决本题的关键.8.如图,已知∠MON =30°,点A 1,A 2,A 3,…在射线ON 上,点B 1,B 2,B 3,…在射线OM 上,△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4,…均为等边三角形,若OA 2=4,则△A n B n A n +1的边长为_____.【答案】2n.【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=8,A4B4=8B1A2=16,A5B5=16B1A2…进而得出答案.【详解】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∵∠MON=30°,∵OA2=4,∴OA1=A1B1=2,∴A2B1=2,∵△A2B2A3、△A3B3A4是等边三角形,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=8,A4B4=8B1A2=16,A5B5=16B1A2=32,以此类推△A n B n A n+1的边长为 2n.故答案为:2n.【点睛】本题主要考查等边三角形的性质及含30°角的直角三角形的性质,由条件得到OA5=2OA4=4OA3=8OA2=16OA1是解题的关键.9.已知等边△ABC中,点D为射线BA上一点,作DE=DC,交直线BC于点E,∠ABC的平分线BF交CD于点F,过点A作AH⊥CD于H,当EDC=30 ,CF=43,则DH=______.【答案】23【解析】连接AF.∵△ABC是等边三角形,∴AB=BC,∠ABC=∠ACB=∠BAC=60°.∵DE=DC,∠EDC=30°,∴∠DEC=∠DCE=75°,∴∠ACF=75°-60°=15°.∵BF平分∠ABC,∴∠ABF=∠CBF.在△ABF和△CBF中,AB BCABF CBFBF BF⎧⎪∠∠⎨⎪⎩===,∴△ABF≌△CBF,∴AF=CF,∴∠FAC=∠ACF=15°,∴∠AFH=15°+15°=30°.∵AH⊥CD,∴AH=12AF=12CF=23.∵∠DEC=∠ABC+∠BDE,∴∠BDE=75°-60°=15°,∴∠ADH=15°+30°=45°,∴∠DAH=∠ADH=45°,∴DH=AH=23.故答案为23.点睛:本题考查了全等三角形的判定与性质;证明三角形全等是解决问题的关键,注意辅助线的作法.10.如图:在ABC ∆中,D ,E 为边AB 上的两个点,且BD BC =,AE AC =,若108ACB ∠=︒,则DCE ∠的大小为______.【答案】036【解析】【分析】根据三角形内角和求出∠A+∠B,再根据AC=AE,BC=BD ,用∠A 表示∠AEC,用∠B 表示∠BDC,然后根据内角和求出∠DCE 的度数.【详解】∵∠ACB=1080,∴∠A+∠B=1800-1080=720,∵AC=AE,BC=BD,∴∠ACE=∠AEC,∠BCD=∠BDC,∴01(180)2AEC A ∠=-∠01902A =-∠ 01(180)2BDCB ∠=-∠ =01902B -∠ ∵∠DCE+∠CDE+∠DEC=1800,∴0180DCE CDE CED ∠=-∠-∠= 00011180(90)(90)22A B --∠--∠ =1122A B ∠+∠ =1()2A B ∠+∠ =360【点睛】此题考察等腰三角形的性质,注意两条等边所在三角形,依此判断对应的两个底角相等.二、八年级数学轴对称三角形选择题(难)11.如图,平面直角坐标系中存在点A (3,2),点B (1,0),以线段AB 为边作等腰三角形ABP ,使得点P 在坐标轴上.则这样的P 点有( )A .4个B .5个C .6个D .7个【答案】D【解析】【分析】 本题是开放性试题,由题意知A 、B 是定点,P 是动点,所以要分情况讨论:以AP 、AB 为腰、以AP 、BP 为腰或以BP 、AB 为腰.则满足条件的点P 可求.【详解】由题意可知:以AP 、AB 为腰的三角形有3个;以AP 、BP 为腰的三角形有2个;以BP 、AB 为腰的三角形有2个.所以,这样的点P 共有7个.故选D .【点睛】本题考查了等腰三角形的判定及坐标与图形的性质;分类别寻找是正确解答本题的关键.12.已知40MON ∠=︒,P 为MON ∠内一定点,OM 上有一点A ,ON 上有一点B ,当PAB ∆的周长取最小值时,APB ∠的度数是( )A .40︒B .50︒C .100︒D .140︒【答案】C【解析】【分析】 设点P 关于OM 、ON 对称点分别为P '、P '',当点A 、B 在P P '''上时,PAB ∆周长为PA AB BP P P ++=''',此时周长最小.根据轴对称的性质,可求出APB ∠的度数.【详解】分别作点P 关于OM 、ON 的对称点P '、P '',连接OP '、OP ''、P P ''',P P '''交OM 、ON 于点A 、B ,连接PA 、PB ,此时PAB ∆周长的最小值等于P P '''.由轴对称性质可得,OP OP OP '=''=,P OA POA ∠'=∠,P OB POB ∠''=∠,224080P OP MON ∴∠'''=∠=⨯︒=︒,(18080)250OP P OP P ∴∠'''=∠'''=︒-︒÷=︒,又50BPO OP B ∠=∠''=︒,50APO AP O ∠=∠'=︒,100APB APO BPO ∴∠=∠+∠=︒.故选:C .【点睛】此题考查轴对称作图,最短路径问题,将三角形周长最小转化为最短路径问题,根据轴对称作图是解题的关键.13.