第四章《分解因式》回顾与思考
- 格式:doc
- 大小:195.50 KB
- 文档页数:7
北师大版本八年级数学下第四章因式分解全章教案1 因式分解【知识与技能】使学生了解因式分解的意义,理解因式分解的概念;通过对分解因式与整式的乘法的观察与比较,学习代数式的变形和转化与化归的能力,培养学生的分析问题能力与综合应用能力.【过程与方法】认识因式分解与整式乘法的相互关系——互逆关系(即相反变形),并能利用这种关系寻求因式分解的方法;通过解决实际问题,学会将实际应用问题转化为用所学到的数学知识解决问题,体验解决问题策略的多样性,发展实践应用意识.【情感态度】培养学生接受矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度.【教学重点】因式分解的概念.【教学难点】难点是理解因式分解与整式乘法的相互关系,并利用它们之间的相互关系寻求因式分解的方法.一.情景导入,初步认知下题简便运算怎样进行?问题1:736×95+736×5问题2:-2.67× 132+25×2.67+7×2.67【教学说明】对乘法公式进行分析,为因式分解作铺垫.二.思考探究,获取新知问题:(1)993-99 能被99 整除吗?为了回答这个问题,你该怎样做?把你的想法与同学交流。
993-99 = 99×992-99 = 99(992-1)∴993-99 能被99 整除.(2)993-99 能被100 整除吗?为了回答这个问题,你该怎样做?把你的想法与同学交流。
小明是这样做的:993-99 = 99×992-99×1 = 99(992-1)= 99(99+1)(99- 1)= 99×98×100所以993-99 能被100 整除.想一想:(1)在回答993-99 能否被100 整除时,小明是怎么做的?(2)请你说明小明每一步的依据.(3)993-99 还能被哪些正整数整除?为了回答这个问题,你该怎做?【教学说明】老师点拨:回答这个问题的关键是把993-99 化成了怎样的形式?【归纳结论】以上三个问题解决的关键是把一个数式化成了几个数的积的形式.可以了解:993-99 可以被98、99、100 三个连续整数整除.将99 换成其他任意一个大于 1 的整数,上述结论仍然成立吗?学生探究发现:用a 表示任意一个大于1 的整数,则:a3-a=a×a2-a=a×(a2-1)=a ×(a+1)(a-1)=(a-1)×a×(a+1)① 能理解吗?你能与同伴交流每一步怎么变形的吗?② 这样变形是为了达到什么样的目的?【教学说明】经历从分解因数到分解因式的类比过程,探究概念本质属性.【归纳结论】把一个多项式化成几个整式的积的形式叫做把这个多项式分解因式.三.运用新知,深化理解1.下列各式从左到右的变形,哪些是因式分解?(1)4a(a+2b)=4a2+8ab;(2)6ax-3ax2=3ax(2-x);(3)a2-4=(a+2)(a-2);(4)x2-3x+2=x(x-3)+2.答案:(2)(3)是因式分解.2.试将下列各式化成几个整式的积的形式(1)3x2-2x= - (2)m2-4n2 =答案:(1)x(3x-2) (2)(m+2n)(m-2n)3.分解因式.4m2-4m= 2a3+2a= y2+4y+4=答案:4m(m-1) 2a(a2+1) (y+2)2 4.如果a+b=10,ab=21,则a2b+ab2 的值为.答案:210.5.如果a-3b=-3,那么5-a+3b 的值是()A.0B.2C.5D.8答案:D.6.9993-999 能被998 整除吗?能被1000 整除吗?解:9993-999=999(9992-1)=999(999+1)(999-1)=999×1000×998 所以9993- 999 能被998 整除,能被1000 整除。
课题:第四章回顾与思考授课人:市中区徐利华课型:复习课授课时间:2014年5月5日,星期一,第1、2 节课教学目标:1.使学生进一步了解分解因式的意义及因式分解的常用方法;2.提高学生因式分解的基本运算技能;3.通过因式分解的综合练习,进一步培养学生的观察、分析问题的能力.教学重点:会用提公因式法、公式法进行因式分解.教学难点:本章知识的综合性应用.教法学法:本节课以学生活动为主,引入竞争机制,创造一种学生积极参与的学习环境.我通过设置“主动展示—归纳总结—例题解析—拓展应用”四个递进的活动,来引导学生展示知识结构图、归纳本章知识体系、总结分解因式的一般步骤、理解分解彻底的含义,并在教学中充分利用学生的想法和语言,帮助学生形成分解因式的基本技能和基本能力,体验成功的快乐,使学生更加投入的学习.课前准备:学生课前准备:梳理本章相关知识;教师课前准备:多媒体课件.教学过程:一、梳理知识形成体系师:同学们,第四章内容我们学习完了,昨天我已经请大家梳理本章知识进行并试着画出本章的知识结构图,这节课我们就来对本章知识进行总结.【教师板书课题:4.4 回顾与思考】【实物投影】由学生主动展示所画的知识结构图并投影.(师生共同评价,结合学生的知识结构图,师生在黑板上逐步绘制本章知识结构图.)mn mn n m 1892722-+-【设计意图】学生通过绘制本章知识结构图,将本章的主要知识点串联起来,形成体系.这样既能培养学生归纳整理的能力,又能促进学生相互学习,完善知识结构.让学生主动展示,一方面能让学生以自己喜欢的方式展示所学知识,另一方面也能体现出对学生个性发展的尊重.二、典型例题解析考点1:对分解因式概念的理解例1.