上海市培佳双语学校2018——2019学年第二学期第一次质量监控七年级数学试卷
- 格式:docx
- 大小:505.04 KB
- 文档页数:6
上海培佳双语学校2018学年第二学期第二次质量监控七年级数学试卷考试时间100分满分150分一、选择题(本大题共有8题,每题3分,满分24分)1、如果一个三角形的三条高的交点是三角形的一个定点,则这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.无法判断2、某多边形的内角和是其外角和的3倍,则比多边形的边数是()A.5B.6C.7D.83、如图,已知∠BDA=∠CDA,则不一定能使∠ABD∠∠ACD的条件是()A.BD=DCB.AB=ACC.∠B=∠CD.∠BAD=∠CAD4、如果三角形的两边分别为3和5,那么这个三角形的周长可能是()A.15B.16C.8D.75、如下图,已知∠ABE和∠ACD全等,∠1=∠2,∠B=∠C,不正确的等式是()A.AD=AEB.∠BAE=∠CADC.BE=DCD.AB=AE第三题第五题第七题6、下列说法:∠任意三角形的内角和都是180°;∠三角形的一个外角大于任何一个内角;∠三角形的中线、角平分线和高线都是线段;∠三角形的三条高线必在三角形内,其中正确的是()A.∠∠B.∠∠C.∠∠D.∠∠7、如图所示,将∠ABC沿着DE翻折,若∠1+∠2=80°,则∠B的度数为()A.80°B.60°C.40°D.30°8、下列命题中假命题是()(A)两边及第三边上的高对应相等的两个三角形全等(B)两边及第三边上的中线对应相等的两个三角形全等:(C)两边及它们的夹角对应相等的两个三角形全等;(D)两边及其中一边上的中线对应相等的两个三角形全等二、填空题(本大题共有12题,每题4分,满分48分)1、如图,E、B、F、C在同一条直线上,若∠D=∠A=90°,EB=FC,AB=DF.则∠ABC∠ ,全等的根据是.第1题第3题第5题2、已知在∠ABC中,∠C=80°,∠A-∠B=20°,则∠B的度数是.3、如图,将直尺和三角板按如图的样子叠放在一起,那么∠1+∠2= 度.4、一个三角形的三个内角度数之比是2:3:5,如果按角分类,那么∠ABC是三角形.5、如图,AB∠CD,∠D=13°,∠B=28°,那么∠E等于.6、如图,AB=AC,BD=CD,E在AD上,图中有对全等三角形.7、如图,∠C=∠BDC=36°,∠A=∠ABD,则∠ADE= .8、如果∠ABC的∠B与∠C的平分线交于P点,∠BPC=134°,则∠BAC= .9、如图,在四边形ABCD中,AD//BC,要使∠ABD∠∠CDB,可添加一个条件为.第6题第7题第8题第9题10、如图,在∠ABC中,∠B的平分线与∠C的外角平分线相交于D,∠D=40°,则∠A等于.11、五角星的项点为A、B、C、D、E.则∠A+∠B+∠C+∠D+∠E= .12、如图,在正方形组成的网格中,∠ABC的三个顶点在格点上,现以∠ABC的一边再作一个三角形, 使所得的三角形与∠ABC全等,且其顶点也在格点上,则这样的三角形有个.第10题 第11题 第12题三、简答题(本大题共有3大题,满分28分)1、如图,已知:BD=CE,AB=AC,AD=AE ,且B 、C 、D 三点在一直线上,请填写∠2=∠3的理由.(8分) 解:在∠ABD 与∠ACE 中,()()()BD CE AB AC AD AE =⎧⎪=⎨⎪=⎩已知已知已知 所以∠ABD ∠∠ACE ( )所以∠B =∠ACE∠BAD=∠ ( )所以∠BAD -∠CAD =∠CAE -∠CAD ( )即∠ =∠ .因为∠ACD =∠B +∠1( )即∠3+∠ACE =∠B +∠1,所以∠1=∠3( )所以∠2=∠3(等量代换) .2、在∠ABC 和∠DBC 中,∠ACB =∠DBC =90°,E 是BC 的中点,DE ∠AB 于F ,AB =DE ,BC =4cm, 求AC 的长.3、如图,在∠ABC中,∠B=∠C,D、B、F分别为边BC、AB、AC上的点,且BE=CD,CF=BD. 当∠A=40°,求∠EDF的度数.四、解答题(本大题共有5题,每题10分,满分50分)1、已知:如图,AD=BC,AC=BD.试证明:∠CAD=∠DBC.2、如图,AB=AD,AC=AE,∠1=∠2,试说明:(1) BC=DE;(2)∠2=∠3.3、已知∠A=40°,∠C=76°,BP是∠ABG的平分线,DP是∠CDG的平分线,求∠P的度数.4、已知,如图,在四边形ABCD中,AC平分∠BAD,CE∠AB与E,并且AE=12(AB+AD),求证:∠B+∠D=180°.4、∠ABC中,∠ACB=90°,AC=BC,CD∠AB于D,E是AB上任意一点,AF∠CE于点F交CD 于点H,BG∠CE的延长线于点G1)写出图中的全等三角形(两对或两对以上);2)求证:AF=CG;3)观察CH与BE是否相等,若相等请证明,不相等则说明理由.。
七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为()A.105°B.110°C.115°D.120°【答案】C【解析】如图,首先证明∠AMO=∠2,然后运用对顶角的性质求出∠ANM=55°;借助三角形外角的性质求出∠AMO即可解决问题.【详解】如图,对图形进行点标注.∵直线a∥b,∴∠AMO=∠2;∵∠ANM=∠1,而∠1=55°,∴∠ANM=55°,∴∠2=∠AMO=∠A+∠ANM=60°+55°=115°,故选C.【点睛】本题考查了平行线的性质,三角形外角的性质,熟练掌握和灵活运用相关知识是解题的关键.2.时钟显示为8:30时,时针与分针所夹的角是()A.90°B.120°C.75°D.84°【答案】C【解析】试题分析:根据题意可得:时针与分针所夹的角的度数=30×2.5=75°.考点:时钟上的角度问题3.如图,∠1的内错角是( )A.∠2B.∠3C.∠4D.∠5【答案】D【解析】试题分析:根据内错角位于截线异侧,位于两条被截线之间可知∠1的内错角是∠1.故选D.点睛:本题考查了内错角的辨识,熟记内错角的概念是解决此题的关键.4.如图,平行四边形ABCD 的对角线AC,BD 相交于点O,点E,F 分别是线段AO,BO 的中点,若AC+BD=24 厘米,△OAB 的周长是18 厘米,则EF 为( )A.3cm B.4cm C.5cm D.6cm【答案】A【解析】直接利用平行四边形的性质得出AO+BO的长,即可得出AB的长,再利用三角形中位线定理得出EF的长.【详解】解:∵平行四边形ABCD的对角线AC,BD相交于点O,∴AO=CO,BO=DO,∵AC+BD=24厘米,∴AO+BO=12厘米,∵△OAB的周长是18厘米,∴AB=6厘米,∵点E,F分别是线段AO,BO的中点,∴EF=AB=3cm.故选:A.【点睛】此题主要考查了平行四边形的性质以及三角形中位线定理,正确得出AB的长是解题关键.5.已知,如图,△ABC中,AB=AC,AD是角平分线,BE=CF,则下列说法正确的有()(1)AD 平分∠EDF ;(2)△EBD ≌△FCD ;(3)BD=CD ;(4)AD ⊥BC .A .1个B .2个C .3个D .4个【答案】D 【解析】解:∵△ABC 是等腰三角形,AD 是角平分线,∴BD=CD ,且AD ⊥BC ,又BE=CF ,∴△EBD ≌△FCD ,且△ADE ≌△ADF ,∴∠ADE=∠ADF ,即AD 平分∠EDF .所以四个都正确.故选D .6.下列计算中,正确的是( )A .(3a )2=6a 2B .(a 3)4=a 12C .a 2•a 5=x 10D .a 6÷a 3=a 2【答案】B【解析】根据幂的乘方以及同底数幂的乘法和除法进行计算即可【详解】A. (3a )2=9a 2,故本选项错误B .(a 3)4=a 12,故本选项正确;C .a 2,x 10 不是同类型故本选项错误D .a 6÷a 3=a 3,故本选项错误;故选B【点睛】此题考查完全平方公式,同底数幂的除法,幂的乘方与积的乘方,掌握运算法则是解题关键7.下面四个图形中,1∠和2∠是同位角的是( )A .②③④B .①②③C .①②③④D .①②④【答案】D 【解析】两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.【详解】解:根据同位角的定义,可得图①②④中,∠1与∠2在两直线的同侧,并且在第三条直线(截线)的同旁,故是同位角,而图③中,∠1与∠2不是两条直线被第三条直线所截形成的同位角.故选D.【点睛】本题主要考查了同位角的定义,解题时注意:三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.8.“双11”促销活动中,小芳的妈妈计划用100元在唯品会购买价格分别为8元和12元的两种商品,则可供小芳妈妈选择的购买方案有()A.7种B.6种C.5种D.4种【答案】D【解析】设购买8元的商品数量为x,购买12元的商品数量为y,根据总费用是100元列出方程,求得正整数x、y的值即可.【详解】解:设购买8元的商品数量为x,购买12元的商品数量为y,依题意得:8x+12y=100,整理,得因为x是正整数,所以当x=2时,y=7当x=5时,y=5当x=8时,y=3当x=11时,y=1即有4种购买方案,选:D【点睛】本题考查了二元一次方程的应用.对于此类题,挖掘题目中的关系,找出等量关系,列出二元一次方程.然后根据未知数的实际意义求其整数解.9.如图,BD是△ABC的高,EF∥AC,EF交BD于G,下列说法正确的有()①BG是△EBF的高;②CD是△BGC的高;③DG是△AGC的高;④AD是△ABG的高.A.1个B.2个C.3个D.4个【答案】D【解析】根据高线的定义,是三角形的顶点到对边所在直线的垂线段,即可解答.【详解】解:∵BD 是△ABC 的高,∴BD ⊥AC ,∴∠BDC=∠BDA=90º,∴DG 是△AGC 的高,CD 是△BGC 的高,AD 是△ABG 的高;∵EF ∥AC ,∴BG ⊥EF ,∴BG 是△EBF 的高,∴正确的有①②③④.故选D.【点睛】本题考查了三角形高的定义.10.第二象限内一点P 到x 轴的距离等于2,到轴的距离等于3,则点P 的坐标为( )A .()2,3-B .()2,3-C .()3,2-D .()3,2-【答案】C【解析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值解答即可.【详解】解:∵第二象限内一点P 到x 轴的距离等于2,到y 轴的距离等于3,∴点P 的横坐标为-3,纵坐标为2,∴点P 的坐标为(-3,2).故选:C .【点睛】本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值是解题的关键.二、填空题题 11.如果不等式组841x x x m+<-⎧⎨>⎩ 的解集是3x >,那么m 的取值范围是______. 【答案】3m ≤.【解析】先用含有m 的代数式把原不等式组的解集表示出来,然后和已知的解集比对,得到关于m 的不等式,从而解答即可.【详解】在841x x x m +<-⎧⎨>⎩中, 由(1)得,3x >,由(2)得,x m >,根据已知条件,不等式组解集是3x >.根据“同大取大”原则3m ≤.故答案为:3m ≤.【点睛】本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知数处理,求出解集与已知解集比较,进而求得另一个未知数.12.如图,直线 AB ,CD 相交于点 O ,EO ⊥AB ,垂足为 O ,∠AOC :∠COE=3: 2,则∠AOD=___ .【答案】126º【解析】根据EO ⊥AB ,可得∠AOE =∠EOB =90°,再根据∠AOC :∠COE=3: 2,可得∠COE 的度数,进而可求∠BOC 的度数,然后利用对顶角的性质,即可得出∠AOD 的度数.【详解】解:∵EO ⊥AB ,∴∠AOE =∠EOB =90°,∠AOC :∠COE=3: 2,∴∠COE=290=3632⨯+, ∴∠BOC=90°+36°=126°,∴∠AOD=∠BOC=126°.故答案为126°.点睛:掌握垂直得定义以及对顶角的性质是解题关键.如果两条直线垂直,那么这两条直线所夹的角为直角,反之,如果两条直线相交,有一个角为直角,那么这两条直线垂直.对顶角的性质:对顶角相等. 13.如图,在Rt △ABC 中,∠A=90°.小华用剪刀沿DE 剪去∠A ,得到一个四边形.则∠1+∠2=________度.【答案】270【解析】∵∠A=90°,∴∠B+∠C=90.∵∠B+∠C+∠1+∠2=360°,∴∠1+∠2=360°−90°=270°.故答案为270.14.