单回路反馈控制系统
- 格式:ppt
- 大小:555.00 KB
- 文档页数:81
调单回路控制系统原理一、过程控制的特点与其它自动控制系统相比,过程控制的主要特点是:1、系统由工业上系列生产的过程检测控制仪表组成。
一个简单的过程控制系统是由控制对象和过程检测控制仪表(包括测量元件,变送器、调节器和调节阀)两部分组成。
如图1:液位控制系统HQ1Q2f(t)x(t)e(t)节p(t调)节被控q(t)y(t)z(t)测量变:调节器的静态放大系数:调节阀的静态放大系数K:被控对象的静态放大系数:变送器的静态放大系数2、被控对象的设备是已知的,对象的型式很多,它们的动态特性是未知的或者是不十分清楚的,但一般具有惯性大,滞后大,而且多数具有非线性特性。
3、控制方案的多样性。
有单变量控制系统、多变量控制系统;有线性系统、有非线性系统、;有模拟量控制系统、有数字量控制系统,等等。
这是其它自动控制系统所不能比拟的。
4、控制过程属慢过程,多半属参量控制。
即需对表征生产过程的温度、流量、压力、液位、成分、等进行控制。
5、在过程控制系统中,其给定值是恒定的(定值控制)或是已知时间的函数(程序控制)。
控制的主要目的是在于如何减少或消除外界扰动对被控量的影响。
工业生产要实现生产过程自动化,首先必须熟悉生产过程,掌握对象特点;同时要熟悉过程参数的主要测量方法,了解仪表性能、特点,根据生产工艺要求和反馈控制理论的分析方法,合理正确地构建过程控制系统;并且通过改变调节仪表的特性参数,使系统运行在最佳状态。
过程控制系统的品质是由组成系统的对象和过程检测仪表各环节的特性和系统的结构所决定的。
二、单回路控制系统原理如图1所示单回路控制系统由对象、测量变送器、调节器、调节阀等环节组成。
由于系统结构简单,投资少,易于调整、投运,又能满足一般生产过程的控制要求,所以应用十分广泛。
单回路控制系统的设计原则同样适用于复杂控制系统的设计,控制方案的设计和调节器整定参数值的确定,是系统设计中的两个重要内容。
如果控制方案设计不正确,仅凭调节器参数的整定是不可能获得较好的控制质量的;反之,如果控制方案设计很好,但是调节器参数整定不合适,也不能使系统运行在最佳状态。
单回路控制系统整定实验报告本文是对单回路控制系统整定实验的总结和分析,主要包括实验目的、实验原理、实验过程、实验结果以及实验分析等方面的内容。
一、实验目的本实验的主要目的是掌握单回路控制系统整定方法,了解控制系统的稳态误差和动态响应特性,提高实际应用控制系统的能力。
二、实验原理单回路控制系统是一种基本的控制系统形式,它由被控对象、传感器、执行机构、控制器和控制信号等组成。
例如,温度控制系统、速度控制系统、压力控制系统等都是单回路控制系统的应用。
在通过控制器使被控对象产生控制输出信号的过程中,存在稳态误差和动态响应特性问题,对其进行整定是控制系统设计中重要的环节。
稳态误差是指控制器输出的控制信号与被控对象实际输出之间的误差。
当被控对象达到稳定状态时,控制器输出的控制信号与被控对象实际输出之间的误差称为稳态误差,在实际控制系统设计中,应尽可能使稳态误差达到最小。
动态响应特性是指控制系统对负载扰动、控制信号变化等外部干扰的响应能力。
在实际应用控制系统中,需要考虑控制系统的动态响应特性,以此保证系统稳定性和控制效果。
控制系统的整定就是调整控制器参数,使系统的稳态误差和动态响应特性达到最优状态,从而获得最佳控制效果。
三、实验过程本实验是基于MATLAB/Simulink软件进行的模拟实验。
实验系统模型:本实验模拟一个简单的单回路负反馈控制系统,其模型如图所示。
其中,控制器采用比例积分控制器(PI控制器),其控制方程为:$$u(t) = K_p e(t) + K_i \int_0^t e(τ) \, dτ$$传感器和被控对象之间的关系用传递函数表示为:$$G(s) = \frac{1}{s(1+0.5s)}$$控制器的参数Kp和Ki需进行整定。
实验过程中,先通过手动调节的方式获得基本的参数范围,再通过曲线法和频率法对其进行精细调整。
曲线法:首先设置一个阶跃参考信号,观察系统的单位阶跃响应曲线,根据曲线特征调整控制器参数。
