高三数学-2018年高考重庆卷文科数学试题及答案 精品
- 格式:doc
- 大小:652.68 KB
- 文档页数:9
2018年高考数学重庆文科学生答题情况汇集一、文科填空题13题:参考答案:22y x =-典型错误:(1)方程不写等号,例如22x y --;(2)加减号误写,例如220x y +-=,220x y -+=;(3)210x y --=;(4)22y x =-。
14题:参考答案:9此题普遍得分率较高,典型错误:(1)将9误写为1、7;(2)8。
15题:参考答案:32典型错误:(1)23;(2)32-;(3)32π;(4)51tan 45π+。
16题:参考答案:8π此题普遍得分率较低,典型错误:(1)8;(2)323π;(3)83π;(4)8π的书写太潦草,不易辨识,例如:2820。
二、文科17题(一)典型解法第一问:法1:311323152,72(1)2927n S a d d a n n a ⨯⎧=+=-⎪⇒==-+-=-⎨⎪=-⎩法2:由等差数列的性质,322315,5S a a ==-⇒=-,由172a d =-⇒=,12(1)(2)29n a a n d a n d n =+-=+-=-法3:设数列前三项分别为222,,a d a a d -+,由322315,5S a a ==-⇒=-。
第二问:(1)法1:21()82n n n a a S n n +==-;法2:21(1)82n n n S na d n n +=+=-;法3:21922929n S n =⨯-+⨯-++-2(12)9n n =++-(1)9n n n =+-28n n =-。
(2)法1:228(4)16n S n n n =-=--,所以当4n =时,min ()16n S =-;法2:由29n a n =-知{}n a 识递增数列,由1079022n n a n a +≤⎧⇒<≤⎨>⎩,取4n =,min 4()16n S S ∴==-;法3:设2()8f x x x =-,则'()28f x x =-,由'()04f x x =⇒=知()f x 在(,0)-∞上递减,在(4,)+∞上递增,min 4()16n S S ∴==-。
2018年普通高等学校招生全国统一考试数学试卷(重庆卷)(文史类)注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮檫擦干净后,在选涂其他答案标号。
3.答非选择题时,必须用0.5mm 黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试卷上答题无效。
5.考试结束后,将试题卷和答题卡一并交回。
参考公式:如果事件A B 、互斥,那么()()()P A B P A P B +=+ 如果事件A B 、相互独立,那么()()()P A B P A P B =如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中恰好发生k 次的概率:()(1)k k n kn n P k C p p -=- 一.选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个备选项中,只有一项是符合题目要求的。
(1)已知集合{1,2,3,4,5,6,7}U =,{2,4,5,7}A =,{3,4,5}B =,则()()A B =U U 痧(A ){1,6} (B ){4,5} (C ){2,3,4,5,7} (D ){1,2,3,6,7} (2)在等差数列{}n a 中,若0n a >且3764a a =,5a 的值为 (A )2 (B )4 (C )6 (D )8(3)以点(2,-1)为圆心且与直线3450x y -+=相切的圆的方程为 (A )22(2)(1)3x y -++= (B )22(2)(1)3x y ++-= (C )22(2)(1)9x y -++= (D )22(2)(1)3x y ++-=(4)若P 是平面α外一点,则下列命题正确的是(A )过P 只能作一条直线与平面α相交 (B )过P 可作无数条直线与平面α垂直 (C )过P 只能作一条直线与平面α平行 (D )过P 可作无数条直线与平面α平行 (5)()523x -的展开式中2x 的系数为(A )-2160 (B )-1180 (C )1180 (D )2160(6)设函数()y f x =的反函数为1()y f x -=,且(21)y f x =-的图像过点1(,1)2,则1()y f x -=的图像必过(A )1(,1)2 (B )1(1,)2(C )(1,0) (D )(0,1)(7)某地区有300家商店,其中大型商店有30家,中型商店有75家,小型商店有195家。
重庆市高三4月调研测试(二诊)数学文试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{1,0,1,2,3}A =-,2{|30}B x x x =->,则()R AC B =( )A . {1}-B .{0,1,2}C .{1,2,3}D .{0,1,2,3}2.若复数z 满足2(1)1z i i +=-,其中i 为虚数单位,则z 在复平面内所对应的点位于( ) A . 第一象限 B .第二象限 C .第三象限 D .第四象限 3.已知向量(,1)a x =-,(1,3)b =,若a b ⊥,则||a =( ) ABC .2D . 44.在平面直角坐标系xOy 中,不等式组130x y x x y ≥⎧⎪≥⎨⎪+-≤⎩所表示的平面区域的面积为( )A .29 B .14 C . 13 D .125. 《张丘建算经》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女不善织,日减功迟,初日织五尺,末日织一尺,今共织九十尺,问织几日?”,已知“日减功迟”的具体含义是每天比前一天少织同样多的布,则此问题的答案是( )A .10日B . 20日C . 30日D .40日6. 设直线0x y a --=与圆224x y +=相交于,A B 两点,O 为坐标原点,若AOB ∆为等边三角形,则实数a 的值为( )A.. C . 3± D .9±7. 方程22123x y m m +=-+表示双曲线的一个充分不必要条件是( ) A .30m -<< B .32m -<< C . 34m -<< D .13m -<< 8. 执行如图所示的程序框图,若输出的结果为3,则输入的数不可能是( )A .15B .18C . 19D .209. 如图1所示,是一个棱长为2的正方体被削去一个角后所得到的几何体的直观图,其中11DD =,12AB BC AA ===,若此几何体的俯视图如图2所示,则可以作为其正视图的是( )A .B .C .D .10. 已知函数2sin()y x ωϕ=+(0,0)ωϕπ><<的部分图象如图所示,则ϕ=( )A .6πB .4πC .3πD .2π11. 设F 为双曲线C :22221(0,0)x y a b a b-=>>的右焦点,过坐标原点的直线依次与双曲线C 的左、右支交于点,P Q ,若||2||PQ QF =,60PQF ∠=,则该双曲线的离心率为( )A B .1+. 2 D .4+ 12.已知函数2()(3)xf x x e =-,设关于x 的方程2212()()0()f x mf x m R e --=∈有n 个不同的实数解,则n 的所有可能的值为( )A . 3B . 1或3C . 4或6D .3或4或6第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若关于x 的不等式(2)()0a b x a b -++>的解集为{|3}x x >-,则ba= . 14.设ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若ABC ∆,则C = .15. 甲、乙两组数据的茎叶图如图所示,其中m 为小于10的自然数,已知甲组数据的中位数大于乙组数据的中位数,则甲组数据的平均数也大于乙组数据的平均数的概率为 .16. 设函数22log (),12()142,1333x x f x x x x ⎧-≤-⎪⎪=⎨⎪-++>-⎪⎩,若()f x 在区间[,4]m 上的值域为[1,2]-,则实数m 的取值范围为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知等差数列{}n a 的前n 项和为n S ,49a =,315S =. (1)求n S ; (2)设数列1{}nS 的前n 项和为n T ,证明:34n T <.18. “微信运动”已成为当下热门的健身方式,小王的微信朋友圈内也有大量好友参与了“微信运动”,他随机选取了其中的40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下:(1)若采用样本估计总体的方式,试估计小王的所有微信好友中每日走路步数超过5000步的概率; (2)已知某人一天的走路步数超过8000步被系统评定“积极型”,否则为“懈怠型”,根据题意完成下面的22⨯列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关?附:22()()()()()n ad bc k a b c d a c b d -=++++,20()P K k ≥ 0.100.05 0.025 0.010 0k2.7063.8415.0246.63519. 如图,矩形ABCD 中,AB =,AD =,M 为DC 的中点,将DAM ∆沿AM 折到'D AM∆的位置,'AD BM ⊥.(1)求证:平面'D AM ⊥平面ABCM ;(2)若E 为'D B 的中点,求三棱锥'A D EM -的体积.20. 已知椭圆E :22221(0)x y a b a b+=>>的左顶点为A ,右焦点为(1,0)F ,过点A 且斜率为1的直线交椭圆E 于另一点B ,交y 轴于点C ,6AB BC =.(1)求椭圆E 的方程;(2)过点F 作直线l 与椭圆E 交于,M N 两点,连接MO (O 为坐标原点)并延长交椭圆E 于点Q ,求MNQ ∆面积的最大值及取最大值时直线l 的方程.21. 已知函数2ln ln 1()x x f x x ++=,2()x x g x e=.(1)分别求函数()f x 与()g x 在区间(0,)e 上的极值; (2)求证:对任意0x >,()()f x g x >.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l 的参数方程为1cos 1sin 2x t y t αα=-+⎧⎪⎨=+⎪⎩(t 为参数),以坐标原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为22244sin cos ρθθ=+. (1)写出曲线C 的直角坐标方程;(2)已知点P 的直角坐标为1(1,)2-,直线l 与曲线C 相交于不同的两点,A B ,求||||PA PB 的取值范围. 