商照重量与平衡
- 格式:doc
- 大小:83.50 KB
- 文档页数:49
重量平衡系统重量平衡系统是使对重与轿厢达到相对平衡,在电梯工作中使轿厢与对重间的重量差坚持在某一个限额之内,确保电梯的曳引传动平稳、正常。
它由对重装置和重量补偿装置两部分组成。
平衡系统如图2—74所示。
图2—74重量平衡系统示意图1—电缆;2—轿厢;3—对重;4—补偿装置对重装置起到相对平衡轿厢重量的作用,它与轿厢相对悬挂在曳引绳的另一端。
补偿装置的作用是:当电梯运行的高度超过30m以上时,由于曳引钢丝绳和电缆的自重,使得曳引轮的曳引力和电动机的负载发生变化,补偿装置可弥补轿厢两侧重量不平稳。
这就是确保轿厢侧与对重侧重量比在电梯运行过程中不变。
一、重量平衡系统分析1.对重装置的平衡分析对重又称平衡重,绕过曳引轮上的曳引绳的两侧,对重是相关于轿厢悬挂在曳引绳的另一侧,起到相对平衡轿厢的作用。
因为轿厢的载重量是变化的,因此不可能两侧的重量都是相等而处于完全平衡状态。
一般状况下,只有轿厢的载重量达到50%的额定载重量时,对重一侧和轿厢一侧才处于完全平衡,这时的载重额称电梯的平衡点。
这时由于曳引绳两端的静荷重相等,使电梯处于最正确的工作状态。
但是在电梯运行中的大多数状况曳引绳两端的荷重是不相等的,是变化的。
因此对重的作用只能起到相对平衡。
2.补偿装置的平衡分析在电梯运行中,对重的相对平衡作用在电梯升降过程中还在不断的变化。
当轿厢位于最低层时,曳引绳本身存在的重量大部分都集中在轿厢侧;相反,当轿厢位于顶层时,曳引绳的自身重量大部分作用在对重侧,还有电梯上控制电缆的自重,也都对轿厢和对重两侧的平衡带来变化,也就是轿厢一侧的重量Q与对重一侧的重量W的比例Q/W在电梯运行中是变化的。
尤其当电梯的提升高度超过30m时,这二侧的平衡变化就更大,因而必须增设平衡补偿装置来减弱其变化。
平衡补偿装置是悬挂在轿厢和对重的底面(如补偿链条,图2—76所示),在电梯升降时,其长度的变化正好与曳引绳长度变化对重相反,当轿厢位于最高层时,曳引绳大部分位于对重侧,而补偿链(绳)大部分位于轿厢侧;而当轿厢位于最低层时,状况与上正好相反,这样轿厢一侧和对重一侧就起到了平衡的补偿作用,确保了对重起到的相对平衡。
私人飞行执照的考试流程私人飞行执照的考试流程报名考取私人飞行执照首先要到国内直升机培训机构报名学习。
根据规定,凡年满17岁的中国公民即可报名参加培训,男女不限。
体检二类体检报名者则需要经过体检,民用直升机私用、商用飞行员驾照要求并不高,只要符合二类体检标准即可。
目前,我国航空部门对申请不同类别飞行执照的人员规定了三类体检。
三类体检要求各不相同。
私人飞行执照的考试流程是怎样的其中一类体检要求最严格,目前国内航空公司的飞行员都需过此体检。
第二类体检相对一类宽松,其中可申请二类体检的对象就包括申请私用(飞机、飞翔、直升机和动力升空器)驾驶员执照的人。
据称,报名者一般体检没有什么问题,但有心脏病和高血压等疾病的不能考取飞行驾照。
私照视力检测是环形视力表即c字表(有东、南、西、北、东北、西北、西南、东南八个方向),只要矫正视力达到1.0即可,这意味着戴眼镜的近视者也能开飞机。
培训理论学习私用飞行员驾照首先受训者要开始45个小时的飞行理论学习,后参加理论考试,满分100分,80分为合格。
通过理论考试后便可办理学生飞行员执照。
飞行培训取得学生飞行员执照后学员便可以上机操作,接下来要进行至少40个小时的实际飞行培训,学成后就可参加实践考试。
实践考试由考核航空知识的口试和演示飞行技能或飞行熟练性的实飞考试组成。
口试内容主要包括航空气象、航空法规等,实飞包括悬停起落、转场练习等。
两年学习时限从学生执照到取得私照必须在两年内取得,但一般实际大概是两个月左右的练习时间。
学生执照有效期是两年之内,两年之内如果没有考取私照,要重新办理、延续学生执照,但是不需要重新交20多万元报名费。
不过受训者需要重新体检,此外理论考试也仅仅只是两年内有效,所以理论考试也得重新再考。
拿商照先拿私照商用飞行员驾照考试则有所不同。
受训者必须先取得私照,隔两个月之后才可报名商照考试,同样要经过理论学习,累积150小时的飞行时间后,再通过民航局组织的商照理论和实飞考试,便可取得执照。
1•低速飞机翼型前缘B.较圆钝2.下列哪种平面形状时机翼的诱导阻力最小 C.椭圆形3.翼型的中弧曲度越大表明 B.翼型的上下表面外凸程度差别越大4飞机_____ 大,诱导阻力越小 A.展弦比5.机翼的后掠角是为了 B.增大临界M数6.飞机的扰流板可以B •增大阻力,减小升力7.飞机的地面扰流板主要作用是 A •减小升力以增大刹车效率8.在向左压盘时如果左侧机翼的扰流板升起,其作用是B.辅助副翼操纵以提高横向操纵效率9.国际标准大气规定的标准海平面气温是C.15 °C10.按照国际标准大气的规定,在高度低于11000 米的高度上高度每增加1000 米,气温A.降低6.5 C12.在3000米的高度上的实际气温为10C,则该高度层上的气温比标准大气规定的温度A.高14.5 C13.当在2000米的高度层上的实际气温为5C,则该高度层上的气温比标准大气规定的温度B.低3C14.当已知3000米的高度层的气温比标准大气规定的温度高10C(ISA+10C),则3000 米高度层上的气温为A.5.5 C15.某机场气压高度为1000米,气温为30C,那么可能推断在5000米高度上的气温是A.4C16.在低速飞行中,飞机上流管变细的地方流速 C.加快17.根据伯努利定律同一流管中流速增大的地方,压力 B.偏低18.在气温比标准大气温度低的天气飞行飞机的真实高度与气压高度表指示的高度(基准相同)相比,飞机的真实高度B.偏低19.升力主要由机翼的________ 产生A. 上表面前段20.摩擦力是由于_____ 生A.空气的粘性和飞机表面不绝对光滑21._____ 的摩擦阻力最小A.层流附面层22.翼型升力系数的意义主要表示B.迎角和翼型等因素对升力的综合影响23.飞机的升力系数迎角变化的关系是C.随迎角增加先增加后减小24.巡航飞行中,飞机的主要阻力是A.废阻力25.相同迎角,飞行速度增加一倍,升力增加到 C.四倍26.翼梢小翼可以B. 减小飞机阻力27.相同迎角,飞行速度增加一倍,阻力增加到 C.四倍28.机翼后掠角越大飞机的巡航速度A.越大29.机翼上的翼必用来A.防止气流沿展向流动而出现翼尖先失速30.机器有除冰装置的飞机,机身蒙皮上集有少量冰霜,飞机的 B.阻力增加31.飞机翼的什么部位积冰对升力的影响最大B .机翼的上表面前段32.机翼积冰将使B. 临界迎角减小33.机翼积冰将使A. 阻力增加34.机翼积冰将使A. 升力减小35.副翼积冰将使A. 飞机横向操纵效率降低36.升降舵积冰将使A. 飞机俯仰操纵效率降低、37.可用______ 小诱导阻力A.增大展弦比38.翼梢小翼可以减小飞机巡航飞行阻力,因此所有飞机都应该加装翼梢小翼来减小飞机阻力,这种说法B.不正确39.稳定飞行中,飞行高度越高相同衙量和表速对应的相同 A.迎角40.升阻比是A.同一迎角的升力与阻力之比41.有利迎角是C.最大升阻比对应的迎角42.以有利迎角对应的速度平飞,飞机的_______ 小A.阻力43.临界迎角是C.最大升力系数对应在迎角44.飞机阻力系数随迎角(迎加大于0)增加而C. 一直增加45.前缘缝翼用来C.延迟大迎角飞行时的气流分离,增大临界迎角46.在稳定飞行中,前缘缝翼在______ T开可以增加升力B.小速度47.在_____ 时使用前缘缝张使升力减小 A.大速度48.在翼尖前缘安装前缘缝翼的主要作用是B. 使翼尖涡流区范围减小,提高大迎角飞行时的副翼操纵效率49.大迎角飞行时,副翼的操纵效率要减低,常用_______ 改善B.外侧前缘缝翼50.后缘襟翼中_______ 的增升效率最高C.后退开缝襟翼51.简单襟翼靠______ ■来增加升力系数C.增大机翼弯角(中弧曲度)52.开缝襟翼靠_____ 来增加升力系数C.增大在机翼弯度和延迟附面层气流分离53.查格襟翼和富勒襟翼属于B.后退开缝襟翼54.前缘襟翼依靠______ 来增加升力系数A.高速飞机在大迎角飞行时打开前缘襟翼防止前缘气流分离55.放起落架后,飞机的升力系数A. 基本不变56.放起落架后,飞机的阻力B. 增加57.襟翼的主要作用是A.增大最大升力系数58.起飞中使用的襟翼在允许的范围内,偏度越大,所需跑道长度 B.越短59.起飞中使用襟翼偏度越大,起飞离地速度B.越小60.起飞中使用的襟翼偏度越大,出使爬升梯度(速度等于V2)B.越小61.正常飞行中放襟翼后飞机的升阻比B.减小62.着陆时使用的襟翼偏度一般比起飞时使用的襟翼偏度 A.大63.着陆时使用的襟翼偏度大,可以A.使飞机接地速度小,同时飞机的空气阻力大,易于减速64.在高温高原机场着陆时使用的襟翼偏度越大,易使A.复飞爬升梯度过小,不利于飞机安全65.螺旋桨的桨叶迎角是C .桨叶切面的相对气流与桨弦的夹角66.桨叶角是C .桨弦与旋转面的夹角67.螺旋桨桨叶扭转的目的是A.使从桨根到桨叶的桨叶迎角基本相同68.装有高速器的螺旋桨飞机,当螺旋桨的旋转阻力矩大于发动机供给螺旋桨的旋转力矩时,螺旋桨将 C.转速不度69.在不动变矩杆位置的情况下增大油门,螺旋桨_______ 增大B. 拉力70.螺旋桨变矩杆主要用来改变C.转速71.前推变距杆,螺旋桨的桨叶角B.减小72.在额定高度以下,油门位置一定,随飞行高度增加,拉力A. 增加73.在油门和高度一定的情况下,螺旋桨拉力随速度增加而B.减小74.在额定高度以上螺旋桨拉力随高度增加而 B.减小75.在发动机正常工作的情况下,如果螺旋桨也会产生负拉力B.飞行速度过大而油门过小76.没有顺桨机构的飞机,发动机停车后,应B.把变距杆拉到最后使桨叶变大距且转速降低,减小负拉力77.发动机空中停车后,如果螺旋桨处于风车状态,此时螺旋桨桨叶迎角B. 为负78.涡轮螺旋桨飞机在发动机正常工作情况下,飞行速度越大,收油门过多,容易导致A.产生螺旋桨负拉力79.右转螺旋桨飞机,滑流扭转力矩力使飞机机头A.向左偏80.右转螺旋桨飞机,螺旋桨反作用力矩使飞机A. 向左滚转81.右转螺旋桨飞机在左转弯中,机关不要向 ______ 进动A. 上82.滑流扭转作用主要取决于A.油门大小83.右转螺旋桨飞机在起飞滑跑中,滑流扭转作用将使机并没有 A.向左偏转84.右转螺旋桨飞机,当操纵飞机向右转弯时,进动力矩使飞机向__下___转动85.