若21x y =⎧⎨=⎩是关于x ,y 的二元一次方程24mx y -=的解,则m 的值为___________. 【答案】3【解析】把x 与y 的值代入方程计算即可求出m 的值.【详解】:把21x y =⎧⎨=⎩代入方程24mx y -=中得:2m-2=4, 解得:m=1.故答案为:1.【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.15.在“Chinese dream ”这个词组的所有字母中,出现字母“e ”的频率是____________.【答案】0.25【解析】用“e ”的个数除以字母总个数即可.【详解】3÷12=0.25.故答案为:0.25.【点睛】此题考查了概率公式的计算方法,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 16.计算:﹣3x •2xy = .【答案】﹣6x 2y【解析】根据单项式乘以单项式的法则即可求出答案.【详解】解:﹣3x•2xy=﹣3×2•(x•x )y=﹣6x 2y .故答案为:﹣6x 2y .【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.17.如图,//AB CD ,点E 在AB 上,点G 在CD 上,点F 在ED 上,若00160,55CGF EFG ∠=∠=,则BED ∠的度数是_________.【答案】35°;【解析】先根据邻补角性质得出∠GFD=125°,再根据外角性质解得∠D=35°,最后由AB ∥CD ,利用两直线平行,内错角相等,即可求得∠D 的度数,即可求得答案.【详解】解:∵055∠=EFG ,∴∠GFD=180°-55°=125°,∵∠CGF=∠D+∠GFD=160°,∴∠D=∠CGF-∠GFD=160°-125°=35°,∵//AB CD∴BED ∠=∠D=35°,故答案为:35°.【点睛】本题考查平行线性质、三角形外角性质、邻补角定义.解题关键是掌握两直线平行,内错角相等定理的应用,注意数形结合思想的应用.三、解答题18.已知,平面直角坐标系内,点A (a ,0),B (b ,2),C (0,2),且a 、b 是方程组213211a b a b +=⎧⎨+=⎩的解,求:(1)a 、b 的值.(2)过点E (6,0)作PE∥y 轴,点Q (6,m )是直线PE 上一动点,连QA 、QB ,试用含有m 的式子表示△ABQ 的面积.(3)在(2)的条件下.当△ABQ 的面积是梯形OABC 面积一半时,求Q 点坐标.【答案】 (1)a=5,b=3;(2) △ABQ 的面积为|m +1|;(3) Q (6,3)或(6,﹣5).【解析】(1)解方程组可直接求出a 、b 的值;(2)先求出直线AB 的解析式为y=﹣x+5,当点Q 在AB 上时,m=﹣1,然后分当m >﹣1时和m <﹣1时两种情况求解;(3)计算S 梯形OABC ,根据△ABQ 的面积是梯形OABC 面积一半列出方程求m 的值即可.【详解】(1)由方程组两式相加,得a +b=8, 再与方程组中两式分别相减,得; (2)由(1)可知,A (5,0),B (3,2),∴直线AB 的解析式为y=﹣x +5,当点Q 在AB 上时,m=﹣1,如图1,当m >﹣1时,过B 点作BD ⊥x 轴,垂足为D ,则S △ABQ =S 梯形BDEQ ﹣S △ABD ﹣S △AQE =(2+m )×(6﹣3)﹣×2×(5﹣3)﹣×(6﹣5)×m=m +1;当m <﹣1时,如图2所示,过点B 作BM ⊥EQ 于点M ,则S △ABQ =S △BMQ ﹣S △AEQ ﹣S 梯形AEMB =×(2﹣m )×(6﹣3)﹣×(6﹣5)×(﹣m )﹣×(6﹣3+6﹣5)×2 =3﹣m +m ﹣4 =﹣m ﹣1.综上所述,△ABQ 的面积为|m +1|;(3)∵S 梯形OABC =×(3+5)×2=8,依题意,得|m +1|=×8,解得m=3或m=﹣5;∴Q (6,3)或(6,﹣5).【点睛】本题考查了解二元一次方程组,待定系数法求一次函数解析式,坐标与图形的性质,三角形、梯形的面积计算及分类讨论的数学思想.关键是根据题意画出图形,结合图形上点的坐标表示相应的线段长. 19.解不等式2(1)132x x +-≥+,并把它的解集在数轴上表示出来.【答案】1x ≤-.【解析】试题分析:不等式去括号、移项合并、系数化为1即可求出不等式的解集,再在数轴上表示出不等式的解集即可.试题解析:去括号,得22132x x +-≥+,移项,得23221x x -≥-+,合并同类项,得1x -≥,系数化为1,得1x ≤-,这个不等式的解集在数轴上表示为:考点:1.解一元一次不等式;2.在数轴上表示不等式的解集.20.解方程4(x ﹣1)2=9【答案】x 1=,x 2=﹣【解析】试题分析:直接开平方法必须具备两个条件:(1)方程的左边是一个完全平方式;(2)右边是非负数.将右边看做一个非负已知数,利用数的开方解答.解:把系数化为1,得(x ﹣1)2=开方得x ﹣1= 解得x 1=,x 2=﹣.考点:解一元二次方程-直接开平方法.21.已知代数式+kx b ,当3x =-,2x =时,代数式的值分别是1和11,求代数式的值为-3时,x 的值.【答案】x=-5【解析】由当3x =-,2x =时,代数式的值分别是1和11,可得13112k b k b=-+⎧⎨=+⎩,解这个方程组求出k 和b 的值,再根据代数式的值为-3时列出关于x 的方程求解即可. 【详解】解:根据题意,得13,112.k b k b =-+⎧⎨=+⎩解得2,7.k b =⎧⎨=⎩ ∴代数式是27x +.∵273x +=-,∴5x =-.【点睛】本题考查了二元一次方程组的应用,根据题意列出二元一次方程组求出k 和b 的值是解答本题的关键.22.数学活动课上,老师准备了若千个如图1的三种纸片,A 种纸片是边长为a 的正方形,B 种纸片是边长为b 的正方形,C 种纸片是长为b ,宽为a 的长方形.并用A 种纸片一张,B 种纸片一张,C 种纸片两张拼成如图2的大正方形.(1)请用两种不同的方法求图2大正方形的面积:方法1: ,方法2: _;(2)观察图2,请你写出代数式:()222,,a b a b ab ++之间的等量关系 ;(3)根据(2)题中的等量关系,解决如下问题:①已知:225,13a b a b +=+=,求ab 的值;②已知()()22201920185a a -+-=,求()()20192018a a --的值. 【答案】(1)()2222a b a b ab +++,;(2)()2222a b a ab b +=++;(3)①6ab =,②2-.【解析】(1)正方形面积可以从整体直接求,还可以是四个图形的面积和;(2)由同一图形面积相等即可得到关系式;(3)根据①依据5a b +=,可得()225a b +=,进而得出22225a b ab ++=,再根据2213a b +=,即可得到6ab =;②设2018,2017a x a y -=-=,依据()()22201920185a a -+-=,即可得到()()20192018a a --的值.【详解】解:(1)()222,2a b a b ab +++;(2)()2222a b a ab b +=++.(3)①因为5a b +=,所以()225a b +=所以22225a b ab ++=又因为2213a b +=所以6ab =②设2018,2017a x a y -=-=,则1x y +=因为()()22201920185a a -+-=所以225x y +=,因为()2222x y x xy y +=++, 所以()()22222x y x y xy +-+==-,即()()201920182a a --=-.【点睛】此题考查正方形的性质,完全平方公式,解题关键在于掌握法则运算.23.解二元一次方程组:5234x y x y +=⎧-=⎨⎩. 【答案】5898x y ⎧=⎪⎪⎨⎪=-⎪⎩【解析】分析:可以先消去y ,求得x 的值然后代入求得y 的值.详解::5234x y x y ①②+=⎧-=⎨⎩, 由3①②⨯+得:1610x =,解得58x =,③ 把③代入②解得:98y =-. 故原方程组的解是:5898x y ⎧=⎪⎪⎨⎪=-⎪⎩. 点睛:本题考查了解二元一次方程组.这类题目的解题关键是掌握方程组解法中的加减消元法和代入法. 24.如图,在边长为1个单位长度的小正方形组成的8×8网格中,三角形ABC 的三个均在格点上,将三角形ABC 向左平移3个单位长度、再向下平移2个单位长度得到三角形DEF .(1)画出平移后的三角形DEF ;(2)若点A 向左平移n 个单位长度在三角形DEF 的内部,请直接写出所有符合条件的整数n 的值.【答案】(1)见解析;(2)3或1.【解析】(1)根据平移的定义作出三顶点分别平移得到对应点,再顺次连接可得;(2)根据所作图形可得结论.【详解】(1)如图所示,△ABC即为所求;(2)由图知,n=3或1.【点睛】本题考查了利用平移变换作图,准确找出对应点的位置是解题的关键,熟悉网格结构对解题也很关键.25.如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位长度,再向右平移1个单位长度,得到A,B的对应点C,D,连接AC,BD,CD.(1)直接写出点C,D的坐标,求出四边形ABDC的面积;(2)在x轴上是否存在一点F,使得三角形DFC的面积是三角形DFB面积的2倍,若存在,请求出点F的坐标;若不存在,请说明理由.【答案】(1) S四边形ABDC=8;(2)存在,F(1,0)或(5,0).【解析】(1)根据C、D两点在坐标系中的位置即可得出此两点坐标;判断出四边形ABDC是平行四边形,再求出其面积即可;(2)根据平行四边形的性质和三角形面积公式即可得到答案.【详解】(1)依题意可得C(0,2),D(4,2).S四边形ABDC=AB·OC=4×2=8.(2)存在,当BF=12CD时,三角形DFC的面积是三角形DFB面积的2倍.∵C(0,2),D(4,2),∴CD=4,BF=12CD=2.∵B(3,0),∴F(1,0)或(5,0).【点睛】本题结合平面直角坐标系考查四边形综合,解题的关键是熟练掌握平面直角坐标系、平行线的性质和三角形面积公式.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列调查中,最适合采用全面调查(普查)方式的是 ( )A .对重庆市居民日平均用水量的调查B .对一批LED 节能灯使用寿命的调查C .对重庆新闻频道“天天630”栏目收视率的调查D .对某校九年级(1)班同学的身高情况的调查【答案】D【解析】试题分析:普查适用于范围较小,事件较短的一些事件,或者是精确度要求非常高的事件.本题中A 、B 、C 三个选项都不适合普查,只适合做抽样调查.考点:调查的方式2.下列四个实数中,是有理数的是( )A .πB C D 【答案】B【解析】根据有理数是有限小数或无限循环小数,可得答案.【详解】解:π=2是有理数.故选:B .【点睛】本题考查了实数,有理数是有限小数或无限循环小数,无理数是无限不循环小数.3.下列运算正确的是( )A .326a a a ⋅=B .()326a a =C .()3322a a -=-D .3362a a a += 【答案】B【解析】直接根据整数指数幂的运算性质和合并同类项法则计算即可.【详解】解:A 、325a a a ⋅=,故本选项错误;B. ()326a a =,故本选项正确;C. ()3328a a -=-,故本选项错误;D. 3332a a a +=,故本选项错误;故选B【点睛】本题考查同底数幂乘法,幂的乘方,积的乘方等指数幂的运算性质,属于基础题.4.某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其他费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高( )A .40%B .33.4%C .33.3%D .30%【答案】B【解析】设购进这种水果a 千克,进价为b 元/千克,这种水果的售价在进价的基础上应提高x ,则售价为(1+x )b 元/千克,根据题意得:购进这批水果用去ab 元,但在售出时,大樱桃只剩下(1﹣10%)a 千克,售货款为(1﹣10%)a (1+x )b=0.9a (1+x )b 元,根据公式:利润率=(售货款-进货款)÷进货款×100%可列出不等式: 0.91100%20%a x b ab ab⨯+-≥(),解得x≥13. ∵超市要想至少获得20%的利润,∴这种水果的售价在进价的基础上应至少提高33.4%.故选B .5.若5a b +=,6ab =-.