如图,坐标平面内一点A(2,-1),O 为原点,P 是x 轴上的一个动点,如果以点P 、O 、A 为顶点的三角形是等腰三角形,那么符合条件的动点P 的个数为( )A .2B .3C .4D .5【答案】C【解析】 以O 点为圆心,OA 为半径作圆与x 轴有两交点,这两点显然符合题意.以A 点为圆心,OA 为半径作圆与x 轴交与两点(O 点除外).以OA 中点为圆心OA 长一半为半径作圆与x 轴有一交点.共4个点符合,14.如图,AB ⊥AC ,CD 、BE 分别是△ABC 的角平分线,AG ∥BC ,AG ⊥BG ,下列结论:①∠BAG =2∠ABF ;②BA 平分∠CBG ;③∠ABG =∠ACB ;④∠CFB =135°,其中正确的结论有( )个A .1B .2C .3D .4【解析】【分析】由已知条件可知∠ABC+∠ACB=90°,又因为CD 、BE 分别是△ABC 的角平分线,所以得到∠FBC+∠FCB=45°,所以求出∠CFB=135°;有平行线的性质可得到:∠ABG=∠ACB ,∠BAG=2∠ABF .所以可知选项①③④正确.【详解】∵AB ⊥AC .∴∠BAC =90°,∵∠BAC+∠ABC+∠ACB =180°,∴∠ABC+∠ACB =90°∵CD 、BE 分别是△ABC 的角平分线,∴2∠FBC+2∠FCB =90°∴∠FBC+∠FCB =45°∴∠BFC =135°故④正确.∵AG ∥BC ,∴∠BAG =∠ABC∵∠ABC =2∠ABF∴∠BAG =2∠ABF 故①正确.∵AB ⊥AC ,∴∠ABC+∠ACB =90°,∵AG ⊥BG ,∴∠ABG+∠GAB =90°∵∠BAG =∠ABC ,∴∠ABG =∠ACB 故③正确.故选C .【点睛】本题考查了等腰三角形的判定与性质,平行线的性质.掌握相关的判定定理和性质定理是解题的关键.15.在Rt ABC ∆中,90ACB ∠=︒,点D E 、是AB 边上两点,且CE 垂直平分,AD CD 平分,6BCE AC cm ∠=,则BD 的长为( )A .6cmB .7cmC .8cmD .9cm【答案】A【分析】根据CE 垂直平分AD ,得AC=CD ,再根据等腰在三角形的三线合一,得ACE ECD ∠=∠,结合角平分线定义和90ACB ︒∠=,得30ACE ECD DCB ︒∠=∠=∠=,则BD CD AC ==.【详解】∵CE 垂直平分AD∴AC=CD =6cm ,ACE ECD ∠=∠∵CD 平分BCE ∠∴BCD ECD ∠=∠∴30ACE ECD DCB ︒∠=∠=∠=∴60A ︒∠=∴30B BCD ︒∠==∠∴6CD BD AC cm ===故选:A【点睛】本题考查的知识点主要是等腰三角形的性质的“三线合一”性质定理及判定“等角对等边”,熟记并能熟练运用这些定理是解题的关键.16.在Rt ABC ∆中,90ACB ∠=︒,以ABC ∆的一边为边画等腰三角形,使得它的第三个顶点在ABC ∆的其他边上,则可以画出的不同的等腰三角形的个数最多可画几个?( )A .9个B .7个C .6个D .5个【答案】B【解析】【分析】先以Rt ABC ∆三个顶点分别为圆心,再以每个顶点所在的较短边为半径画弧,即可确定等腰三角形的第三个顶点;也可以作三边的垂直平分线确定等腰三角形的第三个顶点即得.【详解】解:①如图1,以B为圆心,BC长为半径画弧,交AB于点D,则∆BCD就是等腰三角形;②如图2,以A为圆心,AC长为半径画弧,交AB于点E,则∆ACE就是等腰三角形;③如图3,以C为圆心,BC长为半径画弧,交AB于M,交AC于点F,则∆BCM、∆BCF是等腰三角形;④如图4,作AC的垂直平分线交AB于点H,则∆ACH就是等腰三角形;⑤如图5,作AB的垂直平分线交AC于点G,则∆AGB就是等腰三角形;⑥如图6,作BC的垂直平分线交AB于I,则∆BCI就是等腰三角形.故选:B.【点睛】本题考查等腰三角形的判定的应用,通过作垂直平分线或者画弧的方法确定相等的边是解题关键.17.如图,△ABC、△CDE都是等腰三角形,且CA=CB, CD=CE,∠ACB=∠DCE=α,AD,BE相交于点O,点M,N分别是线段AD,BE的中点,以下4个结论:①AD=BE;②∠DOB=180°-α;③△CMN是等边三角形;④连OC,则OC平分∠AOE.正确的是()A.①②③B.①②④C.①③④D.①②③④【答案】B【解析】【分析】①根据全等三角形的判定定理得到△ACD≌△BCE(SAS),由全等三角形的性质得到AD=BE;故①正确;②设CD与BE交于F,根据全等三角形的性质得到∠ADC=∠BEC,得到∠DOE=∠DCE=α,根据平角的定义得到∠BOD=180°-∠DOE=180°-α,故②正确; ③根据全等三角形的性质得到∠CAD=∠CBE ,AD=BE ,AC=BC 根据线段的中点的定义得到AM=BN ,根据全等三角形的性质得到CM=CN ,∠ACM=∠BCN ,得到∠MCN=α,推出△MNC 不一定是等边三角形,故③不符合题意;④过C 作CG ⊥BE 于G ,CH ⊥AD 于H ,根据全等三角形的性质得到CH=CG ,根据角平分线的判定定理即可得到OC 平分∠AOE ,故④正确.