【三维设计】2014届高考数学一轮复习_(基础知识+高频考点+解题训练)双曲线教学案
- 格式:doc
- 大小:489.00 KB
- 文档页数:26
第二节命题及其关系、充分条件与必要条件[知识能否忆起]一、命题的概念在数学中用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.二、四种命题及其关系 1.四种命题命题 表述形式 原命题 若p ,则q 逆命题 若q ,则p 否命题 若綈p ,则綈q 逆否命题若綈q ,则綈p2.四种命题间的逆否关系3.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系. 三、充分条件与必要条件1.如果p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件. 2.如果p ⇒q ,q ⇒p ,则p 是q 的充要条件.[小题能否全取]1.(教材习题改编)下列命题是真命题的为( ) A .若1x =1y,则x =yB .若x 2=1,则x =1C .若x =y ,则x =yD .若x <y ,则x 2<y 2解析:选A 由1x =1y得x =y ,A 正确,易知B 、C 、D 错误.2.(2012·湖南高考)命题“若α=π4,则tan α=1”的逆否命题是( )A .若α≠π4,则tan α≠1B .若α=π4,则tan α≠1C .若tan α≠1,则α≠π4D .若tan α≠1,则α=π411解析:选C 以否定的结论作条件、否定的条件作结论得出的命题为逆否命题,即“若α=π4,则tan α=1”的逆否命题是“若tan α≠1,则α≠π4”.3.(2012·温州适应性测试)设集合A ,B ,则A ⊆B 是A ∩B =A 成立的( )A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选C 由A ⊆B ,得A ∩B =A ;反过来,由A ∩B =A ,且(A ∩B )⊆B ,得A ⊆B .因此,A ⊆B 是A ∩B =A 成立的充要条件.4.“在△ABC 中,若∠C =90°,则∠A 、∠B 都是锐角”的否命题为:____________________.解析:原命题的条件:在△ABC 中,∠C =90°, 结论:∠A 、∠B 都是锐角.否命题是否定条件和结论. 即“在△ABC 中,若∠C ≠90°,则∠A 、∠B 不都是锐角”.答案:“在△ABC 中,若∠C ≠90°,则∠A 、∠B 不都是锐角”5.下列命题中所有真命题的序号是________. ①“a >b ”是“a 2>b 2”的充分条件; ②“|a |>|b |”是“a 2>b 2”的必要条件; ③“a >b ”是“a +c >b +c ”的充要条件.解析:①由2>-3⇒/ 22>(-3)2知,该命题为假;②由a 2>b 2⇒|a |2>|b |2⇒|a |>|b |知,该命题为真;③a >b ⇒a +c >b +c ,又a +c >b +c ⇒a >b ,∴“a >b ”是“a +c >b +c ”的充要条件为真命题.答案:②③1.充分条件与必要条件的两个特征(1)对称性:若p 是q 的充分条件,则q 是p 的必要条件,即“p ⇒q ”⇔“q ⇐p ”;(2)传递性:若p 是q 的充分(必要)条件,q 是r 的充分(必要)条件,则p 是r 的充分(必要)条件. 注意区分“p 是q 的充分不必要条件”与“p 的一个充分不必要条件是q ”两者的不同,前者是“p ⇒q ”而后者是“q ⇒p ”. 2.从逆否命题,谈等价转换由于互为逆否命题的两个命题具有相同的真假性,因而,当判断原命题的真假比较困难时,可转化为判断它的逆否命题的真假,这就是常说的“正难则反”.四种命题的关系及真假判断典题导入[例1] 下列命题中正确的是( )①“若x 2+y 2≠0,则x ,y 不全为零”的否命题; ②“正多边形都相似”的逆命题;③“若m >0,则x 2+x -m =0有实根”的逆否命题;④“若x -312是有理数,则x 是无理数”的逆否命题.A .①②③④ B .①③④ C .②③④D .①④[自主解答] ①中否命题为“若x 2+y 2=0,则x =y =0”,正确;③中,Δ=1+4m ,当m >0时,Δ>0,原命题正确,故其逆否命题正确;②中逆命题不正确;④中原命题正确故逆否命题正确.[答案] B由题悟法在判断四个命题之间的关系时,首先要分清命题的条件与结论,再比较每个命题的条件与结论之间的关系.