则22a b +的值等于( )A .30B .33C .36D .37【答案】D【解析】根据完全平方公式222()2a b a ab b +=++对进行变形,然后整体代入即可得出答案.【详解】∵222()2a b a ab b +=++ 222()2a b a b ab ∴+=+-∵5a b +=,6ab =-,∴原式=252(6)251237-⨯-=+=故选:D .【点睛】本题主要考查代数式求值,掌握完全平方公式和整体代入法是解题的关键.6.某市连续7天的最高气温为:28︒,27︒,30,33︒,30,30,32︒.这组数据的平均数是(). A .28︒B .29︒C .30D .32︒【答案】C【解析】根据平均数的定义及计算公式进行解答,即可求出答案.【详解】解:数据28°,27°,30°,33°,30°,30°,32°的平均数是(28+27+30+33+30+30+32)÷7=30, 故选:C .【点睛】本题考查平均数,平均数是指在一组数据中所有数据之和再除以数据的个数,难度不大. 7.点P 的坐标为236()a a -+,,且到两坐标轴的距离相等,则点P 的坐标为( ) A .(33), B .(33),- C . (66),- D .(33), 或(66),-【答案】D【解析】根据点P 到两坐标轴的距离相等可得其点的横坐标与纵坐标的绝对值相等,据此进一步求解即可.【详解】∵点P 到两坐标轴的距离相等, ∴236a a -=+,即:236a a -=+或()236a a -=-+,∴1a =-或4a =-,∴P 点坐标为:(33), 或(66),-故选:D. 【点睛】本题主要考查了坐标系中点的坐标的应用,熟练掌握相关概念是解题关键.8.已知2x +3y =6,用x 的代数式表示y 得( )A .y =2-xB .y =2-2xC .x =3-3yD .x =3-y【答案】A【解析】由题意可知,要求出y ,因此先移项,将含y 的项放在方程的左边,其余的项移到方程的右边,再将y 的系数化为1即可.【详解】解: 2x +3y =6,3y =6-2xy =2-x.故答案为:A【点睛】此题考查解二元一次方程,解题关键在于掌握运算法则.9.以平行四边形ABCD 的顶点A 为原点,直线AD 为x 轴建立直角坐标系,已知B 、D 点的坐标分别为(1,3),(4,0),把平行四边形向上平移2个单位,那么C 点平移后相应的点的坐标是( )A .(3,3)B .(5,3)C .(3,5)D .(5,5)【答案】D 【解析】如图,∵A 为原点,D(4,0),∴AD=4−0=4,∵B(1,3),∴点C 的横坐标为1+4=5,∴点C 的坐标为(5,3),∴把平行四边形向上平移2个单位,3+2=5,所以,点C 平移后的对应点的坐标是(5,5).故答案为D.10.已知x ,y 满足方程组2123x y t x y t+=+⎧⎨-=-⎩,则x 与y 的关系是( ) A .34x y +=B .32x y +=C .34x y -=D .32x y -=【答案】A【解析】把t 看做已知数,根据x 、y 系数的特殊性相加可得结论. 【详解】2123x y t x y t +=+⎧⎨-=-⎩①②, ①+②得:3x+y=4故选A .【点睛】本题考查了二元一次方程组的解,灵活运用所学的知识解决问题,并运用了整体思想.二、填空题题11.如图,已知点M 是∠ABC 内一点,分别作出点M 关于直线AB 、BC 的对称点M 1、M 2,连接M 1M 2分别交AB 于点D ,交BC 于点E ,若M 1M 2=3cm ,则△MDE 的周长为____________cm .【答案】1【解析】分析:根据对称轴的意义,可以求出EM =EM 2,DM 1=DM ,M 1M 2=1cm ,可以求出△MDE 的周长.详解:∵点M关于直线AB,BC的对称点M1,M2,∴EM=EM2,DM1=DM,∴△MDE的周长=DE+EM+DM=M1M2=1(cm),∴△MDE的周长=1cm.故答案为:1.点睛:本题考查了轴对称的性质与运用,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.12.一个数的立方根是4,这个数的平方根是_____.【答案】±8【解析】∵一个数的立方根是4,∴这个数是43=64,∵64的平方根是±8,∴这个数的平方根是±8,故答案为±8.',13.如图,将一张长方形的纸片ABCD沿AF折叠,点B到达点B'的位置.已知AB BD∠=︒,则DAFADB20∠=_____.【答案】35°【解析】根据折叠的性质得到∠B′AF=∠BAF,要AB′∥BD,则要有∠B′AD=∠ADB=20°,从而得到∠B′AB=20°+90°=110°,求出∠BAF即可求解.【详解】解:∵长方形纸片ABCD沿AF折叠,使B点落在B′处,∴∠B′AF=∠BAF,∵AB′∥BD,∴∠B′AD=∠ADB=20°,∴∠B′AB=20°+90°=110°,∴∠BAF=110°÷2=55°.∴∠BAF应为55°,∠=35°.∴DAF【点睛】本题考查了直线平行的判定以及折叠的性质,熟练掌握折叠前后两图形全等,即对应角相等,对应线段相等是解题的关键.14.若点(2,m﹣3)在第四象限,则实数m的取值范围是_____.【答案】3m【解析】根据第四象限内点的坐标特点列出关于m的不等式,求出m的取值范围即可.【详解】∵点(2,m-1)在第四象限,∴m-1<0,解得m<1.故答案为:m<1.【点睛】本题考查的是解一元一次不等式,熟知第四象限内点的坐标特点是解答此题的关键.15.在△ABC 中,若∠A=∠B,∠C=60°,则该三角形的形状是______.【答案】等边三角形【解析】利用三角形内角和定理求得∠A=∠B=∠C=60°,则可判断△ABC是等边三角形. 【详解】解:如图:∵在△ABC中,∠A=∠B,∠C=60°,∴∠A+∠B=2∠A=180°-∠C=120°,∴∠A=∠B=60°,即∠A=∠B=∠C=60°,∴△ABC是等边三角形.故答案为等边三角形.【点睛】本题考查了三角形内角和定理以及三个内角都是60°的三角形是等边三角形.16.已知二元一次方程2x+3y=4,用x 的代数式表示y,则y=_____.【答案】4-2x y=3【解析】把x看做已知数表示出y即可;【详解】将方程变形为3y=4-2x,化y的系数为1,得4-2x y=3【点睛】掌握解二元一次方程是解题的关键。
一、初一数学有理数解答题压轴题精选(难)1.如图,数轴的单位长度为1,点,,,是数轴上的四个点,其中点,表示的数是互为相反数.(1)请在数轴上确定原点“O”的位置,并用点表示;(2)点表示的数是________,点表示的数是________,,两点间的距离是________;(3)将点先向右移动4个单位长度,再向左移动2个单位长度到达点,点表示的数是________,在数轴上距离点3个单位长度的点表示的数是________.【答案】(1)解:距离A点和B点的距离相等的点即AB的中点,点 .如图所示,点即为所求.(2);5;9(3);或1【解析】【解答】解:(2)点表示的数是,点表示的数是5,所以,两点间的距离是 .故答案为9.( 3 )如图,将点先向右移动4个单位长度是0,再向左移动2个单位长度到达点,得点表示的数是 .到点距离3个单位长度的点表示的数是-2-3= 或-2+3=1.故答案为,或1.【分析】(1)由点A和点B表示的数互为相反数,因此原点到点A和点B的距离相等,可得到原点的位置。
(2)先再数轴上标出数,可得到点M和点N表示的数,再求出点M,N之间的距离。
(3)利用数轴上点的平移规律:左减右加,可得到点C表示的数,与点C距离3个单位长度表示的数为-2±3,计算可求解。
2.如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a-30|+(b+6)2=0.点O是数轴原点。
(1)点A表示的数为________,点B表示的数为________,线段AB的长为________。
(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C,使AC=2BC,则点C在数轴上表示的数为________。
(3)现有动点P、Q都从B点出发,点P以每秒1个单位长度的速度向终点A移动;当点P移动到O点时,点Q才从B点出发,并以每秒3个单位长度的速度向右移动,且当点P 到达A点时,点Q就停止移动,设点P移动的时间为t秒,问:当t为多少时,P、Q两点相距4个单位长度?【答案】(1)30;﹣6;36(2)6或﹣42(3)解:①当点Q未出发,P、Q两点相距4个单位长度,此时t×1=4,所以t=4;②点P用了6秒移动到O点时,点Q才从B点出发。
七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.点P 在第二象限内,P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为( )A .(43)-,B .(34)--,C .(34)-,D .(34)-,【答案】C 【解析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度解答.【详解】解:∵点P 在第二象限内,点P 到x 轴的距离是4,到y 轴的距离是3,∴点P 的横坐标是-3,纵坐标是4,∴点P 的坐标为(-3,4).故选C .【点睛】本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度是解题的关键.2.下列运算正确的是( )A .a 6÷a 2=a 3B .(a 2)3=a 5C .a 3•a 2=a 6D .3a 2﹣a 2=2a 2【答案】D【解析】根据同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘;同底数幂相乘,底数不变指数相加;合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,对各选项分析判断后利用排除法求解.【详解】A .a 6÷a 2=a 4,故A 错误;B .(a 2)3=a 6,故B 错误;C .a 3•a 2=a 5,故C 错误;D .3a 2﹣2a 2=a 2,故D 正确.故选D .【点睛】本题考查了同底数幂的除法、幂的乘方、同底数幂的乘法、合并同类项,熟练掌握运算性质和法则是解题的关键.3.如图,直线a ∥b ,直线c 分别与a 、b 相交于A 、B 两点,AC ⊥AB 于点A ,交直线b 于点C .已知∠1=42°,则∠2的度数是( )A.42°B.48°C.52°D.58°【答案】B【解析】先根据平行线的性质求出∠ABC的度数,再根据垂直的定义和余角的性质求出∠2的度数.【详解】∵直线a∥b,∴∠1=∠CBA,∵∠1=42°,∴∠CBA=42°,∵AC⊥AB,∴∠2+∠BCA=90°,∴∠2=48°,故选B.【点睛】此题考查平行线的性质,解题关键在于求出∠ABC的度数.4.下列事件中,最适合采用全面调查的是()A.对全国中学生节水意识的调查B.对某批次灯泡的使用寿命的调查C.对某个班级全体学生出生日期的调查D.对春节联欢晚会收视率的调查【答案】C【解析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】A.对全国中学生节水意识的调查适合抽样调查,故此选项不符合题意;B.对某批次灯泡的使用寿命的调查适合抽样调查,故此选项不符合题意;C.对某个班级全体学生出生日期的调查适合普查,故此选项符合题意;D.对春节联欢晚会收视率的调查,范围广适合抽样调查,故此选项不符合题意.故选C.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.如图,直线,a b 被,c d 所截,且//a b ,则下列结论中正确的是( )A .12∠=∠B .34∠=∠C .24180∠+∠=D .14180∠+∠=【答案】B 【解析】根据平行线的性质进行判断即可得.【详解】如图,∵a//b ,∴∠1=∠5,∠3=∠4,∵∠2+∠5=180°,∴无法得到∠2=∠5,即得不到∠1=∠2,由已知得不到24180∠+∠= 、14180∠+∠=,所以正确的只有B 选项,故选B.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.6.长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获纯利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为( )A .562.5元B .875元C .550元D .750元 【答案】B【解析】试题分析:利润率=(售价-进价)÷进价×100%,标价=售价÷折扣.