下列式子从左到右的变形中是分解因式的为( ). A. B. C.D. 【设计意图】题目简单,要求学生抢答,通过例题引导学生说出每一选择支错和对的理由,加深学生对因式分解概念的认识.考点2:利用提公因式法分解因式 例2.把下列各式分解因式 (1) (2) 考点3:利用公式法分解因式 例3. 把下列各式分解因式 (1) (2) (3)(4) 【设计意图】两道例题由学生独立完成,并且进行分组比赛,目的有三个,一是加强学生对因式分解的)11(1))(()21(4414)3(4322222xx x y x y x y x x x x y y y y -=--+=--=+---=--23)1(2)1(4-+-b b b 22)()(n m n m --+4932++x x abb a 8)2(2+-25)(10)(2++-+y x y x基本技能训练;二是增强学生在分解因式过程中运用整体思想进行运算,三是创造一个积极的学习气氛. 注意事项:前五题学生应该完成得较好,最后一题,可能有的学生处理时显得有些茫然,教师在讲解时,应引导学生先化简整理,再考虑用公式或其它方法进行因式分解. 跟踪练习:把下列各式分解因式(1)(a 2+4)2–16a 2(2) 【设计意图】连续两次使用公式法进行分解因式.当多项式形式上是二项式时,应考虑用平方差公式,当多项式形式上是三项式时,应考虑用完全平方公式. 考点4:综合运用多种方法分解因式 例4.把下列各式分解因式 (1) (2) (3) (4)师:同学们仔细观察,例4和例2、例3有没有区别?生:有,例2和例3适用解题方法比较单一,不是提公因式法,就是公式法,而例4好像是综合运用. 师:观察的非常仔细.以后大家做分解因式时,应先观察是否有公因式,若有,则先提公因式,若没有,则考虑公式法,另外还要注意分解是否彻底. 生:(学生尝试独自完成例题4) 师:(集体讲评,规范解题过程的书写)师:从上面的例题中,大家能否总结一下分解因式的步骤呢? 生:分解因式的一般步骤为(1)先观察,若多项式各项有公因式,则先提取公因式;(2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式; (3)每一个多项式都要分解彻底. 师:(追问)你是怎么理解分解彻底的? 生:分解彻底,就是不能再分. 师:(追问)怎么评价不能再分?生:对分解后的每一个因式进行衡量,直到不能提公因式、运用公式为止. 师:说的精彩,大家以后要按这个标准分解因式.44222yx y x --xx 43-)1()1(2)1(2222-+-+-y y x y x )1(4)(2-+-+b a b axz z y x 449222++-【设计意图】进一步巩固因式分解的方法,提升因式分解的技能.在讲评中,注意让学生明确因式分解的基本步骤与应注意的问题,第四题是对因式分解较高要求,只是提供给学有余力的学生. 考点5:运用分解因式进行计算和求值 例5.利用分解因式计算(1)20112-2011×4024+20102(2)3.14×5.52-3.14×4.52(3)已知x +y =1,求222121y xy x ++的值. 【设计意图】通过运用因式分解进行简便计算,解决实际问题,进一步让学生体会因式分解的价值,进一步感受因式分解的必要性,提高运用因式分解解决问题的能力.三、拓展应用师:本章的五个考点我们已复习完,大家通过例题解析和跟踪练习对本章知识进行了归纳和总结,不知同学们是否真正掌握?下面我们来做一组练习: 1.当x 取何值时,x 2+2x +1取得最小值?2.当k 取何值时,100 x 2-kxy +49y 2是一个完全平方式? 3.计算 【设计意图】通过设置恰当的、有一定梯度的题目,关注学生知识技能的发展和不同层次的需求.第1题主要考察学生对完全平方式的掌握,中等程度以上的学生都应该能解答;但第2题有两种情况需要考虑,部分学生被负号所迷惑只写了一个答案.第3题主要考察学生利用因式分解进行简便运算.四、师生交流,归纳小结师:本节课我们复习了分解因式五个考点,巩固了分解因式的两种方法,并总结分解因式的一般步骤,理解了分解彻底含义.相信每个同学都有所收获.整理一下本节课的所学,写在导学案上.我掌握了分解因式的方法: ; 我总结了分解因式的一般步骤: ;我理解了分解彻底的含义: ; 我还懂得了: . 学生写完后,全班交流各自的收获和心得.教师及时点评,鼓励.【设计意图】课堂总结是知识沉淀的过程,使学生对本节课所学进行梳理,养成反思与总结的习惯,培养自我反馈,自主发展的意识,写下来更能加深印象.).11)...(1011)(911)...(411)(311)(211(222222n ------五、达标检测,反馈新知出示达标题目限时10分钟练习 A 组(必做题):1. 把代数式29xy x -分解因式,结果正确的是( ) A.2(9)x y -B.2(3)x y +C.(3)(3)x y y +-D.(9)(9)x y y +-、2. 将整式29x -分解因式的结果是( ) A .2(3)x -B .(3)(3)x x +-C .2(9)x -D .(9)(9)x x +-3. 分解因式:2(3)(3)x x +-+=___________. 4因式分解: 2(2)(3)4x x x +++-= . 5. 当k = 时,100x 2–kxy +49y 2是一个完全平方式; B 组(选做题):6. 把a 4-2a 2b 2+b 4分解因式,结果是( )A 、a 2(a 2-2b 2)+b 4B 、(a 2-b 2)2C 、(a -b )4D 、(a +b )2(a -b )27. 把代数式 322363x x y xy -+分解因式,结果正确的是A .(3)(3)x x y x y +-B .223(2)x x xy y -+ C .2(3)x x y - D .23()x x y - 8. 先分解因式,然后计算求值:(a 2+b 2-2ab )-6(a -b )+9,其中a =10000,b =9999。