23.选修4-5:不等式选讲已知函数()|||3|f x x a x a =-+-. (1)若()f x 的最小值为2,求a 的值;(2)若对x R ∀∈,[1,1]a ∃∈-,使得不等式2||()0m m f x --<成立,求实数m 的取值范围.试卷答案一、选择题 1~6 DCCBBC7~12 AAABBB第(11)题解析:︒=∠=60|,|2||PQF QF PQ ,︒=∠∴90PFQ ,设双曲线的左焦点为1F ,连接Q F P F 11,,由对称性可知,PFQ F 1为矩形,且||3|||,|2||11QF QF QF F F ==,故13132||||||2211+=-=-==QF QF F F a c e .第(12)题解析:xx x x f +-='e )3)(1()(,)(x f ∴在)3,(--∞和),1(+∞上单增,)1,3(-上单减,又当-∞→x 时0)(→x f ,+∞→x 时+∞→)(x f ,故)(x f 的图象大致为:令t x f =)(,则方程0e 1222=--mt t 必有两根21,t t )(21t t <且221e 12-=t t , 当e 21-=t 时恰有32e 6-=t ,此时1)(t x f =有1个根,2)(t x f =有2个根; 当e 21-<t 时必有32e 60-<<t ,此时1)(t x f =无根,2)(t x f =有3个根; 当0e 21<<-t 时必有32e 6->t ,此时1)(t x f =有2个根,2)(t x f =有1个根; 综上,对任意R m ∈,方程均有3个根.二、填空题 (13)45(14)︒30(15)53 (16)]1,8[--第(15)题解析:由甲的中位数大于乙的中位数知,4,3,2,1,0=m ,又由甲的平均数大于乙的平均数知,3<m 即2,1,0=m ,故所求概率为53.第(16)题解析:函数)(x f 的图象如图所示,结合图象易得, 当]1,8[--∈m 时,]2,1[)(-∈x f . 三、解答题(17)解:(Ⅰ)5153223=⇒==a a S ,2224=-=∴a a d , 12+=∴n a n ,)2(2123+=⋅++=n n n n S n ; (Ⅱ))21151314121311(21)2(1421311+-++-+-+-=+++⨯+⨯=n n n n T n 43)2111211(21<+-+-+=n n .(18)解:(Ⅰ)由题知,40人中该日走路步数超过5000步的有34人,频率为3440,所以估计他的所有微信好友中每日走路步数超过5000步的概率为1720; (Ⅱ)841.3114018222020)861214(402<=⨯⨯⨯⨯-⨯⨯=K ,故没有95%以上的把握认为二者有关.(19)解:(Ⅰ)由题知,在矩形ABCD 中,︒=∠=∠45BMC AMD ,︒=∠∴90AMB ,又BM A D ⊥',⊥∴BM 面AM D ',∴面⊥ABCM 面AM D '; (Ⅱ)1111212663A D EM E AD MB AD M D AM V V V BM S ''''---∆===⋅⋅=⋅⋅=.(20)解:(Ⅰ)由题知),0(),0,(a C a A -,故)76,7(aa B -,代入椭圆E 的方程得1493649122=+b a ,又122=-b a ,故3,422==b a ,椭圆134:22=+y x E ;(Ⅱ)由题知,直线l 不与x 轴重合,故可设1:+=my x l ,由⎪⎩⎪⎨⎧=++=134122y x my x 得096)43(22=-++my y m , 设),(),,(2211y x N y x M ,则439,436221221+-=+-=+m y y m m y y ,由Q 与M 关于原点对称知, 431124)(||2222122121++=-+=-==∆∆m m y y y y y y S S MONMNQ 11131222+++=m m ,211m +≥,4∴,即3MNQ S ∆≤,当且仅当0=m 时等号成立,MNQ ∆∴面积的最大值为3,此时直线l 的方程为1=x(21)解:(Ⅰ)2ln (ln 1)()x x f x x--'=,()01e f x x '>⇒<<, 故()f x 在(0,1)和(e,)+∞上递减,在(1,e)上递增,)(x f ∴在e),0(上有极小值1)1(=f ,无极大值;xx x x g e)2()(-=',200)(<<⇒>'x x g , 故)(x g 在)2,0(上递增,在),2(+∞上递减,)(x g ∴在e),0(上有极大值2e4)2(=g ,无极小值; (Ⅱ)由(Ⅰ)知,当e),0(∈x 时,()1f x ≥,24()1eg x <≤,故)()(x g x f >; 当)[e,+∞∈x 时,2ln ln 11113x x ++++=≥,令x x x h e )(3=,则xx x x h e)3()(2-=', 故)(x h 在]3[e,上递增,在),3(+∞上递减,332727()(3)3e 2.7h x h ∴=<<≤,)(1ln ln 2x h x x >++; 综上,对任意0>x ,)()(x g x f >.(22)解:(Ⅰ)14444cos sin 422222222=+⇒=+⇒=+y x x y θρθρ;(Ⅱ)因为点P 在椭圆C 的内部,故l 与C 恒有两个交点,即R ∈α,将直线l 的参数方程与椭圆C 的直角坐标方程联立,得4)sin 21(4)cos 1(22=+++-ααt t ,整理得 02)cos 2sin 4()sin 31(22=--++t t ααα,则]2,21[sin 312||||2∈+=⋅αPB PA . (23)解:(Ⅰ)|||3||()(3)||2|x a x a x a x a a -+----=≥,当且仅当x 取介于a 和a 3之间的数时,等号成立,故)(x f 的最小值为||2a ,1±=∴a ;(Ⅱ)由(Ⅰ)知)(x f 的最小值为||2a ,故]1,1[-∈∃a ,使||2||2a m m <-成立,即 2||2<-m m ,0)2|)(|1|(|<-+∴m m ,22<<-∴m .。
2018年高三数学试卷(文科)2018年高考数学试卷(文科)一、选择题(共10小题,每小题5分,满分50分)1.(5分)设全集U={x ∈R|x >0},函数f (x )=√lnx−1的定义域为A ,则∁U A 为( )A .(0,e]B .(0,e )C .(e ,+∞)D .[e ,+∞)2.(5分)设复数z 满足(1+i )z=﹣2i ,i 为虚数单位,则z=( )A .﹣1+iB .﹣1﹣iC .1+iD .1﹣i3.(5分)已知A (1,﹣2),B (4,2),则与AB →反方向的单位向量为( )A .(﹣35,45)B .(35,﹣45)C .(﹣35,﹣45)D .(35,45)4.(5分)若m=0.52,n=20.5,p=log 20.5,则( )A .n >m >pB .n >p >mC .m >n >pD .p >n >m5.(5分)执行如图所示的程序框图,输出n 的值为( )A .19B .20C .21D .226.(5分)已知p :x ≥k ,q :(x ﹣1)(x+2)>0,若p 是q 的充分不必要条件,则实数k 的取值范围是( )A .(﹣∞,﹣2)B .[﹣2,+∞)C .(1,+∞)D .[1,+∞)7.(5分)一个总体中有600个个体,随机编号为001,002,…,600,利用系统抽样方法抽取容量为24的一个样本,总体分组后在第一组随机抽得的编号为006,则在编号为051~125之间抽得的编号为( )A .056,080,104B .054,078,102C .054,079,104D .056,081,1068.(5分)若直线x=54π和x=94π是函数y=sin (ωx +φ)(ω>0)图象的两条相邻对称轴,则φ的一个可能取值为( )A.3π4B.π2C.π3D.π49.(5分)如果实数x,y满足约束条件所得学生的及格情况统计如表:物理及格物理不及格合计数学及格28836数学不及格162036合计442872(1)根据表中数据,判断是否是99%的把握认为“数学及格与物理及格有关”;(2)从抽取的物理不及格的学生中按数学及格与不及格的比例,随机抽取7人,再从抽取的7人中随机抽取2人进行成绩分析,求至少有一名数学及格的学生概率.附:x2=n(n11n22−n21n12)2 n1⋅n2⋅n+1⋅n+2.P(X2≥k)0.1500.1000.0500.010k 2.072 2.706 3.841 6.63518.(12分)在四棱锥P﹣ABCD中,PC⊥底面ABCD,M,N分别是PD,PA的中点,AC⊥AD,∠ACD=∠ACB=60°,PC=AC.(1)求证:PA⊥平面CMN;(2)求证:AM∥平面PBC.19.(12分)已知等差数列{an }的首项a1=2,前n项和为Sn,等比数列{bn}的首项b1=1,且a2=b3,S3=6b2,n∈N*.(1)求数列{an }和{bn}的通项公式;(2)数列{cn }满足cn=bn+(﹣1)n an,记数列{cn}的前n项和为Tn,求Tn.20.(13分)已知函数f(x)=e x﹣1﹣axx−1,a∈R.(1)若函数g(x)=(x﹣1)f(x)在(0,1)上有且只有一个极值点,求a的范围;(2)当a≤﹣1时,证明:f(x)<0对任意x∈(0,1)成立.21.(14分)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是√32,点P (1,√32)在椭圆E 上.(1)求椭圆E 的方程;(2)过点P 且斜率为k 的直线l 交椭圆E 于点Q (x Q ,y Q )(点Q 异于点P ),若0<x Q <1,求直线l 斜率k 的取值范围;(3)若以点P 为圆心作n 个圆P i (i=1,2,…,n ),设圆P i 交x 轴于点A i 、B i ,且直线PA i 、PB i 分别与椭圆E 交于M i 、N i (M i 、N i 皆异于点P ),证明:M 1N 1∥M 2N 2∥…∥M n N n .2018年高考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)设全集U={x ∈R|x >0},函数f (x )=√lnx−1的定义域为A ,则∁U A 为( )A .(0,e]B .(0,e )C .(e ,+∞)D .[e ,+∞)【分析】先求出集合A ,由此能求出C U A .【解答】解:∵全集U={x ∈R|x >0},函数f (x )=√lnx−1的定义域为A ,∴A={x|x >e},∴∁U A={x|0<x ≤e}=(0,e].故选:A .【点评】本题考查补集的求法,是基础题,解题时要认真审题,注意补集定义的合理运用.2.(5分)设复数z 满足(1+i )z=﹣2i ,i 为虚数单位,则z=( )A .﹣1+iB .﹣1﹣iC .1+iD .1﹣i【分析】利用复数的运算法则、共轭复数的定义即可得出.【解答】解:(1+i )z=﹣2i ,则z=−2i 1+i =−2i(1−i)(1+i)(1−i)=﹣i ﹣1. 