相似三角形的判定SSS
- 格式:ppt
- 大小:5.20 MB
- 文档页数:24
三角形的相似判定与相关问题在初中数学中,三角形是一个重要的几何图形。
它有着丰富的性质和特点,其中一个重要的概念就是相似三角形。
相似三角形是指具有相同形状但大小不同的三角形。
在本篇文章中,我们将探讨三角形的相似判定及其相关问题。
一、相似三角形的定义和判定相似三角形是指两个三角形的对应角相等,并且对应边成比例。
具体来说,如果两个三角形的对应角分别相等,且对应边的比例相等,那么这两个三角形就是相似的。
那么如何判断两个三角形是否相似呢?我们可以利用以下几种方法进行判定。
1. AA判定法:如果两个三角形的两个对应角分别相等,那么这两个三角形是相似的。
例如,已知两个三角形的两个对应角分别为60°和30°,那么这两个三角形就是相似的。
2. SSS判定法:如果两个三角形的三条边分别成比例,那么这两个三角形是相似的。
例如,已知两个三角形的三条边长度分别为3cm、4cm、5cm和6cm、8cm、10cm,那么这两个三角形就是相似的。
3. SAS判定法:如果两个三角形的一个对应角相等,而另外两条边成比例,那么这两个三角形是相似的。
例如,已知两个三角形的一个对应角相等,而另外两条边的比例分别为2:3和4:6,那么这两个三角形就是相似的。
二、相似三角形的性质和应用相似三角形有许多重要的性质和应用,下面我们将介绍其中的几个。
1. 边长比例:相似三角形的对应边的长度比例相等。
例如,如果两个相似三角形的一个边的长度比例为2:3,那么其他两条边的长度比例也是2:3。
2. 高度比例:相似三角形的对应高度的长度比例等于对应边的长度比例。
例如,如果两个相似三角形的一个边的长度比例为2:3,那么它们的对应高度的长度比例也是2:3。
3. 面积比例:相似三角形的面积比等于对应边的长度比例的平方。
例如,如果两个相似三角形的一个边的长度比例为2:3,那么它们的面积比也是2²:3²,即4:9。
相似三角形的应用非常广泛。
全等相似三角形的判定方法
全等和相似三角形的判定方法如下:
全等三角形的判定方法:
1.SSS(边、边、边):三边长度相等。
2.SAS(边、角、边):两边夹角相等。
3.ASA(角、边、角):两角夹边相等。
4.AAS(角、角、边):两角非夹边相等。
5.RHS(直角、斜边、边):在一对直角三角形中,斜边及另一条
直角边相等。
相似三角形的判定方法:
1.两角分别对应相等的两个三角形相似。
2.两边成比例且夹角相等的两个三角形相似。
3.三边成比例的两个三角形相似。
4.一条直角边与斜边成比例的两个直角三角形相似。
相似三角形的性质与判定相似三角形是指具有相等对应角度的三角形,它们的对应边长之比也相等。
相似三角形不仅在几何学中具有重要意义,而且在实际生活中应用广泛。
本文将介绍相似三角形的性质及其判定方法。
一、相似三角形的性质1. 相似三角形的对应角度相等:对于两个三角形ABC和DEF,若∠A=∠D、∠B=∠E、∠C=∠F,则可以判断这两个三角形相似。
2. 相似三角形的对应边长比相等:对于两个相似三角形ABC与DEF,若AB/DE = AC/DF = BC/EF,则可以判断这两个三角形相似。
二、判定相似三角形的方法1. AA判定法(角-角判定法):如果两个三角形的两个角分别对应相等(即两个角的对应边平行),则可以判断这两个三角形相似。
例如,已知两个三角形ABC与DEF,已知∠A = ∠D,∠C = ∠F,并且∠B与∠E不相等,但∠B与∠E之间没有已知的关系。
根据AA判定法,可以得出结论这两个三角形相似。
2. SAS判定法(边-角-边判定法):如果两个三角形的一个角和两边分别相等,则可以判断这两个三角形相似。
例如,已知两个三角形ABC与DEF,已知∠A = ∠D,并且AB/DE = AC/DF。
根据SAS判定法,可以得出结论这两个三角形相似。
3. SSS判定法(边-边-边判定法):如果两个三角形的三条边的比例相等,则可以判断这两个三角形相似。
例如,已知两个三角形ABC与DEF,已知AB/DE = BC/EF =AC/DF。
根据SSS判定法,可以得出结论这两个三角形相似。
4. RHS判定法(直角边-斜边-直角边判定法):如果两个直角三角形的一个直角边和斜边的比例相等,则可以判断这两个三角形相似。
例如,已知两个直角三角形ABC与DEF,已知∠C = ∠F = 90°,并且AB/DE = AC/DF。
根据RHS判定法,可以得出结论这两个三角形相似。
三、实际应用相似三角形的性质及判定方法在实际生活中有广泛的应用。