进价:500÷20%=2500元 售价:(2500+500)÷80%=3750元 3750×90%-2500=875元.考点:商品销售问题7.下列结论正确的是( )A .带根号的数都是无理数B .立方根等于本身的数是0C .-18没有立方根 D .无理数是无限不循环小数【答案】D【解析】分别根据无理数的定义、立方根的定义逐一判断即可.【详解】A =2,是有理数,故本选项不合题意;B .立方根等于本身的数是0和±1,故本选项不合题意; C.−18的立方根为−12,故本选项不合题意; D .无理数是无限不循环小数,正确.故本选项符合题意.故选D .【点睛】本题主要考查了无理数的定义以及立方根的定义,注意:带根号的要开不尽方才是无理数,无限不循环小数为无理数.8.将数据0.00000 0007米期科学记数法表示为( )A .7×10-6米B .7×10-7米C .7×10-8米D .7×10-9米 【答案】D【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:数据0.000000007用科学记数法表示为9710-⨯ .故选:D .【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.9.二元一次方程5a -11b=21 ( )A .有且只有一解B .有无数解C .无解D .有且只有两解 【答案】B【解析】解:二元一次方程5a -11b=21中a,b 都没有限制故a,b 可任意实数,只要方程成立即可,故原成有无数解,故选B10.已知2,{1x y ==是二元一次方程组7,{1ax by ax by +=-=的解,则a b -的值为 A .-1B .1C .2D .3 【答案】A【解析】试题分析:∵已知21x y =⎧⎨=⎩是二元一次方程组7{1ax by ax by +=-=的解,∴27{21a b a b +=-=①②由①+②,得a=2,由①-②,得b=3,∴a-b=-1;故选A .考点:二元一次方程的解.二、填空题题11.如图,将ABC 沿BC 方向平移得到DEF ,若90B ∠=,6AB =,8BC =,2BE =, 1.5DH =,阴影部分的面积为______.【答案】10.5【解析】根据平移的性质得AB=DE=6,BC=EF=8,根据S 阴影=S △DEF -S △HEC =11••22DE EF HE EC -,可求出答案.【详解】由平移性质可得,AB=DE=6,BC=EF=8,所以,EH=DE-DH=6-1.5=4.5;EC=BC-BE=8-2=6,所以,S 阴影=S △DEF -S △HEC =1111••68 4.5610.52222DE EF HE EC -=⨯⨯-⨯⨯= . 故答案为10.5.【点睛】本题考核知识点:平移. 解题关键点:熟记平移的性质.12.已知点P (2,﹣6),点P 到x 轴的距离为a ,到y 轴的距离为b ,则a ﹣b =_____.【答案】1.【解析】先分别求出到x,y 轴的距离,再计算即可.【详解】由题意,得a =|﹣6|=6,b =|2|=2,a ﹣b =6﹣2=1,故答案为:1.【点睛】本题考查坐标轴的运用,能够熟悉了解坐标轴是解题关键.13.在原有运算法则中,我们补充新运算法则“*”如下:当a≥b 时,a*b =(﹣b )2;当a <b 时,a*b =﹣(a2)1.则当x=2时,(x*1)x﹣(x*1)=_____.【答案】2【解析】首先认真分析找出规律,再将x=2代入进行计算即可.【详解】解:∵当a≥b时,a*b=(﹣b)2;当a<b时,a*b=﹣(a2)1,当x=2时,(x*1)x﹣(x*1)=(2*1)×2﹣(2*1)=(﹣1)2×2﹣[﹣(22)1]=1×2﹣(﹣64)=2+64=2,故答案为:2.【点睛】此题考查有理数的混合运算,解题关键在于根据a,b的大小进行计算.14.若x>y,则﹣x﹣2_____﹣y﹣2(填“<”、“>”或“=”)【答案】<【解析】首先利用不等式的性质在不等式的两边同时乘以-1改变不等号方向,然后再在不等式的两边同时减去2即可确定答案.【详解】∵x>y,∴−x<−y,∴−x−2<−y−2,故答案为<.【点睛】本题考查的知识点是不等式组的性质,解题的关键是熟练的掌握不等式组的性质.15.若x ay b=⎧⎨=⎩是方程x﹣2y=0的解,则3a﹣6b﹣3=_____.【答案】-3【解析】把x与y的值代入方程组求出a与b的关系,代入原式计算即可得到结果.【详解】把x ay b=⎧⎨=⎩代入方程x﹣2y=0,可得:a﹣2b=0,所以3a﹣6b﹣3=﹣3,故答案为:﹣3【点睛】此题考查了二元一次方程的解,方程的解即为能使方程中两边相等的未知数的值.16.已知方程6230x y -+=,则用含x 的代数式子表y 的形式为_________. 【答案】332y x =+ 【解析】根据利用等式的性质进行变形,可得答案.【详解】方程6x−2y +3=0,则用含x 的代数式子表示y 的形式为332y x =+,故答案为:332y x =+. 【点睛】本题考查解二元一次方程,利用等式的性质是解题关键.17.若代数式1x -在实数范围内有意义,则x 的取值范围是_______.【答案】1x ≥【解析】先根据二次根式有意义的条件列出关于x 的不等式,求出x 的取值范围即可.解:∵1x -在实数范围内有意义,∴x-1≥2,解得x≥1.故答案为x≥1.本题考查的是二次根式有意义的条件,即被开方数大于等于2.三、解答题18.学习了三角形全等的判定方法(即“SAS ”、“ASA ”、“AAS ”、“SSS ”)和直角三角形全等的判定方法(即“HL ”)后,我们继续对“两个三角形满足两边的其中一边的对角对应相等”的情形进行研究. (初步思考)我们不妨将问题用符号语言表示为:在△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,然后,对∠B 进行分类,可分为“∠B 是直角、钝角、锐角”三种情况进行探究.(深入探究)第一种情况:当∠B 是直角时,△ABC ≌△DEF .(1)如图①,在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E =90°,根据______,可以知道Rt △ABC ≌Rt △DEF .第二种情况:当∠B 是钝角时,△ABC ≌△DEF .(2)如图②,在△ABC 和△DEF 中,AC =DF ,BC =EF ,∠B =∠E ,且∠B 、∠E 都是钝角.求证:△ABC ≌△DEF .第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角.请你用直尺在图③中作出△DEF,使△DEF和△ABC不全等,并作简要说明.【答案】(1)HL;(2)见解析;(3)如图②,见解析;△DEF就是所求作的三角形,△DEF和△ABC不全等.【解析】(1)根据直角三角形全等的方法“HL”证明;(2)过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,根据等角的补角相等求出∠CBG=∠FEH,再利用“角角边”证明△CBG和△FEH全等,根据全等三角形对应边相等可得CG=FH,再利用“HL”证明Rt△ACG和Rt△DFH全等,根据全等三角形对应角相等可得∠A=∠D,然后利用“角角边”证明△ABC和△DEF全等;(3)以点C为圆心,以AC长为半径画弧,与AB相交于点D,E与B重合,F与C重合,得到△DEF与△ABC 不全等;(4)根据三种情况结论,∠B不小于∠A即可.【详解】(1)在直角三角形中一条斜边和一条直角边对应相等的两个直角三角形全等运用的是HL.(2)证明:如图①,分别过点C、F作对边AB、DE上的高CG、FH,其中G、H为垂足.∵∠ABC、∠DEF都是钝角∴G、H分别在AB、DE的延长线上.∵CG⊥AG,FH⊥DH,∴∠CGA=∠FHD=90°.∵∠CBG=180°-∠ABC,∠FEH=∠180°-∠DEF,∠ABC=∠DEF,∴∠CBG=∠FEH.在△BCG和△EFH中,∵∠CGB=∠FHE,∠CBG=∠FEH,BC=EF,∴△BCG≌△EFH.∴CG=FH.又∵AC=DF.∴Rt△ACG≌△DFH.∴∠A=∠D.在△ABC和△DEF中,∵∠ABC=∠DEF,∠A=∠D,AC=DF,∴△ABC≌△DEF.(3)如图②,△DEF就是所求作的三角形,△DEF和△ABC不全等.【点睛】本题是三角形综合题,主要考查了全等三角形的判定与性质,应用与设计作图,熟练掌握三角形全等的判定方法是解题的关键,阅读量较大,审题要认真仔细.19.甲、乙两人分别从相距30 千米的A、B 两地同时出发,相向而行,经过3 小时后,两人相遇后又相距 3 千米,再经过 2 小时,甲到 B 地所剩的路程是乙到 A 地所剩的路程的 2 倍.求甲、乙两人的速度.【答案】甲乙两人的速度分别为4km/h、5km/h 或163km/h,173km/h.【解析】设甲的速度为xkm/h,乙的速度为ykm/h,那么可以分两种情况:①当甲和乙还没有相遇相距3千米时,根据经过3小时后相距3千米,再经过2小时,甲到B地所剩路程是乙到A地所剩路程的2倍可以列出方程组求解即可;②当甲和乙相遇了相距3千米时,根据经过3小时后相距3千米,再经过2小时,甲到B地所剩路程是乙到A地所剩路程的2倍可以列出方程组求解即可.【详解】设甲的速度为xkm/h,乙的速度为ykm/h,则有两种情况:(1)当甲和乙还没有相遇相距3千米时,依题意得,()() 3330 3052305x yx y⎧++⎪⎨--⎪⎩==,解得,45 xy⎧⎨⎩==;(2)当甲和乙相遇了相距3千米时,依题意得,()() 3330 3052305x yx y⎧+-⎪⎨--⎪⎩==,解得163173xy⎧⎪⎪⎨⎪⎪⎩==.答:甲乙两人的速度分别为4km/h、5km/h或163km/h,173km/h.【点睛】此题考查了二元一次方程的应用,读懂题意,找出题目中的数量关系,列出方程组是解题的关键,解题时要注意分相遇和没有相遇两种情况讨论.20.解不等式(组)并将解集在数轴上表示出来.①x﹣2(x﹣3)≤8②513(1) 131722x xx x->+⎧⎪⎨-≤-⎪⎩.【答案】(1)x≥﹣2;在数轴上表示见解析;(2)2<x≤1,在数轴上表示见解析.【解析】(1)先去括号,再移项、合并同类项,把x的系数化为1,并在数轴上表示出来即可;(2)分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【详解】(1)去括号得,x﹣2x+6≤8,移项得,x﹣2x≤8﹣6,合并同类项得,﹣x≤2,把x的系数化为1得,x≥﹣2;在数轴上表示为:;(2)513(1)131722x xx x->+⎧⎪⎨-≤-⎪⎩①②,由①得,x>2,由②得,x≤1,故此不等式组的解集为:2<x≤1.在数轴上表示为:.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.解方程或方程组:(1) 234134x x +=-; (2) 52311x y x y +=⎧⎨+=⎩【答案】 (1) 60x =;(2)41x y =⎧⎨=⎩【解析】(1)按照移项、合并同类项、去分母、化系数为1的步骤解方程即可;(2)用加减消元法解方程组即可;【详解】(1) 231434x x -=-- 1512x -=- 60x =(2)52311x y x y +=⎧⎨+=⎩①×3,得3315x y +=,③③减去②,得4x =,将4x =代入①,得y 1=.所以方程组的解为41x y =⎧⎨=⎩【点睛】此题考查解一元一次方程,解二元一次方程组,解题关键在于掌握运算法则.22.某商场计划用3 800元购进节能灯120只,这两种节能灯的进价、售价如下表:(1)求甲、乙两种节能灯各进多少只?(2)全部售完120只节能灯后,该商场获利润多少元?【答案】(1)甲、乙两种节能灯分别进80、40只;(2)全部售完120只节能灯后,该商场获利润1000元.【解析】(1)设商场购进甲种节能灯x 只,则购进乙种节能灯y 只,根据两种节能灯的总价为3800元建立方程组求出其解即可;(2)根据售完这120只灯后,得出利润即可.【详解】(1)设商场购进甲种节能灯x 只,则购进乙种节能灯y 只,由题意得25453800120x y x y +⎧⎨+⎩==, 解得:8040x y ⎧⎨⎩==, 答:甲、乙两种节能灯分别进80、40只;(2)由题意得:80×5+40×15=1000,答:全部售完120只节能灯后,该商场获利润1000元.【点睛】本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.23.