过程控制课程设计报告-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN过程控制与自动化仪表课程设计报告实验名称:调节规律对单容液位控制系统的影响专业:测控技术与仪器班级:组员:指导老师:目录目录 (3)一、设计目的 (4)二、设计原理 (4)三、设计过程 (5)四、设计数据 (6)五、设计数据分析: (9)六、设计总结 (9)一、设计目的1、通过实验熟悉过程控课程实验方法以及单回路反馈控制系统的组成和工作原理。
2、研究系统分别用P、PI和PID调节器时的阶跃响应。
3定性地分析P、PI和PID调节器的参数变化对系统性能的影响。
二、设计原理单容液位控制系统原理单容液位控制系统是一个单回路反馈控制系统,它的控制任务是使水箱液位等于给定值所要求的高度;并减小或消除来自系统内部或外部扰动的影响。
单回路控制系统由于结构简单、投资省、操作方便、且能满足一般生产过程的要求,故它在过程控制中得到广泛地应用。
当一个单回路系统设计安装就绪之后,控制质量的好坏与控制器参数的选择有着很大的关系。
合适的控制参数,可以带来满意的控制效果。
反之,控制器参数选择得不合适,则会导致控制质量变坏,甚至会使系统不能正常工作。
因此,当一个单回路系统组成以后,如何整定好控制器的参数是一个很重要的实际问题。
PID控制调节在工程实际中,应用最为广泛的调节器控制规律为比例积分微分控制,简称PID控制,又称PID调节。
其结构简单、稳定性好、工作可靠、调整方便而成为工业控制主要和可靠的技术工具。
当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它设计技术难以使用,系统的控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。
比例调节(P) 一种简单控制方式,,其输入与输出偏差信号的积分成比例关系。
系统一旦出现了偏差,比例环节就立即进行反应来减少偏差。
比例调节的作用设置的越大,调节的速度就越快;但比例作用过大时,会使系统的稳定性下降。
过程控制实验报告学院:学号:姓名:实验指导老师:日期:一、实验要求与简介 (3)二、控制原理 (4)三、实验设备详细介绍 (6)四.实验过程调试 (15)五.单回路控制系统 (16)六.课程总结 (16)一.实验要求与简介要求:设计液位控制系统,利用实验室过程控制设备构建单回路PID液位控制系统。
了解设备的结构框架,学习对象模型建立的方法和技术、PID参数整定技术、自动化仪表选择相关技能。
根据实验条件和系统配置确定实验过程性能指标。
综合考虑抗干扰问题、系统稳定性问题、动态性能、稳态偏差等,对实验结果进行分析。
实验目标如下:A.了解实验设备,能够根据实物画出系统框图;B.了解和掌握P909自动化仪表的应用场合和使用方法;C.熟悉PID参数整定技术,在实验中正确运用,分析参数整定的作用和效果;D.熟悉液位控制系统中各种自动化测量点、调节阀的相关技术参数;E.实现单回路液位控制,有基本的系统调节能力。
液位的自动控制在工业生产领域应用的非常普遍,就控制系统本身而言,其含有压力传感器、计算机与采集板组成的控制器、执行器(水泵)、控制对象(水箱)等。
本次实验的主要任务是了解一个完整的液位系统的组成、构成液位控制系统的各个部件的工作原理及连接方式、工业上离散控制系统的通信标准、熟悉p909仪表的操作并实现单回路液位控制,有基本的液位调节能力。
液位系统结构图:整个系统主要有水泵、电磁阀、传感器、水箱组成。
由水泵供水,电动阀调节流速(实验系统中还含有手动调节阀)通过两个入水口进入水箱,在通过一个出水口进入排水箱,之所以用两个入水口是考虑到进水会带来液位的波动从而给控制器的控制带来困难所以通过两个入口从底部进水,但虽然减少了液位波动但也造成了一些负面影响:入水管中的压强会随着液位的上升而变大,在实际成产中可能会导致事故。
安置在系统中的传感器将系统的状态(温度,水箱液位,入水管压强)通过电流形式上传给上位机,通过控制器的计算再输出电流控制执行器,如:电动阀的开度,加热器等从而达到系统的反馈控制。