故选:B .【点评】本题考查了复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题.3.(5分)已知A (1,﹣2),B (4,2),则与AB →反方向的单位向量为( )A .(﹣35,45)B .(35,﹣45)C .(﹣35,﹣45)D .(35,45)【分析】与AB →反方向的单位向量=﹣AB→|AB →|,即可得出.【解答】解:AB →=(3,4).∴与AB →反方向的单位向量=﹣AB→|AB →|=﹣=(−35,−45).故选:C .【点评】本题考查了向量的坐标运算性质、数量积运算性质,考查了推理能力与计算能力,属于基础题.4.(5分)若m=0.52,n=20.5,p=log 20.5,则( ) A .n >m >p B .n >p >m C .m >n >p D .p >n >m【分析】利用指数函数对数函数的运算性质即可得出.【解答】解:m=0.52=14,n=20.5=√2>1,p=log 20.5=﹣1,则n >m >p .故选:A .【点评】本题考查了指数函数对数函数的运算性质,考查了推理能力与计算能力,属于基础题.5.(5分)执行如图所示的程序框图,输出n 的值为( )A .19B .20C .21D .22【分析】模拟执行如图所示的程序框图知该程序的功能是计算S=1+2+3+…+n ≥210时n 的最小自然数值,求出即可. 【解答】解:模拟执行如图所示的程序框图知,该程序的功能是计算S=1+2+3+…+n ≥210时n 的最小自然数值,由S=n(n+1)2≥210,解得n ≥20,∴输出n的值为20.故选:B.【点评】本题考查了程序框图的应用问题,是基础题.6.(5分)已知p:x≥k,q:(x﹣1)(x+2)>0,若p是q的充分不必要条件,则实数k的取值范围是()A.(﹣∞,﹣2)B.[﹣2,+∞)C.(1,+∞)D.[1,+∞)【分析】利用不等式的解法、充分不必要条件的意义即可得出.【解答】解:q:(x﹣1)(x+2)>0,解得x>1或x<﹣2.又p:x≥k,p是q的充分不必要条件,则实数k>1.故选:C.【点评】本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.7.(5分)一个总体中有600个个体,随机编号为001,002,…,600,利用系统抽样方法抽取容量为24的一个样本,总体分组后在第一组随机抽得的编号为006,则在编号为051~125之间抽得的编号为()A.056,080,104 B.054,078,102 C.054,079,104 D.056,081,106【分析】根据系统抽样的方法的要求,先随机抽取第一数,再确定间隔.【解答】解:依题意可知,在随机抽样中,首次抽到006号,以后每隔60024=25个号抽到一个人,则以6为首项,25为公差的等差数列,即所抽取的编号为6,31,56,81,106,故选:D.【点评】本题主要考查系统抽样方法的应用,解题时要认真审题,是基础题.8.(5分)若直线x=54π和x=94π是函数y=sin(ωx+φ)(ω>0)图象的两条相邻对称轴,则φ的一个可能取值为()A.3π4B.π2C.π3D.π4【分析】根据直线x=54π和x=94π是函数y=sin (ωx +φ)(ω>0)图象的两条相邻对称轴,可得周期T ,利用x=54π时,函数y 取得最大值,即可求出φ的取值.【解答】解:由题意,函数y 的周期T=2×(94π−54π)=2π.∴函数y=sin (x+φ).当x=54π时,函数y 取得最大值或者最小值,即sin (5π4+φ)=±1,可得:5π4+φ=π2+kπ.∴φ=kπ−3π4,k ∈Z .当k=1时,可得φ=π4.故选:D .【点评】本题考查了正弦型三角函数的图象即性质的运用,属于基础题.9.(5分)如果实数x ,y 满足约束条件{3x +y −6≤0x −y −2≤0x ≥1,则z=y+1x+1的最大值为( )A .13B .12C .2D .3【分析】作出不等式组对应的平面区域,z=y+1x+1的几何意义是区域内的点到定点(﹣1,﹣1)的斜率,利用数形结合进行求解即可.【解答】解:作出约束条件{3x +y −6≤0x −y −2≤0x ≥1所对应的可行域(如图阴影),z=y+1x+1的几何意义是区域内的点到定点P (﹣1,﹣1)的斜率,由图象知可知PA 的斜率最大,由{x =13x +y −6=0,得A (1,3),则z=3+11+1=2,即z 的最大值为2,故选:C .【点评】本题考查简单线性规划,涉及直线的斜率公式,准确作图是解决问题的关键,属中档题.10.(5分)函数f(x)={−x−1,x<121−x,x≥1的图象与函数g(x)=log2(x+a)(a∈R)的图象恰有一个交点,则实数a的取值范围是()A.a>1 B.a≤﹣34C.a≥1或a<﹣34D.a>1或a≤﹣34【分析】作出f(x)的图象和g(x)的图象,它们恰有一个交点,求出g(x)的恒过定点坐标,数形结合可得答案.【解答】解:函数f(x)={−x−1,x<121−x,x≥1与函数g(x)的图象它们恰有一个交点,f(x)图象过点(1,1)和(1,﹣2),而,g(x)的图象恒过定点坐标为(1﹣a,0).从图象不难看出:到g(x)过(1,1)和(1,﹣2),它们恰有一个交点,当g(x)过(1,1)时,可得a=1,恒过定点坐标为(0,0),往左走图象只有一个交点.当g(x)过(1,﹣2)时,可得a=−34,恒过定点坐标为(74,0),往右走图象只有一个交点.∴a>1或a≤﹣3 4.故选:D.【点评】本题考查了分段函数画法和对数函数性质的运用.数形结合的思想.属于中档题.二、填空题(共5小题,每小题5分,满分25分)11.(5分)已知直线l:x+y﹣4=0与坐标轴交于A、B两点,O为坐标原点,则经过O、A、B 三点的圆的标准方程为(x﹣2)2+(y﹣2)2=8 .【分析】根据题意,求出直线与坐标轴的交点坐标,分析可得经过O、A、B三点的圆的直径为|AB|,圆心为AB的中点,求出圆的半径与圆心,代入圆的标准方程即可得答案.【解答】解:根据题意,直线l:x+y﹣4=0与坐标轴交于(4,0)、(0,4)两点,即A、B的坐标为(4,0)、(0,4),经过O、A、B三点的圆,即△AOB的外接圆,而△AOB为等腰直角三角形,则其外接圆的直径为|AB|,圆心为AB的中点,则有2r=|AB|=4√2,即r=2√2,圆心坐标为(2,2),其该圆的标准方程为(x﹣2)2+(y﹣2)2=8,故答案为:(x﹣2)2+(y﹣2)2=8.【点评】本题考查圆的标准方程,注意直角三角形的外接圆的性质.12.(5分)某几何体三视图如图所示,则该几何体的体积为163.【分析】由三视图可知:该几何体为一个正方体去掉一个倒立的四棱锥.【解答】解:由三视图可知:该几何体为一个正方体去掉一个倒立的四棱锥.∴该几何体的体积V=23−13×22×2=163.故答案为:16 3.【点评】本题考查了正方体与四棱锥的三视图、体积计算公式,考查了推理能力与计算能力,属于基础题.13.(5分)在[0,a](a>0)上随机抽取一个实数x,若x满足x−2x+1<0的概率为12,则实数a的值为 4 .【分析】求解分式不等式得到x的范围,再由测度比为测度比得答案.【解答】解:由x−2x+1<0,得﹣1<x<2.又x≥0,∴0≤x<2.∴满足0≤x<2的概率为2a=12,得a=4.故答案为:4.【点评】本题考查几何概型,考查了分式不等式的解法,是基础的计算题.14.(5分)已知抛物线y2=2px(p>0)上的一点M(1,t)(t>0)到焦点的距离为5,双曲线x2a2﹣y29=1(a>0)的左顶点为A,若双曲线的一条渐近线与直线AM平行,则实数a的值为2 .【分析】设M点到抛物线准线的距离为d,由已知可得p值,由双曲线的一条渐近线与直线AM平行,则41+a=3a,解得实数a的值.【解答】解:设M点到抛物线准线的距离为d,则丨MF丨=d=1+p2=5,则p=8,所以抛物线方程为y2=16x,M的坐标为(1,4);又双曲线的左顶点为A(﹣a,0),渐近线为y=±3 a ,直线AM的斜率k=4−01+a =41+a,由41+a=3a,解得a=3.∴a的值为3,故答案为:3.【点评】本题考查的知识点是抛物线的简单性质,双曲线的简单性质,是抛物线与双曲线的综合应用,属于中档题.15.(5分)已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)+g(x)=2x,若存在x0∈[1,2]使得等式af(x)+g(2x)=0成立,则实数a的取值范围是[−154,−32] .【分析】根据函数奇偶性,解出奇函数g(x)和偶函数f(x)的表达式,将等式af(x)+g(2x)=0,令t=2x﹣2﹣x,则t>0,通过变形可得a=t+2t,讨论出右边在x∈[1,2]的最大值,可以得出实数a的取值范围.【解答】解:解:∵g(x)为定义在R上的奇函数,f(x)为定义在R上的偶函数,∴f(﹣x)=f(x),g(﹣x)=﹣g(x),又∵由f(x)+g(x)=2x,结合f(﹣x)+g(﹣x)=f(x)﹣g(x)=2﹣x,∴f(x)=12(2x+2﹣x),g(x)=12(2x﹣2﹣x).等式af(x)+g(2x)=0,化简为a2(2x+2﹣x)+12(22x﹣2﹣2x)=0.∴a=2﹣x﹣2x∵x ∈[1,2],∴32≤2x ﹣2﹣x≤154,则实数a 的取值范围是[﹣154,﹣32],故答案为:[﹣154,﹣32].【点评】题以指数型函数为载体,考查了函数求表达式以及不等式恒成立等知识点,属于难题.合理地利用函数的基本性质,再结合换元法和基本不等式的技巧,是解决本题的关键.属于中档题三、解答题(共6小题,满分75分)16.(12分)已知向量m →=(sinx ,﹣1),n →=(cosx ,32),函数f (x )=(m →+n →)•m →.(1)求函数f (x )的单调递增区间;(2)将函数f (x )的图象向左平移π8个单位得到函数g (x )的图象,在△ABC 中,角A ,B ,C 所对边分别a ,b ,c ,若a=3,g (A 2)=√66,sinB=cosA ,求b 的值.【分析】(1)运用向量的加减运算和数量积的坐标表示,以及二倍角公式和正弦公式,由正弦函数的增区间,解不等式即可得到所求;(2)运用图象变换,可得g (x )的解析式,由条件可得sinA ,cosA ,sinB 的值,运用正弦定理计算即可得到所求值.【解答】解:(1)向量m →=(sinx ,﹣1),n →=(cosx ,32),函数f (x )=(m →+n →)•m →=(sinx+cosx ,12)•(sinx ,﹣1)=sin 2x+sinxcosx ﹣12=12sin2x ﹣12(1﹣2sin 2x )=12sin2x ﹣12cos2x=√22sin (2x ﹣π4),由2kπ﹣π2≤2x ﹣π4≤2kπ+π2,k ∈Z ,可得kπ﹣π8≤x ≤kπ+3π8,k ∈Z ,即有函数f (x )的单调递增区间为[kπ﹣π8,kπ+3π8],k ∈Z ;(2)由题意可得g (x )=√22sin (2(x+π8)﹣π4)=√22sin2x ,g (A 2)=√22sinA=√66,即sinA=√33,cosA=±√1−13=±√63,在△ABC中,sinB=cosA>0,可得sinB=√6 3,由正弦定理asinA=bsinB,可得b=asinBsinA=3×√63√33=3√2.