【详解】解:①∵CA=CB ,CD=CE ,∠ACB=∠DCE=α,∴∠ACB+∠BCD=∠DCE+∠BCD ,∴∠ACD=∠BCE ,在△ACD 和△BCE 中AC BC ACD BCE CD CE ⎪∠⎪⎩∠⎧⎨=== ∴△ACD ≌△BCE (SAS ),∴AD=BE ;故①正确;②设CD 与BE 交于F ,∵△ACD ≌△BCE ,∴∠ADC=∠BEC ,∵∠CFE=∠DFO ,∴∠DOE=∠DCE=α,∴∠BOD=180°-∠DOE=180°-α,故②正确;③∵△ACD ≌△BCE ,∴∠CAD=∠CBE ,AD=BE ,AC=BC又∵点M 、N 分别是线段AD 、BE 的中点,∴AM=12AD ,BN=12BE , ∴AM=BN ,在△ACM 和△BCN 中 AC BC CAM CBN AM BN ⎪∠⎪⎩∠⎧⎨=== ∴△ACM ≌△BCN (SAS ),∴CM=CN ,∠ACM=∠BCN ,又∠ACB=α,∴∠ACM+∠MCB=α,∴∠BCN+∠MCB=α,∴∠MCN=α,∴△MNC 不一定是等边三角形,故③不符合题意;④过C 作CG ⊥BE 于G ,CH ⊥AD 于H ,∴∠CHD=∠ECG=90°,∵∠CEG=∠CDH ,CE=CD ,∴△CGE ≌△CHD (AAS ),∴CH=CG ,∴OC 平分∠AOE ,故④正确,故选:B .【点睛】本题综合考查了全等三角形的性质和判定,三角形的内角和定理,等边三角形的性质和判定等知识点的应用,解此题的关键是根据性质进行推理,此题综合性比较强,有一定的代表性.18.如图,等腰ABC ∆中,AB AC =,120BAC ∠=,AD BC ⊥于点D ,点P 是BA 延长线上一点,点O 是线段AD 上一点,OP OC =.下列结论:①30APO DCO ∠+∠=;②APO DCO ∠=∠;③OPC ∆是等边三角形;④AB AO AP =+.其中正确结论的个数是( )A .1B .2C .3D .4【答案】D【解析】【分析】 ①②连接OB ,根据垂直平分线性质即可求得OB=OC=OP ,即可解题;③根据周角等于360°和三角形内角和为180°即可求得∠POC=2∠ABD=60°,即可解题;④AB 上找到Q 点使得AQ=OA ,易证△BQO≌△PAO,可得PA=BQ ,即可解题.【详解】连接OB ,∵AB AC =,AD ⊥BC ,∴AD 是BC 垂直平分线,∴OB OC OP ==,∴APO ABO ∠=∠,DBO DCO ∠=∠,∵AB=AC ,∠BAC =120∘∴30ABC ACB ∠=∠=︒∴30ABO DBO ∠+∠=︒,∴30APO DCO ∠+∠=.故①②正确;∵OBP ∆中,180BOP OPB OBP ∠=︒-∠-∠,BOC ∆中,180BOC OBC OCB ∠=︒-∠-∠,∴360POC BOP BOC OPB OBP OBC OCB ∠=︒-∠-∠=∠+∠+∠+∠,∵OPB OBP ∠=∠,OBC OCB ∠=∠,∴260POC ABD ∠=∠=︒,∵PO OC ,∴OPC ∆是等边三角形,故③正确;在AB 上找到Q 点使得AQ=OA ,则AOQ ∆为等边三角形,则120BQO PAO ∠=∠=︒,在BQO ∆和PAO ∆中,BQO PAO QBO APO OB OP ∠∠⎧⎪∠∠⎨⎪⎩===∴BQO PAO AAS ∆∆≌(),∴PA BQ =,∵AB BQ AQ =+,∴AB AO AP =+,故④正确.故选:D.【点睛】本题主要考查全等三角形的判定与性质、线段垂直平分线的性质,本题中求证BQO PAO ∆∆≌是解题的关键.19.如图,在Rt △ABC 中,AC =BC ,∠ACB =90°,D 为AB 的中点,E 为线段AD 上一点,过E 点的线段FG 交CD 的延长线于G 点,交AC 于F 点,且EG =AE ,分别延长CE ,BG 交于点H ,若EH 平分∠AEG ,HD 平分∠CHG 则下列说法:①∠GDH =45°;②GD =ED ;③EF =2DM ;④CG =2DE +AE ,正确的是( )A .①②③B .①②④C .②③④D .①②③④【答案】B【解析】【分析】 首先证明△AEC ≌△GEC (SAS ),推出CA =CG ,∠A =∠CGE =45°,推出DE =DG ,故②正确;再证明△EDC ≌△GDB ,推出∠CED =∠BGD ,ED =GD ,由三角形外角的性质得出∠HDG =∠HDE ,进而得出∠GDH =∠EDH =45°,即可判断①正确;通过证明△EDC 和△EMD 是等腰直角三角形,得到ED 2MD ,再通过证明△EFC ≌△EDC ,得到EF =ED ,从而可判断③错误;由CG =CD +DG ,CD =AD ,ED =GD ,变形即可判断④正确.【详解】∵AC =BC ,∠ACB =90°,AD =DB ,∴CD ⊥AB ,CD =AD =DB ,∠A =∠CBD =45°.∵EH 平分∠AEG ,∴∠AEH =∠GEH .∵∠AEH +∠AEC =180°,∠GEH +∠CEG =180°,∴∠AEC =∠CEG .∵AE=GE,EC=EC,∴△AEC≌△GEC(SAS),∴CA=CG,∠A=∠CGE=45°.∵∠EDG=90°,∴∠DEG=∠DGE=45°,∴DE=DG,∠AEF=∠DEG=∠A=45°,故②正确;∵DE=DG,∠CDE=∠BDG=90°,DC=DB,∴△EDC≌△GDB(SAS),∴∠CED=∠BGD,ED=GD.∵HD平分∠CHG,∴∠GHD=∠EHD.∵∠CED=∠EHD+∠HDE,∠BGD=∠GHD+∠HDG,∴∠HDG=∠HDE.∵∠EDG=∠ADC=90°,∴∠GDH=∠EDH=45°,故①正确;∵∠EDC=90°,ED=GD,∴△EDC是等腰直角三角形,∴∠DEG=45°.∵∠GDH=45°,∴∠EDH=45°,∴△EMD是等腰直角三角形,∴ED MD.∵∠AEF=∠DEG=∠A=45°,∴∠AFE=∠CFG=90°.∵∠EDC=90°,∴∠EFC=∠EDC=90°.∵EH平分∠AEG,∴∠AEH=∠GEH.∵∠FEC=∠GEH,∠DEC=∠AEH,∴∠FEC=∠DEC.