如图,河边有 A,B 两个村庄,现准备在河边建一个水厂,建在何处才能使费用最省?(要 求:画出图形,在图上标出要建设的水厂点P)【答案】答案见解析【解析】根据两点之间线段最短解答.【详解】作A 关于直线l 的对称点A ′,连结A ′B ,交直线l 于点P ,则点P 就是所求的点.【点睛】本题考查了作图﹣﹣应用与设计作图.两点之间线段最短在解决实际问题中的灵活应用是考查重点. 24.已知点A (﹣1,0)、B (3,0)、C (3,2)(1)求证:BC ⊥x 轴;(2)求△ABC 的面积;(3)若在y 轴上有一点P ,使S △ABP =2S △ABC ,求点P 的坐标.【答案】(1)见解析;(1)S △ABC =2;(3)P (0,2)或P (0,﹣2).【解析】(1)根据B 、C 的横坐标相同即可判断;(1)根据S △ABC =12AB ×BC ,即可解决问题; (3)理由三角形的面积公式求出OP 的长即可;【详解】(1)证:∵B (3,0),C (3,1),∴B 、C 的横坐标相同.∴BC ⊥x 轴.(1)解:∵A (﹣1,0)、B (3,0)、C (3,1),∴AB =2,BC =1.∴S △ABC =12AB ×BC =12×2×1=2. (3)解:∵S △ABP =1S △ABC ,∴OP =1BC =2.∴P (0,2)或P (0,﹣2).【点睛】本题考查三角形的面积、坐标与图形性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.已知关于x y ,的方程组713x y k x y k+=--⎧⎨-=+⎩的解x 为负数,y 为非正数,求k 的取值范围 【答案】23k -≤<【解析】把k 看作已知数表示出方程组的解得到x 与y ,根据x 为负数,y 为非负数,求出k 的范围即可.【详解】713x y k x y k +=--⎧⎨-=+⎩①② ①+②得226x k =-,即3x k =-①-②得284y k =--,即42y k =--由题意得30420k k -<⎧⎨--≤⎩解得23k -≤<.【点睛】本题考查了解不等式组的问题,掌握解不等式组的方法是解题的关键.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,在ABC ∆中,AB AC =,MN 是边BC 上一条运动的线段(点M 不与点B 重合,点N 不与 点C 重合),且12MN BC =,MD BC ⊥交AB 于点D ,NE BC ⊥交AC 于点E ,在MN 从左至右的运动过程中,设BM=x ,BMD ∆和CNE ∆的面积之和为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .【答案】B【解析】不妨设BC=2a ,∠B=∠C=α,BM=x ,则CN=a-x ,根据二次函数即可解决问题.【详解】不妨设BC=2a ,∠B=∠C=α,BM=m ,则CN=a −x ,则有S 阴=y=12⋅x ⋅xtanα+12(a −x)⋅(a −x)tanα =12tanα(m 2+a 2−2ax+x 2) =12tanα(2x 2−2ax+a 2) ∴S 阴的值先变小后变大,故选:B【点睛】本题考核知识点:等腰三角形的性质.解题关键点:根据面积公式列出二次函数.2.如图是一个关于x 的不等式组的解集,则该不等式组是A .31x -<<B .31x -<C .31x -<D .31x -【答案】C【解析】根据不等式组的解集在数轴上上的表示方法即可得出结论.【详解】∵−3处是空心原点,且折线向右,1处是实心原点且折线向左,∴这两个不等式组成的不等式组的解是:31x -<故选C.【点睛】本题考查在数轴上表示不等式的解集,熟练掌握不等式组的解集在数轴上的表示方法是解题关键.3.如果把分式()ab a b a b≠-中的a 、b 都扩大为原来的3倍,那么分式的值:( ) A .缩小为原来的13 B .扩大为原来的3倍 C .扩大为原来的9倍 D .不变 【答案】B【解析】先根据题意对分式进行变形,再依据分式的性质进行化简,将化简后的分式与原分式进行对比即可.【详解】由题意得33333a b ab a b a b⋅=⋅--,故分式的值扩大了3倍,选B. 【点睛】本题考查分式的基本性质,分式的分子和分母同时乘以或除以同一个不为0的整式,分式的值不变,通过分式的基本性质可对变形后的分式进行化简.4.如图,已知//a b ,180∠=︒,260∠=︒,则B 的度数是( )A .20︒B .30C .40︒D .50︒【答案】C 【解析】由//a b 求解BDC ∠,利用三角形的内角和可得答案.【详解】解:如图:记AB 与a 的交点为D ,//a b ,180∠=︒,180,BDC ∴∠=∠=︒260,∠=︒180806040.B ∴∠=︒-︒-︒=︒故选C .【点睛】本题考查的是平行线的性质与三角形的内角和定理,掌握相关知识是解题关键.5.如果不等式组841x x x m +<-⎧⎨>⎩的解集是3x >,那么m 的取值范围是( ) A .3m ≥B .3m ≤C .3m =D .3m < 【答案】B【解析】先用含有m 的代数式把原不等式组的解集表示出来,由题意不等式的解集为x >1,再根据求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)来求出m 的范围.【详解】解:在841x x x m +<-⎧⎨>⎩中 由(1)得,x >1由(2)得,x >m根据已知条件,不等式组解集是x >1根据“同大取大”原则m≤1.故选B .【点睛】本题考查一元一次不等式组解集的求法,将不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)逆用,已知不等式解集反过来求m 的范围.66小的数是( )A .2B .3C .4D .5 【答案】A【解析】判断二次根式的大小,6先平方得6,在找到相近的平方数,6的取值范围,即可解题. 【详解】∵266=,469<<, ∴263<< ,∴比实数6小的数是2,故选:A .【点睛】求二次根式的取值范围可利用平方后找到相近的平方数,再将平方数开方即可.7.已知,如图,AB ∥CD ,则图中α、β、γ三个角之间的数量关系为( )A .α-β+γ=180°B .α+β-γ=180°C .α+β+γ=360°D .α-β-γ=90°【答案】B【解析】延长CD 交AE 于点F ,利用平行证得β=∠AFD ;再利用三角形外角定理及平角定义即可得到答案.【详解】如图,延长CD 交AE 于点F∵AB ∥CD∴β=∠AFD∵∠FDE+α=180°∴∠FDE=180°-α ∵γ+∠FDE=∠ADF∴γ+180°-α=β ∴α+β-γ=180°故选B【点睛】本题考查平行线的性质以及三角形外角定理的应用,熟练掌握相关性质定理是解题关键.8.原子是化学反应中不可再分的基本微粒,由原子核和电子组成.某原子的直径约为0.000000000196m ,可用科学记数法表示为( )A .101.9610m ⨯B .1119.610m ⨯C .1119.610m -⨯D .101.9610m -⨯【答案】D【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10n -,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】数据0.000000000196m 可用科学记数法表示为101.9610m -⨯,故选:D.【点睛】此题考查科学记数法,解题关键在于掌握一般形式.9.如图,∠1的内错角是( )A .∠2B .∠3C .∠4D .∠5【答案】D 【解析】试题分析:根据内错角位于截线异侧,位于两条被截线之间可知∠1的内错角是∠1. 故选D .点睛:本题考查了内错角的辨识,熟记内错角的概念是解决此题的关键.10.下列说法中,不正确的是( )A .两直线相交所成的四个角中有两个角相等,则这两条直线互相垂直B .在同一平面内,经过一已知点能画一条直线和已知直线垂直C .一条直线可以有无数条垂线D .在同一平面内,过射线的端点与射线垂直的直线只有一条【答案】A【解析】根据垂线的定义与性质即可判断.【详解】A 、两直线相交所成的四个角中有两对对顶角,每一对对顶角都相等,所以当有两个角相等时,这两条直线不一定互相垂直,说法错误,故本选项符合题意;B 、根据垂线的性质:过一点有且只有一条直线与已知直线垂直,可知在同一平面内,经过一已知点能画一条直线和已知直线垂直,说法正确,故本选项不符合题意;C 、一条直线上有无数个点,过每一点都有且只有一条直线与已知直线垂直,所以可以有无数条垂线,说法正确,故本选项不符合题意;D 、根据垂线的性质:过一点有且只有一条直线与已知直线垂直,可知在同一平面内,过射线的端点与射线垂直的直线只有一条,说法正确,故本选项不符合题意.故选A .【点睛】本题考查了垂线的定义与性质,比较简单.二、填空题题11.已知长方形的长、宽分别为,x y ,周长为12,面积为4,则22xy +的值是________. 【答案】28【解析】直接利用矩形的性质得出x+y ,xy 的值,进而分解因式求出答案.解答【详解】∵边长为x ,y 的矩形的周长为12,面积为4,∴x+y=6,xy=4,则22x y +=()2x+y 2xy -=36-8=28.故答案为28【点睛】此题考查因式分解的应用,解题关键在于利用矩形的性质得出x+y ,xy 的值12.分解因式:8a 3﹣2a =_____.【答案】2a (2a+1)(2a ﹣1)【解析】直接提取公因式2a ,再利用平方差公式分解因式即可.【详解】解:8a 3﹣2a =2a (4a 2﹣1)=2a (2a+1)(2a ﹣1).故答案为:2a (2a+1)(2a ﹣1).【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.13.要了解一批灯泡的使用寿命,从10000只灯泡中抽取60只灯泡进行试验,在这个问题中,样本容量是_______.【答案】1【解析】根据样本容量的定义求解即可.【详解】样本容量是1故答案为:1.【点睛】本题考查了样本容量的问题,掌握样本容量的定义是解题的关键.14.一根长为1的绳子恰好围成一个三角形,则这个三角形的最长边x 的取值范围是_________. 【答案】1132x ≤< 【解析】设其他两边的边长分别为y 、z ,然后根据三角形三边关系和x 为最长边,列出不等式可得出结论.【详解】设其他两边的边长分别为y 、z ,∵三角形周长为1,∴x+y+z=1,由三角形三边关系可得y+z >x ,即1-x >x ,解得12x <, 又∵x 为最长边,∴x ≥y ,x ≥z ,∴2x ≥y+z ,即2x ≥1-x ,解得13x ≥, 综上可得1132x ≤<. 【点睛】本题考查三角形的三边关系,掌握两较短边之和大于最长边是本题的关键.15.如图,CD 、CE 分别是△ABC 的高和角平分线,∠A =30°,∠B =60°,则∠DCE =_______.【答案】15°【解析】试题分析:根据三角形内角和定理可得:∠ACB=180°-∠A -∠B=90°,根据角平分线的性质可得:∠BCE=90°÷2=45°,根据CD ⊥AB ,∠B=60°可得:∠BCD=30°,则∠DCE=45°-30°=15°.考点:(1)、角平分线的性质;(2)、三角形内角和定理16102.0110.1=,则 1.0201.【答案】±1.1【解析】根据算术平方根的意义,把被开方数的小数点进行移动(每移动两位,结果移动一位),进行填空即可.102.0110.1=,∴ 1.0201 1.01=±,故答案为:±1.1.【点睛】本题考查了算术平方根的移动规律的应用,能根据移动规律填空是解此题的关键.17.不等式了()133x m m ->-的解集为5x >,则m 的值为_______. 【答案】2【解析】解一元一次不等式如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.以上步骤中,只有①去分母和⑤化系数为1可能用到性质3,即可能变不等号方向,其他都不会改变不等号方向.【详解】解:解不等式()133x m m ->-∴x-m >9-3m∴x >9-2m ,∵解集为x >5,∴9-2m=5,解得m=2,故答案为2.【点睛】本题考查了解一元一次不等式,熟练解一元一次不等式是解题的关键.三、解答题18.分解因式(1)3312x x -(2)()241x x -- 【答案】(1)3(12)(12)x x x -+;(2)(x−2)2.【解析】(1)先提取公因式3x ,再根据平方差公式进行二次分解即可求得答案;(2)先去括号,再根据完全平方公式进行分解即可.