【点评】本题考查向量数量积的坐标表示和三角函数的恒等变换,考查正弦函数的图象和性质,以及图象变换,考查解三角形的正弦定理的运用,以及运算能力,属于中档题.17.(12分)某校举行高二理科学生的数学与物理竞赛,并从中抽取72名学生进行成绩分析,所得学生的及格情况统计如表:物理及格物理不及格合计数学及格28836数学不及格162036合计442872(1)根据表中数据,判断是否是99%的把握认为“数学及格与物理及格有关”;(2)从抽取的物理不及格的学生中按数学及格与不及格的比例,随机抽取7人,再从抽取的7人中随机抽取2人进行成绩分析,求至少有一名数学及格的学生概率.附:x2=n(n11n22−n21n12)2 n1⋅n2⋅n+1⋅n+2.P(X2≥k)0.1500.1000.0500.010k 2.072 2.706 3.841 6.635【分析】(1)根据表中数据,计算观测值X2,对照临界值得出结论;(2)分别计算选取的数学及格与不及格的人数,用列举法求出基本事件数,计算对应的概率值.【解答】解:(1)根据表中数据,计算X2=72×(28×20−16×8)244×28×36×36=64877≈8.416>6.635,因此,有99%的把握认为“数学及格与物理及格有关”;(2)选取的数学及格的人数为7×825=2人,选取的数学不及格的人数为7×2028=5人,设数学及格的学生为A 、B ,不及格的学生为c 、d 、e 、f 、g ,则基本事件为:AB 、Ac 、Ad 、Ae 、Af 、Ag 、Bc 、Bd 、Be 、Bf 、Bg 、cd 、ce 、cf 、cg 、de 、df 、dg 、ef 、eg 、fg 共21个, 其中满足条件的是AB 、Ac 、Ad 、Ae 、Af 、Ag 、Bc 、Bd 、Be 、Bf 、Bg 共11个,故所求的概率为P=1121.【点评】本题考查了独立性检验和列举法求古典概型的概率问题,是基础题.18.(12分)在四棱锥P ﹣ABCD 中,PC ⊥底面ABCD ,M ,N 分别是PD ,PA 的中点,AC ⊥AD ,∠ACD=∠ACB=60°,PC=AC .(1)求证:PA ⊥平面CMN ; (2)求证:AM ∥平面PBC .【分析】(1)推导出MN ∥AD ,PC ⊥AD ,AD ⊥AC ,从而AD ⊥平面PAC ,进而AD ⊥PA ,MN ⊥PA ,再由CN ⊥PA ,能证明PA ⊥平面CMN .(2)取CD 的中点为Q ,连结MQ 、AQ ,推导出MQ ∥PC ,从而MQ ∥平面PBC ,再求出AQ ∥平面,从而平面AMQ ∥平面PCB ,由此能证明AM ∥平面PBC .【解答】证明:(1)∵M ,N 分别为PD 、PA 的中点,∴MN 为△PAD 的中位线,∴MN ∥AD ,∵PC ⊥底面ABCD ,AD ⊂平面ABCD ,∴PC ⊥AD , 又∵AD ⊥AC ,PC ∩AC=C ,∴AD ⊥平面PAC ,∴AD ⊥PA ,∴MN ⊥PA ,又∵PC=AC,N为PA的中点,∴CN⊥PA,∵MN∩CN=N,MN⊂平面CMN,CM⊂平面CMN,∴PA⊥平面CMN.解(2)取CD的中点为Q,连结MQ、AQ,∵MQ是△PCD的中位线,∴MQ∥PC,又∵PC⊂平面PBC,MQ⊄平面PBC,∴MQ∥平面PBC,∵AD⊥AC,∠ACD=60°,∴∠ADC=30°.∴∠DAQ=∠ADC=30°,∴∠QAC=∠ACQ=60°,∴∠ACB=60°,∴AQ∥BC,∵AQ⊄平面PBC,BC⊂平面PBC,∴AQ∥平面PBC,∵MQ∩AQ=Q,∴平面AMQ∥平面PCB,∵AM⊂平面AMQ,∴AM∥平面PBC.【点评】本题考查线面垂直、线面平行的证明,考查空间中线线、线面、面面间的位置关系,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、数形结合思想、函数与方程思想,是中档题.19.(12分)已知等差数列{an }的首项a1=2,前n项和为Sn,等比数列{bn}的首项b1=1,且a2=b3,S3=6b2,n∈N*.(1)求数列{an }和{bn}的通项公式;(2)数列{cn }满足cn=bn+(﹣1)n an,记数列{cn}的前n项和为Tn,求Tn.【分析】(1)设等差数列{an }的公差为d,等比数列{bn}的公比为q.根据a1=2,b1=1,且a2=b3,S3=6b2,n∈N*.可得2+d=q2,3×2+3×22d=6q,联立解得d,q.即可得出..(2)cn =bn+(﹣1)n an=2n﹣1+(﹣1)n•2n.可得数列{cn}的前n项和为Tn=1+2+22+…+2n﹣1+[﹣2+4﹣6+8+…+(﹣1)n•2n]=2n﹣1+[﹣2+4﹣6+8+…+(﹣1)n•2n].对n分类讨论即可得出.【解答】解:(1)设等差数列{an }的公差为d,等比数列{bn}的公比为q.∵a1=2,b1=1,且a2=b3,S3=6b2,n∈N*.∴2+d=q2,3×2+3×22d=6q,联立解得d=q=2.∴an =2+2(n﹣1)=2n,bn=2n﹣1.(2)cn =bn+(﹣1)n an=2n﹣1+(﹣1)n•2n.∴数列{cn }的前n项和为Tn=1+2+22+…+2n﹣1+[﹣2+4﹣6+8+…+(﹣1)n•2n]=2n−12−1+[﹣2+4﹣6+8+…+(﹣1)n•2n]=2n﹣1+[﹣2+4﹣6+8+…+(﹣1)n•2n].∴n为偶数时,Tn=2n﹣1+[(﹣2+4)+(﹣6+8)+…+(﹣2n+2+2n)].=2n﹣1+n.n为奇数时,Tn =2n﹣1+2×n−12﹣2n.=2n﹣2﹣n.∴Tn ={2n−1−n,n为偶数2n−2−n,n为奇数.【点评】本题考查了等差数列与等比数列的通项公式与求和公式、分类讨论方法,考查了推理能力与计算能力,属于中档题.20.(13分)已知函数f(x)=e x﹣1﹣axx−1,a∈R.(1)若函数g(x)=(x﹣1)f(x)在(0,1)上有且只有一个极值点,求a的范围;(2)当a≤﹣1时,证明:f(x)<0对任意x∈(0,1)成立.【分析】(1)求出导函数,由题意可知f(x)在(0,1)上有且只有一个极值点,相当于导函数有一个零点;(2)问题可转换为(x﹣1)(e x﹣1)﹣ax>0恒成立,构造函数G(x)=(x﹣1)(e x﹣1)﹣ax,通过二次求导,得出结论.【解答】解:(1)g(x)=(x﹣1)(e x﹣1)﹣ax,g'(x)=xe x﹣a﹣1,g''(x)=e x(x+1)>0,∵f(x)在(0,1)上有且只有一个极值点,∴g'(0)=﹣a﹣1<0,g'(1)=e﹣a﹣1>0,∴﹣a <a <e ﹣1;(2)当a ≤﹣1时,f (x )<0,∴(x ﹣1)(e x ﹣1)﹣ax >0恒成立,令G (x )=(x ﹣1)(e x ﹣1)﹣ax ,G'(x )=xe x ﹣a ﹣1,G''(x )=e x (x+1)>0,∴G'(x )在(0,1)单调递增,∴G'(x )≥G'(0)=﹣a ﹣1≥0, ∴G (x )在(0,1)单调递增, ∴G (x )≥G (0)=0, ∴(x ﹣1)(e x﹣1)﹣ax ≥0,∴当a ≤﹣1时,f (x )<0对任意x ∈(0,1)成立.【点评】本题考查了极值点的概念和导函数的应用,难点是对导函数的二次求导.21.(14分)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是√32,点P (1,√32)在椭圆E 上.(1)求椭圆E 的方程;(2)过点P 且斜率为k 的直线l 交椭圆E 于点Q (x Q ,y Q )(点Q 异于点P ),若0<x Q <1,求直线l 斜率k 的取值范围;(3)若以点P 为圆心作n 个圆P i (i=1,2,…,n ),设圆P i 交x 轴于点A i 、B i ,且直线PA i 、PB i 分别与椭圆E 交于M i 、N i (M i 、N i 皆异于点P ),证明:M 1N 1∥M 2N 2∥…∥M n N n .【分析】(1)根据椭圆的离心率求得a 2=4b 2,将P 代入椭圆方程,即可求得a 和b 的值,求得椭圆方程;(2)设直线l 的方程,代入椭圆方程,利用韦达定理,求得x Q ,由0<x Q <1,即可求得k 的取值范围;(3)由题意可知:故直线PA i ,PB i 的斜率互为相反数,分别设直线方程,代入椭圆方程,即可求得x i ,x i ′,根据直线的斜率公式,即可求得y i −y i ′x i −x i ′=√36,k M 1N 1=k M 2N 2=…=k M n N n ,则M 1N 1∥M 2N 2∥…∥M n N n .【解答】解:(1)由椭圆的离心率e=ca=√1−b 2a 2=√32,则a 2=4b 2,将P (1,√32)代入椭圆方程:14b 2+34b2=1,解得:b 2=1,则a 2=4,∴椭圆的标准方程:x 24+y 2=1;(2)设直线l 的方程y ﹣√32=k (x ﹣1),则{y −√32=k(x −1)x 24+y 2=1,消去y ,整理得:(1+4k 2)x 2+(4√3k ﹣8k 2)x+(4k 2﹣4√3k ﹣1)=0,由x 0•1=4k 2−4√3k−11+4k ,由0<x 0<1,则0<4k 2−4√3k−11+4k <1,解得:﹣√36<k <√3−22,或k >√3+22,经验证,满足题意,直线l 斜率k 的取值范围(﹣√36,√3−22)∪(√3+22,+∞);(3)动圆P 的半径为PA i ,PB i ,故PA i =PB i ,△PA i B i 为等腰三角形,故直线PA i ,PB i 的斜率互为相反数,设PA i 的斜率k i ,则直线PB i 的斜率为﹣k i ,设直线PA i 的方程:y ﹣√32=k i (x ﹣1),则直线PB i 的方程:y ﹣√32=﹣k i (x ﹣1), {y −√32=k i (x −1)x 24+y 2=1,消去y ,整理得:(1+4k i 2)x 2+(4√3k i﹣8ki 2)x+(4k i 2﹣4√3ki﹣1)=0,设M i (x i ,y i ),N i (x i ′,y i ′),则x i •1=4k i 2−4√3k i −11+4k i 2,则x i =4k i 2−4√3k i −11+4k i2,将﹣k i 代替k i ,则x i ′=4k i 2+4√3k i −11+4k i2,则x i +x i ′=8k i 2−21+4k i 2,x i ﹣x i ′=﹣8√3k i 1+4k i2,y i ﹣y i ′=k i (x i ﹣1)+√32+k i (x i ﹣1)﹣√32=k i (x i +x i ′)﹣2k i ,=k i ×8k i 2−21+4k i2﹣2k i ,=−4k i1+4k i2,则y i−y i′x i−x i′=−4k i1+4k i2−8√3k i1+4k i2=√36,故kM1N1=kM2N2=…=kM n N n,∴M1N1∥M2N2∥…∥MnNn.【点评】本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理,直线的斜率公式,考查计算能力,属于中档题.。