2024北师大版数学八年级下册4.1《因式分解》教学设计一. 教材分析《因式分解》是北师大版数学八年级下册第4章第1节的内容。
本节课的主要内容是利用提公因式法和公式法分解因式。
因式分解是中学数学中的重要内容,是解决许多数学问题的基础。
通过本节课的学习,使学生掌握因式分解的方法,提高解题能力。
二. 学情分析学生在七年级已经接触过简单的因式分解,对因式分解有初步的认识。
但八年级的因式分解内容更加系统和复杂,需要学生有一定的逻辑思维能力和抽象思维能力。
根据学生的实际情况,我将采用循序渐进的教学方法,引导学生逐步掌握因式分解的方法。
三. 教学目标1.知识与技能:使学生掌握提公因式法和公式法分解因式的方法。
2.过程与方法:通过独立探究、合作交流,培养学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心。
四. 教学重难点1.重点:提公因式法和公式法分解因式。
2.难点:如何引导学生发现和运用提公因式法和公式法的规律。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过设置问题,引导学生独立思考和合作交流,提高学生解决问题的能力。
六. 教学准备1.准备相关案例和练习题。
2.准备课件和教学素材。
七. 教学过程1.导入(5分钟)通过一个实际问题引入因式分解的概念,激发学生的兴趣。
2.呈现(10分钟)呈现因式分解的方法,包括提公因式法和公式法。
通过讲解和示例,让学生初步理解这两种方法。
3.操练(10分钟)让学生独立完成一些因式分解的练习题,巩固所学的知识。
4.巩固(5分钟)对学生的练习情况进行反馈,解答学生的问题,帮助学生巩固因式分解的方法。
5.拓展(5分钟)通过一些综合性的练习题,引导学生运用因式分解的方法解决问题,提高学生的解题能力。
6.小结(5分钟)对本节课的内容进行总结,强调因式分解的方法和注意事项。
7.家庭作业(5分钟)布置一些因式分解的练习题,让学生回家后巩固所学知识。
《因式分解》教学设计反思【优秀4篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!《因式分解》教学设计反思【优秀4篇】因式分解是初中八年级数学中一个重要的知识点,老师在教学之前怎么准备教案呢?以下是本店铺分享的《因式分解》教学设计反思【优秀4篇】,在大家参照的同时,也可以分享一下本店铺给您最好的朋友。
《因式分解》教学反思《因式分解》教学反思1 1、通过由学生自己得出因式分解概念及其与整式乘法的关系的结论,了解学生观察、分析问题的能力和逆向思维能力及创新能力,发现问题,及时反馈。
2、把因式分解概念及其与整式乘法的关系作为主线,训练学生思维,以设疑——感知——概括——运用为教学程序,充分遵循学生的认知规律,使学生能顺利地掌握重点,突破难点,提高能力。
3、通过例题及练习,了解学生对概念的理解程度和实际运用能力,最大限度地让学生暴露问题和认知误差,及时发现和弥补教与学中的遗漏和不足,从而及时调控教与学。
4、通过课堂小结,了解学生对概念的熟悉程度和归纳概括能力、语言表达能力、知识运用能力,教师恰当地给予引导和启迪。
5、通过当堂作业,了解学生对知识的掌握情况与综合运用知识及灵活运用知识的能力,教师及时批阅,及时反馈讲评,同时对个别学生面批作业,可以更及时、更准确地了解学生思维发展的情况,矫正的针对性更强。
将作业设计为选做和必做,让不同层次的学生得到不同的发展,真正起到“培尖补差”的效果,6、改变传统言传身教的方式,利用计算机辅助教学手段和“先学后教,当堂训练”的教学模式进行教学,不仅增大了教学的容量和直观性,更让每位学生都有事可做,从而提高教学效率和教学质量。
《因式分解》教学反思2 这是《因式分解》的第一节课,内容为因式分解的概念和用提取公因式进行分解因式,这一节课的教学目的是让学生掌握因式分解的概念和学会用提公因式法进行因式分解,在学生对因式分解概念有了初步的了解后,我例举了5a+5b,5a—20b,5am+5bm,4am2+8bm,5am3—25bm2等进行因式分解,一直例举了5a(x+y)+5b(x+y),a(x—y)+b(x—y),到这里学生还勉强接受,再例举下去,对于a(x—y)+b(y—x)与a(x—y)2—b(y—x)2等就模糊了,这连续的例举让学生们有点招架不住了。
自己认为这样做感觉不错,但课后我认真总结与反思这一节课,觉得有以下不足:一、“以学生为主,老师为导”的理念落实得不够。
可编辑修改精选全文完整版
第四章因式分解(复习课)教学设计
【教学目标】
1.进一步理解因式分解的概念和意义,了解因式分解和整式乘法的关系——方向相反的恒等变形;
2.复习提公因式法、公式法因式分解的过程,会综合运用提公因式法、公式法分解因式;
【教学重点】综合运用提公因式法、公式法分解因式.