∵EC=EC,∴△EFC≌△EDC,∴EF=ED,∴EF MD.故③错误;∵CG=CD+DG=AD+ED=AE+ED+ED,∴CG=2DE+AE,故④正确.故选B.【点睛】本题考查了等腰直角三角形的性质和判定,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.20.如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为()A.(-2012,2)B.(-2012,-2)C.(-2013,-2)D.(-2013,2)【答案】A【解析】试题分析:首先由正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1),然后根据题意求得第1次、2次、3次变换后的对角线交点M的对应点的坐标,即可得规律:第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),继而求得把正方形ABCD连续经过2014次这样的变换得到正方形ABCD的对角线交点M的坐标.试题解析:∵正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).∴对角线交点M的坐标为(2,2),根据题意得:第1次变换后的点M的对应点的坐标为(2-1,-2),即(1,-2),第2次变换后的点M的对应点的坐标为:(2-2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2-3,-2),即(-1,-2),第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),∴连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为(-2012,2).故选A.考点:1.翻折变换(折叠问题);2.正方形的性质;3.坐标与图形变化-平移.。
全等三角形证明题专项练习60题(有答案)1.已知如图,△ABC≌△ADE,∠B=30°,∠E=20°,∠BAE=105°,求∠BAC的度数.∠BAC=_________.2.已知:如图,四边形ABCD中,AB∥CD,AD∥BC.求证:△ABD≌△CDB.3.如图,点E在△ABC外部,点D在边BC上,DE交AC于F.若∠1=∠2=∠3,AC=AE,请说明△ABC≌△ADE 的道理.4.如图,△ABC的两条高AD,BE相交于H,且AD=BD.试说明下列结论成立的理由.(1)∠DBH=∠DAC;(2)△BDH≌△ADC.5.如图,在△ABC中,D是BC边的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,且DE=DF,则AB=AC,并说明理由.6.如图,AE是∠BAC的平分线,AB=AC,D是AE反向延长线的一点,则△ABD与△ACD全等吗?为什么?7.如图所示,A、D、F、B在同一直线上,AF=BD,AE=BC,且AE∥BC.求证:△AEF≌△BCD.8.如图,已知AB=AC,AD=AE,BE与CD相交于O,△ABE与△ACD全等吗?说明你的理由.9.如图,在△ABC中,AB=AC,D是BC的中点,点E在AD上,找出图中全等的三角形,并说明它们为什么是全等的.10.如图所示,CD=CA,∠1=∠2,EC=BC,求证:△ABC≌△DEC.11.已知AC=FE,BC=DE,点A、D、B、F在一条直线上,要使△ABC≌△FDE,应增加什么条件?并根据你所增加的条件证明:△ABC≌△FDE.12.如图,已知AB=AC,BD=CE,请说明△ABE≌△ACD.13.如图,△ABC中,∠ACB=90°,AC=BC,将△ABC绕点C逆时针旋转角α(0°<α<90°)得到△A1B1C,连接BB1.设CB1交AB于D,A1B1分别交AB,AC于E,F,在图中不再添加其他任何线段的情况下,请你找出一对全等的三角形,并加以证明.(△ABC与△A1B1C1全等除外)14.如图,AB∥DE,AC∥DF,BE=CF.求证:△ABC≌△DEF.15.如图,AB=AC,AD=AE,AB,DC相交于点M,AC,BE相交于点N,∠DAB=∠EAC.求证:△ADM≌△AEN.16.将两个大小不同的含45°角的直角三角板如图1所示放置在同一平面内.从图1中抽象出一个几何图形(如图2),B、C、E三点在同一条直线上,连接DC.求证:△ABE≌△ACD.17.如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF、BE和CF.请在图中找出所有全等的三角形,用符号“≌”表示,并选择一对加以证明.18.如图,已知∠1=∠2,∠3=∠4,EC=AD.(1)求证:△ABD≌△EBC.(2)你可以从中得出哪些结论?请写出两个.19.等边△ABC边长为8,D为AB边上一动点,过点D作DE⊥BC于点E,过点E作EF⊥AC于点F.(1)若AD=2,求AF的长;(2)求当AD取何值时,DE=EF.20.巳知:如图,AB=AC,D、E分别是AB、AC上的点,AD=AE,BE与CD相交于G.(Ⅰ)问图中有多少对全等三角形?并将它们写出来.(Ⅱ)请你选出一对三角形,说明它们全等的理由(根椐所选三角形说理难易不同给分,即难的说对给分高,易的说对给分低)21.已知:如图,AB=DC,AC=BD,AC、BD相交于点E,过E点作EF∥BC,交CD于F,(1)根据给出的条件,可以直接证明哪两个三角形全等?并加以证明.(2)EF平分∠DEC吗?为什么?22.