焊接工艺参数
- 格式:docx
- 大小:25.30 KB
- 文档页数:6
焊接工艺参数的选择手工电弧焊的焊接工艺参数主要条直径、焊接电流、电弧电压、焊接层数、电源种类及极性等。
1.焊条直径焊条直径的选择主要取决于焊件厚度、接头形式、焊缝位置和焊接层次等因素。
在一般情况下,可根据表6-4按焊件厚度选择焊条直径,并倾向于选择较大直径的焊条。
另外,在平焊时,直径可大一些;立焊时,所用焊条直径不超过5mm;横焊和仰焊时,所用直径不超过4mm;开坡口多层焊接时,为了防止产生未焊透的缺陷,第一层焊缝宜采用直径为3.2mm的焊条。
表6-4 焊条直径与焊件厚度的关系mm焊件厚度≤23~45~12>12焊条直径23.24~5≥152.焊接电流焊接电流的过大或过小都会影响焊接质量,所以其选择应根据焊条的类型、直径、焊件的厚度、接头形式、焊缝空间位置等因素来考虑,其中焊条直径和焊缝空间位置最为关键。
在一般钢结构的焊接中,焊接电流大小与焊条直径关系可用以下经验公式进行试选:I=10d2 (6-1) 式中I ——焊接电流(A);d ——焊条直径(mm)。
另外,立焊时,电流应比平焊时小15%~20%;横焊和仰焊时,电流应比平焊电流小10%~15%。
3.电弧电压根据电源特性,由焊接电流决定相应的电弧电压。
此外,电弧电压还与电弧长有关。
电弧长则电弧电压高,电弧短则电弧电压低。
一般要求电弧长小于或等于焊条直径,即短弧焊。
在使用酸性焊条焊接时,为了预热部位或降低熔池温度,有时也将电弧稍微拉长进行焊接,即所谓的长弧焊。
4.焊接层数焊接层数应视焊件的厚度而定。
除薄板外,一般都采用多层焊。
焊接层数过少,每层焊缝的厚度过大,对焊缝金属的塑性有不利的影响。
施工中每层焊缝的厚度不应大于4~5mm。
5.电源种类及极性直流电源由于电弧稳定,飞溅小,焊接质量好,一般用在重要的焊接结构或厚板大刚度结构上。
其他情况下,应首先考虑交流电焊机。
根据焊条的形式和焊接特点的不同,利用电弧中的阳极温度比阴极高的特点,选用不同的极性来焊接各种不同的构件。
不锈钢氩弧焊工艺参数
不锈钢氩弧焊的工艺参数包括焊接电流、焊接电压、氩气流量和焊接速度等。
具体的参数设置应根据不锈钢的合金成分、厚度和焊接位置等因素来确定。
一般而言,建议的工艺参数如下:
1. 焊接电流:一般为80-120安培,具体取决于不锈钢材料的厚度,一般厚度越大,所需电流越高。
2. 焊接电压:一般为18-25伏特,具体取决于不锈钢材料的厚度和焊接电流,较大的电流需要较高的电压。
3. 氩气流量:一般为8-15升/分钟,具体取决于焊接电流和不锈钢材料的厚度,较大的电流和厚度需要较大的氩气流量。
4. 焊接速度:一般为6-10厘米/分钟,具体取决于焊接电流和不锈钢材料的厚度,较大的电流和厚度需要较慢的焊接速度。
以上参数仅供参考,实际的工艺参数需要根据具体情况进行调整和优化。
在进行焊接作业前,建议先进行试焊,并通过实际试验来确定最佳的工艺参数。
还要注意随时检查焊接质量,并确保焊缝的均匀和牢固。
焊接工艺参数的选择焊接工艺参数的选择对焊接质量和生产效率具有重要影响,不同的焊接工艺参数可能会产生不同的焊接热输入和热循环,从而影响焊接区域的显微组织和力学性能。
因此,正确选择合适的焊接工艺参数至关重要。
本文将从焊接材料、焊接位置、设备条件和技术要求等方面讨论焊接工艺参数的选择。