【教学难点】根据题目的结构特点,选择合理的方法进行因式分解.
【教学思路】情境导入→知识回顾→例题讲解→练习巩固→中考链接→小结→作业布置
【教学过程】
环节一:情境导入
环节三:例题讲解
1.本单元复习题。
《因式分解》教学设计反思优秀6篇《因式分解》教学设计反思篇一因式分解不言而喻,就整个数学而言,它是打开整个代数宝库的一把钥匙。
就本节课而言,着重阐述了两个方面,一是因式分解的概念,二是与整式乘法的相互关系。
它是继乘法的基础上来讨论因式分解概念,继而,通过探究与整式乘法的关系,来寻求因式分解的原理。
这一思想实质贯穿后继学习的各种因式分解方法。
通过这节课的学习,不仅使学生掌握因式分解的概念和原理,而且又为后面学习因式分解作好了充分的准备。
因此,它起到了承上启下的作用。
教法与学法是互相联系和统一的,不能孤立去研究。
什么样的教法必带来相应的学法。
因此,我们应该重点阐述教法。
一节课不能是单一的教法,教无定法。
但遵循的原则——启发性原则是永恒的。
在教师的启发下,让学生成为行为主体。
正如新《数学课程标准》所要求的,让学生“动手实践、自主探索、合作交流”。
在上述思想为出发点,就本节课而言,不妨利用对比教学,让学生体验因式分解的必要性;利用类比教学,以概念的形曾成和同化相结合,促进学生对因式分解概念的理解;利用尝试教学,让学生主动暴露思维过程,及时得到信息的反馈。
不管用什么教法,一节课应该不断研究学生的学习心理机制,不断优化教师本身的教学行为,自始至终对学生充满情感创造和谐的课堂氛围,这是最重要的。
《因式分解》教学设计反思篇二一、教学设计及课堂实施情况的分析:本课的教学目的是:1、正确理解因式分解的概念,它与整式乘法的区别和联系。
2、了解公因式概念和提公因式的方法。
3通过学生的自主探索,发现因式分解的基本方法,会用提公因式法把多项式进行因式分解。
4、在探索提公因式法分解因式的过程中学会逆向思维,渗透化归的思想方法。
教学重点是:因式分解的概念,用提公因式分解因式。
教学难点是:找出多项式中的公因式和公因式提出后另一个因式的确定。
教学过程:这是一节数学常规课,没有游戏和丰富的活动,在进行新课改的今天,这节课如何体现新课改的精神,就成了我思考的重点,这节课我是这样上的:在引入“因式分解”这一概念时是通过复习小学知识“因数分解”,因为因数分解学生已经掌握,由此提出因式分解的概念,一方面突出了多项式因式分解本质特征是一种式的恒等变形,另一方面也说明了它可以与因数分解进行类比,从而对因式分解的概念和方法有一个一整体的认识,也渗透着数学中的类比思想,此处的设计意图是类比方法的渗透。
第四章因式分解4.1 因式分解教学目标:知识与技能:使学生了解因式分解的意义,理解因式分解的概念;通过对分解因式与整式的乘法的观察与比较,学习代数式的变形和转化与化归的能力,培养学生的分析问题能力与综合应用能力。
过程与方法:认识因式分解与整式乘法的相互关系——互逆关系(即相反变形),并能运用这种关系寻求因式分解的方法;通过解决实际问题,学会将实际应用问题转化为用所学到的数学知识解决问题,体验解决问题策略的多样性,发展实践应用意识。
情感与态度:培养学生接受矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度。
重点:因式分解的概念难点:难点是理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法教学过程:第一环节复习回顾:下题简便运算怎样进行问题1:736×95+736×5问题2:-2.67× 132+25×2.67+7×2.67第二环节比较探究:问题3:(1)993-99能被99整除吗?为了回答这个问题,你该怎样做?把你的想法与同学交流。
993-99 = 99×992-99 = 99(992-1)∴993-99能被99整除(2)993-99能被100整除吗?为了回答这个问题,你该怎样做?把你的想法与同学交流。
小明是这样做的:993-99 = 99×992-99×1 = 99(992-1)= 99(99+1)(99-1)= 99×98×100所以993-99能被100整除想一想:(1)在回答993-99能否被100整除时,小明是怎么做的?(2)请你说明小明每一步的依据。
(3)993-99还能被哪些正整数整除?为了回答这个问题,你该怎做?(老师点拨:回答这个问题的关键是把993-99化成了怎样的形式?)小结:以上三个问题解决问题的关键是把一个数式化成了几个数的积的形式。
