四杆机构构件的受力分析和强度
- 格式:ppt
- 大小:5.66 MB
- 文档页数:55
哈工大(威海)《机械原理》知识点整理整理人:131310405郭勇辰第一章1.机械是机器与机构的总称。
2.机器是一种人为实物组合的具有确定机械运动的装置,用来完成有用功、转换能量或处理信息,以代替或减轻人类的劳动。
3.现代化机器具有四个组成部分:原动机、传动机、执行机构和控制系统。
4.一部机器通常包含一个或若干个机构。
机构是一个具有相对机械运动的构件系统,或称它是用来传递与变换运动和动力的可动装置。
第二章1.构件与零件的区别在于:构件是运动的单元,而零件是制造的单元。
一个构件既可以是一个零件,也可以是由若干零件装配而成的刚性体。
2.运动副:两构件间的直接接触又能产生一定相对运动的活动连接成为运动副。
3.一个运动副引入的约束数目最多只能是5个,最少是1个。
4.运动链:若干构件通过运动副连接而成的构件系统称为运动链。
运动链中各构件首位封闭,则称为闭式链,否则为开式链。
5.机构:如果将运动链中的一个构件固定作为参考坐标系,则这种运动链称为机构。
6.运动副的分类:把引入1个约束的运动副称为Ⅰ级副,以此类推;以面接触的运动副称为低副,以点或线接触的运动副称为高副;如果两运动副元素间只能相互做平面平行运动,则称之为平面运动副,否则为空间运动副;7.不按比例绘制的运动简图成为机构示意图。
8.机构运动简图的单位为m/mm(图纸上1mm所代表的真实长度)。
9.自由度:确定一个构件或机构的运动(或位置)所需的独立参数的数目。
10.机构具有确定运动的条件是:机构的自由度大于零,且机构的原动件数目等于机构的自由度数。
11.计算自由度时注意三种情况:复合铰链、局部自由度、虚约束。
12.复合铰链:由两个以上构件在同一处构成的重合转动副。
13.局部自由度:不影响整个机构运动的自由度。
14. 虚约束:起重复限制作用的约束。
(虚约束的几种情况在P17)15. 三维空间中,一个活动构件具有6个自由度。
16. 任何机构都包含机架、原动件和从动件系统三个部分。
四连杆受力分析不计摩擦时机构的受力分析根据机构所受已知外力(包括惯性力)来确定个运动副中的反力和需加于该机构上的平衡力。
由于运动副反力对机构来说是内力,必须将机构分解为若干个杆组,然后依次分析。
平衡力(矩)一一与作用于机构构件上的已知外力和惯性力相平衡的未知外力(矩)相平衡的未知外力(矩)已知生产阻力平衡力(矩)一一求解保证原动件按预定运动规律运动时所需要的驱动力(矩)已知驱动力(矩)平衡力(矩)一一求解机构所能克服的生产阻力一.构件组的静定条件——该构件组所能列出的独立的力平衡方程式的数目.§3-4不计摩擦时机构的受力分析根据机构所受已知外力(包括惯性力〉来确定个运动副中的反力和需加于该机构上的平衡力匕由于运动副反力对机构来说是内力*必须将机构分解为若干个杆组,然后依次分析中> + «力*1——占作用于机鋼构件上的已相平飯的未甘外力(E)己知生产阻力平衡力(矩)——求解保证原动件按预定运动规律运动时所需要的驱动力(矩)已知驱动力(矩)| A平衡力(矩)——求解机构所能克服的牛产阻力-构件组的静定条件——轨构件谢所能列岀的m氏的力平術方fiSftftS.10等于构件组中两有力的未知要責的81目"豪亘的力罕对扌程丸的救耳=所韦帶的来知要索的itq。