要注意四种命题关系的相对性,一旦一个命题定为原命题,也就相应的有了它的“逆命题”“否命题”“逆否命题”;判定命题为真命题时要进行推理,判定命题为假命题时只需举出反例即可.对涉及数学概念的命题的判定要从概念本身入手.以题试法1.以下关于命题的说法正确的有________(填写所有正确命题的序号).①“若log2a>0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数”是真命题;②命题“若a=0,则ab=0”的否命题是“若a≠0,则ab≠0”;③命题“若x,y都是偶数,则x+y也是偶数”的逆命题为真命题;④命题“若a∈M,则b∉M”与命题“若b∈M,则a∉M”等价.解析:对于①,若log2a>0=log21,则a>1,所以函数f(x)=log a x在其定义域内是增函数,故①不正确;对于②,依据一个命题的否命题的定义可知,该说法正确;对于③,原命题的逆命题是“若x+y是偶数,则x、y都是偶数”,是假命题,如1+3=4是偶数,但3和1均为奇数,故③不正确;对于④,不难看出,命题“若a∈M,则b∉M”与命题“若b ∈M,则a∉M”是互为逆否命题,因此二者等价,所以④正确.综上可知正确的说法有②④.答案:②④充分必要条件的判定典题导入[例2] (1)(2012·福州质检)“x<2”是“x2-2x<0”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件(2)(2012·北京高考)设a,b∈R,“a=0”是“复数a+b i是纯虚数”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件[自主解答] (1)取x=0,则x2-2x=0,故由x<2不能推出x2-2x<0;由x2-2x<0得0<x<2,故由x2-2x<0可以推出x<2.所以“x<2”是“x2-2x<0”的必要而不充分条件.(2)当a=0,且b=0时,a+b i不是纯虚数;若a+b i是纯虚数,则a=0.故“a=0”是“复数a +b i 是纯虚数”的必要而不充分条件.[答案] (1)B (2)B由题悟法充要条件的判断,重在“从定义出发”,利用命题“若p ,则q ”及其逆命题的真假进行区分,在具体解题中,要注意分清“谁是条件”“谁是结论”,如“A 是B 的什么条件”中,A 是条件,B 是结论,而“A 的什么条件是B ”中,A 是结论,B 是条件.有时还可以通过其逆否命题的真假加以区分.以题试法2.下列各题中,p 是q 的什么条件? (1)在△ABC 中,p :A =B ,q :sin A =sin B ; (2)p :|x |=x ,q :x 2+x ≥0.解:(1)若A =B ,则sin A =sin B ,即p ⇒q .又若sin A =sin B ,则2R sin A =2R sin B ,即a =b .故A =B ,即q ⇒p . 所以p 是q 的充要条件.(2)p :{x ||x |=x }={x |x ≥0}=A ,q :{x |x 2+x ≥0}={x |x ≥0,或x ≤-1}=B ,∵AB ,∴p 是q 的充分不必要条件.充分必要条件的应用典题导入[例3] 已知p :-4<x -a <4,q :(x -2)(x -3)<0,且q 是p 的充分而不必要条件,则a 的取值范围为________.[自主解答] 设q ,p 表示的范围为集合A ,B , 则A =(2,3),B =(a -4,a +4).由于q 是p 的充分而不必要条件,则有A B , 即⎩⎪⎨⎪⎧a -4≤2,a +4>3或⎩⎪⎨⎪⎧a -4<2,a +4≥3,解得-1≤a ≤6.[答案] [-1,6]由题悟法利用充分条件、必要条件可以求解参数的值或取值范围,其依据是充分、必要条件的定义,其思维方式是:(1)若p 是q 的充分不必要条件,则p ⇒q 且q ⇒/ p ; (2)若p 是q 的必要不充分条件,则p ⇒/ q ,且q ⇒p ; (3)若p 是q 的充要条件,则p ⇔q .以题试法3.(2013·兰州调研)“x ∈{3,a }”是不等式2x 2-5x -3≥0成立的一个充分不必要条件,则实数a 的取值范围是( )A .(3,+∞)B.⎝⎛⎭⎪⎫-∞,-12∪[)3,+∞C.⎝⎛⎦⎥⎤-∞,-12D.⎝⎛⎦⎥⎤-∞,-12∪()3,+∞解析:选D 由2x 2-5x -3≥0得x ≤-12或x ≥3.