第四章因式分解一、学生起点分析学生的知识技能基础:学生已经学习了因式分解的两种方法:提公因式法与公式法,逐步认识到了整式乘法与因式分解之间是一种互逆关系,但对因式分解在实际中的应用认识还不够深,应用不够灵活,对稍复杂的多项式找不出分解因式的策略.因此,教学难点是确定对多项式如何进行分解因式的策略以及利用分解因式进行计算及讨论.学生活动经验基础:在本章内容的学习过程中,学生已经经历了观察、对比、类比、讨论、归纳等活动方法,获得了一些对多项式进行分解因式以及利用分解因式解决实际问题所必须的数学活动经验基础,同时在以前的数学学习中学生已经经历了很多合作学习的经验,具备了一定的合作与交流的能力.二、教学任务分析在前几节的学习中,学生已经掌握了提取公因式与公式法的用法,本课时安排让学生对本章内容进行回顾与思考,旨在把学生头脑中零散的知识点用一条线有机地组合起来,从而形成一个知识网络,使学生对这些知识点不再是孤立地看待,而是在应用这些知识时,能顺藤摸瓜地找到对应的及相关的知识点,同时能把这些知识加以灵活运用,因此,本节课的教学目标是:1.知识与技能:(1)使学生进一步了解分解因式的意义及几种因式分解的常用方法;(2)提高学生因式分解的基本运算技能;(3)能熟练地综合运用几种因式分解方法.2.过程与方法:(1)发展学生对因式分解的应用能力,培养寻求解决问题的策略意识,提高解决问题的能力;(2)注重学生对因式分解的理解,发展学生分析问题的能力和推理能力.3.情感与态度:通过因式分解综合练习和开放题练习,提高学生观察、分析问题的能力,培养学生的开放意识;通过认识因式分解在实际生活中的应用,培养学生运用数学知识解决实际问题的意识.三、教学过程分析本节课设计了七个教学环节:知识回顾——总结归纳——小试牛刀——总结归纳——能力提升――活学活用——永攀高峰.第一环节知识回顾活动内容:1、举例说明什么是分解因式。
2、分解因式与整式乘法有什么关系?3、分解因式常用的方法有哪些?4、试着画出本章的知识结构图。
第四章因式分解一、学生起点分析学生的知识技能基础:学生已经学习了因式分解的两种方法:提公因式法与公式法,逐步认识到了整式乘法与因式分解之间是一种互逆关系,但对因式分解在实际中的应用认识还不够深,应用不够灵活,对稍复杂的多项式找不出分解因式的策略.因此,教学难点是确定对多项式如何进行分解因式的策略以及利用分解因式进行计算及讨论.学生活动经验基础:在本章内容的学习过程中,学生已经经历了观察、对比、类比、讨论、归纳等活动方法,获得了一些对多项式进行分解因式以及利用分解因式解决实际问题所必须的数学活动经验基础,同时在以前的数学学习中学生已经经历了很多合作学习的经验,具备了一定的合作与交流的能力.二、教学任务分析在前几节的学习中,学生已经掌握了提取公因式与公式法的用法,本课时安排让学生对本章内容进行回顾与思考,旨在把学生头脑中零散的知识点用一条线有机地组合起来,从而形成一个知识网络,使学生对这些知识点不再是孤立地看待,而是在应用这些知识时,能顺藤摸瓜地找到对应的及相关的知识点,同时能把这些知识加以灵活运用,因此,本节课的教学目标是:1.知识与技能:(1)使学生进一步了解分解因式的意义及几种因式分解的常用方法;(2)提高学生因式分解的基本运算技能;(3)能熟练地综合运用几种因式分解方法.2.过程与方法:(1)发展学生对因式分解的应用能力,培养寻求解决问题的策略意识,提高解决问题的能力;(2)注重学生对因式分解的理解,发展学生分析问题的能力和推理能力.3.情感与态度:通过因式分解综合练习和开放题练习,提高学生观察、分析问题的能力,培养学生的开放意识;通过认识因式分解在实际生活中的应用,培养学生运用数学知识解决实际问题的意识.三、教学过程分析本节课设计了七个教学环节:知识回顾——总结归纳——小试牛刀——总结归纳——能力提升――活学活用——永攀高峰.第一环节知识回顾活动内容:1、举例说明什么是分解因式。
2、分解因式与整式乘法有什么关系?3、分解因式常用的方法有哪些?4、试着画出本章的知识结构图。
教案:第四章回顾与思考教材来源:《初中八年级《数学(下册)》教科书/北京师范大学出版社(2011年版)内容来源:《初中八年级(数学下册)》第四章因式分解主题:第四章因式分解回顾与思考课时:1课时授课对象:八年级学生设计者:/目标确定的依据1.课程标准相关要求能用提公因式法、公式法(直接利用公式不超过二次)进行因式分解(指数是正整数)。
2.教材分析本节是第四章《因式分解》的回顾与思考,在前几节的学习中,学生已经掌握了提取公因式与公式法的用法,本课时安排让学生对本章内容进行回顾与思考,旨在把学生头脑中零散的知识点用一条线有机地组合起来,从而形成一个知识网络,使学生对这些知识点不再孤立地看待,而是在应用这些知识时,能顺藤摸瓜地找到对应的及相关的知识点,同时能把这些知识加以灵活运用。
3.学情分析学生已经基本掌握因式分解的两种方法:提公因式法与公式法,逐步认识到了整式乘法与因式分解之间的互逆关系,但对因式分解在实际中的应用认识还不够深,应用不够灵活,对稍复杂的多项式找不出分解因式的策略.因此,教学重难点是确定对多项式如何进行分解因式的策略以及利用分解因式解决问题。
