对应分析
- 格式:docx
- 大小:375.76 KB
- 文档页数:6
对应分析数据一、背景介绍在当今信息爆炸的时代,大量的数据被生成和收集,为了更好地理解和利用这些数据,对数据进行对应分析是非常重要的。
对应分析是一种统计方法,用于研究两组数据之间的关系和相互作用。
通过对数据进行对应分析,我们可以发现数据中的模式、趋势和相关性,从而为决策提供有价值的信息。
二、对应分析的定义和原理对应分析(Correspondence Analysis,简称CA)是一种多变量数据分析方法,它通过将高维数据映射到低维空间中,从而揭示数据之间的关系。
对应分析的原理基于数学上的奇异值分解(Singular Value Decomposition,简称SVD)和特征值分解(Eigenvalue Decomposition),通过计算数据矩阵的特征值和特征向量,将数据在低维空间中进行降维和可视化。
三、对应分析的步骤和方法1. 数据预处理:对数据进行清洗和标准化,去除异常值和缺失值,并将数据转换为适合对应分析的格式。
2. 计算数据矩阵:根据数据的特点,构建数据矩阵,其中行表示样本或观测对象,列表示变量或属性。
3. 计算对应分析的结果:通过对数据矩阵进行奇异值分解或特征值分解,得到对应分析的结果,包括特征值、特征向量和对应坐标。
4. 解释和解读结果:根据对应分析的结果,进行可视化和解释,发现数据中的模式、趋势和相关性,并提取有用的信息。
5. 结果验证和应用:对对应分析的结果进行验证和应用,评估模型的准确性和可靠性,并将结果应用于实际问题的决策和优化。
四、对应分析的应用领域对应分析广泛应用于各个领域,包括市场调研、消费者行为、社会科学、生物学、医学等。
以下是对应分析在几个典型领域的应用示例:1. 市场调研:通过对应分析,可以分析不同产品或品牌在市场中的位置和竞争关系,帮助企业制定市场策略和推广计划。
2. 消费者行为:对应分析可以帮助分析消费者对不同产品或服务的偏好和关联性,为企业提供精准的市场定位和产品定价策略。
对应分析数据一、概述对应分析数据是一种数据分析方法,用于研究两个或者多个变量之间的关系。
通过对数据进行对应分析,可以揭示变量之间的相关性,并匡助我们理解数据暗地里的模式和趋势。
本文将介绍对应分析数据的基本概念、步骤和应用场景。
二、基本概念1. 对应分析对应分析是一种多元数据分析方法,它通过将多个变量映射到一个低维空间中,从而揭示变量之间的关系。
对应分析可以匡助我们发现数据中的结构和模式,进而进行更深入的分析。
2. 对应图对应图是对应分析结果的可视化表示。
对应图通常是一个二维平面图,其中每一个数据点表示一个观测值,不同的颜色或者符号表示不同的组别或者类别。
通过观察对应图,我们可以看到数据点之间的关系和趋势。
三、步骤对应分析数据的步骤如下:1. 数据准备首先,需要准备要进行对应分析的数据。
数据可以是任何类型的,可以是定量数据(如数值)或者定性数据(如类别)。
确保数据的质量和完整性非常重要。
2. 数据标准化对应分析需要对数据进行标准化,以消除不同变量之间的量纲差异。
常用的标准化方法包括Z-score标准化和归一化等。
3. 计算对应分析利用对应分析的算法,对标准化后的数据进行计算,得到对应分析的结果。
对应分析的算法有多种,常用的包括主成份分析(PCA)和多维尺度分析(MDS)等。
4. 绘制对应图将对应分析的结果绘制成对应图,以便更直观地观察数据之间的关系和趋势。
对应图可以通过各种数据可视化工具来实现,如散点图、气泡图等。
5. 解读对应图通过观察对应图,我们可以解读数据之间的关系和趋势。
可以观察数据点的分布情况、类别之间的距离和相对位置等。
根据对应图的结果,可以进一步进行数据分析和决策。
四、应用场景对应分析数据在各个领域都有广泛的应用,以下列举几个常见的应用场景:1. 市场调研对应分析数据可以匡助市场调研人员了解不同产品或者品牌之间的关系和竞争状况。
通过对应分析,可以发现市场中的潜在细分市场和目标客户群体。
首先选取了数据如下:欲分析该省这么多年各种产业生产总值的特征以及该省每一年的人口数与每一年各产业生产总值之间的关系。
一、对应分析对应分析又称为相应分析,是一种多元相依变量统计分析技术。
通过分析由属性变量构成的交互汇总数据来解释变量之间的内在联系。
同时,使用这种技术,还可以揭示同一变量的各个类别之间的差异及不同变量各个类别之间的对应关系。
而且变量划分的类别越多,这种方法就越明显。
对应分析的过程由两部分组成:表格和关联图。
对应分析中的表格是一个二维表格,由行和列构成。
每一行代表事物的一个属性,依次排开。
列则代表不同的事物本身,它由样本集合构成,排列顺序没有特别要求。