1.焊接材料焊接材料的选择是决定焊接工艺参数的基础。
首先需确认焊接材料的种类、牌号和规格,然后根据材料的化学成分、力学性能和热物性能等参数进行分析和判断,确定焊接工艺的类型和参数。
例如,如果焊接的是高强度钢板,由于其热导率相对较低,需要采用较高的焊接电流和较大的焊接速度来增加焊缝的凝固速度,并避免产生过多的热输入。
2.焊接位置焊接位置的选择也会影响焊接工艺参数的选择。
不同的焊接位置可能会造成焊件热传导方式和热循环的不同。
例如,在水平焊接和垂直上焊接等不同位置上,热传导的方式和速度会有所不同,因此需要根据具体的焊接位置选择合适的焊接参数。
3.设备条件焊接设备的性能和条件也是选择焊接工艺参数的重要因素。
例如,焊接电流的范围、电压的调节范围、焊接速度的控制等都会直接影响焊接工艺参数的选择。
另外,焊接设备的维护和保养也会对焊接工艺参数的选择有影响,例如焊咀、电极的磨损情况、飞溅情况等都需要考虑在内。
4.技术要求根据具体的焊接要求和技术要求,选择合适的焊接工艺参数。
例如,在需要得到高强度焊缝时,可以采用高能量密度的焊接工艺,增加热输入和焊缝的深度;如果需要得到焊接变形较小的焊缝,可以采用脉冲焊接,减小热输入和热影响区域。
总之,习得火候要分庖丁解牛,正确选择合适的焊接工艺参数需要综合考虑焊接材料、焊接位置、设备条件和技术要求等因素。
通过科学分析和实验验证,选择合适的焊接工艺参数,可以提高焊接质量和生产效率,并降低生产成本。
埋弧焊工艺参数及焊接技术一、埋弧焊工艺参数1.电流选择:埋弧焊工艺通常采用直流电源,电流大小的选择要根据焊缝宽度、材料厚度和焊条规格等因素来确定。
一般来说,电流过大容易出现焊渣溅射、焊缝收缩变大等问题,电流过小则焊缝无法充分熔透。
2. 电弧长度:电弧长度是指电弧端和电极之间的距离,通常控制在15mm左右。
电弧长度过长,容易导致电弧不稳定,焊接质量下降;电弧长度过短,容易导致焊缝形不成。
3.保护气体流量:埋弧焊需要在焊接过程中通过保护气体(如纯氩气)对焊缝进行保护,防止氧气和氮气的污染。
保护气体流量的大小要根据材料种类和规格来确定,一般为8-15升/分钟。
保护气体流量过大会增加熔渣溅射的可能性,过小则可能导致氧气和氮气侵入焊缝。
4.焊接速度:焊接速度取决于焊接材料的厚度和焊条的直径等因素,一般来说,焊接速度过快会导致焊缝连接不牢固,焊接速度过慢会造成焊缝过热、变形等问题。
合理的焊接速度可根据经验和试验来确定。
二、埋弧焊接技术1.准备工作:对于焊接材料,应保证焊件焊口的清洁度,去除表面的氧化物和油污。
对于厚度较大的材料,可采用加热预热的方法,以提前消除焊接应力。
2.焊条的选择:要选择合适的焊条,焊条的种类和规格要与焊接材料的种类和规格相匹配,以确保焊接质量。
焊条的保质期要注意,过期的焊条不能使用。
3.焊接过程:焊接时,要保证电弧稳定,焊条与工件的距离适当,不得与气缝直接接触。
焊接位置要选择合适,以便操作方便。
焊接方向要与主应力方向垂直。
4.焊后处理:焊接后,应采取适当的焊后处理措施,如退火、热处理等,以提高焊接接头的性能和质量。
总结:埋弧焊工艺参数及焊接技术对焊接质量和效率具有重要影响。
通过选择合适的电流、电弧长度和保护气体流量等参数,合理控制焊接速度,做好焊前准备和焊后处理工作,可以保证埋弧焊接的质量和可靠性。