重庆一中高2021级高三10月月考数学试题〔文科〕第一卷〔选择题共50分〕一、选择题:本大题共10小题,每题 5分,共50分。
在每题给出的四个备选项中,只有一项为哪一项切合题目要求的。
1.函数 f(x) sinxcosx的是A.周期为C.周期为的奇函数2的奇函数B.周期为D.周期为的偶函数2的偶函数2.函数f(x)log a x(常数a1)的大概图像是3.如图,正方体ABCD—A1B1C1D1中,连接BD、B1D1,那么直线BC1与平面BB1D1D所成的角的大小为A.75oB.60oC.45oD.30o4.两个正数a,b的等差中项是5,等比中项是x2y24,且a>b,那么椭圆1的离心率ea b等于5132 A.B.C.D.2222 5.以下命题中正确的选项是.底面是矩形的平行六面体是长方体;B.棱长都相等的直四棱柱是正方体;C.侧棱垂直于底面两条边的平行六面体是直平行六面体;D .对角线相等的平行六面体是直平行六面体;6.函数ysin2x的图像按向量a(,0)平移后的图像的一此中心对称点为6A .(,0)B .(,0) C .(,0)D .(,0) 3122127.有以下四个命题:①“直线ab 〞的充足不用要条件是“a 垂直于b 在平面内的射影〞。
②“OM ∥O 1M 1且ON ∥O 1N 1〞是“∠MON=∠M 1O 1N 1〞的必需不充足条件。
③“直线l平面〞的充要条件是 “直线l平面内的无数条直线 〞。
④“平面的斜线段AB ,AC 在的射影A ′B 与′A ′C 相′等〞是“AB=AC 〞的充要条件。
此中正确命题的个数是A .3B .2C .1D .08.如图在斜棱柱 ABC —A 1B 1C 1中,∠BAC=90o ,又BC 1⊥AC ,过C 1作C 1H ⊥平面ABC , 垂足为H ,那么有A .H 在直线AC 上B .H 在直线AB 上C .H 在直线BC 上D .H 在△ABC 内9.三棱锥S —ABC 底面的面积为 144,一个平行于底面的截面的面积为64,假设截面与底面的距离为 6,那么此三棱锥S —ABC 的高为A .12B .18C .16 343D .310.为O 原点,点P(x,y)在单位圆x 2 y 2 1上,点Q(2cos,2sin)知足PQ(4,2),那么OPOQ3 325 16C .5 25A .B .D .36182516第二卷〔非选择题共100分〕二、填空题:本大题共6小题,每题 4分,共24分。
2018年普通高校招生全国统一考试(重庆卷)数学试卷分析这次参加重庆卷数学考试的普通高中学生共有112668人,比去年增加28619人,其中理科69795人,占61.95%,文科42873人,占38.18%。
一、命题范围及试卷结构本次考试的命题范围是普通高中数学教学大纲和2018年普通高校招生全国统一考试大纲所规定的全部内容。
经统计各知识点所占分值如下表。
本次试题充分考虑了文理科学生的实际情况,适当拉大了文理科试题的差异,既体现了个性,也体现了共性。
文理科有7个选择题,1个填空题,1.5个解答题相同,共计9.5个题相同,还有1道姊妹题(第21题),这样文理试题计有11.5个题不同。
本次试题各类题型(选择题、填空题、解答题)的分布、总个数、每个题的分值分布等都与近几年全国高考数学试卷相同。
二、试题评价1.注重基础,贴近教材总体来看,本次试题无偏题,无怪题,所有题目都是大家熟悉的题型,严格遵循考纲的要求,注重了“三基”的考查和应用数学的意识与数学能力的考查,较好的体现了循序渐进,入手容易,深入难的设题思路。
如文理科解答题除第18题外,其余5个题得分容易,但得满分难。
中学数学中所学的基础知识、基本技能和基本数学思想方法是学生继续深造的基础,也是培养学生数学能力的前提。
基础知识一般包括概念、性质、法则、定理、公式等,本次文理试题的各个题目都是以相应的基本知识为载体的,不可能脱离基础知识而独立存在,因而所有的题目都体现了对基础知识的考查。
基本技能是指对变形、代换、推理、计算等技巧所掌握的熟练程度,如文理的选择填空题第1——8题,第13、14题,只要平时基础扎实的学生都能快速作答。
又如文理科解答题第21、22题考查了一些基本的技能技巧。
基本数学思想方法是指在中学数学中影响全局的、具有重大价值的、有深远意义的解决问题的思想、方法和策略,如函数方程、整体代换、数形结合、分类讨论、待定系数、化归与转化、运动变换等,如考题中很多题目都渗透了函数方程思想,如文理科的第21题,理科的第15、16题就要充分运用数形结合的思想去解决,理科第20题考查了分类讨论的思想。
秘密★启用前2018年重庆一中高2018级高三下期三月月考数 学 试 题 卷(文科)2018.3数学试题共4页,满分150分,考试时间120分钟。
第I 卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分) 1.已知集合11A x ⎧⎫=>⎨⎬⎩⎭,{|2}B x x =<,则=B A ( ) A. (),1-∞ B. ()1,2 C. ()0,1 D. ()0,2 2.已知,,x y R i ∈为虚数单位,且1,x i y i -=-+则(1)x y i ++= ( )A. 2iB. 2i -C. 22i +D. 23.设,m n 是两条不同的直线,,αβ是两个不同的平面,且,m n αβ⊂⊂,下列命题中正确的是( ) A. 若αβ⊥,则m n ⊥ B. 若//αβ,则//m n C. 若m n ⊥,则αβ⊥ D. 若n α⊥,则αβ⊥ 4.已知直线220a x y +-=与圆()()22116x y -++=相交于B A 、两点,且B A 、关于直线0x y +=对称,则a 的值为( )A. 1B. -1C. 2D. -25.如图所示,三国时代数学家赵爽在《周髀算经》中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影)。
设直角三角形有一内角为30︒,若向弦图内随机抛掷1颗米粒(大小忽略不计),则落在小正方形(阴影)内的概率大约为( )A.2B.2C.43 D.43-46.执行如图的程序框图,若输入的10k =,则输出的S =( )A. 12B. 13C. 15D. 18第5题第6题7.已知实数x,y满足条件24122x yx yx y+≥⎧⎪-≥⎨⎪-≤⎩,则z x y=+的最小值为()A. 43B. 4C. 3D. 28.已知三角形A B C中,A B A C==,4B AD D=,连接C D并取线段C D的中点F,则A F C D⋅的值为()A. 5-C.52- D.154-9.设nS是数列{}n a的前项和,若23n nS a=-,则8S=()A. 257B. 513C. 765D. 153510.甲、乙、丙、丁、戊五人出差,分别住在1、2、3、4、5号房间,现已知:(1)甲与乙不是邻居;(2)乙的房号比丁小;(3)丙住的房是双数;(4)甲的房号比戊大3.则根据上述条件推理,丁住的房号是().A.5号B. 4号C. 3号D.2号11.若函数()24xf x a=--存在一正一负两个零点,则实数a的取值范围为()A. ()3,4 B. ()0,+∞ C.()0,4 D. ()3,+∞12.已知抛物线28y x=的准线与x轴交于A点,焦点是F,P是抛物线上任意一点,当P FP A取得最小值时,点P恰好在以,AF为焦点的双曲线上,则该双曲线的离心率为( )A.12B.1C.2D. 1第II卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分)13.已知点(1,1),(0,3),(3,4)A B C-,则向量A B在A C方向上的投影为.14.已知sin()co s()66ππαα-=+,则tanα=.15.已知函数()l o g,38,3ax xf xm x x>⎧=⎨+≤⎩,且()24f=,若函数()f x存在最小值,则实数a的取值范围为.16.如右图所示是一个几何体的三视图,则这个几何体外接球的表面积为 .三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知函数()2c o s 22c o s 213f x x x π⎛⎫=+-+ ⎪⎝⎭.(1)求函数()f x 图象的对称中心坐标; (2),C B A c b a ABC 、、对应的角分别为、、中,边在锐角∆且()0f A =,求b c的取值范围.18.(本小题满分12分)某电脑公司有6名产品推销员,其中编号为1-5的推销员,其工作年限与年(1)从编号1-5的五位推销员中随机取出两位,求他们年推销金额之和不少于7万元的概率;(2)请根据表格中这5名推销员的数据,求年推销金额y 关于工作年限x 的线性回归方程ˆˆˆyb x a =+;若第6名产品推销员的工作年限为11年,试估计他的年推销金额.附:回归直线的斜率和截距的最小二乘法估计公式为:121()()ˆ,()ni i i ni i x x y y bx x ==--=-∑∑ˆa =y −ˆb x19.(本小题满分12分)如图,在直三棱柱111A B C A B C -中, 90B A C ∠=, 2A B A C ==,点M 为11A C 的中点,点N 为1A B 上一动点.(1)是否存在一点N ,使得线段//M N 平面11B BC C ?若存在,指出点N 的位置,若不存在,请说明理由.(2)若点N 为1A B 的中点且C M M N ⊥,求三棱锥M N A C -的体积.20.(本小题满分12分)已知椭圆2222:1(0)x y C a b ab+=>>的左、右焦点分别为1F 、2F ,且点1F 到椭圆C 上任意一点的最大距离为3,椭圆C 的离心率为12.(1)求椭圆C 的标准方程;(2)是否存在斜率为1-的直线l 与以线段12F F 为直径的圆相交于A 、B 两点,与椭圆相交于C 、D 两点,且7C D A B=?若存在,求出直线l 的方程;若不存在,说明理由.21.(本小题满分12分)设函数()()2ln ,,xf x e a x a a R e =--+∈为自然对数的底数. (1)若0a >,且函数()f x 在区间[)0,+∞内单调递增,求实数a 的取值范围; (2)若203a <<,判断函数()f x 的零点个数.请考生在第22、23题中任选一题做答,如果多做,则按所做的第一题记分.作答时请写清题号.22.选修4-4:坐标系与参数方程(本小题满分10分)在直角坐标系x O y 中,直线1C的参数方程为1122x t y ⎧⎪=+⎨=⎪⎪⎪⎩(t 为参数),以坐标原点为极点, x 轴的非负半轴为极轴建立极坐标系,曲线2C 的极坐标方程为()2212sin 3ρθ+=. (1)写出1C 的普通方程和2C 的直角坐标方程;(2)直线1C 与曲线2C 相交于,A B 两点,点()1,0M,求M A M B -.23.