光学分析法概论
- 格式:ppt
- 大小:1.43 MB
- 文档页数:41
第九章光学分析法概论1、光学分析法有哪些类型。
基于辐射的发射建立的发射光谱分析法、火焰光度分析法、分子发光分析法、放射分析法等;基于辐射的吸收建立的UV-V is光度法、原子吸收光度法、红外光谱法、核磁共振波谱法等;基于辐射的散射建立的比浊法、拉曼光谱法;基睛辐射的折射建立的折射法、干涉法;基于辐射的衍射建立的X-射线衍射法、电子衍射法等;基于辐射的旋转建立的偏振法、旋光法、圆二色光谱法等。
2、吸收光谱法和发射光谱法有何异同吸收光谱法为当物质所吸收的电磁辐射能由低能态或基态跃迁至较高的能态(激发态),得到的光谱发射光谱法为物质通过电致激发、热致激发或光致激发等激发过程获得能量,变为激发态原子或分子,当从激发态过渡到低能态或基态时产生的光谱。
3、什么是分子光谱法什么是原子光谱法原子光谱法:是由原子外层或内层电子能级的变化产生的光谱,它的表现形式为线光谱。
属于这类分析方法的有原子发射光谱法、原子吸收光谱法,原子荧光光谱法以及X射线荧光光谱法等。
分子光谱法:是由分子中电子能级、振动和转动能级的变化产生的光谱,表现形式为带光谱。
属于这类分析方法的有紫外-可见分光光度法,红外光谱法,分子荧光光谱法和分子磷光光谱法等。
4、简述光学仪器三个最基本的组成部分及其作用。
辐射源(光源):提供电磁辐射。
波长选择器:将复合光分解成单色光或有一定宽度的谱带。
检测器:将光信号转换成电信号。
5、简述常用的分光系统的组成以及各自作用特点。
分光系统的作用是将复合光分解成单色光或有一定宽度的谱带。
分光系统又分为单色器和滤光片。
单色器由入射狭缝和出射狭缝、准直镜以及色散元件,如棱镜或光栅等组成。
棱镜:色散作用是基于构成棱镜的光学材料对不同波长的光具有不同的折射率。
光栅:利用多狭缝干涉和单狭缝衍射两者联合作用产生光栅光谱。
干涉仪:通过干涉现象,得到明暗相间的干涉图。
滤光器是最简单的分光系统,只能分离出一个波长带或只能保证消除给定消长以上或以下的所有辐射。
第2章 光谱分析法概论根据物质发射的电磁辐射或物质与辐射的相互作用建立起来的一类仪器分析方法,统称为光学分析法。
光是电磁辐射(又称电磁波),是一种不需要任何物质作为传播媒介就可以以巨大速度通过空间的光子流(量子流),具有波粒二象性(波动性与微粒性)。
光的波动性体现在反射、折射、干涉、衍射以及偏振等现象。
波长λ 、波数σ 和频率υ相互关系为:λν/c = 和c //1νλσ==,c =2.997925×1010cm/s 。
光的微粒性体现在吸收、发射、热辐射、光电效应、光压现象以及光化学作用等方面,用每个光子具有的能量E 作为表征。
光子的能量与频率成正比,与波长成反比,关系为: σλνhc hc h E ===/从γ 射线一直至无线电波都是电磁辐射,光是电磁辐射的一部分,若把电磁辐射按照波长或频率的顺序排列起来,就可得到电磁波谱(electromagnetic spectrum )。
波长在360~800nm 范围的光称为可见光,具有同一波长、同一能量的光称为单色光,由不同波长的光组合成的称为复合光。
复合光在与物质相互作用时,表现为其中某些波长的光被物质所吸收,另一些波长的光透过物质或被物质所反射,透过物质的光(或反射光)能被人眼观察到的即为物质所呈现的颜色。
不同波长的光具有不同的颜色,物质的颜色由透射光(或发射光)的波长所决定。
当物质与辐射能相互作用时,其内部的电子、质子等粒子发生能级跃迁,对所产生的辐射能强度随波长(或相应单位)变化作图,所得到的谱图称为光谱(也称波谱)。
利用物质的光谱进行定性、定量和结构分析的方法称为光谱分析法或光谱法。
以测量气态原子或离子外层或内层电子能级跃迁所产生的原子光谱为基础的成分分析方法为原子光谱法,由分子中电子能级(n )、振动能级(v )和转动能级(J )的变化而产生的光谱为基础的定性、定量和物质结构分析方法为分子光谱法。
有紫外-可见分光光度法(UV-Vis ),红外吸收光谱法(IR ),分子荧光光谱法(MFS )和分子磷光光谱法(MPS )等。