相似三角形的判定(sss)
- 格式:ppt
- 大小:1.08 MB
- 文档页数:20
相似三角形的判定(第三课时)教学目标:1、能说出识别两个三角形相似的方法,两边对应名比例且夹角相等的两个三角形相似.2、能依据条件,正确判断两个三角形相似.教学重、难点:重点:用相似的判定定理判定两个三角形相似.难点:综合应用相似三角形的判定定理解决有关相似问题。
教学过程:一、导入现在我们会用二种方法判定两个三解形是否相似,除此之外,是否还有其他方法呢?二、探究两边对应成比例,且夹角相等的两个三角形相似.已知:在△ABC 和△A ′B ′C ′中,AB A ′ B ′ = ACA ′C ′ ∠A=∠A ‘ 求证:△ABC ~△A ′B ′C ′证明:在△ABC 边AB (或延长线上)截取AD =A ′B ′,过D 作DE//BC 交AC 于E.则:△ABE ~ABC∵ AD AB =AE AC 又 A ′B ′AB =A ′C ′AC AD =A ′B ′ ∴ AE AC=A ′C ′AC 即AE =A ′B ′ A ∵ ∠A=∠A ′ A ′ ∴ △ADE ≌△A ′B ′C ′ D E∴ △ABC ~△A ′B ′C ′B C B ′ C ′定理:如果一个三角形的两条边与另一三角形的两条边对应成比例,且夹角相等,那么这两个三角形相似(齐读)。
强调:“夹角对应相等”,若换成其中一边所对的角对应相等,还相似吗?三、知识运用例:在△ABC和△A′B′C′中,已知下列条件成立判断这两个三角形是否相似.1)AB=5 AC=3 ∠A=45° A′B′=10 A′C′=6 ∠A′=45°(若把∠A=45°,换成∠B′=45°呢?) A2)∠A=38°∠C=97°∠A′=38°∠B′=45° D E例:已知:ADAB =AEAC求证DE‖BCBC方法归结:通过三角形相似得到对应相等,再通过平行线制定得到两线平行。
例:如图,BD、CE是△ABC的高。
三角形的相似性知识点相似三角形是高中数学中的重要概念,理解和掌握三角形的相似性对于解决与三角形相关的问题非常重要。
本文将介绍三角形相似性的定义、判定方法以及相似三角形的性质。
在学习相似性知识点时,我们需要掌握比例、角度和边长的关系,并且能够应用相似三角形的性质解决实际问题。
一、三角形相似性的定义相似三角形是指具有相同形状但可能不等大的三角形。
正式定义为,如果两个三角形的对应角度相等,那么这两个三角形是相似的。
通常用符号~表示相似关系。
二、相似三角形的判定方法1. AA判定法:如果两个三角形两个角对应相等,那么这两个三角形是相似的。
2. SSS判定法:如果两个三角形的三个边分别成比例,那么这两个三角形是相似的。
3. SAS判定法:如果两个三角形的一个角相等,另外两个边成比例,那么这两个三角形是相似的。
三、相似三角形的性质1. 对应角相等性质:相似三角形的对应角都相等。
2. 对应边成比例性质:相似三角形的对应边之间的比值相等。
3. 比例性质:相似三角形的相应边长比例等于相应角度的边长比例。
四、相似三角形的应用相似三角形的性质可以应用于实际问题的解决中,例如测量高楼的高度、影子长度的测量等。
以下是一个例子:假设有一根高塔,在地面上有一杆测量仪器,测量仪器与塔尖的距离为1.5米,同时测量仪器与杆子的投影长度为0.5米。
如果知道测量仪器与塔尖的连线与水平面的夹角为30度,求塔的高度。
解决这个问题可以利用相似三角形的性质。
我们可以将测量仪器与塔尖的连线、杆子和塔的高度组成一个相似三角形。
根据相似三角形的性质,我们可以得到以下比例关系:(塔的高度) / (杆子的长度) = (测量仪器与塔尖的距离) / (测量仪器与杆子的投影长度)即 h / 0.5 = 1.5 / 0.5解以上比例可得 h = 1.5 米因此,塔的高度为1.5米。
结语:相似三角形的知识点是解决与三角形相关问题的基础,我们通过掌握相似三角形的定义、判定方法以及性质,能够更好地解决实际问题。
几何中的相似三角形相似三角形的判定条件相似三角形是几何学中的重要概念,判断两个三角形是否相似可以通过一系列的条件来确定。
本文将介绍几何中的相似三角形以及相似三角形的判定条件。
一、相似三角形的定义相似三角形是指具有相同形状但不同大小的三角形。
它们的所有对应角度相等,对应边的长度成比例。
二、相似三角形的判定条件在几何学中,有三种主要的判定条件用于确定两个三角形是否相似,它们分别是AA相似定理、SAS相似定理和SSS相似定理。
1. AA相似定理(角-角相似定理)当两个三角形中有两个对应角度相等时,它们是相似三角形。