∵x ∈{3,a }是不等式2x 2-5x -3≥0成立的一个充分不必要条件,又根据集合元素的互异性a ≠3,∴a ≤-12或a >3.1.(2012·福建高考)已知向量a =(x -1,2),b =(2,1),则a ⊥b 的充要条件是( )A .x =-12 B .x =-1C .x =5D .x =0解析:选D a ⊥b ⇔2(x -1)+2=0,得x =0.2.命题“若一个数是负数,则它的平方是正数”的逆命题是( )A .“若一个数是负数,则它的平方不是正数” B .“若一个数的平方是正数,则它是负数” C .“若一个数不是负数,则它的平方不是正数” D .“若一个数的平方不是正数,则它不是负数”解析:选B 原命题的逆命题是:若一个数的平方是正数,则它是负数.3.(2013·武汉适应性训练)设a ,b ∈R ,则“a >0,b >0”是“a +b2>ab ”的( )A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选D 由a >0,b >0不能得知a +b2>ab ,如取a =b =1时,a +b2=ab ;由a +b2>ab不能得知a >0,b >0,如取a =4,b =0时,满足a +b2>ab ,但b =0.综上所述,“a >0,b >0”是“a +b2>ab ”的既不充分也不必要条件.4.已知p :“a =2”,q :“直线x +y =0与圆x 2+(y -a )2=1相切”,则p 是q 的( )A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 由直线x +y =0与圆x 2+(y -a )2=1相切得,圆心(0,a )到直线x +y =0的距离等于圆的半径,即有|a |2=1,a =± 2.因此,p 是q 的充分不必要条件.5.(2012·广州模拟)命题:“若x 2<1,则-1<x <1”的逆否命题是( )A .若x 2≥1,则x ≥1或x ≤-1 B .若-1<x <1,则x 2<1 C .若x >1或x <-1,则x 2>1 D .若x ≥1或x ≤-1,则x 2≥1解析:选D x 2<1的否定为:x 2≥1;-1<x <1的否定为x ≥1或x ≤-1,故原命题的逆否命题为:若x ≥1或x ≤-1,则x 2≥1.6.(2011·天津高考)设集合A ={x ∈R |x -2>0},B ={x ∈R |x <0},C ={x ∈R |x (x -2)>0},则“x ∈A ∪B ”是“x ∈C ”的( )A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选C A ∪B ={x ∈R |x <0,或x >2},C ={x ∈R |x <0,或x >2},∵A ∪B =C ,∴x ∈A ∪B 是x ∈C 的充分必要条件. 7.下列命题中为真命题的是( )A .命题“若x >y ,则x >|y |”的逆命题B .命题“x >1,则x 2>1”的否命题C .命题“若x =1,则x 2+x -2=0”的否命题 D .命题“若x 2>0,则x >1”的逆否命题解析:选A 对于A ,其逆命题是:若x >|y |,则x >y ,是真命题,这是因为x >|y |≥y ,必有x >y ;对于B ,否命题是:若x ≤1,则x 2≤1,是假命题.如x =-5,x 2=25>1;对于C ,其否命题是:若x ≠1,则x 2+x -2≠0,由于x =-2时,x 2+x -2=0,所以是假命题;对于D ,若x 2>0,则x >0或x <0,不一定有x >1,因此原命题与它的逆否命题都是假命题.8.对于函数y =f (x ),x ∈R ,“y =|f (x )|的图象关于y 轴对称”是“y =f (x )是奇函数”的( )A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 若y =f (x )是奇函数,则f (-x )=-f (x ),∴|f (-x )|=|-f (x )|=|f (x )|,∴y =|f (x )|的图象关于y 轴对称,但若y =|f (x )|的图象关于y 轴对称,如y =f (x )=x 2,而它不是奇函数.9.命题“若x >0,则x 2>0”的否命题是________命题.(填“真”或“假”)解析:其否命题为“若x ≤0,则x 2≤0”,它是假命题. 答案:假10.已知集合A ={x |y =lg(4-x )},集合B ={x |x <a },若P :“x ∈A ”是Q :“x ∈B ”的充分不必要条件,则实数a 的取值范围是________.