对涡轮螺旋桨飞机,一般都装有顺桨机构,发动机一旦空中停车,可能自动或人工顺桨,顺桨的目的是A. 使螺旋桨不再旋转以消除负拉力86.平均空气动力弦指C.假想的矩形机翼的翼弦,其面积,升力及俯仰力矩特征多与原机翼相同87.对常规布局的飞机机翼升力对飞机重心的力矩常为飞机机头力矩B. 下俯88.平尾的作用有A.保持飞机具有俯仰安定性(纵向稳定性)89.平尾的作用有A.使飞机焦点后移以保证飞机具有足够的静稳定裕度90.使飞机具有纵向静稳定性,焦点必须位于重心B.之后91.飞机的重心越靠前,相同飞机重量,相同飞机飞行速度的条件下,飞机的阻力A. 越大92.相同飞机重量,当飞机重心越靠前,为了维持飞机的平衡,机翼产生的升力B.要增大93.飞机重心越靠后,飞机的配平阻力B.越小94.飞机的焦点位于飞机重心之后越远,飞机的纵向静稳定性 A.越强95.飞机的重心位置偏左,在B.巡航飞行时驾驶盘必须向右偏转以维持横向平衡96.飞机的焦点是 C.迎角改变时,附加力着点97.机翼后掠角可以产生 C.横向安定力矩98.机翼的上反角可以产生 C.横向安定力矩99.飞机的方向安定力矩主要由产生B.垂尾100.飞机方向安定性过强,而横向安定性又过弱,飞机容易出现B.螺旋运动不稳定101.大后掠角机翼且带下反角的飞机,在小速度飞行时易出现 A.飘摆102.为了抑制飘摆,常采用哪种措施 C.偏航阻尼器103.M数配平器的作用有C.防止大M数飞行时出现反操纵现象和飞机出现不稳定飞行状态104.在横向安定性过强而方向安定性较弱的情况下,飞机容易出现 A.飘摆105.飞行中发现飞机非指令的时而左滚,时而右滚,同时伴随着机头的时而左偏时而右偏的现象,此迹象表明A.飞机进入飘摆106.偏航阻尼器的作用有B .协调转弯107.大迎角飞行时副翼操纵效率降低,常用来改善副翼的操作效率B. 翼尖前缘缝翼和扰流板辅助副翼操纵108.小速度飞行时,飞机的侧向(横向和方向)安定性要变差,可用来改善B. 偏航阻尼器109.水平安定面固定的飞机,常用升降舵调整片来控制杆力,飞行中,如果把杆力配平在较大速度,在小速度飞行时,如果不动调整片则A.需施加一个较大的拉杆力才能使飞机保持俯仰平衡110.起飞前如果升降舵调整片配平过于靠前,在赶快冰抬前轮时会出现B.抬前轮时杆力过重111.起飞前如果升降舵调整片配平过于靠后,在起飞抬前轮时B. 杆力过重易出现过量操纵112.对于水平安定面可动的飞机(非全动平尾),当飞行员后按安定面配平电门时,水平安定面前缘A. 向下偏转1 1 3.自左压盘后,飞机向左滚转而出现左坡度,不蹬舵飞机向左转弯是什么力矩使机并没有向左偏转B. 方向安定力矩114.高空飞行时,相同表速,受相同的扰动,与低空飞行比较,飞机的安定性变差,其原因是 C.安定力矩和阻转力都减小115.由于地面效应的影响,为了维持俯仰平衡,需用 A.增大拉杆量116.飞机重心接近重心后极限,飞机对飞行员施加的俯仰操纵的响应 A.快117.飞机重心不在飞机纵向对称面内,将需要附加的副翼偏角来维持机翼水平,此时飞机的 _____ 曾大B.阻力118.在飞行高度高于标准海平面时,气温又较高,飞机的真速比表速 A.大119.重量相同,不同高度上保持相同表速飞行,其对应的_______ 相等A. 迎角120.在低空飞行时,由于空气密度较大。
货物重量管理的技巧如何准确称量商品在商业和物流行业中,准确称量商品的重量是非常重要的。
无论是生产过程中的配料,还是运输过程中的货物,都需要精确地知道它们的重量。
只有准确地称量商品的重量,才能进行正确的计量、定价和出售。
本文将介绍一些货物重量管理的技巧,以确保准确称量商品,并提高管理效率。
一、选择适当的称量设备货物重量管理的第一步是选择适当的称量设备。
不同类型和规格的商品可能需要不同类型的秤或称量设备。
比如,小型零售店可能只需要简单的电子秤,而大型仓库或物流中心则需要配备高精度的称重系统。
确保选择的设备符合标准和要求,并能满足实际应用的需求。
二、校准和维护称量设备无论何种类型的称量设备,都需要定期校准和维护,以确保其准确性和精度。
校准是指通过与标准物体进行比较,调整设备的测量结果,使其达到预先设定的准确性要求。
维护则包括定期检查设备的各项功能和部件是否正常工作,并进行必要的清洁和维修。
三、使用适当的称量方法在称量过程中,选择适当的称量方法是确保准确性的关键。
以下是一些通用的称量方法和技巧:1. 单品称量法:适用于称量单个商品或小批商品。
将商品放在称量设备上,确保称量平台水平并稳定,记录称量结果。
2. 批量称量法:适用于称量大批量商品。
先将空秤称量并记录结果,然后将多个商品放在称量设备上,再次称量并记录总重量。
通过计算总重量减去空秤的重量,即可得到实际商品的重量。
3. 连续称量法:适用于称量连续运输的商品。
采用动态称量设备,可以自动记录商品的重量并实时监控。
4. 平均称量法:适用于称量多个相同商品的总重量,并计算平均重量。
将多个商品放在称量设备上,称量并记录总重量,再除以商品数量,得到平均重量。
四、遵循标准操作规程为了确保准确称量商品,必须遵循标准的操作规程。
这包括以下方面:1. 了解商品的称量要求和规范,包括重量单位、精度要求等。
2. 清洁和维护称量设备,确保其正常工作。
3. 确认称量设备的准确性,通过校准和验证的方法。
第八章- 重量和平衡任何飞机遵守重量和平衡限制都对飞行安全至关重要。
一架超出它的最大重量限制的运行会危及飞机结构整体的安全,对飞机的性能产生有害的影响。
重心在允许的限制范围之外时运行的飞机会引起控制困难。
重量控制重量是一种力,重力就是通过利用它把一个问题向地球的中心吸引。
它是物体的质量和作用在物体上的加速作用共同的结果。
重量是飞机建造和运行中的一个主要因素,也和所有飞行员的需要有关。
重力一直有把飞机向地球拉的倾向。
升力是唯一的抵消重力和维持飞机飞行的力.然而,机翼产生的升力大小是受机翼设计,迎角,空速和空气密度限制的。
因此,为确保产生的升力足以抵消重力,必须避免飞机的载荷超出制造商的建议重量。
如果重量比产生的升力大,飞机可能不能飞行。
重量的影响只要考虑性能,在飞机上增加飞机总重的任何东西都是不希望的。
制造商努力的做到让飞机尽可能的轻而不牺牲强度和安全性能.一架飞机的飞行员应该永远知道超载的严重性。
一架超载的飞机可能不能离开地面,或者如果它确实升空了,它可能表现出意料不到和不寻常的拙劣飞行特性。
如果一架飞机没有被正确的配载,拙劣性能的最初表现通常发生在起飞阶段。
过大的重量几乎在每个方面都降低了飞机的飞行性能。
超载飞机的最重要性能缺陷是:较高的起飞速度更长的起飞滑跑减小了爬升率和爬升角降低了最大飞行高度航程缩短减小了巡航速度降低了机动性能较高的失速速度较高的进近和着陆速度较长的着陆滑跑前轮或者尾轮过重飞行员必须深入理解重量对自己所飞的特定飞机的性能的影响。
飞行前规划应该包含性能表的检查,以确定飞机的重量是否会促成危险的飞行运行。
过大的重量本身就降低了飞行员可用的安全余度,当其它降低性能的因素和超载结合时甚至变的更加危险。
飞行员也必须考虑发生紧急情况时飞机超载的严重性。
如果起飞时一个发动机失效,或者在低高度的时候机身结冰,通常这时降低飞机重量来保持飞机在空中就迟了.重量的变化飞机的重量可以通过变更燃油装载量来改变。
天平平衡时称量物体质量的基本原理1. 引言嘿,大家好!今天我们聊聊天平和它的那些事儿。
你知道吗?天平不仅仅是一块用来称东西的工具,它背后藏着一些有趣的科学原理。
就像我们生活中的很多事情,天平也有自己的“平衡哲学”。
嘿,这可不是高深的哲学哦,咱们用简单的语言来聊聊这位“称重大师”。
2. 天平的基本构造2.1 天平是什么首先,咱们得明白天平长啥样。
想象一下,两边各有一个小盘子的横杠,上面还有一个指针在那儿摇摆。
就像过山车一样,左右两边的盘子上放着物品,指针就会告诉你这两个盘子谁重谁轻。
这种叫做“平衡”的状态,真的是让人拍手叫好。
就像在打麻将时,听到“胡了”的那一瞬间,真是痛快淋漓!2.2 平衡的秘密那平衡的秘密是什么呢?其实很简单!当两个盘子上的重量相等时,天平就保持水平,指针指在中间。
就像我们打赌时,如果双方都赌一百块钱,最后大家都开心,谁也不亏,这就是一种“平衡”的状态。
但是,嘿,要是一个人赌了五十,另一个赌了两百,那就有好戏看了!天平也是一样,重量一旦不相等,指针就会向重的那一边倾斜,哦,那可真是看得让人心慌慌。
3. 称量的原理3.1 如何称量说到称量,那就是天平的拿手好戏了。
你把要称的物体放在一边,然后在另一边加上砝码,直到两边再次平衡。
听起来简单吧?其实这就像是给自己设置一个目标,不断地调整,直到你达到理想的状态。
比如说,你想减肥,就得不断调整饮食和运动,直到你看着镜子里的自己满意为止!3.2 质量和重量的区别这里还有个小知识点,质量和重量是有区别的哦。
质量是物体本身的“成分”,而重量则是受重力影响的力。
就像一个人的魅力,不管在哪里,他的个性和气质永远不会改变,但在不同地方,大家对他的评价可能会有不同。
哈哈,听起来是不是很有道理?4. 生活中的天平4.1 天平的应用生活中,天平的应用可广泛了。
你在菜市场看到的称重工具,或者实验室里的精密天平,都是在应用这个原理。
它们帮助我们准确地测量食材的分量,或者化学实验中精确的试剂量,真是事半功倍。
让天平平衡的物:小班科学教案带你探究胡萝卜的重量。
【活动一】探究不同重量的胡萝卜1.准备工作准备几个不同重量的胡萝卜,至少3个。
在班级中找一把天平。
2.活动过程(1)把天平放在桌子上,让孩子们先看看它的样子,学习如何使用天平并了解天平能够测量物体的重量。
(2)在天平的盘子上放一个胡萝卜,然后用手指向另一个盘子上添加胡萝卜,让孩子们判断哪个胡萝卜更重。
(3)逐渐增加胡萝卜的数量并重复上面的步骤,看看孩子们能否正确判断不同重量的胡萝卜。
(4)让孩子们自己找出几个不同重量的胡萝卜,用天平称量它们的重量。
【活动二】探究如何让天平平衡通过活动一,孩子们已经学会如何使用天平并了解天平的作用。
接下来,我们会向孩子们介绍如何让天平平衡。
1.准备工作在班级中找一把天平,准备一些小物品,如橡皮、书签等,并找到一枚钉子。
2.活动过程(1)向孩子们展示一个不平衡的天平,拿出一些小物品并让孩子们尝试如何使天平平衡。
(2)引导孩子们尝试用同等重量的小物品在另一边的天平上来平衡它。
(3)找到一枚钉子并放在天平的盘子上。
向孩子们介绍如何把钉子移到另一个盘子上,使它平衡。