一、单回路控制系统1. 画出图示系统的方框图:2. 一个简单控制系统总的开环增益(放大系数)应是正值还是负值?仪表行业定义的控制器增益与控制系统中定义的控制器的增益在符号上有什么关系?为什么?3. 试确定习题1中控制器的正反作用。
若加热变成冷却,且控制阀由气开变为气关,控制器的正反作用是否需要4. 什么是对象的控制通道和扰动通道?若它们可用一阶加时滞环节来近似,试述K P 、K f 、τp 、τf 对控制系统质量的影响。
5. 已知广义对象的传递函数为1)S (T e K P SτP P +-,若P P T τ的比值一定时,T P 大小对控制质量有什么影响?为什么?6. 一个简单控制系统的变送器量程变化后,对控制质量有什么影响?举例说明。
7. 试述控制阀流量特性的选择原则,并举例加以说明。
8. 对图示控制系统采用线性控制阀。
当负荷G 增加后,系统的响应趋于非周期函数,而G 减少时,系统响应震9. 一个简单控制系统中,控制阀口径变化后,对系统质量有何影响?10. 已知蒸汽加热器如图所示,该系统热量平衡式为:G 1C 1(θ0-θi )=G 2λ(λ为蒸汽的冷凝潜热)。
(1)主要扰动为θi 时,选择控制阀的流量特性。
(2)主要扰动为G 1时,量特性。
(3特性。
11.作用后,对系统质量有什么影响?为了保持同样的衰减比,比例度δ要增加,为什么?12. 试写出正微分和反微分单元的传递函数和微分方程;画出它们的阶跃响应,并简述它们的应用场合。
13. 什么叫积分饱和?产生积分饱和的条件是什么?14. 采用响应曲线法整定控制器参数,选用单比例控制时,δ=K P τP /T P ×100%,即δ∝K P ,δ∝τP /T P ,为什么?而选择比例积分控制时,δ=1.44K P τP /T P ×100%,即比例度增加,为什么?15. 采用临界比例度法整定控制器参数,在单比例控制时,δ=2δK (临界比例度),为什么?16. 在一个简单控制系统中,若对象的传递函数为)1T )(1S 1)(T S (T K W P V P +-+S ,进行控制器参数整定时,应注意什么? 17. 已知广义对象的传递函数为1)S (T e K P SτP P +-,采用比例控制,当系统达到稳定边缘时,K C =K CK ,临界周期为T K 。
单回路控制系统实验报告实验名称:单回路控制系统实验实验目的:掌握单回路控制系统的基本原理和调节方法,熟悉控制系统的建模、分析和设计过程。
实验设备:计算机、控制系统实验仪器、数据采集卡、传感器、执行器等。
实验原理:单回路控制系统是由闭环反馈控制器、过程装置和传感器组成的反馈控制系统。
其基本原理是根据反馈信号来调节输出信号,使得系统输出达到期望值或稳定在某个给定值上。
单回路控制系统可用于控制温度、压力、速度等各种物理量。
实验步骤:1. 搭建单回路控制系统:将闭环反馈控制器、过程装置和传感器按照实验要求连接起来,确保各个设备之间的信号传输正常。
2. 设定控制目标:根据实验需求,设定控制系统的目标值,如温度控制系统中的目标温度。
3. 进行系统建模:将控制系统中的各个元件抽象为数学模型,如控制器的传递函数、过程装置的传递函数等。
4. 参数调整:选择合适的控制器参数,如比例增益、积分时间和微分时间,并通过试控实验进行参数调整。
5. 进行闭环控制实验:将控制系统闭合,即将输出信号作为反馈信号输入到控制器中,通过控制器输出调节过程装置的输入信号,控制系统达到期望值或稳定在给定值上。
6. 实验数据采集与分析:利用数据采集卡采集实验过程中的各个信号数据,并进行数据分析,如误差分析、系统响应时间等。
7. 评价控制效果:根据实验数据分析结果,评价控制系统的性能,并对控制系统进行改进或优化。
实验结果:根据实验数据采集与分析结果,可以得到控制系统的性能指标,如超调量、调节时间等。
根据实验结果,评价控制系统的性能,并对控制器参数进行调整和优化,以达到更好的控制效果。
实验总结:通过本实验,掌握了单回路控制系统的基本原理和调节方法,了解了控制系统的建模、分析和设计过程。
实验中还发现了控制系统中可能存在的问题,并进行相应的改进措施。
在今后的工作中,将进一步研究和应用控制系统技术,提高控制系统的性能和稳定性。