同时,焊工应具备良好的焊接技术和操作经验,能够正确操作焊接设备和工具,严格按照操作规程进行焊接,以确保焊接质量和安全。
焊条焊接工艺参数
焊条焊接是一种常见的电弧焊接技术,应用广泛。
该技术的优点在于不需要高昂的设备和复杂的程序,适用于各种材料和形状的焊接。
本文将详细介绍焊条焊接的工艺参数。
1. 焊接电流
焊接电流是焊接时产生的电弧强度大小,它直接影响焊接的熔化情况和焊接质量。
一般来说,焊接电流应根据焊接金属厚度、焊缝宽度和材料类型来选择。
电流过大会导致过度熔化和气孔,而电流过小会影响焊缝质量。
3. 焊接速度
焊接速度是焊接过程中焊接头在焊缝上移动的速度,它直接决定了焊接头在焊缝上停留的时间。
焊接速度应根据焊接材料的融化温度、焊接电流和焊接头直径来选择。
速度过快会导致焊接头不能完全熔化,而速度过慢则会使焊接头熔化过度。
4. 焊接间歇时间
电极长度是指电极在焊接头前端露出的长度,它对焊接质量和操作稳定性有着重要影响。
电极长度应根据焊接材料的种类、电弧长度和电极材料来选择。
长度过长会导致电极不稳定,长度过短则会影响焊接质量。
以上就是焊条焊接的主要工艺参数,这些参数在实际操作中需要根据具体情况进行调整,以获得最佳的焊接质量。
在焊接过程中还需注意安全操作,例如佩戴防护装备、避免电击、防止气体泄漏等。
焊接的四个主要工艺参数为
焊接的四个主要工艺参数为焊接电流、焊接电压、焊接速度和焊接温度。
1. 焊接电流:是指通过焊接电弧或电流传导,使焊接材料熔化并形成焊缝所需的电流大小。
焊接电流的大小直接影响到焊接材料的熔化速度和焊缝的质量。
2. 焊接电压:是指焊接过程中施加在电弧或焊接材料上的电压大小。
焊接电压的大小直接影响到焊接电弧的稳定性和焊接熔池的形成。
3. 焊接速度:是指焊接时焊枪或焊接材料移动的速度。
焊接速度的快慢直接影响到焊接熔池的形成和焊缝的尺寸。
4. 焊接温度:是指焊接时焊接材料的温度。
焊接温度的高低直接影响到焊接材料的熔化和熔池的形成。
这四个主要工艺参数需要根据焊接材料的性质、焊接接头的尺寸和焊接要求来调整,以获得满足焊接质量要求的焊缝。
1.4 焊接工艺参数1.4 焊接工艺参数焊接工艺参数是指焊接时,为保证焊接质量而选定的诸物理量( 例如:焊接电流、电弧电压、焊接速度、热输入等) 的总称。
焊条电弧焊的焊接工艺参数主要包括焊条直径、焊接电流、电弧电压、焊接速度和预热温度等。
1.4.1 焊条直径焊条直径是根据焊件厚度、焊接位置、接头形式、焊接层数等进行选择的。
厚度较大的焊件,搭接和T 形接头的焊缝应选用直径较大的焊条。
对于小坡口焊件,为了保证底层的熔透,宜采用较细直径的焊条,如打底焊时一般选用Φ2.5mm 或Φ3.2mm 焊条。
不同的焊接位置,选用的焊条直径也不同,通常平焊时选用较粗的Φ(4.0~6.0)mm 的焊条,立焊和仰焊时选用Φ(3.2~4.0)mm 的焊条;横焊时选用Φ(3.2~5.0)mm 的焊条。
对于特殊钢材,需要小工艺参数焊接时可选用小直径焊条。
根据工件厚度选择时,可参考表3-20。
对于重要结构应根据规定的焊接电流范围( 根据热输入确定)参照表3—21焊接电流与焊条直径的关系来决定焊条直径。
1.4.2 焊接电流焊接电流是焊条电弧焊的主要工艺参数,焊工在操作过程中需要调节的只有焊接电流,而焊接速度和电弧电压都是由焊工控制的。