选修4-5:不等式选讲(本小题满分10分) 已知关于x 的不等式495m x x+≥-在()0,5x ∈时恒成立.(1)求m 的最大值;(2)当m 取得最大值时,求不等式29x m x -++≤的解集.命题人:黄 艳 赵崴娜 审题人:杨春权2018年重庆一中高2018级高三下期三月月考数学参考答案(文科)2018.31~5题 CADDB 6~10题 CDBCC 11~12题AB 13、2 14、-1 15、(1,16、32π17().(1)2c o s 22c o s 213f x x x π⎛⎫=+-+ ⎪⎝⎭in 2c o s 212s in 216x x x π⎛⎫=-+=-++ ⎪⎝⎭()26x k k z ππ+=∈解得122k x ππ=-+,故对称中心为(122k ππ-+,1)k z ∈(2)由()2s in 2106f A A π⎛⎫=-++= ⎪⎝⎭解得2,33A B C ππ=+=所以2s in s in 13s in s in 2ta n 2C b B cCC Cπ⎛⎫- ⎪⎝⎭===+,又A B C ∆为锐角三角形,故62C ππ<<所以b c的取值范围是 1,22⎛⎫⎪⎝⎭18.(1)从编号15-的五位推销员中随机选出两位,他们的年推销金额组合如下(){}(){}{}{}()(){}(){}(){}2,31,2,32,2,4,2,5,31,32,31,4,31,5, (){}(){}{}32,4,32,5,4,5共10种.其中满足两人年推销金额不少于7万元的情况共有6中,则所求概率63105P ==.(2)由表中数据可知: 6, 3.4x y ==,由上公式可得()()()3 1.410.410.63 1.60.5,9119ˆb -⨯-+-⨯-+⨯+⨯==+++ 3.4ˆˆ0.560.4ay b x =-=-⨯=. 故0.5.4ˆ0yx =+,又当11x =时, ˆ 5.9y =, 故第6名产品推销员的工作年限为11年,他的年推销金额约为5.9万元. 19.(1)存在点N ,且N 为1A B 的中点.证明如下: 连接1A B , 1B C ,点M , N 分别为11A C , 1A B 的中点,所以M N 为11A B C ∆的一条中位线,1//BC MN ,M N ⊄平面11B B C C , 1B C ⊂平面11B B C C ,所以//M N 平面11B B C C .(2)设点D , E 分别为A B , 1A A 的中点,连接C D , D N , N E ,并设1A A a =,则221C Ma =+,22414a M N +=+284a+=, 2254aC N=+ 2204a+=,由C M N ⊥M ,得222C MM NC N+=,解得a =又易得N E ⊥平面11A A C C , 1N E =,MN A CN A M C V V --= 111332A M C S N E ∆=⋅=⨯213⨯⨯=所以三棱锥M N A C -的体积为3.20.(1)设1F , 2F 的坐标分别为(),0c -, (),0c ,根据椭圆的几何性质可得3{ 12a c ca+==,解得2a =,1c =,则2223b a c =-=,故椭圆C 的方程为22143xy+=.(2)假设存在斜率为1-的直线l ,那么可设为y x m =-+,则由(1)知1F , 2F 的坐标分别为()1,0-,()1,0,可得以线段12F F 为直径的圆为221x y+=,圆心()0,0到直线l的距离1d =<,得m <A B ===联立221{ 43xyy x m+==-+得22784120x m x m -+-=,设()11,C x y , ()22,D x y ,则()()()2222847412336484870m m m m∆=-⨯-=-=->,得27m<,又1287m x x +=2124127mx x -=,1277C D xB=-=====解得2123m=<,得3m=±即存在符合条件的直线:3l y x=-±.21.(1)∵函数()f x在区间[)0+∞,内单调递增,∴()1'0xf x ex a=-≥+在区间[)0+∞,内恒成立.即xa e x-≥-在区间[)0+∞,内恒成立.记()xg x e x-=-,则()'10xg x e-=--<恒成立,∴()g x在区间[)0+∞,内单调递减,∴()()01g x g≤=,∴1a≥,即实数a的取值范围为[)1+∞,.(2)∵23a<<,()1'xf x ex a=-+,记()()'h x f x=,则()()21'0xh x ex a=+>+,知()'f x在区间(),a-+∞内单调递增.又∵()1'010fa=-<,()1'10f ea a=->+,∴()'f x在区间(),a-+∞内存在唯一的零点x,即()01'0xf x ex a=-=+,于是01xex a=+,()00lnx x a=-+.当a x x-<<时,()()'0,f x f x<单调递减;当x x>时,()()'0,f x f x>单调递增.∴()()()00m in2lnxf x f x e a x a==--+0000112323a x x a a ax a x a=-+=++-≥-++,当且仅当1x a+=时,取等号.由23a<<,得230a->,∴()()0m inf x f x=>,即函数()f x没有零点.22.(1)曲线1Cy --=,曲线2C 的直角坐标方程为2213xy+=.(2)将直线1C 的参数方程代入2C 的直角坐标方程整理得: 25240t t +-=,1225t t +=-,由t 的几何意义可知:1225M A M B t t -=+=.23.(1)()491495555x x xxxx ⎛⎫⎡⎤+=+-+ ⎪⎣⎦--⎝⎭()()451914913125555x x x x ⎡⎤-=+++≥+=⎢⎥-⎣⎦, 当且仅当()45925x x x xx-=⇒=-时取等号,因为495m xx+≥-在()0,5x ∈时恒成立,所以m 的最大值为5.(2)根据(1)可知m 的最大值为5,所以不等式左边可以化为32,2,52{7,25, 23,5,x x x x x x x -<--++=-≤≤->由529x x -++≤可以得到所求不等式的解集为{}36x x -≤≤.。
2018年重庆蜀都中学高三数学文联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 复数是纯虚数,则的值为( )A.0 B. C. D.参考答案:B略2. 已知函数的部分图象如图所示,则()A.B.C.D.参考答案:B略3. 如右图,某简单几何体的正(主)视图与侧(左)视图都是边长为1的正方形,且其体积为,则该几何体的俯视图可以是参考答案:D略4.函数的图象是()A.关于点(,0)对称 B.关于直线对称C.关于点()对称 D.关于直线x=对称参考答案:答案:A5. 多面体的三视图如图所示,则该多面体表面积为(单位cm2)A.28+B. 30+C. 28+D. 28+参考答案:A如图故选A6. 已知变量x,y满足:,则z=()2x+y的最大值为()A.B.2C.2 D.4参考答案:D【考点】简单线性规划.【分析】作出不等式组对应的平面区域,设m=2x+y,利用线性规划的知识求出m的最大值即可求出z的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).设m=2x+y得y=﹣2x+m,平移直线y=﹣2x+m,由图象可知当直线y=﹣2x+m经过点A时,直线y=﹣2x+m的截距最大,此时m最大.由,解得,即A(1,2),代入目标函数m=2x+y得z=2×1+2=4.即目标函数z=()2x+y的最大值为z=()4=4.故选:D.【点评】本题主要考查线性规划的应用,利用目标函数的几何意义,数形结合的数学思想是解决此类问题的基本思想.7. 如图,在的方格纸中,若起点和终点均在格点的向量满足,则()A. B. C. D.参考答案:试题分析:设方格边长为单位长.在直角坐标系内,,由得,所以,解得,所以,,选.考点:1.平面向量的坐标运算;2.平面向量基本定理.8. 如果函数在区间上是增函数,而函数在区间上是减函数,那么称函数是区间上“缓增函数”,区间叫做“缓增区间”. 若函数是区间上“缓增函数”,则“缓增区间”为()参考答案:D略9. 已知函数的部分图象如图所示,则的解析式可能为A.B.C.D.参考答案:C10.设函数则关于x的方程解的个数为 ( )(A) 1个 (B) 2个 (C) 3个 (D) 4个参考答案:答案:C二、填空题:本大题共7小题,每小题4分,共28分11. 一个几何体的三视图如图所示(单位:),一个几何体的三视图如图所示(单位:),则该几何体的体积为.参考答案:由三视图可得该几何体为圆柱与圆锥的组合体,其体积.12. 设,若,设a=参考答案:113. 若单位向量满足,则在方向上投影为.参考答案:﹣1【考点】平面向量数量积的运算.【分析】对两边平方,并进行数量积的运算即可求出的值,从而可求出在方向上的投影.【解答】解:∵;∴;即;∴;∴;∴在方向上的投影为.故答案为:﹣1.14. 一个几何体的三视图如图所示(单位:m),则该几何体的体积为 m3。
2018年重庆市高考数学试卷(文科)(全国新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)i(2+3i)=()A.3﹣2i B.3+2i C.﹣3﹣2i D.﹣3+2i2.(5分)已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=()A.{3}B.{5}C.{3,5}D.{1,2,3,4,5,7}3.(5分)函数f(x)=的图象大致为()A.B.C.D.4.(5分)已知向量,满足||=1,=﹣1,则•(2)=()A.4 B.3 C.2 D.05.(5分)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为()A.0.6 B.0.5 C.0.4 D.0.36.(5分)双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x7.(5分)在△ABC中,cos=,BC=1,AC=5,则AB=()A.4 B. C. D.28.(5分)为计算S=1﹣+﹣+…+﹣,设计了如图的程序框图,则在空白框中应填入()A.i=i+1 B.i=i+2 C.i=i+3D.i=i+49.(5分)在正方体ABCD﹣A1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD所成角的正切值为()A.B.C.D.10.(5分)若f(x)=cosx﹣sinx在[0,a]是减函数,则a的最大值是()A.B.C. D.π11.(5分)已知F1,F2是椭圆C的两个焦点,P是C上的一点,若PF1⊥PF2,且∠PF2F1=60°,则C的离心率为()A.1﹣B.2﹣C.D.﹣112.(5分)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f (1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50 B.0 C.2 D.50二、填空题:本题共4小题,每小题5分,共20分。