如图,己知∠1=∠2,∠ABC=∠DCB,那么△ABC与△DCB全等吗?为什么?23.如图,B,F,E,D在一条直线上,AB=CD,∠B=∠D,BF=DE.试证明:(1)△DFC≌△BEA;(2)△AFE≌△CEF.24.如图,AC=AE,∠BAF=∠BGD=∠EAC,图中是否存在与△ABE全等的三角形?并证明.25.如图,D是△ABC的边BC的中点,CE∥AB,E在AD的延长线上.试证明:△ABD≌△ECD.26.如图,已知AB=CD,∠B=∠C,AC和BD相交于点O,E是AD的中点,连接OE.(1)求证:△AOB≌△DOC;(2)求∠AEO的度数.27.如图,已知AB∥DE,AB=DE,AF=DC.(1)求证:△ABF≌△DEC;(2)请你找出图中还有的其他几对全等三角形.(只要直接写出结果,不要证明)28.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:△ABD≌△GCA;(2)请你确定△ADG的形状,并证明你的结论.29.如图,点D、F、E分别在△ABC的三边上,∠1=∠2=∠3,DE=DF,请你说明△ADE≌△CFD的理由.30.如图,在△ABC中,∠ABC=90°,BE⊥AC于点E,点F在线段BE上,∠1=∠2,点D在线段EC上,给出两个条件:①DF∥BC;②BF=DF.请你从中选择一个作为条件,证明:△AFD≌△AFB.31.如图,在△ABC中,点D在AB上,点E在BC上,AB=BC,BD=BE,EA=DC,求证:△BEA≌△BDC.32.阅读并填空:如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D.请说明△ADC≌△CEB的理由.解:∵BE⊥CE于点E(已知),∴∠E=90°_________,同理∠ADC=90°,∴∠E=∠ADC(等量代换).在△ADC中,∵∠1+∠2+∠ADC=180°_________,∴∠1+∠2=90°_________.∵∠ACB=90°(已知),∴∠3+∠2=90°,∴_________.在△ADC和△CEB中,.∴△ADC≌△CEB (A.A.S)33.已知:如图所示,AB∥DE,AB=DE,AF=DC.(1)写出图中你认为全等的三角形(不再添加辅助线);(2)选择你在(1)中写出的全等三角形中的任意一对进行证明.34.如图,点E在△ABC外部,点D在BC边上,DE交AC于点F,若∠1=∠2=∠3,AC=AE.试说明下列结论正确的理由:(1)∠C=∠E;(2)△ABC≌△ADE.35.如图,在Rt△ABC中,∠ACB=90°,AC=BC,D是斜边AB上的一点,AE⊥CD于E,BF⊥CD交CD的延长线于F.求证:△ACE≌△CBF.36.如图,在△ABC中,D是BC的中点,DE∥CA交AB于E,点P是线段AC上的一动点,连接PE.探究:当动点P运动到AC边上什么位置时,△APE≌△EDB?请你画出图形并证明△APE≌△EDB.37.已知:如图,AD∥BC,AD=BC,E为BC上一点,且AE=AB.求证:(1)∠DAE=∠B;(2)△ABC≌△EAD.38.如图,D为AB边上一点,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,CA=CB,CD=CE,图中有全等三角形吗?指出来并说明理由.39.如图,AB=AC,AD=AE,∠BAC=∠DAE.求证:△ABD≌△ACE.40.如图,已知D是△ABC的边BC的中点,过D作两条互相垂直的射线,分别交AB于E,交AC于F,求证:BE+CF>EF.41.如图所示,在△MNP中,H是高MQ与NE的交点,且QN=QM,猜想PM与HN有什么关系?试说明理由.42.如图,在△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥GF,交AB于点E,连接EG.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并证明你的结论.43.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,AD=2.5cm,DE=1.7cm,求BE的长.44.如图,小明在完成数学作业时,遇到了这样一个问题,AB=CD,BC=AD,请说明:∠A=∠C的道理,小明动手测量了一下,发现∠A确实与∠C相等,但他不能说明其中的道理,你能帮助他说明这个道理吗?试试看.45.如图,AD是△ABC的中线,CE⊥AD于E,BF⊥AD,交AD的延长线于F.求证:CE=BF.46.如图,已知AB∥CD,AD∥BC,F在DC的延长线上,AM=CF,FM交DA的延长线上于E.交BC于N,试说明:AE=CN.47.已知:如图,△ABC中,∠C=90°,CM⊥AB于M,AT平分∠BAC交CM于D,交BC于T,过D作DE∥AB 交BC于E,求证:CT=BE.48.如图,已知AB=AD,AC=AE,∠BAE=∠DAC.∠B与∠D相等吗?请你说明理由.49.D是AB上一点,DF交AC于点E,DE=EF,AE=CE,求证:AB∥CF.50.如图,M是△ABC的边BC上一点,BE∥CF,且BE=CF,求证:AM是△ABC的中线.51.如图,在△ABC中,AC⊥BC,AC=BC,D为AB上一点,AF⊥CD交于CD的延长线于点F,BE⊥CD于点E,求证:EF=CF﹣AF.52.如图,在△ABC中,∠BAC=90°,AB=AC,若MN是经过点A的直线,BD⊥MN于D,EC⊥MN于E.(1)求证:BD=AE;(2)若将MN绕点A旋转,使MN与BC相交于点O,其他条件都不变,BD与AE边相等吗?