焊接电流的选择直接影响着焊接质量和劳动生产率。
焊接电流越大,熔深越大,焊条熔化快,焊接效率也高,但是焊接电流太大时,飞溅和烟雾大,焊条尾部易发红,部分涂层要失效或崩落,而且容易产生咬边、焊瘤、烧穿等缺陷,增大焊件变形,还会使接头热影响区晶粒粗大,焊接接头的韧性降低;焊接电流太小,则引弧困难,焊条容易粘连在工件上,电弧不稳定,易产生未焊透、未熔合、气孔和夹渣等缺陷,且生产率低。
因此,选择焊接电流时,应根据焊条类型、焊条直径、焊件厚度、接头形式、焊缝位置及焊接层数来综合考虑。
首先应保证焊接质量,其次应尽量采用较大的电流,以提高生产效率。
板厚较的,T 形接头和搭接头,在施焊环境温度低时,由于导热较快,所以焊接电流要大一些。
焊条电弧焊项目1.3垂直固定管对接焊条电弧焊施工焊接工艺参数及其选择焊条电弧焊的焊接工艺参数通常包括:焊条直径、焊接电流、电弧电压、焊接速度和焊道层数等。
焊接工艺参数选择的正确与否,直接影响焊缝形状、尺寸、焊接质量和生产率,因此选择合适的焊接工艺参数是焊接生产中不可忽视的一个重要问题。
一、焊条直径的选择焊条直径的选择对焊接质量和生产率的影响很大。
焊条直径一般根据焊件厚度选择;同时还要考虑接头形式、施焊位置和焊接层数,对于重要结构还要考虑焊接热输入的要求。
为提高生产效率,应尽可能地选用直径较大的焊条。
但用过粗的焊条会造成未焊透或焊缝成形不良的现象;用直径过小的焊条则生产率低。
各种焊条直径与焊件厚度的关系,使用电流的参考值分别参见表1、表2。
表1 焊条直径与焊件厚度的关系表2 各种直径焊条使用电流参考值在板厚相同的条件下,平焊位置的焊接所选用的焊条直径应比其他位置大一些,立焊、横焊和仰焊应选用较细的焊条,一般不超过4.0 mm。
第一层焊道应选用小直径焊条焊接,以后各层可以根据焊件厚度选用较大直径的焊条。
T形接头、搭接接头都应选用较大直径的焊条。
向上立角焊缝焊条直径一般为 3.2~4mm,而向下立角焊缝焊条直径根据焊脚尺寸的大小可选用4~6mm。
二、焊接电流的选择选择焊接电流时,应根据焊条类型、焊条直径、焊件厚度、接头形式、焊接位置和层数等因素综合考虑。
焊工在操作时选好焊条直径和焊接位置后,需要调节的只有焊接电流,而电弧电压和焊接速度是由焊工控制的。
焊接电流的选择是焊条电弧焊的主要工艺参数。
焊接电流越大,熔深越大,焊条熔化快,焊接效率也高。
如果焊接电流过小会使引弧困难,电弧不稳,造成未焊透、夹渣以及焊缝成形不良等缺陷,而且生产率低。
反之,焊接电流过大易产生咬边、焊穿,增加焊件变形和金属飞溅量,也会使焊接接头的组织由于过热而发生变化,降低焊接接头的韧性。
所以,焊接时要合理选择焊接电流。
焊接电流的大小主要根据焊条直径、焊条类型、焊件厚度、接头形式、焊缝空间位置以及焊接层次等因素来决定的。
焊接工艺指导书电弧焊工艺1接口焊条电弧焊的接头主要有对接接头、T形接头、角接接头和搭接接头四种。
1. 1 对接接头对接接头是最常见的一种接头形式,按照坡口形式的不同,可分为I形对接接头(不开坡口)、V形坡口接头、U形坡口接头、X形坡口接头和双U形坡口接头等。
一般厚度在6mm以下,采用不开坡口而留一定间隙的双面焊;中等厚度及大厚度构件的对接焊,为了保证焊透,必须开坡口。