【详解】(1)原式=3x(1−4x 2)=3x(1−2x)(1+2x)(2)原式=x 2−4x+4=(x−2)2.【点睛】此题考查提公因式法与公式法的综合运用,解题关键在于掌握运算法则.19.已知,a 、b 互为倒数,c 、d 互为相反数,求1的值.【答案】0.【解析】试题分析:利用已知倒数,相反数关系代入求值.试题解析:由题意得a b =1,c+d=0,所以1=-1+1=0.故答案为0.20.据报道,截止到2013年12月31日我国微信用户规模已达到6亿.以下是根据相关数据制作的统计图表的一部分:2012年及2013年电话、短信、微信的截止到2013年12月31日微信用户对日人均使用时长统计表 单位:分钟“微信公众平台”参与关注度统计图请根据以上信息,回答以下问题:(1)从2012年到2013年微信的日人均使用时长增加了分钟;(2)截止到2013年12月31日,在我国6亿微信用户中偶尔使用微信用户约为亿(结果精确到0.1). 【答案】(1)6.7;(2)2.1【解析】(1)由统计表可得即可求得答案;(2)总人数乘以扇形图中偶尔使用对应的百分比可得.【详解】解:(1)从2012年到2013年微信的日人均使用时长增加了9.7-3.0=6.7(分钟),故答案为:6.7;(2)截止到2013年12月31日,在我国6亿微信用户中偶尔使用微信用户约为6×(1-13.0%-7.4%-13.0%-24.2%)≈2.1(亿),故答案为:2.1.【点睛】本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.21.在一条公路上顺次有A、B、C三地,甲、乙两车同时从A地出发,分别匀速前柱B地、C地,甲车到达B地停留一段时间后原速原路返回,乙车到达C地后立即原速原路返回(掉头时间忽略不计),乙车比甲车早1小时返回A地,甲、乙两车各自行驶的路程y(千米)与时间x(时)(从两车出发时开始计时)之间的变化情况如图所示.(1)在这个变化过程中,自变量是______,因变量是______.(2)甲车到达B 地停留的时长为______小时,乙车从出发到返回A 地共用了______小时.(3)甲车的速度是______千米/时,乙车的速度是______千米/时.(4)B 、C 两地相距______千米,甲车返回A 地途中y 与x 之间的关系式是______(不必写出自变量取值范围).【答案】 (1) 自变量是时间,因变量是路程;(2)3,6;(3)70,50;(4)10, y=70x-210【解析】(1)根据自变量与因变量的概念进行判断;(2)根据函数的图象可直接得出;(3)根据路程除以时间可得;(4)先求得甲乙到B 、C 的路程,再相减即为B 、C 两地的距离;【详解】(1)由函数的图像可得:行驶的路程是随着时间的变化而变化的,故自变量是时间,因变量是路程;(2)由图象可得:甲车到达B 地停留的时长为7-2-2=3(小时);乙车从出发到返回A 地共用了:7-1=6(小时)(3)甲的速度为:140702=(km/h ); 乙的速度为:300506=(km/h); (4)甲到B 的路程为:3002150÷= ;乙到C 的路程为:140km,所以B 、C 两地相距150-140=10km;由图可得甲车返回时的点的坐标为(5,140),返回到达A 地后的坐标为(7,140),设y 与x 的关系式为y=kx+b,将(5,140)、(7,280)代入可得:14052807k b k b =+⎧⎨=+⎩ 解得70210k b =⎧⎨=-⎩, 所以y 与x 的关系式为y=70x-210.【点睛】考查函数的图象、常量与变量和一次函数解析式,解答本题的关键是明确题意,利用数形结合的思想解答.。
七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,小手盖住的点的坐标可能为( )A .()4,5--B .()4,5-C .()4,5D .()4,5-【答案】A 【解析】先判断出小手盖住的点在第三象限,再根据第三象限内点的横坐标与纵坐标都是负数解答即可.【详解】由图可知,小手盖住的点的坐标位于第三象限,(﹣4,﹣5)(﹣4,5)(4,5)(4,﹣5)中,只有(﹣4,﹣5)在第三象限,所以,小手盖住的点的坐标可能为(﹣4,﹣5).故选A .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣). 2.以平行四边形ABCD 的顶点A 为原点,直线AD 为x 轴建立直角坐标系,已知B 、D 点的坐标分别为(1,3),(4,0),把平行四边形向上平移2个单位,那么C 点平移后相应的点的坐标是( )A .(3,3)B .(5,3)C .(3,5)D .(5,5)【答案】D 【解析】如图,∵A 为原点,D(4,0),∴AD=4−0=4,∵B(1,3),∴点C 的横坐标为1+4=5,∴点C 的坐标为(5,3),∴把平行四边形向上平移2个单位,3+2=5,所以,点C 平移后的对应点的坐标是(5,5).故答案为D.3.用加减法解方程组235327x y x y -=⎧⎨-=⎩①②,下列解法错误的是( ) A .()23⨯-⨯-①②,消去yB .23⨯-⨯①②,消去yC .()32⨯-⨯①+②,消去xD .32⨯-⨯①②,消去x 【答案】A【解析】根据加减消元法判断即可.【详解】解:A 选项,2①×得4610x y -=,()3⨯-②得9621x y -+=-,()23⨯-⨯-①②得131231x y -=,没有消去y ,故A 错误;B 选项,2①×得4610x y -=,3⨯②得9621x y -=,23⨯-⨯①②得511x -=-,消去y ,故B 正确;C 选项,(3)⨯-①得6915x y -+=-,2⨯②得6414x y -=,()32⨯-⨯①+②得51y =-,消去x ,故C 正确;D 选项,3⨯①得6915x y -=,2⨯②得6414x y -=,32⨯-⨯①②得51y -=,消去x ,故D 正确. 故选:A【点睛】本题考查了加减消元法,灵活运用加减消元是解题的关键.4.当x=2时,代数式x 2+ax+b 的值是3;当x=-3时,这个代数式的值是-2,则 2b-a 的值是A .-10B .10C .12D .-12【答案】D【解析】把x=2代入代数式,使其值为3求出2a+b的值,再将x=-3代入代数式,使其值为-2求出-3a+b 的值,联立求出2b-a的值即可.【详解】根据题意得:21 311 a ba b+-⎧⎨-+-⎩=①=②①-②得:5a=10,解得:a=2,把a=2代入①得:b=-5,则2b-a=-10-2=-12,故选:D.【点睛】考查了代数式求值,以及解二元一次方程组,熟练掌握运算法则是解本题的关键.5.将点P(3,﹣1)向左平移2个单位,向下平移3个单位后得到点Q,则点Q坐标为()A.(1,﹣4)B.(1,2)C.(5,﹣4)D.(5,2)【答案】A【解析】利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.【详解】解:根据题意,3-2=1,-1-3=-4,∴点Q的坐标是(1,-4).故答案为:A.【点睛】本题考查了平移与坐标与图形的变化,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.6.正十边形的外角的度数是( )A.18°B.36°C.45°D.60°【答案】B【解析】根据多边形的外角和为360°求解即可.【详解】∵多边形的外角和为360°∴正十边形的外角的度数3603610︒==︒故答案为:B.【点睛】本题考查了多边形的外角问题,掌握多边形外角和定理是解题的关键.7.如果关于x的不等式(m+1)x>m+1的解集为x<1,则m的取值范围是()A.m<0 B.m<﹣1 C.m>1 D.m>﹣1【答案】B【解析】试题解析:∵不等式(m+1)x >m+1的解集为x <1,∴m+1<0,1,m ∴<-故选B .8.根据以下对话,可以求得嫒嫒所买的笔和笔记本的价格分别是( )A .0.8元/支,2.6元/本B .0.8元/支,3.6元/本C .1.2元/支,2.6元/本D .1.2元/支,3.6元/本【答案】D 【解析】分别根据第一次花了42元,第二次花了30元,两个等量关系联立方程组求解即可解:设小红所买的笔和笔记本的价格分别是x 元,y 元,则5x+10y=42 10x+5y=30 ,解得 x=1.2 y=3.6 ,所以小红所买的笔和笔记本的价格分别是1.2元,3.6元.故选D .9.下列所叙述的图形中,全等的两个三角形是( )A .含有45°角的两个直角三角形B .腰相等的两个等腰三角形C .边长相等的两个等边三角形D .一个钝角对应相等的两个等腰三角形【答案】C【解析】根据已知条件,结合全等的判定方法对各个选项逐一判断即可.【详解】解:A 、含有45°角的两个直角三角形,缺少对应边相等,所以两个三角形不一定全等; B 、腰相等的两个等腰三角形,缺少两腰的夹角或底边对应相等,所以两个三角形不一定全等; C 、边长相等的两个等边三角形,各个边长相等,符合全等三角形的判定定理SSS ,所以两个三角形一定全等,故本选项正确;D 、一个钝角对应相等的两个等腰三角形的腰长或底边不一定对应相等,所以两个三角形不一定全等,故本选项错误.故选:C .【点睛】本题主要考查全等图形的识别,解题的关键是熟练掌握全等三角形的判定定理:SSS 、SAS 、ASA 、AAS 、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.若方程组234531x yx y-=⎧⎨-=⎩的解是12xy=-⎧⎨=-⎩,则方程组2()3()45()3()1a b a ba b a b+--=⎧⎨+--=⎩的解是()A.3212ab⎧=-⎪⎪⎨⎪=-⎪⎩B.3212ab⎧=-⎪⎪⎨⎪=⎪⎩C.3212ab⎧=⎪⎪⎨⎪=-⎪⎩D.1232ab⎧=⎪⎪⎨⎪=-⎪⎩【答案】B【解析】利用整体的思想可得:a+b=x,a﹣b=y,解方程组可得结论.【详解】由题意得:12 a ba b+=-⎧⎨-=-⎩,解得:3212ab⎧=-⎪⎪⎨⎪=⎪⎩,故选:B.【点睛】本题考查解二元一次方程组,解题时需注意运用整体的思想,令a+b=x,a﹣b=y.二、填空题题11.不等式组212112x xx-<+⎧⎪⎨-≥-⎪⎩的所有非负整数解的和是_____.【答案】1.【解析】先求出不等式组的解集,再求出不等式组的非负整数解即可【详解】解不等式2x﹣1<x+2,得:x<1,解不等式12x-≥﹣1,得:x≥﹣1,则不等式组的解集为﹣1≤x<1,所以不等式组的所有非负整数解的和为0+1+2=1,故答案为:1.【点睛】本题考查了解一元一次不等式组,求不等式组的整数解的应用,解此题的关键是求出不等式组的解集,难度适中.12.已知函数关系式:y=x 1-,则自变量x 的取值范围是 ▲ .【答案】x 1≥【解析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数的条件,要使x 1-在实数范围内有意义,必须x 10x 1-≥⇒≥。
上海培佳双语学校新初一分班数学试卷一、选择题1.xy =30中,x ,y 的关系是( )。
A .成正比例B .成反比例C .不成比例 2.10时整,钟面上分针与时针所成的角为( )。
A .锐角B .直角C .钝角 3.六年级同学参加兴趣小组,其中绘画小组有a 人,比书法小组的人数的2倍少4人。
书法小组有多少人?正确的算式是( )。
A .2=4aB .2=4a ÷C .24a ÷+D .()42a +÷ 4.有一个等腰三角形,其中两个角的度数之比是1∶2。
这个三角形按角分不可能是( )。
A .锐角三角形B .直角三角形C .钝角三角形 5.两根同样长的电线,第一根用去34,第二根用去34米,两根电线剩下部分的长度相比结果是( )。
A .第一根长B .第二根长C .同样长D .无法比较 6.立体图形,从( )看到的形状是。
A .正面 B .上面 C .左面D .右面 7.铁路提速后,从甲地到乙地时间由16小时缩短到10小时,下列说法错误的是( )。
A .速度比原来提高60%B .时间比原来减少37.5%C .现在速度是原来的62.5%D .现在与原来速度比是8∶5 8.下面各题中的两种相关联的量,成反比例关系的是( )。
A .圆柱的体积一定,圆柱的底面半径和高B .汽车行驶的速度一定,时间和路程C .平行四边形的面积一定,它的底和高9.一件商品提价20%后,再降价20%,现价与原价相比( )。
A .低了B .高了C .一样多D .无法确定10.将一些小圆球如下图摆放,第六幅图有多少个小圆球?( )第一幅 第二幅 第三幅 第四幅A .30B .42C .48D .56二、填空题11.今年“五一”长假期间,某市旅游收入达一亿九千五百万八千元。