为什么?(3)BD、CE与DE有何关系?53.已知:如图,△ABC中,AB=AC,BD和CE为△ABC的高,BD和CE相交于点O.求证:OB=OC.54.在△ABC中,∠ACB=90°,D是AB边的中点,点F在AC边上,DE与CF平行且相等.试说明AE=DF的理由.55.如图,在△ABC中,D是边BC上一点,AD平分∠BAC,在AB上截取AE=AC,连接DE,已知DE=2cm,BD=3cm,求线段BC的长.56.如图:已知∠B=∠C,AD=AE,则AB=AC,请说明理由.57.如图△ABC中,点D在AC上,E在AB上,且AB=AC,BC=CD,AD=DE=BE.(1)求证△BCE≌△DCE;(2)求∠EDC的度数.58.已知:∠A=90°,AB=AC,BD平分∠ABC,CE⊥BD,垂足为E.求证:BD=2CE.59.如图,已知:AB=CD,AD=BC,过BD上一点O的直线分别交DA、BC的延长线于E、F.(1)求证:∠E=∠F;(2)OE与OF相等吗?若相等请证明,若不相等,需添加什么条件就能证得它们相等?请写出并证明你的想法.60.如下图,AD是∠BAC的平分线,DE垂直AB于点E,DF垂直AC于点F,且BD=DC.求证:BE=CF.全等三角形证明题专项练习60题参考答案:1.∵△ABC≌△ADE 且∠B≠∠E,∴∠C=∠E,∠B=∠D;∴∠BAC=180°﹣∠B﹣∠C=180°﹣30°﹣20°=130°.2.∵AB∥CD,AD∥BC,∴∠ABD=∠CDB、∠ADB=∠CBD.又BD=DB,∴△ABD≌△CDB(ASA).3.△ADF与△AEF中,∵∠2=∠3,∠AFE=∠CFD,∴∠E=∠C.∵∠1=∠2,∴∠BAC=∠DAE.∵AC=AE,∴△ABC≌△ADE.4.(1)∵∠BHD=∠AHE,∠BDH=∠AEH=90°∴∠DBH+∠BHD=∠HAE+∠AHE=90°∴∠DBH=∠HAE∵∠HAE=∠DAC∴∠DBH=∠DAC;(2)∵AD⊥BC∴∠ADB=∠ADC在△BDH与△ADC中,∴△BDH≌△ADC.5.∵DE⊥AB,DF⊥AC,∴△DBE与△DCF是直角三角形,∵BD=CD,DE=DF,∴Rt△DBE≌Rt△DCF(HL),∴∠B=∠C,∴AB=AC.6.∵AE是∠BAC的平分线,∴∠BAE=∠CAE;∴180°﹣∠BAE=180°﹣∠CAE,即∠DAB=∠DAC;又∵AB=AC,AD=AD,∴在△ABD和△ACD中,∴△ABD≌△ACD(SAS)7.∵AE∥BC,∴∠B=∠C.∵AF=BD,AE=BC,∴△AEF≌△BCD(SAS).8.△ABE与△ACD全等.理由:∵AB=AC,∠A=∠A(公共角),AE=AD,∴△ABE≌△ACD.9.图中的全等三角形有:△ABD≌△ACD,△ABE≌△ACE,△BDE≌△CDE.理由:∵D是BC的中点,∴BD=DC,AB=AC,AD=AD∴△ABD≌△ACD(SSS);∵AE=AE,∠BAE=∠CAE,AB=AC,∴△ABE≌△ACE(SAS);∵BE=CE,BD=DC,DE=DE,∴△BDE≌△CDE(SSS).10.:∵∠1=∠2,∴∠ACB=∠DCE,在△ABC和△DEC中,,∴△ABC≌△DEC(SAS)11. 增加AB=DF.在△ABC和△FDE 中,∴△ABC≌△FDE(SSS).12.∵AB=AC,BD=CE,∴AD=AE.又∵∠A=∠A,∴△ABE≌△ACD(SAS).13.△CBD≌△CA1F证明如下:∵AC=BC,∴∠A=∠ABC.∵△ABC绕点C逆时针旋转角α(0°<α<90°)得到△A1B1C1,∴∠A1=∠A,A1C=AC,∠ACA1=∠BCB1=α.∴∠A1=∠ABC(1分),A1C=BC.∴△CBD≌△CA1F(ASA)14.∵AB∥DE,AC∥DF,∴∠B=∠DEF,∠F=∠ACB.∵BE=CF,∴BE+CE=CF+EC.∴BC=EF.∴△ABC≌△DEF (ASA).15.∵AB=AC,AD=AE,∠DAB=∠EAC,∴∠DAC=∠AEB,∴△ACD≌△ABE,∴∠D=∠E,又AD=AE,∠DAB=∠EAC,∴△ADM≌△AEN16.∵△ABC和△ADE均为等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90,即∠BAC+∠CAE=∠DAE+∠CAE,∴∠BAE=∠CAD,在△ABE和△ACD中,,∴△ABE≌△ACD17.答:△BDE≌△FEC,△BCE≌△FDC,△ABE≌△ACF;证明:(以△BDE≌△FEC为例)∵△ABC是等边三角形,∴BC=AC,∠ACB=60°,∵CD=CE,∴△EDC是等边三角形,∴∠EDC=∠DEC=60°,∴∠BDE=∠FEC=120°,∵CD=CE,∴BC﹣CD=AC﹣CE,∴BD=AE,又∵EF=AE,∴BD=FE,在△BDE与△FEC中,∵,∴△BDE≌△FEC(SAS).18.(1)证明如下:∵∠ABD=∠1+∠EBC,∠CBE=∠2+∠EBC,∠1=∠2.∴∠ABD=∠CBE.在△ABD和△EBC中∴△ABD≌△EBC(AAS);(2)从中还可得到AB=BC,∠BAD=∠BEC 19.(1)∵AB=8,AD=2∴BD=AB﹣AD=6在Rt△BDE中∠BDE=90°﹣∠B=30°∴BE=BD=3∴CE=BC﹣BE=5在Rt△CFE中∠CEF=90°﹣∠C=30°∴CF=CE=∴AF=AC﹣FC=;(2)在△BDE和△EFC中,∴△BDE≌△CFE(AAS)∴BE=CF∴BE=CF=EC∴BE=BC=∴BD=2BE=∴AD=AB﹣BD=∴AD=时,DE=EF20.