解析:A ={x |x <4},由题意得A B 结合数轴易得a >4. 答案:(4,+∞)11.(2013·绍兴模拟)“-3<a <1”是“方程x 2a +3+y 21-a=1表示椭圆”的____________条件.解析:方程表示椭圆时,应有⎩⎪⎨⎪⎧a +3>0,1-a >0,a +3≠1-a解得-3<a <1且a ≠-1,故“-3<a <1”是“方程表示椭圆”的必要不充分条件. 答案:必要不充分12.若“x 2>1”是“x <a ”的必要不充分条件,则a 的最大值为________.解析:由x 2>1,得x <-1或x >1,又“x 2>1”是“x <a ”的必要不充分条件,知由“x <a ”可以推出“x 2>1”,反之不成立,所以a ≤-1,即a 的最大值为-1.答案:-1 13.下列命题: ①若ac 2>bc 2,则a >b ;②若sin α=sin β,则α=β;③“实数a =0”是“直线x -2ay =1和直线2x -2ay =1平行”的充要条件;④若f (x )=log 2x ,则f (|x |)是偶函数. 其中正确命题的序号是________.解析:对于①,ac 2>bc 2,c 2>0,∴a >b 正确;对于②,sin 30°=sin 150°⇒/ 30°=150°,所以②错误;对于③,l 1∥l 2⇔A 1B 2=A 2B 1,即-2a =-4a ⇒a =0且A 1C 2⇒/ A 2C 1,所以③正确;④显然正确.答案:①③④14.已知集合A =⎩⎨⎧⎭⎬⎫x ⎝ ⎛⎭⎪⎫12x 2-x -6<1,B ={x |log 4(x +a )<1},若x ∈A 是x ∈B 的必要不充分条件,则实数a 的取值范围是________.解析:由⎝ ⎛⎭⎪⎫12x 2-x -6<1,即x 2-x -6>0,解得x <-2或x >3,故A ={x |x <-2,或x >3};由log 4(x +a )<1,即0<x +a <4,解得-a <x <4-a ,故B ={x |-a <x <4-a },由题意,可知BA ,所以4-a ≤-2或-a ≥3,解得a ≥6或a ≤-3.答案:(-∞,-3]∪[6,+∞)1.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,则“A <B ”是“cos 2A >cos 2B ”的( )A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选C 由大边对大角可知,A <B ⇔a <b .由正弦定理可知a sin A =bsin B,故a <b ⇔sin A <sin B .而cos 2A =1-2sin 2A ,cos 2B =1-2sin 2B ,又sin A >0,sin B >0,所以sin A <sin B ⇔cos 2A >cos 2B .所以a <b ⇔cos 2A >cos 2B ,即“A <B ”是“cos 2A >cos 2B ”的充要条件.2.设x 、y 是两个实数,命题“x 、y 中至少有一个数大于1”成立的充分不必要条件是( )A .x +y =2 B .x +y >2 C .x 2+y 2>2D .xy >1解析:选B 命题“x 、y 中至少有一个数大于1”等价于“x >1或y >1”.若x +y >2,必有x >1或y >1,否则x +y ≤2;而当x =2,y =-1时,2-1=1<2,所以x >1或y >1不能推出x +y >2.对于x +y =2,当x =1,且y =1时,满足x +y =2,不能推出x >1或y >1.对于x 2+y 2>2,当x <-1,y <-1时,满足x 2+y 2>2,故不能推出x >1或y >1.对于xy >1,当x <-1,y <-1时,满足xy >1,不能推出x >1或y >1,故选B.3.已知不等式|x -m |<1成立的充分不必要条件是13<x <12,则m 的取值范围是________.解析:由题意知:“13<x <12”是“不等式|x -m |<1”成立的充分不必要条件.所以⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪13<x <12是{x ||x -m |<1}的真子集.而{x ||x -m |<1}={x |-1+m <x <1+m }, 所以有⎩⎪⎨⎪⎧-1+m ≤13,1+m ≥12,解得-12≤m ≤43.