孩子们可以用手指或其他小物品来移动钉子。
(4)给孩子们分发几个相同重量的小物品,并让他们自己尝试让天平平衡。
通过这个活动,孩子们可以理解如何使用天平,并学会如何调整天平的平衡。
同时,孩子们也能够通过不断尝试和探究,加深对物体重量和天平的运用的了解。
小结通过探究不同重量的胡萝卜和如何让天平平衡的活动,我们可以让孩子们更好地了解物体的重量和天平的运用。
在活动的过程中,老师可以引导孩子们思考问题,培养他们的观察力、判断力和动手能力。
这不仅对孩子们的科学探究有帮助,同时也是锻炼他们思维能力的一种方式。
口诀:配平取中值;无油重量重心取中值(B737-15.3是例外);地板承载取小值,末位数是3取中值;起飞重量重心:B737_19以下取中值,19以上取小值;A320-第一位数字相比较,相同数字被排除,剩下一个要死记,数字相连取小值。
5.重量与平衡1. What are some characteristics of an airplane loaded with the CG at the aft limit?A.Lowest stall speed, highest cruise speed, and least stabilityB.Highest stall speed, highest cruise speed, and least stability.C.Lowest stall speed, lowest cruise speed, and highest stability.A X2. What characteristic should exist if an airplane is loaded to the rear of its CG range?A.Sluggish in aileron control.B.Sluggish in rudder controlC.Unstable about the lateral axisC X3. As the CG is moved forward, the stabilityA.ImprovesB.DecreaseC.dose not changeA X4. In flight ,as the time goes on , the CG willA.changeB.not changeC.may change or may not changeA X5. In small airplanes, normal recovery form spins may become difficult if theA.-CG is too far rearward and rotation is around the longitudinal axis.B.-CG is too far rearward and rotation is around the CG.C.-spin is entered before the stall is fully developed.C X1. Determine which statement given below is correct.A. Operating Weight is the sum of the DOW and the Take-off FuelB. Take-off Weight is equal to the addition of the DOW and the PayloadC. DOW is obtained by addition of the Basic Weight and Pantry load for A320A2. Determine which statement given below is correct.A. Operating Weight equals to the Take-off Weight minus the Take-off FuelB. Take-off Weight is equal to the addition of the Operating Weight and the PayloadC. Zero Fuel Weight is obtained by subtracting the Take-off Fuel from Operating WeightB3. For most modern swept-wing transports with a large proportion of fuel store in the wings, reducing fuel contents in wing tanks will result in:A. an aft movement of CG as fuel is consumedB. a forward movement of CG as fuel is burningC. no effect on CG movementB4. For most modern swept-wing transports, with the fuel burning , the CG will .A. not changeB. change randomC. change regularlyC5. The CG is often expressed as a percent of MAC, %0 of MAC means:.A. the CG is at trailing edge of MACB. the CG is at middle of MACC. the CG is at leading edge of MACC6. The CG is often expressed as a percent of MAC, %100 of MAC means:.A. the CG is at trailing edge of MACB. the CG is at middle of MACC. the CG is at leading edge of MACA7. Determine the ZFW CG in percent of MAC under the following condition for an A320 aircraft by completing the Figure 1.Condition:Dry Operating Weight = 94,000 lb and CG = 26 %Deviation or adjustment: NoneCargo =11,000 lb as: cargo 1 = 4,500 lb ; cargo 3 = 3,000 lb ; cargo 4 =1,000 lb ; cargo 5 = 2,500 lbPassengers (165 lb / PAX) = 160 PAX as: cabin OA = 40 ; cabin OB = 70 ; cabin OC = 50Fuel =28,000 lbThe CG is: B.A. 33.8% at ZFWB. 31.9% at ZFWC. 30.0% at ZFW8. Determine the take-off CG in percent of MAC under the following condition for an A320 aircraft by completing the Figure 1.Condition:Dry Operating Weight = 94,000 lb and CG = 26 %Deviation or adjustment: NoneCargo =11,000 lb as: cargo 1 = 4,500 lb ; cargo 3 = 3,000 lb ; cargo 4 =1,000 lb ; cargo 5 = 2,500 lbPassengers (165 lb / PAX) = 160 PAX as: cabin OA = 40 ; cabin OB = 70 ; cabin OC = 50Fuel =28,000 lbThe CG is: C.A. 27.2% at take-offB. 28.4% at take-offC. 30.2% at take-off9. Determine the ZFW CG in percent of MAC under the following condition for an A320 aircraft by completing the Figure 1.Condition:Dry Operating Weight = 94,000 lb and CG = 26 %Deviation or adjustment: NoneCargo =10,000 lb as: cargo 1 = 3,500 lb ; cargo 3 = 3,000 lb ; cargo 4 =1,000 lb ; cargo 5 = 2,500 lbPassengers (165 lb / PAX) = 150 PAX as: cabin OA = 40 ; cabin OB = 70 ; cabin OC = 40Fuel =30,000 lbThe CG is: C.A. 29.0 % at ZFWB. 32.7 % at ZFWC. 30.7 % at ZFW10. D etermine the take-off CG in percent of MAC under the following condition for an A320 aircraft by completing theFigure 1.Condition:Dry Operating Weight = 94,000 lb and CG = 26 %Deviation or adjustment: NoneCargo =10,000 lb as: cargo 1 = 3,500 lb ; cargo 3 = 3,000 lb ; cargo 4 =1,000 lb ; cargo 5 = 2,500 lbPassengers (165 lb / PAX) = 150 PAX as: cabin OA = 40 ; cabin OB = 70 ; cabin OC = 40Fuel =30,000 lbThe CG is: C.A. 31.6% at take-offB. 30.3% at