(1)图中全等的三角形有四对,分别为:①△DBG≌△EGC,②△ADG≌△AEG,③△ABG≌△ACG,④△ABE≌△ACD;(4分)(Ⅱ)∵AB=AC,AD=AE,∠A是公共角,∴△ABE≌△ACD(SAS)④;∵AB=AC,AD=AE,∴AB﹣AD=AC﹣AE,即BD=CE;由④得∠B=∠C,又∵∠DGB=∠EGC(对顶角相等),BD=CE(已证),∴△DBG≌△EGC(AAS)①;由①得BG=CG,由④得∠B=∠C,又∵AB=AC,∴△ABG≌△ACG(SAS)③;由①得BG=CG,且AD=AE,AG为公共边,∴△ADG≌△AEG(SSS)②;21.(1)△ABC≌△DCB.证明:∵AB=CD,AC=BD,BC=CB,∴△ABC≌△DCB.(SSS)(2)EF平分∠DEC.理由:∵EF∥BC,∴∠DEF=∠EBC,∠FEC=∠ECB;由(1)知:∠EBC=∠ECB;∴∠DEF=∠FEC;∴FE平分∠DEC22.△ABC≌△DCB.理由如下:∵∠ABC=∠DCB,∠1=∠2,∴∠DBC=∠ACB.∵BC=CB,∴△ABC≌△DCB23.(1)∵BF=DE,∴BF+EF=DE+EF.即BE=DF.在△DFC和△BEA中,∵,∴△DFC≌△BEA(SAS).(2)∵△DFC≌△BEA,∴CF=AE,∠CFD=∠AEB.∵在△AFE与△CEF中,∵,∴△AFE≌△CEF(SAS)24.△ABF与△DFG中,∠BAF=∠BGD,∠BFA=∠DFG,∴∠B=∠D,∵∠BAF=∠EAC,∴∠BAE=∠DAC,∵AC=AE,∠BAE=∠DAC,∠B=∠D,∴△BAE≌△DAC.答案:有.△BAE≌△DAC25.∵CE∥AB,∴∠ABD=∠ECD.在△ABD和△ECD中,,∴△ABD≌△ECD(ASA)26.(1)证明:在△AOB和△COD中∵∴△AOB≌△COD(AAS)(2)解:∵△AOB≌△COD,∴AO=DO∵E是AD的中点∴OE⊥AD∴∠AEO=90°27.1)证明:∵AB∥DE,∴∠A=∠D.∵AB=DE,AF=DC,∴△ABF≌△DEC.(2)解:全等三角形有:△ABC和△DEF;△CBF和△FEC 28.证明:(1)∵BE、CF分别是AC、AB两边上的高,∴∠AFC=∠AEB=90°(垂直定义),∴∠ACG=∠DBA(同角的余角相等),又∵BD=CA,AB=GC,∴△ABD≌△GCA;(2)连接DG,则△ADG是等腰三角形.证明如下:∵△ABD≌△GCA,∴AG=AD,∴△ADG是等腰三角形.29.解:∵∠4+∠6=180°﹣∠3,∠5+∠6=180°﹣∠2,∠3=∠2,∴∠4+∠6=∠5+∠6,∴∠4=∠5,∵在△ADE和△CFD中,,∴△ADE≌△CFD(AAS).30.①DF∥BC.证明:∵BE⊥AC,∴∠BEC=90°,∴∠C+∠CBE=90°,∵∠ABC=90°,∴∠ABF+∠CBE=90°,∴∠C=∠ABF,∵DF∥BC,∴∠C=∠ADF,∴∠ABF=∠ADF,在△AFD和△AFB中∴△AFD≌△AFB(AAS).31.在△BEA和△BDC中:,故△BEA≌△BDC(SSS).32.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D.请说明△ADC≌△CEB的理由.解:∵BE⊥CE于点E(已知),∴∠E=90°(垂直的意义),同理∠ADC=90°,∴∠E=∠ADC(等量代换).在△ADC中,∵∠1+∠2+∠ADC=180°(三角形的内角和等于180°),∴∠1+∠2=90°(等式的性质).∵∠ACB=90°(已知),∴∠3+∠2=90°,∴∠1=∠3(同角的余角相等).在△ADC和△CEB中,.∴△ADC≌△CEB (A.A.S)33.(1)△ABF≌△DEC,△ABC≌△DEF,△BCF≌△EFC;(2分)(2)△ABF≌△DEC,证明:∵AB∥DE,∴∠A=∠D,(3分)在△ABF和△DEC中,(4分)∴△ABF≌△DEC.(5分)34.(1)△ADF与△AEF中,∵∠2=∠3,∠AFE=∠CFD,∴∠C=∠E;(2)∵∠1=∠2,∴∠BAC=∠DAE.∵AC=AE,又∠C=∠E,∴△ABC≌△ADE.35.∵AE⊥CD,∴∠AEC=90°,∴∠ACE+∠CAE=90°,(直角三角形两个锐角互余)∵∠ACE+∠BCF=90°,∴∠CAE=∠BCF,(等角的余角相等)∵AE⊥CD,BF⊥CD,∴∠AEC=∠BFC=90°,在△ACE与△CBF中,∠CAE=∠BCF,∠AEC=∠BFC,AC=BC,∴△ACE≌△CBF(AAS).36.当动点P运动到AC边上中点位置时,△APE≌△EDB,∵DE∥CA,∴△BED∽△BAC,∴=,∵D是BC的中点,∴=,∴=,∴E是AB中点,∴DE=AC,BE=AE,∵DE∥AC,∴∠A=∠BED,要使△APE≌△EDB,还缺少一个条件DE=AP,又有DE=AC,∴P必须是AC中点.37.(1)∵AE=AB,∴∠B=∠AEB,又∵AD∥BC,∴∠AEB=∠DAE,∴∠DAE=∠B;(2)∵∠DAE=∠B,AD=BC,AE=AB,∴△ABC≌△EAD.38.△ACE≌△BCD.∵△ABC和△ECD都是等腰直角三角形,∴∠ECD=∠ACB=90°,∴∠ACE=∠BCD(都是∠ACD的余角),在△ACE和△BCD中,∵,∴△ACE≌△BCD.39.∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠EAC,在△ABD和△ACE中,∴△ABD≌△ACE.40.证明:延长FD到M使MD=DF,连接BM,EM.∵D为BC中点,∴BD=DC.∵∠FDC=∠BDM,∴△BDM≌△CDF.