所以m 的取值范围是⎣⎢⎡⎦⎥⎤-12,43.答案:⎣⎢⎡⎦⎥⎤-12,434.在“a ,b 是实数”的大前提之下,已知原命题是“若不等式x 2+ax +b ≤0的解集是非空数集,则a 2-4b ≥0”,给出下列命题:①若a 2-4b ≥0,则不等式x 2+ax +b ≤0的解集是非空数集;②若a 2-4b <0,则不等式x 2+ax +b ≤0的解集是空集;③若不等式x 2+ax +b ≤0的解集是空集,则a 2-4b <0;④若不等式x 2+ax +b ≤0的解集是非空数集,则a 2-4b <0;⑤若a 2-4b <0,则不等式x 2+ax +b ≤0的解集是非空数集;⑥若不等式x 2+ax +b ≤0的解集是空集,则a 2-4b ≥0.其中是原命题的逆命题、否命题、逆否命题和命题的否定的命题的序号依次是________(按要求的顺序填写).解析:“非空集”的否定是“空集”,“大于或等于”的否定是“小于”,根据命题的构造规则,题目的答案是①③②④.答案:①③②④5.设条件p :2x 2-3x +1≤0,条件q :x 2-(2a +1)x +a (a +1)≤0,若綈p 是綈q 的必要不充分条件,求实数a 的取值范围.解:条件p 为:12≤x ≤1,条件q 为:a ≤x ≤a +1.綈p 对应的集合A =⎩⎨⎧⎭⎬⎫xx >1,或x <12,綈q 对应的集合B ={x |x >a +1,或x <a }.∵綈p 是綈q 的必要不充分条件,∴B A ,∴a +1>1且a ≤12或a +1≥1且a <12.∴0≤a ≤12.故a 的取值范围是⎣⎢⎡⎦⎥⎤0,12.6.已知集合M ={x |x <-3,或x >5},P ={x |(x -a )·(x -8)≤0}.(1)求M ∩P ={x |5<x ≤8}的充要条件;(2)求实数a 的一个值,使它成为M ∩P ={x |5<x ≤8}的一个充分但不必要条件.解:(1)由M ∩P ={x |5<x ≤8},得-3≤a ≤5,因此M ∩P ={x |5<x ≤8}的充要条件是-3≤a ≤5;(2)求实数a 的一个值,使它成为M ∩P ={x |5<x ≤8}的一个充分但不必要条件,就是在集合{a |-3≤a ≤5}中取一个值,如取a =0,此时必有M ∩P ={x |5<x ≤8};反之,M ∩P ={x |5<x ≤8}未必有a =0,故a =0是M ∩P ={x |5<x ≤8}的一个充分不必要条件.1.(2012·济南模拟)在命题p 的四种形式的命题(原命题、逆命题、否命题、逆否命题)中,正确命题的个数记为f (p ),已知命题p :“若两条直线l 1:a 1x +b 1y +c 1=0,l 2:a 2x +b 2y +c 2=0平行,则a 1b 2-a 2b 1=0”.那么f (p )=( )A .1B .2C .3D .4 解析:选B 若两条直线l 1:a 1x +b 1y +c 1=0与l 2:a 2x +b 2y +c 2=0平行,则必有a 1b 2-a 2b 1=0,但当a 1b 2-a 2b 1=0时,直线l 1与l 2不一定平行,还有可能重合,因此命题p 是真命题,但其逆命题是假命题,从而其否命题为假命题,逆否命题为真命题,所以在命题p 的四种形式的命题(原命题、逆命题、否命题、逆否命题)中,有2个正确命题,即f (p )=2.2.条件p :π4<α<π2,条件q :f (x )=log tan αx 在(0,+∞)内是增函数,则p 是q 的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 解析:选B ∵f (x )=log tan αx 在(0,+∞)内是增函数,∴tan α>1,得α∈⎝ ⎛⎭⎪⎫π4+k π,π2+k π,k ∈Z ,而⎝ ⎛⎭⎪⎫π4,π2⎝ ⎛⎭⎪⎫π4+k π,π2+k π(k ∈Z ).∴p 是q 的充分不必要条件.3.判断命题“若a ≥0,则x 2+x -a =0有实根”的逆否命题的真假.解:法一:写出逆否命题进行判断.原命题:若a ≥0,则x 2+x -a =0有实根.逆否命题:若x 2+x -a =0无实根,则a <0.判断如下:∵x 2+x -a =0无实根,∴Δ=1+4a <0,∴a <-14<0, ∴“若x 2+x -a =0无实根,则a <0”为真命题.法二:利用原命题与逆否命题同真同假(即等价关系)判断.∵a ≥0,∴4a ≥0,∴4a +1>0,∴方程x 2+x -a =0的判别式Δ=4a +1>0,∴方程x 2+x -a =0有实根.故原命题“若a ≥0,则x 2+x -a =0有实根”为真.又因原命题与其逆否命题等价,所以“若a ≥0,则x 2+x -a =0有实根”的逆否命题为真. 法三:利用充要条件与集合关系判断.令A ={a ∈R |a ≥0}, B ={a ∈R |方程x 2+x -a =0有实根}=a ∈R a ≥-14,则A B .∴“若a ≥0,则x 2+x -a =0有实根”为真,其逆否命题也为真.。