这个数写作(______)元,四舍五入到“亿”位约是(______)亿元。
十12.3()()166:()()% 420=÷===。
上海培佳双语学校七年级上册数学期末试卷-百度文库一、选择题1.如果一个角的补角是130°,那么这个角的余角的度数是( )A .30°B .40°C .50°D .90°2.我国古代《易经》一书中记载了一种“结绳计数”的方法,一女子在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,下列图示中表示91颗的是( )A .B .C .D .3.当x 取2时,代数式(1)2x x -的值是( ) A .0 B .1C .2D .3 4.如图,点A ,B 在数轴上,点O 为原点,OA OB =.按如图所示方法用圆规在数轴上截取BC AB =,若点A 表示的数是a ,则点C 表示的数是( )A .2aB .3a -C .3aD .2a -5.已知线段AB a ,,,C D E 分别是,,AB BC AD 的中点,分别以点,,C D E 为圆心,,,CB DB EA 为半径作圆得如图所示的图案,则图中三个阴影部分图形的周长之和为( )A .9a πB .8a πC .98a π D .94a π 6.下列方程变形正确的是( )A .方程110.20.5x x --=化成1010101025x x --=B .方程 3﹣x=2﹣5(x ﹣1),去括号,得 3﹣x=2﹣5x ﹣1C .方程 3x ﹣2=2x+1 移项得 3x ﹣2x=1+2D .方程23t=32,未知数系数化为 1,得t=1 7.下列各数中,绝对值最大的是( ) A .2 B .﹣1 C .0 D .﹣38.若a<b,则下列式子一定成立的是( )A .a+c>b+cB .a-c<b-cC .ac<bcD .a b c c< 9.如果方程组223x y x y +=⎧⎨-=⎩的解为5x y =⎧⎨=⎩,那么“口”和“△”所表示的数分别是( ) A .14,4 B .11,1 C .9,-1 D .6,-410.下列方程的变形正确的有( )A .360x -=,变形为36x =B .533x x +=-,变形为42x =C .2123x -=,变形为232x -= D .21x =,变形为2x = 11.观察一行数:﹣1,5,﹣7,17,﹣31,65,则按此规律排列的第10个数是( ) A .513 B .﹣511C .﹣1023D .1025 12.已知a ﹣b=﹣1,则3b ﹣3a ﹣(a ﹣b )3的值是( ) A .﹣4 B .﹣2C .4D .2 13.如果一个有理数的绝对值是6,那么这个数一定是( ) A .6B .6-C .6-或6D .无法确定 14.下列各数中,比73-小的数是( ) A .3- B .2- C .0 D .1-15.某同学晚上6点多钟开始做作业,他家墙上时钟的时针和分针的夹角是120°,他做完作业后还是6点多钟,且时针和分针的夹角还是120°,此同学做作业大约用了( ) A .40分钟 B .42分钟 C .44分钟 D .46分钟二、填空题16.单项式2x m y 3与﹣5y n x 是同类项,则m ﹣n 的值是_____.17.写出一个比4大的无理数:____________.18.定义-种新运算:22a b b ab ⊕=-,如21222120⊕=-⨯⨯=,则(1)2-⊕=__________.19.因式分解:32x xy -= ▲ .20.学校组织七年级部分学生参加社会实践活动,已知在甲处参加社会实践的有27人,在乙处参加社会实践的有19人,现学校再另派20人分赴两处,使在甲处参加社会实践的人数是乙处参加社会实践人数的2倍,设应派往甲处x 人,则可列方程______.21.若单项式 3a 3 b n 与 -5a m+1 b 4所得的和仍是单项式,则 m - n 的值为_____.22.如图,已知OC 是∠AOB 内部的一条射线,∠AOC =30°,OE 是∠COB 的平分线.当∠BOE =40°时,则∠AOB 的度数是_____.23.比较大小:﹣(﹣9)_____﹣(+9)填“>”,“<”,或”=”符号)24.当x= 时,多项式3(2-x )和2(3+x )的值相等.25.如图,将△ABE 向右平移3cm 得到△DCF,若BE=8cm ,则CE=______cm.26.-2的相反数是__.27.若523m x y +与2n x y 的和仍为单项式,则n m =__________.28.众所周知,中华诗词博大精深,集大量的情景情感于短短数十字之间,或豪放,或婉约,或思民生疾苦,或抒发己身豪情逸致,文化价值极高.而数学与古诗词更是有着密切的联系.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一本诗集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首?设七言绝句有x 首,根据题意,可列方程为______.29.规定:用{m }表示大于 m 的最小整数,例如{52}= 3,{4} = 5,{-1.5}= -1等;用[m ] 表示不大于 m 的最大整数,例如[72]= 3, [2]= 2,[-3.2]= -4,如果整数 x 满足关系式:3{x }+2[x ]=23,则 x =________________.30.一个水库的水位变化情况记录:如果把水位上升5cm 记作+5cm ,那么水位下降3cm 时水位变化记作_____.三、压轴题31.阅读理解:如图①,若线段AB 在数轴上,A 、B 两点表示的数分别为a 和b (b a >),则线段AB 的长(点A 到点B 的距离)可表示为AB=b a -.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm 到达P 点,再向右移动7cm 到达Q 点,用1个单位长度表示1cm .(1)请你在图②的数轴上表示出P,Q两点的位置;(2)若将图②中的点P向左移动x cm,点Q向右移动3x cm,则移动后点P、点Q表示的数分别为多少?并求此时线段PQ的长.(用含x的代数式表示);(3)若P、Q两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t(秒),当t为多少时PQ=2cm?32.数轴上A、B两点对应的数分别是﹣4、12,线段CE在数轴上运动,点C在点E的左边,且CE=8,点F是AE的中点.(1)如图1,当线段CE运动到点C、E均在A、B之间时,若CF=1,则AB=,AC =,BE=;(2)当线段CE运动到点A在C、E之间时,①设AF长为x,用含x的代数式表示BE=(结果需化简.....);②求BE与CF的数量关系;(3)当点C运动到数轴上表示数﹣14的位置时,动点P从点E出发,以每秒3个单位长度的速度向右运动,抵达B后,立即以原来一半速度返回,同时点Q从A出发,以每秒2个单位长度的速度向终点B运动,设它们运动的时间为t秒(t≤8),求t为何值时,P、Q 两点间的距离为1个单位长度.33.如图,在数轴上的A1,A2,A3,A4,……A20,这20个点所表示的数分别是a1,a2,a3,a4,……a20.若A1A2=A2A3=……=A19A20,且a3=20,|a1﹣a4|=12.(1)线段A3A4的长度=;a2=;(2)若|a1﹣x|=a2+a4,求x的值;(3)线段MN从O点出发向右运动,当线段MN与线段A1A20开始有重叠部分到完全没有重叠部分经历了9秒.若线段MN=5,求线段MN的运动速度.34.已知∠AOB=110°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(1)如图1,当OB、OC重合时,求∠AOE﹣∠BOF的值;(2)如图2,当∠COD从图1所示位置绕点O以每秒3°的速度顺时针旋转t秒(0<t<10),在旋转过程中∠AOE﹣∠BOF的值是否会因t的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF=14°时,t=秒.35.如图1,已知面积为12的长方形ABCD,一边AB在数轴上。
七年级数学科试题(满分150分;时间120分钟)友情提示:考生必须将答案填写在答题卡相应的位置上,否则不得分。
一、选择题:(每小题3分,共21分)每小题四个答案,其中有且只有一个答案是正确的,请在答题卡相应选项涂黑,选对的得4分,选错、不选或涂黑超过一个的一律得0分。
1、下列各式是一元一次方程的是( )A 、x+y=7B 、x+3=5C 、12-x +9=0 D 、x 2+9x=5 2、下列变形中正确的是( )。
A 、由5=x-2 得x= -5-2 B 、由5y=0,得y=51 C 、由3x= -2,得x= -23D 、由2x=3x+5,得-5=3x-2x 3、下列方程中,解为⎩⎨⎧-==32y x 的是( )。
A 、⎩⎨⎧-=+=+1032y x x B 、⎩⎨⎧-=-=+7312y x y x C 、⎩⎨⎧=+=-0235y x y x D 、⎩⎨⎧=+=-13582y x y x 、4、解方程⎩⎨⎧-=-=+6521032y x y x 比较简便的方法为( )。
A 、代入法B 、加减法C 、换元法D 、三种方法都一样5、若| x+1|+(x -y+3)2=0,则x+y 的值是( )A 、3B 、0C 、1D 、-16、3月12日植树节,初一(2)班组织45名同学参加植树活动,在规定时间内完成一批植树任务,后因10名同学另有任务,剩下的同学为了按时完成任务,每人平均多植2棵,则原来每人平均种树( ) A 、4棵 B 、5棵 C 、6棵 D 、7棵第 1 页 共 4 页7、已知211211-=⨯,3121211321211-+-=⨯+⨯,……, 则方程+⋅⋅⋅+⨯+⨯3221x x 201020112010=⨯x 的解是( ) A 、2010 B 、2011 C 、— 2010 D 、—2011二、填空题:(每小题4分,共40分)在答题卡相应题目的答题区域内作答。
8、某数x 的3倍与2的差等于5,列方程为。
A.x=-1 B.-6 C.-19D.-92.下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.3.若a>b,则下列各式中正确的是()A.a-c<b-c B.ac>bcC.-a bc c<(c≠0)D.a(c2+1)>b(c2+1)A.1 B.2 C.3 D.45.如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=100°,∠CDE=15°,则∠DEF的度数是()A.110°B.115°C.120°D.125°6.已知21xy-⎧⎨⎩==是二元一次方程组531ax byax by+-⎧⎨⎩==的解,则2a+b的值为()A.3 B.4 C.5 D.6 7.已知等腰△ABC的周长为10,若设腰长为x,则x的取值范围是()A.52<x<5B.0<x<2.5 C.0<x<5 D.0<x<108.能够铺满地面的正多边形组合是()A.正三角形和正五边形B.正方形和正六边形C.正方形和正五边形D.正五边形和正十边形9.若四边形ABCD中,∠A:∠B:∠C=1:2:5,且∠C=150°,则∠D的度数为()A.90°B.105°C.120°D.135°10.如图,将正方形纸片ABCD折叠,使点D落在边AB上的D'处,点C落在C'处,若∠AD'M=50°,则∠MNC'的度数为()A .100°B .110°C .120°D .130° 二、填空题(每小题3分,共15分)11.若一个多边形的每个外角都等于30°,则这个多边形的边数为12.我国古代数学名著《孙子算经》中有这样一题,今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何?此题的答案是:鸡有23只,兔有12只,现在小敏将此题改编为:今有鸡兔同笼,上有33头,下有88足,问鸡兔各几何?则此时的答案是:鸡有 只,兔有 只. 13.如图,一副三角尺△ABC 与△ADE 的两条斜边在一条直线上,直尺的一边GF ∥AC ,则∠DFG 的度数为 .14.若不等式组5512x x x m ⎨⎩++-⎧<>的解集是x >1,则m 的取值范围是 15.如图是由四块长方形纸片和一块正方形纸片拼成一个大正方形.已知其中的两块,一块长为5cm ,宽为2cm ;一块长为4cm ,宽为1cm ,则大正方形的面积为 cm 2.21.某校计划组织师生共300人参加一次大型公益活动,如果租用6辆大客车和5辆小客车恰好全部坐满.已知每辆大客车的乘客座位数比小客车多17个.(1)求每辆大客车和每辆小客车的乘客座位数;(2)由于最后参加活动的人数增加了30人,学校决定调整租车方案.