t运动樹中反力曲未知里秦n转动副——(2个)-丸小---- ?{方為—?作用点卡动副中心2 •构件fin*定条件设某构件组共有沖个构件*几个低副、几个高副>f构件可以列出§个独立的力平鎮方程,科个构件共有為个力平衡方程>一个平面低副引入2个力的未知数,円个低副共引入2円个力的未知数>—个平面高副引入1个力的未知数,几个低副共引入几个力的未知数而当构件组仅有低副时,则为『3归耳绘冷;羞專杆粗那满足鼻直条件二.用图解法作机构的动态静力分析步骤:1)对机构进行运动分析*求出个构件的住及其质心的吗$2)求出各构件的惯性力,并把它们视为外力加于构件上*3)根据静定条件将机构分解为若干个构件组和平衡力作用的构件:4)对机构进行力分析,从有已知力的构件开始,对各构件组进行力分析;5)对平衡力作用的构件作力分析。
连杆受力分析
HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】
四连杆受力分析
不计摩擦时机构的受力分析根据机构所受已知外力(包括惯性力)来
确定个运动副中的反力和需加于该机构上的平衡力。
由于运动副反力
对机构来说是内力,必须将机构分解为若干个杆组,然后依次分析。
?平衡力(矩)——与作用于机构构件上的已知外力和
惯性力相平衡的未知外力(矩)相平衡的未知外力(矩)已
知生产阻力平衡力(矩)——求解保证原动件按预定运动规律运动时所需要的驱动力(矩)已知驱动力(矩)平衡力(矩)——求解机构所能克服的生产阻力一. 构件组的静定条件——该构件组所能列出的
独立的力平衡方程式的数目.。
四连杆机构原理受力四连杆机构是一种常用的机械传动装置,由四个连杆组成,可以实现复杂的运动轨迹。
在四连杆机构中,各个连杆之间的受力关系是非常重要的,它直接影响到机构的运动特性和稳定性。
我们来看一下四连杆机构中各个连杆的受力情况。
四连杆机构由一个固定连杆、两个活动连杆和一个驱动连杆组成。
固定连杆连接固定点和驱动点,活动连杆连接驱动点和工作点,驱动连杆连接工作点和固定点。
在四连杆机构中,驱动连杆是通过驱动点的力来产生运动的,而活动连杆则转化这个运动,并将其传递给工作点。
在四连杆机构中,各个连杆之间的受力关系是相互影响的。
首先,固定连杆在连接点处受到驱动点的力,这个力可以分解为水平方向和垂直方向的分力。
水平方向的分力使固定连杆产生水平方向的拉力,垂直方向的分力使固定连杆产生垂直向上的压力。
这些受力使得固定连杆保持稳定,并且不会发生位移。
接下来,活动连杆在连接点处同样受到驱动点的力。
这个力可以分解为水平方向和垂直方向的分力。
水平方向的分力使活动连杆产生水平方向的拉力,垂直方向的分力使活动连杆产生垂直向上的压力。
这些受力使得活动连杆具有一定的刚度,并且可以传递驱动点的力给工作点。
驱动连杆在连接点处同样受到驱动点的力。
这个力可以分解为水平方向和垂直方向的分力。
水平方向的分力使驱动连杆产生水平方向的拉力,垂直方向的分力使驱动连杆产生垂直向上的压力。
这些受力使得驱动连杆能够将驱动点的力传递给工作点,并且实现机构的运动。
四连杆机构中各个连杆之间的受力关系是非常重要的。
固定连杆、活动连杆和驱动连杆都承受着来自驱动点的力,这些力使得连杆产生拉力和压力,并且保持机构的稳定性和运动特性。
在实际应用中,我们需要根据具体情况来选择合适的连杆长度和连接方式,以确保机构的可靠性和性能。
四连杆机构中各个连杆之间的受力关系是非常重要的。
了解这些受力关系可以帮助我们更好地设计和应用四连杆机构,实现所需的运动轨迹和功能。
同时,我们还需要注意机构的稳定性和可靠性,确保机构在工作过程中不会出现失效和故障。