take-offC. 28.8% at take-off11. D etermine the ZFW CG in percent of MAC under the following condition for an A320 aircraft by completing the Figure 1.Condition:Dry Operating Weight = 94,000 lb and CG = 26 %Deviation or adjustment = 100 lb in zone FCargo =9,500 lb as: cargo 1 = 3,000 lb ; cargo 3 = 3,000 lb ; cargo 4 =1,000 lb ; cargo 5 = 2,500 lbPassengers (165 lb / PAX) = 160 PAX as: cabin OA = 40 ; cabin OB = 70 ; cabin OC = 50Fuel =25,000 lbThe CG is: A.A. 34.2 % at ZFWB. 32.3 % at ZFWC. 36.0 % at ZFW12. D etermine the take-off CG in percent of MAC under the following condition for an A320 aircraft by completing the Figure 1.Condition:Dry Operating Weight = 94,000 lb and CG = 26 %Deviation or adjustment = 100 lb in zone FCargo =9,500 lb as: cargo 1 = 3,000 lb ; cargo 3 = 3,000 lb ; cargo 4 =1,000 lb ; cargo 5 = 2,500 lbPassengers (165 lb / PAX) = 160 PAX as: cabin OA = 40 ; cabin OB = 70 ; cabin OC = 50Fuel =25,000 lbThe CG is: A.A. 31.8% at take-offB. 29.7% at take-offC. 27.9% at take-off13. D etermine the ZFW CG in percent of MAC under the following condition for a B737-300 aircraft by completing the Figure 2.Condition:Dry Operating Weight = 32,930 kgDry Operating Index = 44.9Cargo =3,990 kg as: FWD HOLD 1 = 1,995 kg ; AFT HOLD 4 = 1,995 kgPassengers (165 lb or 75 kg / PAX) = 140 PAX as: FWD PASS COMPT = 40 ;MID PASS COMPT = 50 ; AFT PASS COMPT = 50Take-off Fuel = 11,700 kg as: Wing Fuel Tanks = 9,111 kg ;Central Fuselage Tank = 2589 kgThe CG is: A.A. 21.5 % at ZFWB. 23.1 % at ZFWC. 20.0 % at ZFW14. D etermine take-off CG in percent of MAC under the following condition for a B737-300 aircraft by completing theFigure 2.Condition:Dry Operating Weight = 32,930 kgDry Operating Index = 44.9Cargo =3,990 kg as: FWD HOLD 1 = 1,995 kg ; AFT HOLD 4 = 1,995 kgPassengers (165 lb or 75 kg / PAX) = 140 PAX as: FWD PASS COMPT = 40 ;MID PASS COMPT = 50 ; AFT PASS COMPT = 50Take-off Fuel = 11,700 kg as: Wing Fuel Tanks = 9,111 kg ;Central Fuselage Tank = 2589 kgThe CG is: A.A. 19.3% at take-offB. 20.9% at take-offC. 22.0% at take-off15. D etermine the ZFW CG in percent of MAC under the following condition for a B737-300 aircraft by completing the Figure 2.Condition:Dry Operating Weight = 32,930 kgDry Operating Index = 44.9Cargo =4,000 kg as: FWD HOLD 1 = 2,000 kg ; AFT HOLD 4 = 2,000 kgPassengers (165 lb or 75 kg / PAX) = 130 PAX as: FWD PASS COMPT = 40 ;MID PASS COMPT = 60 ; AFT PASS COMPT = 30Take-off Fuel = 12,500 kg as: Wing Fuel Tanks = 9,111 kg ;Central Fuselage Tank =3389 kgThe CG is: B.A. 17.0 % at ZFWB. 15.3 % at ZFWC. 18.5 % at ZFW16. D etermine the take-off CG in percent of MAC under the following condition for a B737-300 aircraft by completing the Figure 2.Condition:Dry Operating Weight = 32,930 kgDry Operating Index = 44.9Cargo =4,000 kg as: FWD HOLD 1 = 2,000 kg ; AFT HOLD 4 = 2,000 kgPassengers (165 lb or 75 kg / PAX) = 130 PAX as: FWD PASS COMPT = 40 ;MID PASS COMPT = 60 ; AFT PASS COMPT = 30Take-off Fuel = 12,500 kg as: Wing Fuel Tanks = 9,111 kg ;Central Fuselage Tank =3389 kgThe CG is: B.A. 15.6% at take-offB. 14.2% at take-offC. 13.0% at take-off17. D etermine the STAB TRIM setting under the following condition for a B737-300 aircraft by completing the Figure 2. Condition:Dry Operating Weight = 32,930 kgDry Operating Index = 44.9Cargo =4,000 kg as: FWD HOLD 1 = 2,000 kg ; AFT HOLD 4 = 2,000 kgPassengers (165 lb or 75 kg / PAX) = 130 PAX as: FWD PASS COMPT = 40 ;MID PASS COMPT = 50 ; AFT PASS COMPT = 40Take-off Fuel = 12,500 kg as: Wing Fuel Tanks = 9,111 kg ;Central Fuselage Tank =3389 kgFlap setting =15°The STAB TRIM setting is: B.A. 5B. 4C. 3 3/418. D etermine the STAB TRIM setting under the following condition for a B737-300 aircraft by completing the Figure 2. Condition:Dry Operating Weight = 32,930 kgDry Operating Index = 44.9Cargo =4,000 kg as: FWD HOLD 1 = 2,000 kg ; AFT HOLD 4 = 2,000 kgPassengers (165 lb or 75 kg / PAX) = 130 PAX as: FWD PASS COMPT = 40 ;MID PASS COMPT = 60 ; AFT PASS COMPT = 30Take-off Fuel = 12,500 kg as: Wing Fuel Tanks = 9,111 kg ;Central Fuselage Tank =3389 kgFlap setting =5°The STAB TRIM setting is: C.A. 5 1/2B. 5C. 5 1/419. D etermine the STAB TRIM setting under the following condition for a B737-300 aircraft by completing the Figure 2. Condition:Dry Operating Weight = 32,930 kgDry Operating Index = 44.9Cargo =4,000 kg as: FWD HOLD 1 = 2,000 kg ; AFT HOLD 4 = 2,000 kgPassengers (165 lb or 75 kg / PAX) = 138 PAX as: FWD PASS COMPT = 40 ;MID PASS COMPT = 50 ; AFT PASS COMPT = 48Take-off Fuel = 12,000 kg as: Wing Fuel Tanks = 9,111 kg ;Central Fuselage Tank =2889 kgFlap setting =15°The STAB TRIM setting is: B.A. 4 3/4B. 3 3/4C. 3 1/420. W hat is the maximum allowable weight that may be carried on a pallet which has the dimensions of 34.6×46.4 inches? Condition:Floor load limit: 88 pounds/sq ftPallet weight: 41 poundsTiedown devices: 26 poundsA.A. 914.1 poundsB. 