在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.22.张师傅在铺地板时发现:用8个大小一样的长方形瓷砖恰好可以拼成一个大的长方形(如图①),然后,他用这8块瓷砖七拼八凑,又拼出了一个正方形,中间还留下一个边长为3的小正方形(阴影部分),请你根据提供的信息求出这些小长方形的长和宽.23.如图,点D、E分别是等边三角形ABC的边BC、AC上的点,连接AD、BE交于点O,且△ABD≌△BCE.(1)若AB=3,AE=2,则BD= ;(2)若∠CBE=15°,则∠AOE= ;(3)若∠BAD=a,猜想∠AOE的度数,并说明理由.参考答案与试题解析1.【分析】方程x系数化为1,即可求出解.【解答】解:方程-13x=3,解得:x=-9,故选:D.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.2.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形但不是中心对称图形,故本选项正确;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是轴对称图形,也是中心对称图形,故本选项错误.故选:A.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【分析】根据不等式的性质对各选项分析判断即可得解.【解答】解:A、根据不等式的基本性质1,A选项结论错误,不符合题意;B、因为c可正可负可为0,所以无法判断ac和bc的大小关系,B选项结论错误,不符合题意;C、因为c可正可负,所以无法判断两者的大小关系,C选项结论错误,不符合题意;D、因为c2+1>0,所以根据不等式的基本性质2,D选项结论正确,符合题意;故选:D.【点评】本题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.4.【分析】①移项注意符号变化;②去分母后,x-1=3,x=4,中间的等号应为逗号,故错误;③去分母后,注意符号变化.④去分母、去括号、移项、合并同类项、系数化为1,依此即可求解.【解答】解:①方程2x-1=x+1移项,得x=2,即3x=6,故错误;②方程13x-=1去分母,得x-1=3,解得:x=4,中间的等号应为逗号,故错误;③方程1-2142x x--=去分母,得4-x+2=2(x-1),故错误;④方程1210.50.2x x--+=去分母,得2(x-1)+5(2-x)=1,即2x-2+10-5x=1,是正确的.错误的个数是3.故选:C.【点评】本题主要考查解一元一次方程,注意移项去分母时的符号变化是本题解答的关键.5.【分析】直接利用平行线的性质结合三角形外角的性质得出答案.【解答】解:延长FE交DC于点N,∵AB∥EF,∴∠BCD=∠FND=100°,∵∠CDE=15°,∴∠DEF=∠CDE+∠DNF=115°.故选:B.【点评】此题主要考查了平行线的性质,正确作出辅助线是解题关键.6.【分析】把x与y的值代入方程组求出a与b的值,即可求出所求.【解答】解:把21xy-⎧⎨⎩==代入方程组得:25231a ba b-+⎧⎨⎩=①=②,②-①得:4b=-4,解得:b=-1,把b=-1代入①得:a=2,则2a+b=4-1=3,故选:A.【点评】本题考查了列二元一次方程解生活实际问题的运用,二元一次方程的解法的运用,根据条件找到反映全题题意的等量关系建立方程是关键.13.【分析】依据平行线的性质以及三角形内角和定理或三角形外角性质,即可得到∠DFG 的度数.【解答】解法一:∵GF∥AC,∠C=90°,∴∠CFG=180°-90°=90°,又∵AD,CF交于一点,∠C=∠D,∴∠CAD=∠CFD=60°-45°=15°,∴∠DFG=∠CFD+∠CFG=15°+90°=105°.解法二:∵GF∥AC,∠CAB=60°,∴∠FGE=60°,又∵∠DFG是△EFG的外角,∠FEG=45°,∴∠DFG=∠FGE+∠FEG=60°+45°=105°,故答案为:105°.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等;两直线平行,同旁内角互补.14.【分析】首先解每个不等式,然后根据不等式组的解集是x>1,即可得到一个关于m 的不等式,从而求解.【解答】解:5512x xx m⎧⎩-⎨++<①>②解①得x>1,解②得x>m+2,∵不等式组的解集是x>1,∴m+2≤1,解得m≤-1.故答案是:m≤-1.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.【分析】设大正方形的边长为x,则AB=x-1-2=x-3,BC=4+5-x=9-x,依据AB=BC,即可得到x的值,进而得出大正方形的面积.【解答】解:如图,设大正方形的边长为x,则AB=x-1-2=x-3,BC=4+5-x=9-x,∵AB=BC,∴x-3=9-x,解得x=6,∴大正方形的面积为36cm2.故答案为:36.【点评】本题主要考查了正方形与矩形的性质,解题时注意:正方形的四条边相等.16.【分析】(1)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(2)方程组利用加减消元法求出解即可.【解答】解:(1)去分母得:4x-2-x-1=6,移项合并得:3x=9,解得:x=3;(2)32121x yx y-+-⎧⎨⎩=①=②,①+②×2得:5x=10,解得:x=2,把x=2代入②得:y=-3,则方程组的解为23 xy-⎧⎨⎩==.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.17.【分析】首先解每个不等式,然后确定两个不等式的解集的公共部分就是不等式组的解集.【解答】解:()3242532x x x -+⎧⎨≤+⎩<①②,解不等式①,得x <2.解不等式②,得x≥-1.在同一条数轴上表示不等式①②的解集,如图:所以原不等式组的解集为-1≤x <2. 【点评】本题考查了一元一次不等式组的解法,在数轴上表示不等式组的解集,需要把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.18. 【分析】(1)如图①,以点C 为对称中心画出△DEC ;(2)如图②,以AC 边所在的性质为对称轴画出△ADC ;(3)如图③,利用网格特点和和旋转的性质画出A 、B 的对应点D 、E ,从而得到△DEC ;(4)如图④,利用等腰三角形的性质和网格特点作图.【解答】解:(1)如图①,△DEC 为所作;(2)如图②,△ADC 为所作;(3)如图③,△DEC 为所作;(4)如图④,△BCD 和△BCD′为所作.【点评】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换.19. 【分析】(1)根据新运算展开,再求出即可;(2)先根据新运算展开,再解一元一次方程即可.【解答】解:(1)原式=-4×32+2×(-4)×3+(-4)=-64;18a+35(11-a新七年级下学期期末考试数学试题及答案人教版七年级下学期期末考试数学试题(考试时间120分钟满分120分)一.选择题:(每小题3分,共24分)1.在实数:3.14159,3.46,1.010010001…,π,227中,无理数有()A、1个B、2个C、3个D、4个答案:B考点:实数的概念。
上海培佳双语学校2018学年第二学期第一次质量监控七年级数学试卷
考试时间 100分 满分 150分
一、选择题
1、两条直线被第三条直线所截,那么下面说法正确的是( )
A .同位角相等
B .内错角相等
C .同旁内角互补
D .以上都不对
2、下列关于x 的方程中,属于无理方程的是( )
A .20x x --=
B 1=
C 1=
D 20=
3、下列说法正确的是( )
A .如果两个角相等,那么这两个角是对顶角;
B .经过一点有且只有一条直线与已知直线平行;
C .如果两条直线被第三条直线所截,那么内错角相等;
D .联结直线外一点与直线上各点的所有线段中,垂线段最短。
4、如图,在ABC △中,EB BC ⊥,BH AC ⊥,垂足分别为点B 和点H ,能表示点B 到直线AC 距离的是( )
A .线段BE 的长度;
B .线段B
C 的长度; C .线段BH 的长度;
D .线段BA 的长度.
5、下列关于x 的方程中,有实数根的是( )
A 40=
B x =-
C 0=
D 0=
6、如图,FC AD ⊥于C ,GB AD ⊥于B ,DCE A ∠=∠,那么与AGB ∠相等的角有( )
A .2个
B .1个
C .4个
D .3个
7、如图,不能推断//AD BC 的是( )
A .∠1=∠5
B .∠2=∠4
C .∠3=∠4+∠5
D .12180B ∠+∠+∠=︒
8、已知,//AB CD ,且2CD AB =,ABE △和CDE △的面积分别为2和8,则ACE △的面积是( )
A .3
B .4
C .5
D .6
二、填空题
1、如图,AB 、CD 相交于O ,OE AB ⊥,35DOE ∠=︒则BOC ∠=______;
2、如图,与CDE ∠构成内错角的角是______;
3、若直线a b ⊥,//a c ,则c ______b .
4x =-的解为______
5、直线AB 、CD 相交于点O ,130AOD ∠=︒,它们的夹角是______度。
6、如图,∠1=∠2=45°,∠3=70°,则∠4=______度.
7、方程(290x -=的解是______
8、如图,已知直线//AB CD ,点E 、F 分别在AB 、CD 上,:3:4CFE EFB ∠∠=,如果40B ∠=︒,那么BEF ∠=______
9、两个角的两边互相平行,且一个角的
12等于另一个角的13,则这两个角分别是______ 10、若方程62m x ++=-有实数解,那么m 的范围为______
11、如图,若//AB CD ,则∠1+∠3-∠2的度数为______
12、ABC △中,ABC ACB ∠=∠,将ABC △绕点C 顺时针旋转到EDC △,使点B 的对应点D 落在AC 边上,若30DEB ∠=︒,18BEC ∠=︒,那么ABE ∠=______度.
三、简答题
1、解方程:
(177x x -= (2)22
41025217x x x x --+= 2、按下列要求画图并填空。
(1)过点B 画出直线AC 的垂线BD ,交直线AC 于点D ,那么点B 到直线AC 的距离是线段______的长。
(2)过点B 作直线AC 的平行线BT ,直线AC 和直线BT 的距离是线段______的长。
3、看图填空,把解题过程补全。
如图,已知AD BC ⊥,垂足为D ,EF BC ⊥,垂足为F ,∠1+∠2=180°,请填写CGD CAB ∠=∠的理由。
解:因为AD BC ⊥,EF BC ⊥(已知)
所以90ADC ∠=︒,90EFD ∠=︒( ),
得ADC EFD ∠=∠( )
所以//AD EF ( ),
得∠2+∠3=180°( )
由∠1+∠2=180°( ),
得∠1=∠3( ),
所以//DG AB ( ),
得CGD CAB ∠=∠( )。
4、填写理由:如图,∠1=∠2,∠3=∠4,4BAE ∠=∠,试说明//AD BE .
解:∵∠1=∠2(已知)
∴12CAF CAF ∠+∠=∠+∠(______)
即BAF ∠=∠______
∵∠3=∠4,4BAE ∠=∠(已知)
∴∠3=∠______(______)
∴∠3=∠______
∴//AD BE (______)
四、解答题
1、如图,在四边形中,180C D ∠+∠=︒,40A B ∠-∠=︒,求B ∠的度数.
2、如图,//AB DE ,CM 平分BCE ∠,90MCN ∠=︒,50B ∠=︒,求DCN ∠的度数
3、如图,已知CD AB ⊥,//DE BC ,∠1=∠2,
求证:FG AB ⊥.
4、如图,1C ∠=∠,2B ∠=∠,说明∠3与BDE ∠相等。
5、已知:180BAP APD ∠+∠=︒,E F ∠=∠,请问:∠1、∠2相等吗?,阐述理由.
6、已知,如图1,四边形ABCD ,90D C ∠=∠=︒,点E 在BC 边上,P 为边AD 上一动点,过点P 作
PQ PE ⊥,交直线DC 于点Q .
(1)当70PEC ∠=︒时,求DPQ ∠;
(2)当4PEC DPQ ∠=∠时,求APE ∠;
(3)如图3,将PDQ △沿PQ 翻折使点D 的对应点D '落在BC 边上,当40QD C '∠=︒时,请直接写出PEC ∠的度数,答:______.。