V形坡口便于加工,但焊后构件容易发生变形;X形坡口由于焊缝截面对称,焊后工件的变形及内应力比V形坡口小,在相同板厚条件下,X 形坡口比V形坡口要减少1/2填充金属量。
U形及双U形坡口,焊缝填充金属量更少,焊后变形也很小,但这种坡口加工困难,一般用于重要结构。
1. 2 T形接头根据焊件厚度和承载情况,T形接头可分为不开坡口,单边V形坡口和K形坡口等几种形式。
T形接头焊缝大多数情况只能承受较小剪切应力或仅作为非承载焊缝,因此厚度在30mm以下可以不开坡口。
对于要求载荷的T形接头,为了保证焊透,应根据工件厚度、接头强度及焊后变形的要求来确定所开坡口形式。
1. 3 角接接头根据坡口形式不同,角接接头分为不开坡口、V形坡口、K形坡口及卷边等几种形式。
通常厚度在2m m以下角接接头,可采用卷边型式;厚度在2〜8mm以下角接接头,往往不开坡口;大厚度而又必须焊透的角接接头及重要构件角接头,则应开坡口,坡口形式同样要根据工件厚度、结构形式及承载情况而定。
1. 4 搭接接头搭接接头对装配要求不高,也易于装配,但接头承载能力低,一般用在不重要的结构中。
搭接接头分为不开坡口搭接和塞焊两种型式。
不开坡口搭接一般用于厚度在12mm以下的钢板,搭接部分长度为3〜56(6为板厚)2焊条电弧焊工艺参数选择?2. 1 焊条直径焊条直径可根据焊件厚度、接头型式、焊缝位置、焊道层次等因素进行选择。
焊件厚度越大,可选用的焊条直径越大;T形接头比对接接头的焊条直径大,而立焊、仰焊及横焊比平焊时所选用焊条直径应小些,一般立焊焊条最大直径不超过5mm,横焊、仰焊不超过4mm;多层焊的第一层焊缝选用细焊条。
焊条直径与厚度的关系见表42. 2 焊接电流焊接电流是焊条电弧焊中最重要的一个工艺参数,它的大小直接影响焊接质量及焊缝成形。
当焊接电流过大时,焊缝厚度和余高增加,焊缝宽度减少,且有可能造成咬边、烧穿等缺陷;当焊接电流过小时,焊缝窄而高,熔池浅,熔合不良,会产生未焊透、夹渣等缺陷。
选择焊接电流大小时,要考虑焊条类型、焊条直径、焊件厚度以及接头型式、焊缝位置、焊道层次等因素。
其中最主要焊条直径、焊接位置和焊道层次三大因素。
焊条直径与焊接电流关系见表52.2. 1焊接位置较厚板或T形接头和搭接接头以及施焊环境温度低时,焊接电流应大些;平焊位置焊接时,可选择偏大些的焊接电流;横焊和立焊时,焊接电流应比平焊位置电流小10%〜15%,仰焊时,焊接电流应比平焊位置电流小10%〜20%;角焊缝电流比平位置电流稍大些。
2.2. 2焊道层次在多层焊或多层多道焊的打底焊道时,为了保证背面焊道质量和便于操作,应使用较小电流;焊填充焊道时,为了提高效率,可使用较大的焊接电流;盖面焊时,为了防止出现焊接缺陷,应选用稍小电流。
另外,当使用碱性焊条时,比酸性焊条的焊接电流减少10%左右。
2. 3 电弧电压电弧电压主要影响焊缝宽度,电弧电压越高,焊缝就越宽,焊缝厚度和余高减少,飞溅增加,焊缝成形不易控制。
电弧电压的大小主要取决于电弧长度,电弧长,电弧电压就高;电弧短,电弧电压就低。
焊接电弧有长弧与短弧之分,当电弧长度是焊条直径的0.5〜1.0倍时,称为短弧;当电弧长度大于焊条直径时,称为长弧。
一般在焊接过程中,希望电弧长度始终保持一致且尽量使用短弧焊接。
2. 4 焊接速度焊接速度主要取决于焊条的熔化速度和所要求的焊缝尺寸、装配间隙和焊接位置等。
当焊接速度太慢时,焊缝高而宽,外形不整齐,易产生焊瘤等缺陷;当焊接速度太快时,焊缝窄而低,易产生未焊透等缺陷。