具体而言,如果两个三角形的一个角度相等,而另一个角度也相等,那么这两个三角形是相似的。
2. SAS相似定理(边-角-边相似定理)当两个三角形的一个角度相等,并且两边成比例,那么它们是相似的。
具体而言,如果两个三角形的一个角度相等,并且与这个角度对应的两边成比例,那么这两个三角形是相似的。
3. SSS相似定理(边-边-边相似定理)当两个三角形的三边成比例时,它们是相似的。
具体而言,如果两个三角形的三边长度成比例,那么这两个三角形是相似的。
三、相似三角形的性质相似三角形具有一些重要的性质,可以应用于解决几何问题。
1. 对应角相等性质相似三角形的对应角相等,即它们的三个角度一一对应相等。
2. 对应边成比例性质相似三角形的对应边长度成比例,即它们的三个边按比例相等。
3. 高度性质相似三角形的对应边上的高度成比例,即它们的高度按比例相等。
4. 重心性质相似三角形的重心重合,即它们的重心位置一致。
四、应用举例下面通过一个实例来演示相似三角形的判定过程。
例题:已知∠ABC = 60°,∠ACB = 40°,AB = 8 cm,BC = 6 cm,是否可以判定△ABC与△DEF相似?解答:根据角度相等的条件,我们可以得知∠ABC = ∠DEF = 60°以及∠ACB = ∠DFE = 40°。
相似三角形的判定与性质相似三角形是几何学中的重要概念,它们在很多问题的解决中起着关键作用。
本文将介绍相似三角形的判定方法以及相似三角形的一些性质。
一、相似三角形的判定方法1. AA相似定理AA相似定理是相似三角形的判定方法之一。
当两个三角形的对应角度相等时,这两个三角形是相似的。
具体而言,如果三角形ABC和三角形DEF满足∠A = ∠D,且∠B = ∠E,那么这两个三角形是相似的。
2. SSS相似定理SSS相似定理是相似三角形的判定方法之二。
当两个三角形的对应边长成比例时,这两个三角形是相似的。
具体而言,如果三角形ABC 和三角形DEF满足AB/DE = BC/EF = AC/DF,那么这两个三角形是相似的。
3. SAS相似定理SAS相似定理是相似三角形的判定方法之三。
当两个三角形的一个对应边成比例,且两个对应边夹角相等时,这两个三角形是相似的。
具体而言,如果三角形ABC和三角形DEF满足AB/DE = AC/DF和∠A = ∠D,那么这两个三角形是相似的。
二、相似三角形的性质1. 对应角相等性质相似三角形的对应角是相等的。
如果三角形ABC与三角形DEF是相似的,那么∠A = ∠D,∠B = ∠E,∠C = ∠F。
2. 对应边成比例性质相似三角形的对应边成比例。
如果三角形ABC与三角形DEF是相似的,那么AB/DE = BC/EF = AC/DF。
3. 高度与边成比例性质相似三角形的对应边上的高度成比例。
如果三角形ABC与三角形DEF是相似的,那么AD/DF = BE/EF = CF/DE。
4. 面积与边长平方的比例性质相似三角形的面积与对应边长的平方成比例。
如果三角形ABC与三角形DEF是相似的,则S(ABC)/S(DEF) = (AB/DE)^2 = (BC/EF)^2 = (AC/DF)^2,其中S(ABC)表示三角形ABC的面积,S(DEF)表示三角形DEF的面积。
5. 定理勾股定理性质边长成比例的三角形中,对应边长的平方和成比例。
相似三角形的性质与判定相似三角形是指具有相等对应角度的三角形,它们的对应边长之比也相等。
相似三角形不仅在几何学中具有重要意义,而且在实际生活中应用广泛。
本文将介绍相似三角形的性质及其判定方法。
一、相似三角形的性质1. 相似三角形的对应角度相等:对于两个三角形ABC和DEF,若∠A=∠D、∠B=∠E、∠C=∠F,则可以判断这两个三角形相似。
2. 相似三角形的对应边长比相等:对于两个相似三角形ABC与DEF,若AB/DE = AC/DF = BC/EF,则可以判断这两个三角形相似。
二、判定相似三角形的方法1. AA判定法(角-角判定法):如果两个三角形的两个角分别对应相等(即两个角的对应边平行),则可以判断这两个三角形相似。
例如,已知两个三角形ABC与DEF,已知∠A = ∠D,∠C = ∠F,并且∠B与∠E不相等,但∠B与∠E之间没有已知的关系。
根据AA判定法,可以得出结论这两个三角形相似。
2. SAS判定法(边-角-边判定法):如果两个三角形的一个角和两边分别相等,则可以判断这两个三角形相似。
例如,已知两个三角形ABC与DEF,已知∠A = ∠D,并且AB/DE = AC/DF。
根据SAS判定法,可以得出结论这两个三角形相似。