940.1 poundsC. 981.1 pounds21. W hat is the maximum allowable weight that may be carried on a pallet which has the dimensions of 36.5×48.5 inches? Condition:Floor load limit: 107 pounds/sq ftPallet weight: 37 poundsTiedown devices: 33 poundsC.A. 1, 295.3 poundsB. 1, 212.3 poundsC. 1, 245.3 pounds22. W hat is the maximum allowable weight that may be carried on a pallet which has the dimensions of 138.5×97.6 inches? Condition:Floor load limit: 235 pounds/sq ftPallet weight: 219 poundsTiedown devices: 71 poundsB.A. 21,840.9 poundsB. 21,769.9 poundsC. 22,059.9pounds23. D etermine the take-off CG in percent of MAC under the following condition for an A320 aircraft by completing the Figure 1.Condition:Dry Operating Weight = 94,000 lb and CG = 26 %Deviation or adjustment = 100 lb in zone FCargo =9,500 lb as: cargo 1 = 3,000 lb ; cargo 3 = 3,000 lb ; cargo 4 =1,000 lb ; cargo 5 = 2,500 lbPassengers (165 lb / PAX) = 150 PAX as: cabin OA = 30 ; cabin OB = 70 ; cabin OC = 50Fuel =25,000 lbThe CG is: B.A. 35.2% at ZFWB. 36.6% at ZFWC. 37.9% at ZFW24. D etermine the take-off CG in percent of MAC under the following condition for an A320 aircraft by completing theFigure 1.Condition:Dry Operating Weight = 94,000 lb and CG = 26 %Deviation or adjustment = 100 lb in zone FCargo =9,500 lb as: cargo 1 = 3,000 lb ; cargo 3 = 3,000 lb ; cargo 4 =1,000 lb ; cargo 5 = 2,500 lbPassengers (165 lb / PAX) = 150 PAX as: cabin OA = 30 ; cabin OB = 70 ; cabin OC = 50Fuel =25,000 lbThe CG is: C.A. 35.5% at take-offB. 34.9% at take-offC. 33.5% at take-off25. D etermine the ZFW CG in percent of MAC under the following condition for a B737-300 aircraft by completing the Figure 2.Condition:Dry Operating Weight = 32,930 kgDry Operating Index = 44.9Cargo =4,000 kg as: FWD HOLD 1 = 2,000 kg ; AFT HOLD 4 = 2,000 kgPassengers (165 lb or 75 kg / PAX) = 140 PAX as: FWD PASS COMPT = 40 ;MID PASS COMPT = 60 ; AFT PASS COMPT = 40Take-off Fuel = 12,500 kg as: Wing Fuel Tanks = 9,111 kg ;Central Fuselage Tank =3389 kgThe CG is: C.A. 20.0 % at ZFWB. 16.9 % at ZFWC. 18.6 % at ZFW26. D etermine the ZFW CG in percent of MAC under the following condition for a B737-300 aircraft by completing the Figure 2.Condition:Dry Operating Weight = 32,930 kgDry Operating Index = 44.9Cargo =4,000 kg as: FWD HOLD 1 = 2,000 kg ; AFT HOLD 4 = 2,000 kgPassengers (165 lb or 75 kg / PAX) = 140 PAX as: FWD PASS COMPT = 40 ;MID PASS COMPT = 60 ; AFT PASS COMPT = 40Take-off Fuel = 12,500 kg as: Wing Fuel Tanks = 9,111kg ;Central Fuselage Tank =3389 kgThe CG is: B.A. 15. 1% at take-offB. 16.5% at take-offC. 17.9% at take-off27. D etermine the STAB TRIM setting under the following condition for a B737-300 aircraft by completing the Figure 2. Condition:Dry Operating Weight = 32,930 kgDry Operating Index = 44.9Cargo =4,000 kg as: FWD HOLD 1 = 2,000 kg ; AFT HOLD 4 = 2,000 kgPassengers (165 lb or 75 kg / PAX) = 130 PAX as: FWD PASS COMPT = 40 ;MID PASS COMPT = 60 ; AFT PASS COMPT = 30Take-off Fuel = 12,500 kg as: Wing Fuel Tanks = 9,111 kg ;Central Fuselage Tank =3389 kgFlap setting =15°The STAB TRIM setting is: A.A. 4 1/2B. 4C. 5 1/428. D etermine which statement given below is correct.B.A. Operating Weight is the sum of the empty weight and the Take-off Fuel for B737B. Take-off Weight is equal to the sum of the DOW , the Payload and the Take-off FuelC. DOW is obtained by addition of the Basic Weight and Pantry load for A32029. D etermine which statement given below is correct.C.A. Operating Weight equals to the Take-off Weight minus the Take-off FuelB. Take-off Weight is equal to the addition of the DOW and the PayloadC. Landing Weight is obtained by subtracting the Trip Fuel from Take-off Weight30. F or most modern transports, if the CG at take-off is in the proper CG scope , the CG at ZFW B.A. will stay in the permitted CG scope certainlyB. may exceed the permitted CG scopeC. directly determined by the CG at take-off31. W hat is the maximum allowable weight that may be carriedon a pallet which has the dimensions of 96.1×133.3 inches? Condition:Floor load limit: 249 pounds/sq ftPallet weight: 347 poundsTiedown devices: 134 poundsA.A. 21,669.8 poundsB. 