第2课时:相似三角形的判定-SSS判定定理第二十七章相似27.2.1相似三角形的判定第二十七章相似27.2.1.2相似三角形的判定-SSS判定定理一、教学目标1.学会利用类比的思想研究三角形相似的判定问题;2.掌握三角形相似的SSS定理的证明方法,并能简单应用;3.进一步体会几何证明中的公理一体化问题;4.探究经历“试验、猜想、证明”的过程,感受几何命题的合理性,并通过证明确认命题正确,培养学生发现问题、解决问题的能力.二、教学重难点重点:进一步体会几何证明中的公理一体化问题.难点:掌握三角形相似的SSS定理的证明方法,并能简单应用.三、教学用具教学课件.四、教学过程设计【复习回顾】目前为止,我们已经学习了判定三角形相似的2种方法定义法:对应边成比例,且对应角相等的两个三角形是相似三角形.平行线法:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.类比全等三角形的判定,还有哪些判定方法呢?【教学建议】通过复习回顾,帮助学生梳理已经学过的知识,引起认知冲突,为新课的学习进行铺垫.【探究】思考:两个三角形的三边对应成比例,他们是相似三角形吗?已知:△ABC与△A'B'C'AB BC AC A B B C A C==''''''中,问题:△ABC与△A'B'C'相似吗?探究方法:1、利用量角器度量对应角的大小2、通过平移让对应角重合,验证对应角的大小关系【探究操作】(1)∠A=∠A'(2)∠B=∠B'(3)∠C=∠C'猜想:三边成比例的两个三角形相似 【证明】如图,在△ABC 和△A'B'C'AB BC ACA B B C A C ==''''''中,,求证:△ABC ∽△A'B'C'.分析:在线段A'B'(或它的延长线)上截取A'D =AB ,过点D 作DE ∥B'C',交A'C'于点E ,构造△A'DE .证明:在线段A'B'(或它的延长线)上截取A'D =AB ,过点D 作DE ∥B'C',交A'C'于点E ,∵DE ∥B'C' A D DE A EA B B C A C ''==''''''∴. AB BC ACA B B C A C ==''''''又,A'D=AB , DE BC B C B C =''''A E AC A C A C '=''''∴,. ∴DE =BC ,A'E =AC .∴△A'DE ≌△ABC (SSS 全等判定定理).【归纳】判定三角形相似的定理: 三边成比例的两个三角形相似.符号语言表示:如图,在△ABC 和△A'B'C'中, AB BC ACA B B C A C ==''''''∵, ∴△ABC ∽△A'B'C'.总结:k 叫做相似比,其中,当相似比等于1时,两个三角形是全等三角形【教学建议】教师引导学生再一次梳理重难点知识 【反思】 证明思路:【教学建议】这一环节,教师引导学生对证明过程那进行反思总结,培养良好的学习习惯.【做一做】依据以下各组条件,判定△ABC 与△A'B'C'【典型例题】例1 根据下列条件,判断△ABC 与△A'B'C'是否相似,并说明理由:1cm 2cm 3 cm cm 2 cm =3 cm AB BC AC A'B'a B'C'a A'C'a =====,,;,,.0a ≠∵解:1AB A'B'a ∴=,212BC B'C'a a ==,313AC A'C'a a ==, AB AC BC ==A'B'A'C'B'C'∴. ∴△ABC 与△A'B'C'相似.总结:只有三组对应边的比值相等时,两个三角形才是相似三角形例2 如图,已知△ABD ∽△ACB ,AD =2,AC =8,求AB 的长.解:∵∠ABD =∠C ,∠A =∠A ∴△ABD ∽△ACB . AB ADAC AB=∴ 82AB AB=∴∴AB 2=2×8=16 ∴AB =4【教学建议】教师通过思维导图,将本节课的内容进行归纳,帮助学生梳理知识脉络和重难点。
相似三角形的判定(解析版)相似三角形的判定(解析版)相似三角形是指具有相同形状但尺寸不同的两个或多个三角形。
判定两个三角形是否相似有多种方法,本文将介绍三种常见的相似三角形判定方法,并以解析的方式解释其原理和应用。
一、AA相似判定法AA相似判定法是通过两个三角形的相似角和对应边的比值来判定它们是否相似。
具体步骤如下:1. 选取两个三角形,分别记为△ABC和△DEF。
2. 观察两个三角形中的对应角,如果∠A = ∠D 且∠B = ∠E(或∠C = ∠F),则可以得出两个三角形的相似角。
3. 检查两个三角形中对应边的比值,如果AB/DE = BC/EF(或AC/DF)成立,则可以得出两个三角形相似。
通过AA相似判定法,我们可以快速判定两个三角形是否相似,并且可以进一步得出它们对应边的比值关系。
二、SSS相似判定法SSS相似判定法是通过两个三角形的边长比值来判定它们是否相似。
具体步骤如下:1. 选取两个三角形,分别记为△ABC和△DEF。
2. 检查两个三角形中各对应边的比值,如果AB/DE = BC/EF =AC/DF成立,则可以得出两个三角形相似。