2018 年普通高等学校招生全国统一考试5 月调研测试卷 文科数学第Ⅰ卷一、选择题:本大题共12 个小题 , 每小题 5 分 , 共 60 分 . 在每小题给出的四个选项中,只有一项是符合题目要求的 .1. 设集合 A x | xa , B ,2 ,若 AB ,则实数 a 的取值范围是()A . a 2B. a 2 C . a2D . a 22. 已知 i 为虚数单位,复数 z 满足 iz2z 1 ,则 z ()A .2 1 i B.2 1iC . 2 iD . 2 i55553. 设函数 f x2x 4 , x 4,若 f a1 ,则 a ( )log 2 x1 , x84A . 1B.11C . 3D . 1 或 1182824. 设命题 p : x Q,2 x ln x 2 ,则 p 为()A . x Q,2 x ln x2C .x Q,2 x ln x 2B . x Q,2 x ln x 2 D.x Q,2 x ln x25. 设函数 f xsin x cosx, f x 的导函数记为f x ,若 fx 0 2 f x 0 ,则 tan x 0 ()A . -1B.1C. 1D.336. 已知抛物线 y 24x 的焦点为 F ,以 F 为圆心的圆与抛物线交于M 、 N 两点,与抛物线的准线交于 P 、 Q两点,若四边形 MNPQ 为矩形,则矩形 MNPQ 的面积是()A . 16 3B . 12 3C.4 3D . 37. 记 5 个互不相等的正实数的平均值为 x ,方差为 A ,去掉其中某个数后,记余下4 个数的平均值为y ,方差为 B ,则下列说法中一定正确的是( )A .若 x y ,则 AB B.若 x y ,则 A BC. 若 xy ,则 AB D.若 xy ,则 ABx y208. 已知实数x, y满足不等式组x a,且 z2x y 的最大值是最小值的 2 倍,则a()x yA.3B.5C.6D.4 46539.《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢. 根据该问题设计程序框图如下,若输入 a 103, b 97 ,则输出n的值是()A.8B.9 C.12D.1610. 一个正三棱柱的三视图如图所示,若该三棱柱的外接球的表面积为32,则侧视图中的x 的值为()A.6B.4 C. 3D.211.已知圆O 的方程为x2y21,过第一象限内的点P a,b作圆O 的两条切线PA, PB,切点分别为A, B ,若 PO PA 8 ,则 ab 的最大值为()A . 3B . 3 2C.4 2D. 612. 已知双曲线 C :x 2y 2 1 a 0, b0 的左右焦点分别为F , F ,以 OF 为直径的圆 M 与双曲线 C 相a2b 21 22交于 A, B 两点,其中 O 为坐标原点,若AF 1 与圆 M 相切,则双曲线 C 的离心率为()A .2 3 62B .26 C.3 26 D . 3 2 2 6222第Ⅱ卷二、填空题:本大题共 4 小题,每小题 5 分,满分 20 分,将答案填在答题纸上13. 已知向量 a, b 满足: a 1,b 1,2, a b ,则 2ab.14.3 tan100 1.(用数字作答)sin1015. 已知数列a n 中,对nN * ,有 a n a n 1 a n 2 C ,其中 C 为常数,若 a 52, a 73,a 9 4,则a 1 a 2a100.16. 在如图所示的矩形ABCD 中,点 E 、 P 分别在边 AB 、 BC 上,以 PE 为折痕将PEB 翻折为PEB ,点B 恰好落在边 AD 上,若 sinEPB1, AB 2 ,则折痕 PE.3三、解答题 :本大题共 6 小题,共 70 分 . 解答应写出文字说明、证明过程或演算步骤.17. 已知等比数列a n 的前 n 项和为 S n ,若 a 4 , a 3 , a 5 成等差数列,且 S k 33,S k 1 63 .( 1)求 k 及 a n ;( 2)求数列 na n 的前 n 项和 .18. 如图,在底面为正方形的四棱锥 P ABCD 中, PA 平面 ABCD , AC 与 BD 交于点 E ,点 F 是 PD 的中点 .( 1)求证: EF / / 平面 PBC ;( 2)若PA 2 AB 2 ,求点 F 到平面PBC的距离.19.某校有高三文科学生 1000 人,统计其高三上期期中考试的数学成绩,得到频率分布直方图如下:( 1)求出图中a的值,并估计本次考试低于120 分的人数;( 2)假设同组的每个数据可用该组区间的中点值代替,试估计本次考试不低于120 分的同学的平均数(其结果保留一位小数) .x2y2b02,经过椭圆 C 的右焦点的弦中最短弦长为 2.20. 已知椭圆C :22 1 a的离心率为a b2( 1)求椭圆的C的方程;( 2)已知椭圆C的左顶点为A, O为坐标原点,以AO为直径的圆上是否存在一条切线l 交椭圆 C 于不同的两点 M , N ,且直线 OM 与 ON 的斜率的乘积为7?若存在,求切线 l 的方程;若不存在,请说明理由.2, g x11621. 已知函数f x x a ln x a R .x x( 1)当a 1时,证明:f x g x x 1 ;( 2)证明:存在实数 a ,使得曲线y f x与 y g x 有公共点,且在公共点处有相同的切线.请考生在 22、 23 两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修 4-4 :坐标系与参数方程在平面直角坐标系xOy 中,以坐标原点O 为极点,x轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为cossin 1,曲线 C 的极坐标方程为sin 28cos.( 1)求直线 l 与曲线 C 的直角坐标方程;( 2)设点 M0,1 ,直线 l 与曲线 C 交于不同的两点 P, Q ,求 MP MQ 的值 .23. 选修 4-5 :不等式选讲已知函数f x x a2x .( 1)当 a3 时,求不等式 f x 3 的解集;( 2)若关于 x 的不等式f x0 的解集为 x | x2 ,求实数 a 的值 .试卷答案一、选择题1-6: DAACDA 7-12: ABBCBC二、填空题13. 314. -415. 9616.278三、解答题17. 解:(1) 2a 3a 4 a 52 q q 2q 2 q 1 0 q 2 或 q 1 ,① q 1时: a k1Sk 1S k96 ,这与 S k 33 矛盾;a 1 1q k 1② q 2 时:S k 11 q63 a 1 3, k 5 a n32 n 1 ;ak 1a 1 q k96( 2) b nna n3n n 12,则有:T n b 1 b 2 b 3b n 1 b n3 2 02n 1n 2n 122n2,2 T n 32 12n 1n 1n222n 2,所以, 3T n312n 1nn2222 2,112n1 3n 1所以, T nnnn1 22 332 .18. 解:(1)因为 E, F 分别是 DP , DB 的中点,∴ EF / / PB ,所以 EF / / 面 PBC ;( 2)设点 F 到面 PBC 的距离为 d ,则点 D 到面 PBC 的距离为 2d ,在直角PAB 中,PBPA 2 AB 25 ,又 V P BCD1 1 1 1 21,VD PCB11 1 5 2d,32332由VP BCDV DPCB得d55 .19. 解:(1)利用频率和为 1 得: a 0.0075 ,低于 120 分的人共有: 1000 10075 50 775 ;( 2) 125 10013570 145 50 132.8 .225225 225e c2x 2y 220. 解:(1)由题意有:a 21;2b 2 422a( 2)设切线方程为 y kx b ,则有 dk b 1k 1 b 1,k 2 12 bykx b联立方程有:x 2y 2 1 2k 2 1 x 24kbx 2b 2 4,4 2斜率乘积为y 1 y 2 k 2 x 1 x 2 kb x 1 x 2b 27 b2 32k2 14 0 ,x 1 x 2x 1 x216代入 k1 b1有: b232 1 b 2 2 114 0b 24 7b 2 2 0,2 b4b 2所以, b 2 或 b142 时, k3 2 时, k37 ,① b;② b;44③ b14 时, k5 14;④ b14 5 14;728时, k287所以直线为 y3 x 2, y 3 x 2, y5 14 x 14 , y 5 14 x 14 .4428728721. 解:(1) f xg xx 11 ln11,令 t1 ,则有 t ln t 1 ,xxx令 h tt ln t 1ht1 1 ,所以 h t 在 0,1 上单调递减,在 1,上单调递增,t则 ht h 1 0 ,所以原命题成立;( 2)根据题意,即存在x 0 , a 满足:x 02 1 a ln x 0x 0x 011 1axxx ln x 0 0 ,21 ax 0x 0x 01x 02x 02x 0令m xx1x 1ln x m x1 1xxx 2 ln x,所以 m x 在 0,1 上单调递增,在 1,上单调递减,又因为 m 12 0 ,且 x时, m x,所以,存在 x 0 ,使得 m x 0 0 ,即存在 a ,使得原命题成立 .22. 解:(1)cossin1x y 1, sin 28cosy 2 8x ;x2 t( 2)考虑直线方程x y 1,则其参数方程为2( t 为参数),2y 1t22 t 22 t 1 t 2代入曲线方程有:185 2t 1 0 ,222则有 MPMQt t2 10 2 .123. 解:(1) fxx 3 2x 3x 3, x 3x0,;x 3, x 结合函数图像有:3( 2)由题意知f 20 a 2 或 a6 ,经检验,两种情况均符合题意,所以a 2 或 a6 .。
2018年普通高等学校招生重庆卷文史类数学试题本试卷分第Ⅰ部分(选择题)和第Ⅱ部分(非选择题)共150分 考试时间120分钟.第Ⅰ部分(选择题 共60分)参考公式:如果事件A 、B 互斥,那幺 P(A+B)=P(A)+P(B)如果事件A 、B 相互独立,那幺 P(A·B)=P(A)·P(B)如果事件A 在一次试验中发生的概率是P ,那幺n 次独立重复试验中恰好发生k 次的概率k n kk n n P P C k P --=)1()(一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数y =( )A [1,)+∞B 23(,)+∞C 23[,1]D 23(,1]2. 函数221()1x f x x -=+, 则(2)1()2f f = ( )A 1B -1C 35D 35-3.圆222430x y x y +-++=的圆心到直线1x y -=的距离为:()A 2 B2C 1 D4.不等式221x x +>+的解集是:( )A (1,0)(1,)-+∞B (,1)(0,1)-∞-C (1,0)(0,1)-D (,1)(1,)-∞-+∞5.sin163sin 223sin 253sin313+= ( )A 12-B 12 C2- D26.若向量a 与b 的夹角为60,||4,(2).(3)72b a b a b =+-=-,则向量a 的模为:( )A 2B 4C 6D 127.已知p 是r 的充分不必要条件,s 是r 的必要条件,q 是s 的必要条件。