目标1.经历梳理知识与技能、形成知识体系的过程,提高归纳、总结能力。
2.体会分解因式的意义,认识整式乘法与因式分解的关系,体会数学知识间的相互联系。
3.能用提公因式法和平方差公式完全平方公式(直接利用公式不超过二次)进行因式分解.提高基本运算技能。
4.通过因式分解综合练习和开放题练习,提高学生观察、分析问题的能力,培养寻求解决问题的策略意识,提高解决问题的能力,进一步发展观察、归纳、类比、概括等能力,发展有条理的思考及表达能力。
评价任务1.回顾课本内容及整理知识结构,说出本单元知识体系。
2.计算相关习题,掌握因式分解过程中的乘法运算。
3.练习相关题目,熟练公式法、平方差公式和完全平方公式。
4.熟练掌握因式分解综合练习。
活动1:1、举例说明什么是分解因式?2、分解因式与整式乘法有什么关系?3、分解因式常用的方法有哪些?4、试着画出本章的知识结构图。
课时课题:第四章《分解因式》回顾与思考课型:复习课教学目标:1.复习因式分解的概念,以及提公因式法、运用公式法分解因式的方法,使学生进一步理解有关概念,并能灵活运用上述方法分解因式,从而提高学生因式分解的运用技能.2.通过知识结构图的教学,培养学生归纳总结能力;在专题的教学过程中培养学生分析问题和解决问题的能力.3.通过因式分解的练习,提高学生观察、分析能力;通过应用因式分解方法进行简便运算,培养学生运用数学知识解决实际问题的意识.教学重点与难点:重点:能熟练地将一个多项式分解因式.难点:综合应用提公因式法、运用公式法分解因式.教法与学法指导:分解因式这一章知识既是中考的重要考点之一,又是下一步学习分式的基础,所以分解因式的复习对学生来说至关重要.在教学中,注重学生对分解因式的理解,有意识地培养学生逆向思考问题的习惯,适当地分阶段进行必要的训练,使学生具备基本运算能力的同时,能够明白每一步的算理.在学习过程中,理解整式乘法与分解因式的关系;在提公因式法时,能准确地确定公因式;在运用公式法时,要掌握好各公式的特点,能准确的判断一个多项式是否满足公式;在解决综合练习题时要按照分解因式的步骤去分解,准确把握分解的方法.特别注意分解因式时,按照分解因式的一般步骤和分解因式的方法去分解,避免出现分解的结果又利用整式乘法再运算的情况.课前准备:多媒体课件.教学过程:一、激趣导入,建构网络师:知识在于积累,能力在于训练,每当学完一章节内容,我们都要及时进行总结归纳,形成知识体系,建构知识网络,查缺补漏,以求厚积薄发.现在就让我们共同对《分解因式》一章进行梳理归纳,以求人人达标过关.大家有没有信心?生:有!设计意图:本环节主旨在于激起学生学习的积极性,语言中有对章节复习的重要性的渗透,有复习重点的渗透,有树立学生信心的目标,从学生昂扬的斗志和铿锵的回答中可以看到学生的积极性和学习的欲望已经被调动起来,实现了导入的目的.师:很好.我们学习了《分解因式》一章后,你能构建出本章的知识结构网络图吗?请大家独自回忆后小组合作交流,形成小组的研讨成果.(3分钟后要展示你们小组的成果呦!)设计意图:通过学生独自回忆和小组交流,让学生重新回顾本章内容,整理出本章的知识结构网络,理清各板块内容间的联系.(学生积极构建知识结构网络图,并合作交流充实各自的知识结构网络图.)生:我们构建的本章知识框架图是这样的.(实物展台展示)师:非常棒,别忘了分解因式的运用哟!下面就让我们利用所学知识解决以下问题吧!(出示专题)设计意图:通过放手让学生完成本章的知识网络图,这样既能锻炼学生的总结能力,又能加深学生对本章知识的理解,从而提高对本章知识的运用能力.二、专题解析,归纳整合专题一:分解因式的概念例1下列因式分解:①32-+=--;a a a ax x x x4(4)-=-;②232(2)(1)③222(2)2a a a a --=--;④2211()42x x x ++=+.其中正确的是_______.(只填序号) 解析:①选项没有分解彻底;②正确;③总体上没有化成乘积的形式,所以错误;④正确.故答案②④.师生反思:判断因式分解的方法是依据分解因式的定义.分解因式的定义:①一个多项式;②转化成整式;③积的形式.特别强调的是分解因式一定要分解彻底.设计意图:本专题考查分解因式的概念.通过对分解因式的判断,提高了学生对分解因式概念的理解,有意识地培养了学生逆向思考问题的习惯,从而达到巩固概念的目的.专题二:分解因式的方法1.提公因式法分解因式例2 因式分解:4ab 2+6a 2b = .解析:先找公因式是2ab ,再提公因式就可以获得答案4ab 2+6a 2b =2ab (2b +3a ). 师生反思:本题是对因式分解基本方法(提公因式法)的考查,解题的关键是找出多项式中的公因式,再提公因式.