在关联图上,各个样品都浓缩为一个点集合,而样品的属性变量在图上同样也是以点集合的形式显示出来。
对应分析的基本思想就是利用降维的思想,通过分析原始数据结构,对一个列联表中的行与列同时进行处理。
它的最大特点就是可以在同一张图上同时表示出两类属性变量的各种状态,以直观、明了的方式揭示属性变量之间及属性变量各种状态之间的相互关系。
另外,对应分析还省去了公因子的选取和因子旋转等复杂的数学运算及中间过程,可以从因子载荷图上对事物进行分类,而且能够揭示分类的主要参数及依据。
具体实验步骤:(1)数据录入:打开SPSS文件,按顺序:文件——新建——数据打开一个空白数据文件,首先进行变量的编辑,点击在SPSS变量视图中建立变量“人口数”、“产业”、“数值”分别表示“全省户籍人口”、“生产总值情况”和“数据的权重”。
“人口数”为数值变量,分别将每年该省的户籍人口数赋值为“1”、“2”、“3”、“4”.....“24”。
“生产总值情况”为名义变量,分别将“农业生产总值”、“工业生产总值”、“建筑业生产总值”、“第三产业生产总值”赋值为“1”、“2”、“3”、“4”。
如图所示:在SPSS活动数据文件的数据视图中,把相关数据输入到各个变量中。
(2)打开数据文件,进入SPSS Statistics 数据编辑器窗口,在菜单栏中选择“数据——加权个案”命令,将变量“数值”选入加权个案,单击“确定”按钮。
对应分析对应分析的基本思想对应分析( Correspondence Analysis )又称为相应分析,是由法国统计学家于1970提出的,是在R型和Q型因子分析基础上,发展起来的一种多元相依的变量统计分析技术。
它通过分析由定性变量构成的交互汇总表来揭示变量间的关系。
当以变量的一系列类别以及这些类别的分布图来描述变量之间的联系时,使用这一分析技术可以揭示同一变量的各个类别之间的差异以及不同变量各个类别之间的对应关系。
对应分析方法是通过对交互表的频数分析来确定变量及其类别之间的关系。
例如,在分析顾客对不同品牌商品的偏好时,可以将商品与顾客的性别、收入水平、职业等进行交叉汇总,汇总表中的每一项数字都代表着某一类顾客喜欢某一品牌的人数,这一人数也就是这类顾客与这一品牌的“对应”点,代表着不同特点的顾客与品牌之间的联系。
通过对应分析,可以把品牌、顾客特点以及它们之间的联系同时反映在一个二维或三维的分布图上,顾客认为比较相似的品牌在图上的分布就会彼此靠近在一起。
根据顾客特点与每一品牌之间的距离,就可以判断它们之间关系的密切程度。
在对应分析中,每个变量的类别差异是通过直观图上的分值距离来表示。
这个距离并不是我们通常所说的距离,而是经过加权的距离,在加权的过程中,以卡方值的差异表现出来。
因此,对应分析的基础是将卡方值转变为可度量的距离。
卡方值是由累计交叉汇总表中每一交互组的实际频数与期望频数的差值计算得出。
如果卡方值是负值,就说明这一单元中实际发生频数低于期望频数。
每一单元格(每个行变量类别与列变量类别在表中的交叉点)频数的期望值取决于它在行分布中所占比例和列分布中所占比例。
如果某一单元格的卡方值是正值,而且数值很大,就说明这一单元格对应的行变量与列变量有很强的对应关系,这两个类别在图上的距离就会很近。
反之,若为负值,则在图上的距离就会远。
总之,对应分析是通过对定性变量构成的交互表进行分析,将定性变量的数据转变成可度量的分值,减少维度并做出分值分布图。
对应分析法
一、简介
对应分析(Correspondence analysis)也称关联分析、R-Q型因子分析,是近年新发展起来的一种多元相依变量统计分析技术,是一种多元统计分析技术,主要分析定性数据的方法,也是强有力的数据图示化技术。
对应分析是一种数据分析技术,它能够帮助我们研究由定性变量构成的交互汇总表来揭示变量间的联系。
交互表的信息以图形的方式展示。
主要适用于有多个类别的定类变量,可以揭示同一个变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系,适用于两个或多个定类变量。
对应分析是由法国人Benzenci于1970年提出的,起初在法国和日本最为流行,然后引入到美国。
对应分析法是在R型和Q型因子分析的基础上发展起来的一种多元统计分析方法,因此对应分析又称为R-Q型因子分析。
在因子分析中,如果研究的对象是样品,则需采用Q型因子分析;如果研究的对象是变量,则需采用R型因子分析。
但是,这两种分析方法往往是相互对立的,必须分别对样品和变量进行处理。
因此,因子分析对于分析样品的属性和样品之间的内在联系,就比较困难,因为样品的属性是变值,而样品却是固定的。
于是就产生了对应分析法。