3. SSS判定法(边-边-边判定法):如果两个三角形的三条边的比例相等,则可以判断这两个三角形相似。
例如,已知两个三角形ABC与DEF,已知AB/DE = BC/EF =AC/DF。
根据SSS判定法,可以得出结论这两个三角形相似。
4. RHS判定法(直角边-斜边-直角边判定法):如果两个直角三角形的一个直角边和斜边的比例相等,则可以判断这两个三角形相似。
例如,已知两个直角三角形ABC与DEF,已知∠C = ∠F = 90°,并且AB/DE = AC/DF。
根据RHS判定法,可以得出结论这两个三角形相似。
三、实际应用相似三角形的性质及判定方法在实际生活中有广泛的应用。
第2课时:相似三角形的判定-SSS判定定理第二十七章相似27.2.1相似三角形的判定第二十七章相似27.2.1.2相似三角形的判定-SSS判定定理一、教学目标1.学会利用类比的思想研究三角形相似的判定问题;2.掌握三角形相似的SSS定理的证明方法,并能简单应用;3.进一步体会几何证明中的公理一体化问题;4.探究经历“试验、猜想、证明”的过程,感受几何命题的合理性,并通过证明确认命题正确,培养学生发现问题、解决问题的能力.二、教学重难点重点:进一步体会几何证明中的公理一体化问题.难点:掌握三角形相似的SSS定理的证明方法,并能简单应用.三、教学用具教学课件.四、教学过程设计【复习回顾】目前为止,我们已经学习了判定三角形相似的2种方法定义法:对应边成比例,且对应角相等的两个三角形是相似三角形.平行线法:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.类比全等三角形的判定,还有哪些判定方法呢?【教学建议】通过复习回顾,帮助学生梳理已经学过的知识,引起认知冲突,为新课的学习进行铺垫.【探究】思考:两个三角形的三边对应成比例,他们是相似三角形吗?已知:△ABC与△A'B'C'AB BC AC A B B C A C==''''''中,问题:△ABC与△A'B'C'相似吗?探究方法:1、利用量角器度量对应角的大小2、通过平移让对应角重合,验证对应角的大小关系【探究操作】(1)∠A=∠A'(2)∠B=∠B'(3)∠C=∠C'猜想:三边成比例的两个三角形相似 【证明】如图,在△ABC 和△A'B'C'AB BC ACA B B C A C ==''''''中,,求证:△ABC ∽△A'B'C'.分析:在线段A'B'(或它的延长线)上截取A'D =AB ,过点D 作DE ∥B'C',交A'C'于点E ,构造△A'DE .证明:在线段A'B'(或它的延长线)上截取A'D =AB ,过点D 作DE ∥B'C',交A'C'于点E ,∵DE ∥B'C' A D DE A EA B B C A C ''==''''''∴. AB BC ACA B B C A C ==''''''又,A'D=AB , DE BC B C B C =''''A E AC A C A C '=''''∴,. ∴DE =BC ,A'E =AC .∴△A'DE ≌△ABC (SSS 全等判定定理).【归纳】判定三角形相似的定理: 三边成比例的两个三角形相似.符号语言表示:如图,在△ABC 和△A'B'C'中, AB BC ACA B B C A C ==''''''∵, ∴△ABC ∽△A'B'C'.总结:k 叫做相似比,其中,当相似比等于1时,两个三角形是全等三角形【教学建议】教师引导学生再一次梳理重难点知识 【反思】 证明思路:【教学建议】这一环节,教师引导学生对证明过程那进行反思总结,培养良好的学习习惯.【做一做】依据以下各组条件,判定△ABC 与△A'B'C'【典型例题】例1 根据下列条件,判断△ABC 与△A'B'C'是否相似,并说明理由:1cm 2cm 3 cm cm 2 cm =3 cm AB BC AC A'B'a B'C'a A'C'a =====,,;,,.0a ≠∵解:1AB A'B'a ∴=,212BC B'C'a a ==,313AC A'C'a a ==, AB AC BC ==A'B'A'C'B'C'∴. ∴△ABC 与△A'B'C'相似.总结:只有三组对应边的比值相等时,两个三角形才是相似三角形例2 如图,已知△ABD ∽△ACB ,AD =2,AC =8,求AB 的长.解:∵∠ABD =∠C ,∠A =∠A ∴△ABD ∽△ACB . AB ADAC AB=∴ 82AB AB=∴∴AB 2=2×8=16 ∴AB =4【教学建议】教师通过思维导图,将本节课的内容进行归纳,帮助学生梳理知识脉络和重难点。