找公因式的方法:①系数:各项系数的最大公约数;②字母:各项都含有的相同的字母或式子;③次数:相同字母(式子)次数最低的.提公因式的方法:按照公因式()多项式公因式的结构进行分解. 2.运用公式法分解因式例3 分解因式:241a -= .解析:由于本题是二次二项式且各项都能写成平方的形式而又是差的形式,符合平方差公式的特征.224(2)a a =,211=,故本题可以用平方差公式进行因式分解.套用公式可得(21)(21)a a +-. 师生反思:本题属于基础题,考察知识点单一,把握用公式法分解因式的特征,解答就很方便了.解决本题的关键是观察所给的多项式是否符合公式的形式,也就是写成平方差公式(或完全平方)的形式再套用公式进行分解.3.先提公因式,再运用公式法分解因式例4 把代数式223363xy y x x +-分解因式结果是 .解析:先提公因式,得223363xy y x x +-=)2(322y xy x x +-;再运用完全平方公式得223363xy y x x +-=)2(322y xy x x +-=2)(3y x x -.师生反思:分解因式常用的方法是提公因式法和运用公式法,本题综合考查了这两种方法,学生常出错的地方是提公因式以后,没有观察分解是否彻底,而本题综合考查了上述两种方法,使得本题的区分度较高.特别注意的是分解因式要分解彻底,要分解到每一个因式都不能分解为止.按照分解因式的步骤:一提、二套、三检查,进行分解就可以避免出现错误.4.先整理,再分解因式例5分解因式:x(x-1)-3x+4= .解析:将x(x-1)-3x+4去括号,得x2-x-3x+4;再合并同类项,得x2-4x+4;可以看出满足完全平方公式.所以x(x-1)-3x+4=x2-x-3x+4=x2-4x+4=(x-2)2.师生反思:本题根据因式分解的方法找不出解题的突破口,若先将多项式化简整理后,就很容易看出符合我们已经学习的完全平方式,所以对于有些多项式还需要化简后,再分解因式.设计意图:本专题考查学生对分解因式方法的掌握情况.为了提高学生对分解因式的方法和步骤的理解和掌握,把课本上出现的因式分解的题型及中考的考题全部呈现出来,目的使学生真正掌握因式分解的方法,并能根据多项式的特征选择合适的方法进行分解因式.专题三:分解因式的运用1.利用分解因式简化计算例6化简:(1-3a)2-2(1-3a).解析:本题的处理方法有两个,一、将每个括号展开、化简(此种方法在去括号时常出现错误);二、提取公因式,再化简(此种方法简便),故选第二种方法.(1-3a)(1-3a-2)= (1-3a)(-1-3a)=9a2-1.师生反思:化简整式时常常利用因式分解来简化运算.解决此类问题的关键是观察整式的特点来分解因式,再进行计算.2.利用分解因式求值例7 若m2-n2=6,且m-n=3,则m+n= .解析:因为m2-n2=(m+n)(m-n)=6,且m-n=3,所以m+n=2.师生反思:本题属于基础题,主要考查学生对平方差公式的掌握,考查知识点涉及平方差公式和代数式求值,既考察了基础知识,又考察了学生的运算技能,用整体思想求代数式的值.3.利用分解因式判断三角形的形状例8 若△ABC 的三边的长分别是a ,b ,c ,且22a ab c bc +=+,则△ABC 是 . 解析:因为22a ab c bc +=+,所以(12)(12)a b c b +=+,移项得(12)(12)0a b c b +-+=, 所以(12)()0b a c +-=,因为1+2b ≠0,所以a =c ,所以△ABC 为等腰三角形.师生反思:本题是分解因式较为典型的运用,利用分解因式判断三角形的形状.解决问题的关键是将右边的项移到左边,并将左边的项分解因式,再判断三角形的形状.设计意图:本专题考查学生对分解因式运用情况.在分解因式的过程中,逐步提高观察、分析和归纳能力,体验类比的思想方法的重要性和重要作用,能从分解因式中获取相关信息,增加解决问题的能力.通过因式分解综合练习和开放题练习,培养学生的开放意识;通过认识因式分解在实际生活中的应用,培养学生运用数学知识解决实际问题的意识.三、巩固训练,培养能力1.(2012,济宁)下列式子变形是因式分解的是( )A 、()25656x x x x -+=-+B 、()()25623x x x x -+=-+C 、()()22356x x x x --=-+D 、()()25623x x x x -+=++2.(2012,四川凉山)下列多项式能分解因式的是( )A 、22x y +B 、22x y --C 、222x xy y -+-D 、22x xy y -+3.(2012,江苏无锡)分解因式(x -1)2 -2(x -1)+1的结果是( )A 、(x -1)(x -2)B 、x 2C 、(x +1)2D 、(x -2)24. (2012,湖北随州) 分解因式:249x -=__________________.5.