三角函数与向量[例1] (1)(2012·洛阳统考)若cos 2αsin ⎝⎛⎭⎫α+π4=12,则sin 2α的值为( ) A .-78 B.78C .-47D.47 解析:选B cos 2αsin ⎝⎛⎭⎫α+π4=cos 2α-sin 2αsin αcos π4+cos αsin π4=2(cos α-sin α)=12, 即cos α-sin α=24, 等式两边分别平方得cos 2α-2sin αcos α+sin 2α=1-sin 2α=18, 解得sin 2α=78. (2)求值1+cos 20°2sin 20°-sin 10°⎝⎛⎭⎫1tan 5°-tan 5°. 解:原式=2cos 210°2×2sin 10°cos 10°-sin 10°⎝⎛⎭⎫cos 5°sin 5°-sin 5°cos 5° =cos 10°2sin 10°-sin 10°·cos 25°-sin 25°sin 5°cos 5°=cos 10°2sin 10°-sin 10°·cos 10°12sin 10° =cos 10°2sin 10°-2cos 10°=cos 10°-2sin 20°2sin 10°=cos 10°-2sin (30°-10°)2sin 10° =cos 10°-2⎝⎛⎭⎫12cos 10°-32sin 10°2sin 10°=3sin 10°2sin 10°=32. [方法总结] 三角恒等变换常考化简与求值问题,多在选择、填空题中考查,在解答题中多用于化简三角函数,此类问题的解决主要抓住“一角,二名,三结构”.即一看角的差异,二看名称的差异,三看结构形式的差异,注意角的拆分变换应用.[例2] (2012·孝感统考)已知f (x )=2sin(ωx +φ)部分图象如图所示,则f (x )的解析式为( ) A .f (x )=2sin ⎝⎛⎭⎫32x +π4 B .f (x )=2sin ⎝⎛⎭⎫32x +5π4 C .f (x )=2sin ⎝⎛⎭⎫43x +2π9 D .f (x )=2sin ⎝⎛⎭⎫43x +25π18解析:选B 法一:由部分图象知34T =5π6-⎝⎛⎭⎫-π6=π,故T =4π3.结合选项知ω>0,故ω=2πT =32.排除C 、D. 又因为函数图象过点⎝⎛⎭⎫5π6,2,代入选项验证可知只有选项B 满足条件.法二:由法一知ω=32,由图象易知⎝⎛⎭⎫-π6,0是由函数y =sin x 中点(π,0)平移之后得到的点,令x 0=-π6,因此ωx 0+φ=π.即φ=π-ωx 0=π-32×⎝⎛⎭⎫-π6=5π4. 故函数解析式为f (x )=2sin ⎝⎛⎭⎫32x +5π4.[例3] (2012·济宁一模)已知函数f (x )=3sin(x -φ)·cos(x -φ)-cos 2(x -φ)+12⎝⎛⎭⎫0≤φ≤π2为偶函数.(1)求函数f (x )的最小正周期及单调减区间;(2)把函数f (x )的图象向右平移π6个单位(纵坐标不变),得到函数g (x )的图象,求函数g (x )的对称中心.解:(1)f (x )=32sin(2x -2φ)-cos (2x -2φ)+12+12 =32sin(2x -2φ)-12cos(2x -2φ) =sin ⎝⎛⎭⎫2x -2φ-π6. ∵函数f (x )为偶函数.∴2φ+π6=k π+π2,k ∈Z . 即φ=k π2+π6,k ∈Z . 又∵0≤φ≤π2, ∴φ=π6. ∴f (x )=sin ⎝⎛⎭⎫2x -π3-π6=-cos 2x , ∴f (x )的最小正周期为T =2π2=π. 由2k π-π≤2x ≤2k π,k ∈Z .得k π-π2≤x ≤k π,k ∈Z . ∴f (x )的单调减区间为⎣⎡⎦⎤k π-π2,k π(k ∈Z ). (2)函数f (x )=-cos 2x 的图象向右平移π6个单位(纵坐标不变),得到g (x )=-cos ⎣⎡⎦⎤2⎝⎛⎭⎫x -π6, 即g (x )=-cos ⎝⎛⎭⎫2x -π3, 令2x -π3=k π+π2,k ∈Z . ∴x =k π2+5π12,k ∈Z . ∴g (x )的对称中心为⎝⎛⎭⎫k π2+5π12,0,k ∈Z .