21,803.8 poundsC. 22,120.8 pounds32. W hat is the maximum allowable weight that may be carried on a pallet which has the dimensions of 148×125.2 inches? Condition:Floor load limit: 209 pounds/sq ftPallet weight: 197 poundsTiedown devices: 66 pounds26630.7A. 25,984.9 poundsB. 25,787.9 poundsC. 25,721.9 pounds33. W hat is the maximum allowable weight that may be carried on a pallet which has the dimensions of 87.7×116.8 inches? Condition:Floor load limit: 175 pounds/sq ftPallet weight: 137 poundsTiedown devices: 49 poundsA.A. 12,262.4 poundsB. 12,448.4 poundsC. 12,311.4 pounds1. Determine which statement given below is correct.A. Operating Weight is the sum of the DOW and the Take-off FuelB. Take-off Weight is equal to the addition of the DOW and the PayloadC. DOW is obtained by addition of the Basic Weight and Pantry load for A3202. Determine which statement given below is correct.A. Operating Weight equals to the Take-off Weight minus the Take-off FuelB. Take-off Weight is equal to the addition of the Operating Weight and the PayloadC. Zero Fuel Weight is obtained by subtracting the Take-off Fuel from Operating Weight3. For most modern swept-wing transports with a large proportion of fuel store in the wings, reducing fuel contents in wing tanks will result in:A. an aft movement of CG as fuel is consumedB. a forward movement of CG as fuel is burningC. no effect on CG movement4. For most modern swept-wing transports, with the fuel burning , the CG willA. not changeB. change randomC. change regularly5. The CG is often expressed as a percent of MAC, %0 of MAC means:A. the CG is at trailing edge of MACB. the CG is at middle of MACC. the CG is at leading edge of MAC6. The CG is often expressed as a percent of MAC, %100 of MAC means:A. the CG is at trailing edge of MACB. the CG is at middle of MACC. the CG is at leading edge of MAC7. Determine the ZFW CG in percent of MAC under theFigure 5-1.Condition:Dry Operating Weight = 94,000 lb and CG = 26 %; Deviation or adjustment: None; Cargo =11,000 lb as: cargo 1 = 4,500 lb , cargo 3 = 3,000 lb , cargo 4 =1,000 lb , cargo 5 = 2,500 lb; Passengers (165 lb / PAX) = 160 PAX as: cabin OA = 40 , cabin OB = 70 , cabin OC = 50; Fuel =28,000 lb. The CG is:A. 33.8% at ZFWB. 31.9% at ZFWC. 30.0% at ZFW8. Determine the take-off CG in percent of MAC under the following condition for an A320 aircraft by completing the Figure 5-1.Condition:Dry Operating Weight = 94,000 lb and CG = 26 %; Deviation or adjustment: None; Cargo =11,000 lb as: cargo 1 = 4,500 lb , cargo 3 = 3,000 lb , cargo 4 =1,000 lb , cargo 5 = 2,500 lb; Passengers (165 lb / PAX) = 160 PAX as: cabin OA = 40 , cabin OB = 70 , cabin OC = 50; Fuel =28,000 lb. The CG is:A. 27.2% at take-offB. 28.4% at take-offC. 30.2% at take-off9. Determine the ZFW CG in percent of MAC under theFigure 5-1.Condition:Dry Operating Weight = 94,000 lb and CG = 26 %; Deviation or adjustment: None; Cargo =10,000 lb as: cargo 1 = 3,500 lb , cargo 3 = 3,000 lb , cargo 4 =1,000 lb , cargo 5 = 2,500 lb; Passengers (165 lb / PAX) = 150 PAX as: cabin OA = 40 , cabin OB = 70 , cabin OC = 40; Fuel =30,000 lb. The CG is:A. 29.0 % at ZFWB. 32.7 % at ZFWC. 30.7 % at ZFW10. D etermine the take-off CG in percent of MAC under the following condition for an A320 aircraft by completing the Figure 5-1.Condition:Dry Operating Weight = 94,000 lb and CG = 26 %; Deviation or adjustment: None; Cargo =10,000 lb as: cargo 1 = 3,500 lb ; cargo 3 = 3,000 lb , cargo 4 =1,000 lb , cargo 5 = 2,500 lb; Passengers (165 lb / PAX) = 150 PAX as: cabin OA = 40 , cabin OB = 70 , cabin OC = 40; Fuel =30,000 lb. The CG is:A. 31.6% at take-offB. 30.3% at take-offC. 28.8% at take-off11. D etermine the ZFW CG in percent of MAC under theFigure 5-1.Condition:Dry Operating Weight = 94,000 lb and CG = 26 %; Deviation or adjustment = 100 lb in zone F; Cargo =9,500 lb as: cargo 1 = 3,000 lb , cargo 3 = 3,000 lb , cargo 4 =1,000 lb , cargo 5 = 2,500 lb; Passengers (165 lb / PAX) = 160 PAX as: cabin OA = 40 , cabin OB = 70 , cabin OC = 50; Fuel =25,000 lb. The CG is:A. 34.2 % at ZFWB. 32.3 % at ZFWC. 36.0 % at ZFW12. D etermine the take-off CG in percent of MAC under the following condition for an A320 aircraft by completing the Figure 5-1.Condition:Dry Operating Weight = 94,000 