那么p 是q 成立的:( )A 充分不必要条件B 必要不充分条件C 充要条件D 既不充分也不必要条件8.不同直线,m n 和不同平面,αβ,给出下列命题:① ////m m αββα⎫⇒⎬⊂⎭ ② //////m n n m ββ⎫⇒⎬⎭③ ,m m n n αβ⊂⎫⇒⎬⊂⎭异面 ④ //m m αββα⊥⎫⇒⊥⎬⎭ 其中假命题有:( )A 0个B 1个C 2个D 3个9. 若数列{}n a 是等差数列,首项120032004200320040,0,.0a a a a a >+><,则使前n 项和0n S >成立的最大自然数n 是:( )A 4018B 4018C 4007D 400810.已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为:( )A 43B 53C 2D 7311.已知盒中装有3只螺口与7只卡口灯炮,这些灯炮的外形与功率都相同且灯口向下放着,现需要一只卡口灯炮使用,电工师傅每次从中任取一只并不放回,则他直到第3次才取得卡口灯炮的概率为:( )A 2140B 1740C 310D 712012. 如图,棱长为5的正方体无论从哪一个面看,都有两个直通的边长为1的正方形孔,则这个有孔正方体的表面积(含孔内各面)是:( ) A 258 B 234 C 222 D 210第Ⅱ部分(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13. 若在5(1)ax +的展开式中3x 的系数为80-,则_______a =14.已知532,(0,0)x y x y+=>>,则xy 的最小值是____________15.已知曲线31433y x =+,则过点(2,4)P 的切线方程是______________ 16.毛泽东在《送瘟神》中写到:“坐地日行八万里”。
又知地球的体积大约是火星的8倍,则火星的大圆周长约______________万里。
三、解答题:本题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分) 求函数44sincos cos y x x x x =+-的取小正周期和取小值;并写出该函数在[0,]π上的单调递增区间。
18.(本小题满分12分)设甲、已、丙三人每次射击命中目标的概率分别为0.7、0.6和0.5。
(1) 三人各向目标射击一次,求至少有一人命中目标的概率及恰有两人命中目标的概率;(2) 若甲单独向目标射击三次,求他恰好命中两次的概率。
19.(本小题满分12分)如图,四棱锥P-ABCD 的底面是正方形,,,//,PA ABCD AE PD EF CD AM EF ⊥⊥=底面(1) 证明MF 是异面直线AB 与PC 的公垂线;(2) 若3PA AB =,求直线AC 与平面EAM 所成角的正弦值。
D20.(本小题满分12分)某工厂生产某种产品,已知该产品的月生产量x (吨)与每吨产品的价格p(元/吨)之间的关系式为:21242005p x =-,且生产x 吨的成本为50000200R x =+(元)。
问该产每月生产多少吨产品才能使利润达到最大?最大利润是多少?(利润=收入─成本)21.(本小题满分12分)设0p >是一常数,过点(2,0)Q p 的直线与抛物线22y px =交于相异两点A 、B ,以线段AB 为直经作圆H (H 为圆心)。
试证抛物线顶点在圆H 的圆周上;并求圆H 的面积最小时直线AB 的方程。
22.(本小题满分14分)设数列{}n a 满足:12215512,,,(1,2,.......)333n n n a a a a a n ++===+=(1) 令1,(1,2......)n n n b a a n +=-=求数列{}n b 的通项公式; (2) 求数列{}n na 的前n 项和n S 。
2018年普通高等学校招生重庆卷文史类数学试题参考答案一、选择题:每小题5分,共60分.1.D 2.B 3.D 4.A 5.B 6.C 7.A 8.D 9.B 10.B 11.D 12.C 二、填空题:每小题4分,共16分.13.-2 14.6 15.044=+-x y 16.4 三、解答题:共74分. 17.(本小题12分)).62sin(22cos 2sin 32sin 3)cos )(sin cos (sin cos cos sin 32sin :222244π-=-=+-+=-+=x x x xx x x x xx x x y 解故该函数的最小正周期是π;最小值是-2; 单增区间是],65[],31,0[πππ18.(本小题12分) 解:(I )设A K 表示“第k 人命中目标”,k=1,2,3.这里,A 1,A 2,A 3独立,且P (A 1)=0.7,P (A 2)=0.6,P (A 3)=0.5. 从而,至少有一人命中目标的概率为94.05.04.03.01)()()(1)(1322321=⨯⨯-=-=⋅⋅-A P A P A P A A A P 恰有两人命中目标的概率为44.05.06.03.05.04.07.05.06.07.0)()()()()()()()()()()()()(321321321321321321321321321=⨯⨯+⨯⨯+⨯⨯=++=⋅⋅+⋅⋅+⋅⋅=⋅⋅+⋅⋅+⋅⋅A P A P A P A P A P A P A P A P A P A A A P A A A P A A A P A A A A A A A A A P答:至少有一人命中目标的概率为0.94,恰有两人命中目标的概率为0.44(II )设甲每次射击为一次试验,从而该问题构成三次重复独立试验.又已知在每次试验中事件“命中目标”发生的概率为0.7,故所求概率为.441.0)3.0()7.0()2(2233==C P答:他恰好命中两次的概率为0.441. 19.(本小题12分)(I )证明:因PA ⊥底面,有PA ⊥AB ,又知AB ⊥AD ,故AB ⊥面PAD ,推得BA ⊥AE , 又AM ∥CD ∥EF ,且AM=EF , 证得AEFM 是矩形,故AM ⊥MF.又因AE ⊥PD ,AE ⊥CD ,故AE ⊥面PCD , 而MF ∥AE ,得MF ⊥面PCD , 故MF ⊥PC ,因此MF 是AB 与PC 的公垂线.(II )解:因由(I )知AE ⊥AB ,又AD ⊥AB ,故∠EAD 是二面角E —AB —D 的平面角. 设AB=a ,则PA=3a. 因Rt △ADE~Rt △PDA 故∠EAD=∠APD因此1010)3(sin sin 22=+===a a a PDADAPD EAD . 20.(本小题12分)解:每月生产x 吨时的利润为)20050000()5124200()(2x x x x f +--= ).(200,20002400053)()0(5000024000512123舍去解得由-===+-='≥-+-=x x x x f x x x0)(200),0[)(='=+∞x f x x f 使内只有一个点在因,故它就是最大值点,且最大值为:)(31500005000020024000)200(51)200(3元=-⨯+-=f答:每月生产200吨产品时利润达到最大,最大利润为315万元. 21.(本小题12分)解法一:设),(),,(B B A A y x B y x A ,则其坐标满足⎩⎨⎧=-=.2,22x y x ay消去x 得 0422=--ay y则 ⎩⎨⎧-=⋅=+.4,2BA B A y y a y y⎪⎩⎪⎨⎧==+=++=+44)(,24)(422B A B A B A B A y y x x a y y a x x因此OB OA y y x x B A B A ⊥=+=⋅即,0. 故O 必在圆H 的圆周上.又由题意圆心H (H H y x ,)是AB 的中点,故⎪⎪⎩⎪⎪⎨⎧=+=+=+=.2,222a y y y a x x x B A H B A H 由前已证,OH 应是圆H 的半径,且45||2422++=+=a a y x OH H H .从而当a=0时,圆H 的半径最小,亦使圆H 的面积最小. 解法二:设),(),,(B B A A y x B y x A ,则其坐标满足⎩⎨⎧=-=.2,22x y x ay分别消去x ,y 得⎪⎩⎪⎨⎧=++-=--.04)2(2,042222x a x pky y 故得A 、B 所在圆的方程.02)2(2222=-+-+ay x a y x明显地,O (0,0)满足上面方程故A 、B 、O 三点均在上面方程的表示的圆上.又知A 、B 中点H 的坐标为),,2()2,2(2a a y y x x BA B A +=++ 故 222)2(||a a OH ++=而前面圆的方程可表示为222222)2()()]2([a a a y a x ++=-++- 故|OH|为上面圆的半径R ,从而以AB 为直径的圆必过点O (0,0). 又45||2422++==a a OH R ,故当a=0时,R 2最小,从而圆的面积最小, 解法三:同解法一得O 必在圆H 的圆周上又直径|AB|=22)()(B A B A y y x x -+-.44222222222=+≥+++=+++=B A B A B A B A B A B A x x x x x x x x y y x x上式当B A x x =时,等号成立,直径|AB|最小,从而圆面积最小.此时a=0. 22.(本小题14分)解:(I )因121+++-=n n n a a bnn n n n n b a a a a a 32)(323235111=-=--=+++故{b n }是公比为32的等比数列,且故,32121=-=a a b),2,1()32( ==n b nn(II )由得nn n n a a b )32(1=-=+)()()(121111a a a a a a a a n n n n n -++-+-=--++])32(1[232)32()32()32(21n n n -=++++=-注意到,11=a 可得),2,1(3231 =-=-n a n nn记数列}32{11--n n n 的前n 项和为T n ,则n n n n n T n T )32()32(23232,)32(322121⋅++⋅+=⋅++⋅+=-,)32(])32(1[3)32()32()32(3213112n n n n n n n T --=-++++=- 两式相减得1832)3()1(232)21(3232)3(9)32(3])32(1[911211-+++=-+++=+++=+-=--=-+-n n nn n n nn n n n n n T n na a a S n n T 从而故。