∴BM=FC.∵ED⊥DF,∴EM=EF.∵BE+BM>EM,∴BE+FC>EF.41.PM=HN.理由:∵在△MNP中,H是高MQ与NE的交点,∴∠MEH=∠NQH=90°,∠MQP=∠NQH=90°∵∠MHE=∠NHQ(对顶角相等),∴∠EMH=∠QNH(等角的余角相等)在△MPQ和△NHQ中,,∴△MPQ≌△NHQ(ASA),∴MP=NH.42.(1)∵BG∥AC,∴∠DBG=∠DCF.∵D为BC的中点,∴BD=CD又∵∠BDG=∠CDF,在△BGD与△CFD中,∵∴△BGD≌△CFD(ASA).∴BG=CF.(2)BE+CF>EF.∵△BGD≌△CFD,∴GD=FD,BG=CF.又∵DE⊥FG,∴EG=EF(垂直平分线到线段端点的距离相等).∴在△EBG中,BE+BG>EG,即BE+CF>EF.43.∵BE⊥CE于E,AD⊥CE于D∴∠E=∠ADC=90°∵∠BCE+∠ACE=∠DAC+∠ACE=90°∴∠BCE=∠DAC∵AC=BC∴△ACD≌△CBE∴CE=AD,BE=CD=2.5﹣1.7=0.8(cm)44.∵AB=CD,BC=AD,又∵BD=DB,在△ABD和△CDB中,∴△ABD≌△CDB,45.∵AD是△ABC中BC边上的中线,∴BD=CD.∵CE⊥AD于E,BF⊥AD,∴∠BFD=∠CED.在△BFD和△CED中,∴△BFD≌△CED(AAS).∴CE=BF46.∵AD∥BC,∴∠E=∠ENB,∵∠ENB=∠CNF,∴∠E=∠CNF,∵AB∥CD,∴∠A=∠B,∵∠C=∠B,∴∠EAB=∠DCB,∵AM=CF,∴△AME≌△CFN,∴AE=CN.47.证明:过T作TF⊥AB于F,∵AT平分∠BAC,∠ACB=90°,∴CT=TF(角平分线上的点到角两边的距离相等),∵∠ACB=90°,CM⊥AB,∴∠ADM+∠DAM=90°,∠A TC+∠CA T=90°,∵AT平分∠BAC,∴∠DAM=∠CA T,∴∠ADM=∠ATC,∴∠CDT=∠CTD,∴CD=CT,又∵CT=TF(已证),∴CD=TF,∵CM⊥AB,DE∥AB,∴∠CDE=90°,∠B=∠DEC,在△CDE和△TFB中,,∴△CDE≌△TFB(AAS),∴CE=TB,∴CE﹣TE=TB﹣TE,即CT=BE.48.∵∠BAE=∠DAC∴∠BAE+∠CAE=∠DAC+∠CAE即∠BAC=∠DAE又∵AB=AD,AC=AE,∴△ABC≌△ADE(SAS)∴∠B=∠D(全等三角形的对应角相等)49.∵DE=EF,AE=CE,∠AED=∠FEC,∴△AED≌△FEC.∴∠ADE=∠CFE.∴AD∥FC.∵D是AB上一点,∴AB∥CF50.∵BE∥CF,∴∠CMF=∠BME,∠FCM=∠EBM.又∵BE=CF,∴△CFM≌△BEM.∴CM=BM.即AM是△ABC的中线51.∵AC⊥BC,BE⊥CD,∴∠ACF+∠FCB=∠FCB+∠CBE=90°.∴∠FCA=∠EBC.∵∠BEC=∠CFA=90°,AC=BC,∴△BEC≌△CFA.∴CE=AF.∴EF=CF﹣CE=CF﹣AF52.解:(1)证明:由题意可知,BD⊥MN与D,EC⊥MN与E,∠BAC=90°,则△ABD与△CEA是直角三角形,∠DAB=∠ECA,在△ABD与△CEA中,∵,∴△ABD≌△CEA,∴BD=AE;(2)若将MN绕点A旋转,与BC相交于点O,则BD,CE与MN垂直,∴△ABD与△CEA仍是直角三角形,两个三角形仍全等,∴BD与AE边仍相等;(3)∵△ABD≌△CEA,∴BD=AE,AD=EC,∴DE=BD+EC或DE=CE﹣BD或DE=BD﹣CE.53.∵AB=AC,∴∠ABC=∠ACB,∵BD、CE分别为△ABC的高,∴∠BEC=∠BDC=90°,∴在△BEC和△CDB中,∴△BEC≌△CDB,∴∠1=∠2,∴OB=OC54.解:连接CD,∵∠ACB=90°,D是AB边的中点∴CD=AD,∠DAC=∠DCF∵DE与CF平行且相等∴∠EDA=∠DAC∴∠EDA=∠DCF在△AED和△CFD中CD=AD,∠EDA=∠DCF,DE=CF∴△AED≌△CFD∴AE=DF.55.∵AD平分∠BAC∴∠BAD=∠CAD在△ADE和△ADC中∵∴△ADE≌△ADC(SAS)∴DE=DC∴BC=BD+DC=BD+DE=2+3=5(cm)56.在△AEB与△ADC中,.∴△AEB≌△ADC(AAS).∴AB=AC(全等三角形,对应边相等)57.(1)证明:在△BCE和△DCE中∴△BCE≌△DCE(SSS).(2)解:∵AD=DE,∴∠A=∠AED;∴∠EDC=∠A+∠AED=2∠A,设∠A=x,根据题意得,5x=180°,解得x=36°∴∠EDC=2∠A=72°58.证明:延长CE、BA交于点F.∵CE⊥BD于E,∠BAC=90°,∴∠ABD=∠ACF.又AB=AC,∠BAD=∠CAF=90°,∴△ABD≌△ACF,∴BD=CF.∵BD平分∠ABC,∴∠CBE=∠FBE.∴△BCE≌△BFE,∴CE=EF,∴CE=BD,∴BD=2CE.59.(1)证明:在△ABD和△CDB中∵AB=CD,AD=BC,BD=DB,∴△ABD≌△CDB(SSS),∴∠ADB=∠DBC,∴DE∥BF.∴∠E=∠F.(2)答:当O是BD中点时,OE=OF.证明如下:∵O是BD中点,∴OB=OD.又∵∠ADB=∠DBC,∠E=∠F,∴△ODE≌△OBF(AAS).∴OE=OF.(当AE=CF时也可证得60.∵DE⊥AB,DF⊥AC,∴∠E=∠DFC=90°.∵AD平分∠EAC,∴DE=DF.在Rt△DBE和Rt△DCF中,∴Rt△DBE≌Rt△CDF(HL).∴BE=CF.。