lb and CG = 26 %; Deviation or adjustment = 100 lb in zone F; Cargo =9,500 lb as: cargo 1 = 3,000 lb , cargo 3 = 3,000 lb ,cargo 4 =1,000 lb , cargo 5 = 2,500 lb; Passengers (165 lb / PAX) = 160 PAX as: cabin OA = 40 , cabin OB = 70 , cabin OC = 50; Fuel =25,000 lb. The CG is:A. 31.8% at take-offB. 29.7% at take-offC. 27.9% at take-off13. D etermine the ZFW CG in percent of MAC under theFigure 5-2.Condition:Dry Operating Weight = 32,930 kg , Dry Operating Index = 44.9; Cargo =3,990 kg as: FWD HOLD 1 = 1,995 kg , AFT HOLD 4 = 1,995 kg; Passengers (165 lb or 75 kg / PAX) = 140 PAX as: FWD PASS COMPT = 40 , MID PASS COMPT = 50 , AFT PASS COMPT = 50; Take-off Fuel = 11,700 kg as: Wing Fuel Tanks = 9,111 kg , Central Fuselage Tank = 2589 kg. The CG is:A. 21.5 % at ZFWB. 23.1 % at ZFWC. 20.0 % at ZFW14. D etermine take-off CG in percent of MAC under the following condition for a B737-300 aircraft by completing the Figure 5-2.Condition:Dry Operating Weight = 32,930 kg , Dry Operating Index = 44.9; Cargo =3,990 kg as: FWD HOLD 1 = 1,995 kg , AFT HOLD 4 = 1,995 kg; Passengers (165 lb or 75 kg / PAX) = 140 PAX as: FWD PASS COMPT = 40 , MID PASS COMPT = 50 , AFT PASS COMPT = 50; Take-off Fuel = 11,700 kg as: Wing Fuel Tanks = 9,111 kg , Central Fuselage Tank = 2589 kg. The CG is:A. 19.3% at take-offB. 20.9% at take-off15. D etermine the ZFW CG in percent of MAC under the following condition for a B737-300 aircraft by completing the Figure 5-2.Condition:Dry Operating Weight = 32,930 kg , Dry Operating Index = 44.9; Cargo =4,000 kg as: FWD HOLD 1 = 2,000 kg , AFT HOLD 4 = 2,000 kg; Passengers (165 lb or 75 kg / PAX) = 130 PAX as: FWD PASS COMPT = 40 ,MID PASS COMPT = 60 , AFT PASS COMPT = 30; Take-off Fuel = 12,500 kg as: Wing Fuel Tanks = 9,111 kg ,Central Fuselage Tank =3389 kg.The CG is:A. 17.0 % at ZFWB. 15.3 % at ZFWC. 18.5 % at ZFW16. D etermine the take-off CG in percent of MAC under the following condition for a B737-300 aircraft by completing the Figure 5-2.Condition:Dry Operating Weight = 32,930 kg , Dry Operating Index = 44.9; Cargo =4,000 kg as: FWD HOLD 1 = 2,000 kg , AFT HOLD 4 = 2,000 kg; Passengers (165 lb or 75 kg / PAX) = 130 PAX as: FWD PASS COMPT = 40 , MID PASS COMPT = 60 , AFT PASS COMPT = 30; Take-off Fuel = 12,500 kg as: Wing Fuel Tanks = 9,111 kg ,Central Fuselage Tank =3389 kg. The CG is:B. 14.2% at take-offC. 13.0% at take-off17. D etermine the STAB TRIM setting under the following condition for a B737-300 aircraft by completing the Figure 5-2.Condition:Dry Operating Weight = 32,930 kg , Dry Operating Index = 44.9; Cargo =4,000 kg as: FWD HOLD 1 = 2,000 kg , AFT HOLD 4 = 2,000 kg; Passengers (165 lb or 75 kg / PAX) = 130 PAX as: FWD PASS COMPT = 40 , MID PASS COMPT = 50 , AFT PASS COMPT = 40; Take-off Fuel = 12,500 kg as: Wing Fuel Tanks = 9,111 kg ,Central Fuselage Tank =3389 kg; Flap setting =15°. The STAB TRIM setting is:A. 5B. 4C. 3 3/418. D etermine the STAB TRIM setting under the following condition for a B737-300 aircraft by completing the Figure 5-2.Condition:Dry Operating Weight = 32,930 kg , Dry Operating Index = 44.9; Cargo =4,000 kg as: FWD HOLD 1 = 2,000 kg , AFT HOLD 4 = 2,000 kg; Passengers (165 lb or 75 kg / PAX) = 130 PAX as: FWD PASS COMPT = 40 , MID PASS COMPT = 60 , AFT PASS COMPT = 30; Take-off Fuel =12,500 kg as: Wing Fuel Tanks = 9,111 kg ,Central Fuselage Tank =3389 kg; Flap setting =5°. The STAB TRIM setting is:A. 5 1/2B. 5C. 5 1/419. D etermine the STAB TRIM setting under the following condition for a B737-300 aircraft by completing the Figure 5-2.Condition:Dry Operating Weight = 32,930 kg , Dry Operating Index = 44.9; Cargo =4,000 kg as: FWD HOLD 1 = 2,000 kg , AFT HOLD 4 = 2,000 kg; Passengers (165 lb or 75 kg / PAX) = 138 PAX as: FWD PASS COMPT = 40 , MID PASS COMPT = 50 , AFT PASS COMPT = 48; Take-off Fuel = 12,000 kg as: Wing Fuel Tanks = 9,111 kg ,Central Fuselage Tank =2889 kg; Flap setting =15°. The STAB TRIM setting is:A. 4 3/4B. 3 3/4C. 3 1/420. W hat is the maximum allowable weight that may be carried on a pallet which has the dimensions of 34.6×46.4 inches? Condition:Floor load limit: 88 pounds/sq ft; Pallet weight: 41 pounds; Tiedown devices: 26 pounds.A. 914.1 poundsB. 940.1 poundsC. 981.1 pounds21. W hat is the maximum allowable weight that may be carried on a pallet which has the dimensions of 36.5×48.5 inches? Condition:Floor load limit:107 pounds/sq ft; Pallet weight:37 pounds; Tiedown devices: 33 pounds.A. 1, 295.3 poundsB. 