在实际操作中,焊工应要把具体情况灵活掌握,以确保焊缝质量和外观尺寸满足要求。
2. 5 焊接层数当焊件较厚时,要进行多层焊或多层多道焊。
多层焊时,后一层焊缝对前一层焊缝有热处理作用,能细化晶粒,提高焊缝接头的塑性。
因些对于一些重要结构,焊接层数多些好,每层厚度最好不大于4〜5 mm。
实践经验表明,当每层厚度为焊条直径的0.8〜1.2倍时,焊接质量最好,生产效率最高,并且容易操作。
3焊条电弧焊的定位焊?进行定位焊时应主要考虑以下几方面因素:3. 1 定位焊焊条定位焊缝一般作为正式焊缝留在焊接结构中,因而定位焊所用焊条应与正式焊接所用焊条型号相同,不能用受潮、脱皮、不知型号的焊条或者焊条头代替。
3. 2 定位焊部位双面焊反面清根的焊缝,尽量将定位焊缝布置在反面;形状对称的构件上,定位焊缝应对称排列;避免在焊件的端部、角度等容易引起应力集中的地方进行定位焊,不能在焊缝交叉处或焊缝方向发生急剧变化的地方进行定位焊,通常至少应离开这些地方50mm。
3. 3 定位焊缝尺寸一般根据焊件的厚度来确定定位焊缝的长度、高度和间距。
如表6所示。
夹渣等缺陷。
3.4. 3 如定位焊缝开裂,必须将裂纹处的焊缝铲除后重新定位焊。
在定位焊后,如出现接口不齐平,应进行校正,然后才能正式焊接。
3.4. 4 尽量避免强制装配,以防在焊接过程中,焊件的定位焊缝或正式焊缝开裂,必要时可增加定位焊缝的长度,并减小定位焊缝的间距,或者采用热处理措施。
4焊条电弧焊基本操作技术4. 1 引弧:焊条电弧焊采用接触引弧方法引弧,主要有划擦法和直击法两种。
4.1. 1 划擦法先将焊条对准引弧处,手腕扭转一下,像划火柴一样使焊条在引弧处轻微划擦约20mm长度,然后提起2〜4mm的高度引燃电弧。
其特点是:容易损伤焊件表面,比较容易掌握,一般适用于碱性焊条。
4.1. 2 直击法先将焊条对准引弧处,手腕下弯,使焊条垂直地轻轻敲击工件,然后提起2〜4 mm的高度引燃电弧。
其特点是:引弧点即为焊缝起点,避免损伤焊件表面,但不易掌握,一般适用于酸性焊条或在狭窄地方的焊接。
引弧时,如果焊条粘住焊件,只要将焊条左右摆动几下,就可以脱离焊件,如不能脱离焊件,则应立即使焊钳脱离焊件,待焊条冷却后,用手将其扳掉;如果焊条端部有药皮套筒时,可用戴好手套的手将套筒去掉再引弧。
4. 2 焊缝的起焊4. 2. 1正确选择引弧点应选在离焊缝起点10mm左右的待焊部位上,电弧引燃后移至焊缝起点处,再沿焊接方向进行正常焊接;焊缝连接时,引弧点应选在前段焊缝的弧坑前方10mm处,电弧引燃后移至弧坑处,待填满弧坑后再继续焊接。
4.2. 2采用引弧板即在焊前装配一块与焊件相同材料和厚度的金属板,从这块板上开始引弧,焊后再割掉。
这种方法适用于重要焊接结构的焊接。
4. 3 运条4.3. 1 运条的基本动作运条可分解为三个基本动作,即:沿焊条轴线的送进、沿焊缝轴线方向纵向移动和横向摆动。
每种动作的作用及操作要求见表7。
4. 3. 2 运条方法运条方法较多,选用时应根据接头形式、装配间隙、焊接位置、焊条直径及性能、焊接电流大小及焊工操作水平而定。
常用运条方法及适用范围参见表8续表前约10mm 附近引弧,电弧长度比正常焊接时略长些(碱性焊条不可拉长,否则易产生气孔),然后将电弧后移到原弧坑的2/3处,压低电弧,稍作摆动,填满弧坑后即向前进行正常焊接。