对应分析就克服了上述缺点,它综合了R型和Q型因子分析的优点,并将它们统一起来使得由R型的分析结果很容易得到Q型的分析结果,这就克服了Q 型分析计算量大的困难;更重要的是可以把变量和样品的载荷反映在相同的公因子轴上,这样就把变量和样品联系起来便于解释和推断。
对应分析数据的典型格式是列联表或交叉频数表。
常表示不同背景的消费者对若干产品或产品的属性的选择频率。
背景变量或属性变量可以并列使用或单独使用。
两个变量间——简单对应分析;多个变量间——多元对应分析。
对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。
它最大特点是能把众多的样品和众多的变量同时作到同一张图解上,将样品的大类及其属性在图上直观而又明了地表示出来,具有直观性。
另外,它还省去了因子选择和因子轴旋转等复杂的数学运算及中间过程,可以从因子载荷图上对样品进行直观的分类,而且能够指示分类的主要参数(主因子)以及分类的依据,是一种直观、简单、方便的多元统计方法。
对应分析法整个处理过程由两部分组成:表格和关联图。
对应分析法中的表格是一个二维的表格,由行和列组成。
每一行代表事物的一个属性,依次排开。
列则代表不同的事物本身,它由样本集合构成,排列顺序并没有特别的要求。
在关联图上,各个样本都浓缩为一个点集合,而样本的属性变量在图上同样也是以点集合的形式显示出来。
二、案例分析
2.1 简单对应分析
上面的交互分析表,主要收集了48961人的自杀方式以及自杀者的性别和年龄数据。
其中,性别取值1-male 2-female,年龄取值1-5,分别表示不同年龄段。
首先,把性别字段乘上10加上年龄字段生成新字段sexage,取值是11-15,21-25,然后分别用M/F和年龄组中值代表Sexage字段的变量值标,这样就可以进行简单对应分析了。
分别定义好行列变量以及取值范围。
对应分析中,6×10的列联表(交互表)可以得到行列维度最小值减1的维度,我们看到第一维度Dim1解释了列联表的60.4%,第二维度Dim2解释了列联表的33.0%,说明在两个维度上已经能够说明数据的93.4%。
首先对SPSS分析得到的对应图进行修饰和编辑,在零点增加两条中线。
我们从图上左右可以看出,左边全部是M*,男性,右边F*全部是女性,说明男女有显著差异;同时看横轴中线上方都是年龄大的,下面都是年龄小的,说明年龄有差异。
还可以看出,老的男性比较喜欢HANG,GAS和GUN是年轻男性的偏好;老的女性比较喜欢DAWN,年轻的女性比较偏好POISON。
从中心向任意点连线-向量,例如从中心向GUN做向量,然后让所有的人往这条向量及延长线上作垂线,垂点越靠近向量正向的表示越偏好这种方法。
从图中我们可以看出,希望GUN方法的人依次是M15、M30、M45、M60、M80、F15等等。
依次类推,还可以从中心向任意一种方法作垂线,都可以排出每种方法选择人群的偏好次序,也可以从中心往所有的人作向量,得到每一类人在选择六种方法上的偏好排名。
简单对应分析的优点:
定性变量划分的类别越多,这种方法的优势越明显,揭示行变量类别间与列变量类别间的联系,将类别联系直观地表现在二维图形中(对应图),可以将名义变量或次序变量转变为间距变量。
简单对应分析的缺点:
不能用于相关关系的假设检验,维度要由研究者决定,有时候对应图解释比较困难,对极端值比较敏感。
2.2 多元对应分析
我们假定有个汽车数据集,包括:来源国(1-美国、2-欧洲、3-日本),尺寸(1-大型、2-中型、3-小型),类型(1-家庭、2-运动、3-工作),拥有(1-自有、2-租赁)性别(1-男、2-女),收入来源(1-1份工资来源、2-2份工资来源),婚姻状况(1-已婚、2-已婚有孩子、3-单身、4-单身有孩子);
从数据集看,我们有7个定类变量,如果组合成简单的交叉表是困难的事情,此时采用多重对应分析是恰当的分析方法。
在SPSS分析菜单下选择降维(Data Redaction-数据消减)后选择最优尺度算法,该选项下,根据数据集和数据测量尺度不同有三种不同的高级定类分析算法,主要包括:多重对应分析、分类(非线性)主成分分析、非线性典型相关分析。
从图中我们可以看出:美国车都比较大,家庭型,主要购买者是已婚带孩子的;日本和欧洲车主要是小型、运动的和已婚没有孩子的人购买;特别注意:单身和单身带孩子的往往是租赁汽车,收入单一来源,但这个地区没有车满足这个市场,或许是市场空白。
对应分析的优点:
定性变量划分的类别越多,这种方法的优势越明显;揭示行变量类别间与列变量类别间的联系;将类别联系直观地表现在二维图形中(对应图);可以将名义变量或次序变量转变为间距变量。
对应分析的缺点:
不能用于相关关系的假设检验;维度要由研究者决定;有时候对应图解释比较困难;对极端值比较敏感。