(2012,威海)分解因式:22331212x y xy y ++= .6. 把下列各式分解因式:(1)3244ab ab ab -+; (2)22()()m x y n y x -+-.处理方式:1、练习必须由学生个人独立完成,教师既要做好监督,也要通过巡视了解学生对本章知识的掌握运用情况;2、师生共同纠错,并根据巡视情况做有针对性的指导.【参考答案:1.B 2.C 3. D 4.(2x +3)(2x -3) 5.23(2)y x y +6. 解:(1)322244(44)(2)ab ab ab ab b b ab b -+=-+=-(2)222222()()()()()()m x y n y x m x y n x y x y m n -+-=---=--()()()x y m n m n =-+-.】四、课堂小结,知识升华师:通过以上各专题的学习和研讨,你一定领悟到不少解决本章热点考点问题的技能了吧!请大家各自总结一下,然后共同分享一下!生:我懂得了……我收获了……我的疑惑是……师:总结归纳形成解题通法.设计意图:复习课大多是学生自主探究、交流、提高的过程,教师只做点拨.因此,小结的过程不妨大胆交给学生,听听学生的感悟、体会,以便教师更好的了解学生学习经验的获得情况.由学生发言,为他们提供一个互相交流的平台,让学生养成反思与总结的习惯,培养学生的语言概括能力.五、当堂检测,达成目标1. 多项式22361836a b a b x ab -+的公因式是( )A 、2abB 、6a 2bC 、6ab 2D 、6ab2.(2012,贵州黔南州)下列多项式中,能用公式法分解因式的是( )A 、x 2-xyB 、x 2+xyC 、x 2-y 2D 、x 2+y 23.(2012,湖北恩施)a 4b -6a 3b +9a 2b 分解因式的正确结果是A 、a 2b (a 2-6a +9)B 、a 2b (a +3)(a -3)C 、b (a 2-3)2D 、a 2b (a -3)24.(2012,临沂)分解因式:a -6ab +9ab 2= .5.请写出一个三项式,使它能先“提公因式”,再“运用公式”来分解.你编写的三项式是________,分解因式的结果是________.6.已知x 2-y 2=69,x +y =3,则x -y =______.7.已知x ,y 是不相等的正数,试比较2()x x y -与2()y x y -.处理方式:给学生8分钟时间独立完成,教师认真监考,学生完成后教师出示答案,学生互换批改,然后更正;教师要收集学生答题信息并作出分析,为下一步教学提供依据.【参考答案:1.D 2.C 3.D 4.a (3b -1)2 5.答案不唯一,如:231212x x ++ 23(2)x + 6. 23 7. 解:2222()()()()x x y y x y x y x y ---=--2()()x y x y =+-.因为x ,y 是不相等的正数,所以x y +>0,2()x y ->0.所以2()()x y x y +->0.因此)(2y x x ->)(2y x y -.】六、分层作业,强化目标必做题:课本 第61页 复习题 第2题.选做题:课本 第62页 复习题 第4、5题.课下探究:试说明:无论a ,b 为何值时,代数式2223a b ab -+的值均为正值.【答案:解:2223a b ab -+2()212ab ab =-++2(1)2ab =-+.因为2(1)ab -≥0, 所以2(1)2ab -+≥2.因此代数式2223a b ab -+的值均为正值.】设计意图:学生自由选择完成作业,让每个学生都有成就感,增强了学生学习数学的信心,在面向全体学生的同时,让不同学生得到不同发展.板书设计教学反思优点:本节课通过课前知识网络的整理、课堂展示讲解的过程及师生反思,为学生提供展示自己的机会,充分体现“以学生为主体,注重学生的自主探究与合作交流”的新课程理念,更利于教师在此过程中发现学生的闪光点以及思维的误区,以便指导今后的教学.本节课“专题设置”的内容较为全面典型,容括了分解因式的常见题型并且重点突出,便于学生整体把握分解因式的方法和技巧.在专题讲解的过程中,师生反思作为每一例题必备环节,培养了学生归纳总结能力及运用意识.在本节课中注重从近几年的中考试题中精选典型题目充实到课堂中来,增强学生对考点的把握能力,积累经验.同时,通过2012中考题的展示,让学生了解中考考试信息,增强了学生学习数学的信心.不足及改进建议:本节课堂教学容量相对来说较大,学生的自主学习和合作交流讨论的时间较为紧张,对后进生照顾不够. 基于以上的认识与反思,在今后的教学中逐步推进分层教育教学模式,为不同层次的学生精心设计合理的题型和题量,让班级中每位学生都有所收获,真正实现“不同的学生在数学上得到不同的发展”的目标.。