这种接头方法使用最多,适用于单层焊及多层焊的表层接头。
4.4. 2相背接头即后焊焊缝的起头与先焊焊缝的起头相接。
接头方法是:要求先焊的焊缝起头处略低些,接头时在先焊焊缝起头处略前一点引弧,并稍微拉长电弧,将电弧移向先焊焊缝接头处,并覆盖其端头,待起头处焊平后,再向先焊焊缝反方向进行焊接。
4.4. 3相向接头即后焊焊缝的结尾与先焊焊缝的结尾相连。
接头方法是:当后焊的焊缝焊到先焊的焊缝收弧处时,焊接速度应稍慢些,填满先焊焊缝的弧坑后,以较快的速度再略向前焊一段,然后熄弧。
焊接接头处的熄弧方法。
4.4. 4分段退焊接头即后焊焊缝的结尾与先焊焊缝的起头相连。
接头方法是:要求后焊焊缝焊至靠近前焊焊缝始端时,改变焊条角度,使焊条指向前焊缝的始端,拉长电弧,待形成熔池后,再压低电弧,往回移动,最后返回原来熔池处收弧。
4. 5 焊缝的收尾4.5. 1 划圈收尾法焊条移至焊缝终点时,在弧坑处作圆圈运动,起到填满弧坑后再拉断电弧。
这种方法适用于厚板焊接,对于薄板则易烧穿。
4.5. 2 反复断弧收尾法焊条移至焊缝终点时,在弧坑处反复熄弧、引弧数次,起到填满弧坑为止。
这种方法适用于薄板和大电流焊接,但碱性焊条不宜采用,否则易产生气孔。
4.5. 3 回焊收尾法焊条移至焊缝收尾时立即停止,并且改变焊条角度回焊一小段后熄弧。
此法适用于碱性焊条。
5焊条电弧焊常见焊接缺陷及防止措施 5. 1 尺寸不符5. 1. 1 形状焊缝表面高低不平、焊缝波纹粗劣、纵向宽度不均匀、余高过高或过低、角焊缝单 边以及焊脚尺寸不符合要求等。
5. 1. 2 危害 造成焊缝成形不美观,影响焊缝与母材金属的结合强度,易产生应力集中,降低接 头承载能力等。
5. 1. 3 产生原因焊件坡口角度不对、装配间隙不均匀、焊接参数选择不合适或运条手法不正确 等。
5. 1. 4 防止措施 选择适当的坡口角度和间隙,提高装配质量,正确选择焊接工艺参数和提高焊 工的操作技术水平等。
5. 2 裂纹 5. 3 咬边 5. 3. 1 5. 3. 2 5. 3. 3 等。
5. 3. 4 条角度等。
5. 4 未焊透5. 4. 1 形状 焊接时,接头根部未完全熔合的现象称为未焊透。
5. 4. 2 危害易造成应力集中,产生裂纹,影响接头的强度及疲劳强度等。
5. 4. 3 产生原因 坡口角度过小,间隙过小或钝边过大;焊接速度过快;焊接电流太小;电弧电 压偏低;焊接时有磁偏吹现象;清根不彻底;焊条可达性不好等。
5. 4. 4 防止措施 正确选择焊接参数、坡口尺寸,保证必须的装配间隙,认真操作,仔细清理层 间或母材边缘的氧化物和熔渣等。
5. 5 未熔合5. 5. 1 形状熔焊时,焊缝与母材之间或焊缝与焊缝之间,未能完全熔合的部分称为未熔合。
主 要产生在焊缝侧面及焊层间。
5. 5. 2 危害 易产生应力集中,影响接头连续性,降低接头强度等。
5. 5. 3 产生原因 层间及坡口清理不干净,焊接线能量太低,电弧指向偏斜等。
5. 5. 4 防止措施 加强层间及坡口清理,正确选用焊接线能量,正确操作。
5. 6 5.6. 1 5. 6. 2 5. 6. 3 5. 6. 4 5. 7 5.7. 1 也称满溢。
5. 7. 2 危害 影响焊缝美观,浪费材料,焊缝截面突变,易形成尖角,产生应力集中等。