1, 212.3 poundsC. 1, 245.3 pounds22. W hat is the maximum allowable weight that may be carried on a pallet which has the dimensions of 138.5×97.6 inches?Condition:Floor load limit:235 pounds/sq ft; Pallet weight: 219 pounds; Tiedown devices: 71 pounds.A. 21,840.9 poundsB. 21,769.9 poundsC. 22,059.9pounds23. D etermine the take-off CG in percent of MAC under the following condition for an A320 aircraft by completing the Figure 5-1.Condition:Dry Operating Weight = 94,000 lb and CG = 26 %; Deviation or adjustment = 100 lb in zone F; Cargo =9,500 lb as: cargo 1 = 3,000 lb , cargo 3 = 3,000 lb , cargo 4 =1,000 lb , cargo 5 = 2,500 lb; Passengers (165 lb / PAX) = 150PAX as: cabin OA = 30 , cabin OB = 70 , cabin OC = 50; Fuel =25,000 lb. The CG is:A. 35.2% at ZFWB. 36.6% at ZFWC. 37.9% at ZFW24. D etermine the take-off CG in percent of MAC under the following condition for an A320 aircraft by completing the Figure 5-1.Condition:Dry Operating Weight = 94,000 lb and CG = 26 %; Deviation or adjustment = 100 lb in zone F; Cargo =9,500 lb as: cargo 1 = 3,000 lb , cargo 3 = 3,000 lb , cargo 4 =1,000 lb , cargo 5 = 2,500 lb; Passengers (165 lb / PAX) = 150 PAX as: cabin OA = 30 , cabin OB = 70 , cabin OC = 50; Fuel =25,000 lb. The CG is:A. 35.5% at take-offB. 34.9% at take-offC. 33.5% at take-off25. D etermine the ZFW CG in percent of MAC under the following condition for a B737-300 aircraft by completing the Figure 5-2.Condition:Dry Operating Weight = 32,930 kg , Dry Operating Index = 44.9; Cargo =4,000 kg as: FWD HOLD 1 = 2,000 kg , AFT HOLD 4 = 2,000 kg; Passengers (165 lb or 75 kg / PAX) = 140 PAX as: FWD PASS COMPT = 40 , MIDPASS COMPT = 60 , AFT PASS COMPT = 40; Take-off Fuel = 12,500 kg as: Wing Fuel Tanks = 9,111 kg ,Central Fuselage Tank =3389 kg. The CG is:A. 20.0 % at ZFWB. 16.9 % at ZFWC. 18.6 % at ZFW26. D etermine the ZFW CG in percent of MAC under the following condition for a B737-300 aircraft by completing the Figure 5-2.Condition:Dry Operating Weight = 32,930 kg , Dry Operating Index = 44.9; Cargo =4,000 kg as: FWD HOLD 1 = 2,000 kg , AFT HOLD 4 = 2,000 kg; Passengers (165 lb or 75 kg / PAX) = 140 PAX as: FWD PASS COMPT = 40 , MID PASS COMPT = 60 , AFT PASS COMPT = 40; Take-off Fuel = 12,500 kg as: Wing Fuel Tanks = 9,111 kg ,Central Fuselage Tank =3389 kg. The CG is:A. 15. 1% at take-offB. 16.5% at take-offC. 17.9% at take-off27. D etermine the STAB TRIM setting under the following condition for a B737-300 aircraft by completing the Figure 5-2.Condition:Dry Operating Weight = 32,930 kg , Dry Operating Index = 44.9; Cargo =4,000 kg as: FWD HOLD 1 =2,000 kg , AFT HOLD 4 = 2,000 kg; Passengers (165 lb or 75 kg / PAX) = 130 PAX as: FWD PASS COMPT = 40 , MID PASS COMPT = 60 , AFT PASS COMPT = 30; Take-off Fuel = 12,500 kg as: Wing Fuel Tanks = 9,111 kg ,Central Fuselage Tank =3389 kg; Flap setting =15°. The STAB TRIM setting is:A. 4 1/2B. 4C. 5 1/428. D etermine which statement given below is correct.A. Operating Weight is the sum of the empty weight and the Take-off Fuel for B737B. Take-off Weight is equal to the sum of the DOW , the Payload and the Take-off FuelC. DOW is obtained by addition of the Basic Weight and Pantry load for A32029. D etermine which statement given below is correct.A. Operating Weight equals to the Take-off Weight minus the Take-off FuelB. Take-off Weight is equal to the addition of the DOW and the PayloadC. Landing Weight is obtained by subtracting the Trip Fuel from Take-off Weight30. F or most modern transports, if the CG at take-off is in the proper CG scope , the CG at ZFWA. will stay in the permitted CG scope certainlyB. may exceed the permitted CG scopeC. directly determined by the CG at take-off31. W hat is the maximum allowable weight that may be carried on a pallet which has the dimensions of 96.1×133.3 inches?Condition:Floor load limit:249 pounds/sq ft; Pallet weight: 347 pounds; Tiedown devices: 134 pounds.A. 21,669.8 poundsB. 21,803.8 poundsC. 22,120.8 pounds32. W hat is the maximum allowable weight that may be carried on a pallet which has the dimensions of 148×125.2 inches?Condition:Floor load limit:209 pounds/sq ft; Pallet weight: 197 pounds; Tiedown devices: 66 pounds.A. 25,984.9 poundsB. 25,787.9 poundsC. 25,721.9 pounds33. W hat is the maximum allowable weight that may be carried on a pallet which has the dimensions of 87.7×116.8 inches?Condition:Floor load limit:175 pounds/sq ft; Pallet。