通过SSS相似判定法,我们可以根据三个对应边的比值关系来判断两个三角形是否相似。
三、SAS相似判定法SAS相似判定法是通过两个三角形的两组对应边的比值和夹角的相等关系来判定它们是否相似。
具体步骤如下:1. 选取两个三角形,分别记为△ABC和△DEF。
2. 检查两个三角形中对应边的比值和夹角的相等关系。
如果AB/DE = AC/DF,并且∠A = ∠D,则可以得出两个三角形相似。
SAS相似判定法是一种灵活且常用的判定方法,通过两组对应边的比值和夹角的相等关系来判断两个三角形是否相似。
结论:通过以上三种相似三角形的判定方法,我们可以准确地判断两个三角形是否相似。
在实际应用中,相似三角形的判定对于解决实际问题具有重要意义。
例如,在建筑、地图测量和航空导航中,我们需要利用相似三角形的性质来进行距离和高度的估算。
三角形的相似性质及证明三角形是基础的几何图形之一,它具有多种性质和特点。
其中之一便是相似性质。
本文将会介绍三角形的相似性质,以及其证明过程。
一、相似性质的定义在几何学中,当两个三角形的对应角度相等,而对应边的比值相等时,我们称这两个三角形为相似三角形。
记作∆ABC∼∆DEF。
二、相似性质的判定1. AAA判定法:如果两个三角形的三个内角相等,则这两个三角形是相似的。
例如,已知∠A=∠D,∠B=∠E,∠C=∠F,在此条件下可以判定∆ABC∼∆DEF。
证明过程:由已知∠A=∠D,∠B=∠E,∠C=∠F,可以得到三角形ABC与DEF中的角度对应关系相等。
因此,根据AAA判定法,可以判定∆ABC∼∆DEF。
2. AA判定法:若两个三角形的两个角度对应相等,则这两个三角形是相似的。
例如,已知∠A=∠D,∠B=∠E,在此条件下可以判定∆ABC∼∆DEF。
证明过程:由已知∠A=∠D,∠B=∠E,可以得到三角形ABC与DEF中的角度对应关系相等。
因此,根据AA判定法,可以判定∆ABC∼∆DEF。
3. SAS判定法:如果两个三角形的一个角和两边分别相等,则这两个三角形是相似的。
例如,已知∠A=∠D,AB/DE=BC/EF,在此条件下可以判定∆ABC∼∆DEF。
证明过程:由已知∠A=∠D,AB/DE=BC/EF,可以得到三角形ABC与DEF中的角度和边长对应关系相等。
因此,根据SAS判定法,可以判定∆ABC∼∆DEF。
4. SSS判定法:若两个三角形的三边对应相等,则这两个三角形是相似的。
例如,已知AB/DE=BC/EF=AC/DF,在此条件下可以判定∆ABC∼∆DEF。
证明过程:由已知AB/DE=BC/EF=AC/DF,可以得到三角形ABC与DEF中的边长对应关系相等。
因此,根据SSS判定法,可以判定∆ABC∼∆DEF。
三、相似性质的应用相似性质在几何学中有广泛的应用,以下列举几个例子。
1. 相似三角形的比例关系:根据相似三角形的定义,可以得到相似三角形的对应边长之间的比例关系。
证相似三角形的方法相似三角形是初中数学中的一个重要概念,它在几何学中有着广泛的应用。
在实际问题中,我们常常需要证明两个三角形是相似的,因此,了解证相似三角形的方法是非常重要的。
本文将介绍几种常用的证相似三角形的方法,希望能够帮助大家更好地掌握这一知识点。
1. AA 判定法。
AA 判定法是最常用的证相似三角形的方法之一。
所谓 AA 判定法,即如果两个三角形的两个角分别相等,则这两个三角形是相似的。
具体来说,如果三角形ABC 和三角形 DEF 中,∠A=∠D 且∠B=∠E,那么三角形 ABC 与三角形 DEF 是相似的。
这是因为两个角相等可以确定两个三角形的形状,从而可以推出它们是相似的。
2. AAA 判定法。
AAA 判定法是另一种常用的证相似三角形的方法。
所谓 AAA 判定法,即如果两个三角形的三个角分别相等,则这两个三角形是相似的。
具体来说,如果三角形ABC 和三角形 DEF 中,∠A=∠D 且∠B=∠E 且∠C=∠F,那么三角形 ABC 与三角形 DEF 是相似的。
这是因为三个角相等可以确定两个三角形的形状,从而可以推出它们是相似的。
3. SSS 判定法。
SSS 判定法是另一种常用的证相似三角形的方法。
所谓 SSS 判定法,即如果两个三角形的对应边的比相等,则这两个三角形是相似的。
具体来说,如果三角形ABC 和三角形 DEF 中,AB/DE=BC/EF=AC/DF,那么三角形 ABC 与三角形 DEF 是相似的。
这是因为三条边的比相等可以确定两个三角形的形状,从而可以推出它们是相似的。
4. 直角三角形的判定法。
对于直角三角形,还有一种特殊的相似判定法。
如果一个三角形的一个角为直角,且另外两个三角形的对应角相等,则这两个三角形是相似的。
具体来说,如果三角形 ABC 中,∠C=90°,且三角形 DEF 中,∠F=90°,且∠A=∠D 且∠B=∠E,那么三角形 ABC 与三角形 DEF 是相似的。