[方法总结] 三角函数图象与性质多以选择题与解答题形式考查,重点是三角函数的图象变换及三角函数的性质.对于表达式较复杂的三角函数性质的研究,一般先将所给函数利用三角恒等变换化为y =A sin(ωx +φ)+B 的形式,然后视ωx +φ为一个整体,再结合三角函数性质研究相应的问题.[例4] (2012·中山一模)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,π3<C <π2且b a -b=sin 2C sin A -sin 2C .(1)判断△ABC 的形状;(2)若|+|=2,求·的取值范围.解:(1)由b a -b =sin 2C sin A -sin 2C, 知a -b b =sin A -sin 2C sin 2C, ∴a b =sin A sin 2C. 由正弦定理得sin B =sin 2C .∴B =2C 或B +2C =π.若B =2C ,由π3<C <π2,知2π3<2C <π. 即2π3<B <π. ∴B +C >π,与三角形内角和为π矛盾,故B =2C 舍去.∴B +2C =π.∴A =π-(B +C )=π-(π-2C +C )=C .故△ABC 为等腰三角形.(2)由(1)知a =c ,∵|+|=2,∴|+|2=4,∴a 2+c 2+2ac cos B =4,∴cos B =4-a 2-c 22ac =2-a 2a 2, ∴·=ac cos B =2-a 2,∵cos B =cos(π-2C )=-cos 2C ,又∵π3<C <π2,∴2π3<2C <π, ∴-1<cos 2C <-12,即12<cos B <1. 即12<2-a 2a 2<1,解得1<a 2<43, ∴23<2-a 2<1,∴·的取值范围是⎝⎛⎭⎫23,1. [方法总结] 解三角形问题着重考查正余弦定理的应用,多以解答题形式考查,解决此类问题一是要注意三角形中的隐含条件;二是注意面积公式的灵活应用;三是注意正余弦定理的灵活选择及边角互化技巧.[例5](1)(2012·东北三校二模)向量与向量a=(-3,4)的夹角为π,||=10,若点A的坐标是(1,2),则点B的坐标为()A.(-7,8) B.(9,-4)C.(-5,10) D.(7,-6)解析:选D∵a=(-3,4),∴|a|=5,∴·a=10×5×cos π=-50.设B(x,y),则=(x-1,y-2),∴·a=-3(x-1)+4(y-2)=-50,∴3(x-1)-4(y-2)=50,即3x-4y=45,①又||=10,∴(x-1)2+(y-2)2=100,②由①②解得x=7,y=-6,∴B(7,-6).(2)(2012·石家庄质检)△ABC中,∠C=90°,且CA=CB=3,点M满足=2,则·=________.解析:法一:∵=2AM―→,∴A是MB的中点,∴·=(+)·=(+2)·=·+2·=2×32×3cos 45°=18.法二:如图以CA、CB所在的直线分别为x轴,y轴建立直角坐标系,由CA=CB =3,知A(3,0),B(0,3),又=2,∴A是MB的中点,∴M(6,-3),∴·=(6,-3)·(3,0)=18.答案:18(3)(2012·“江南十校”联考)如图放置的正方形ABCD,AB=1,A、D分别在x轴、y轴的正半轴(含原点)上滑动,则·的最大值是________.解析:设∠BAx=θ(0°≤θ≤90°),则∠OAD=90°-θ,于是OA=AD·cos∠OAD=sin θ,于是B点坐标为(sin θ+cos θ,sin θ),即=(sin θ+cos θ,sin θ),又∠CDy=90°-θ,所以C点坐标为(DC·sin∠CDy,OD+DC·cos∠CDy),即为(cos θ,sin θ+cos θ),即=(cos θ,sin θ+cos θ),于是·=cos 2θ+2cos θsin θ+sin 2θ=1+sin 2θ≤2,而且仅当θ=45°时取最大值2.答案:2[方法总结] 平面向量的运算包括线性运算与代数运算,多以选择、填空题形式考查.若已知条件中涉及向量运算的几何意义应根据向量加、减法的运算法则求解;若已知条件中涉及向量的坐标运算需综合利用向量的坐标运算公式求解;若已知条件中涉及与图形有关的数量积时,需根据图形特征及数量积的运算性质或建立直角坐标系转化为向量的坐标运算求解.[例6] (2012·南通模拟)已知向量m =⎝⎛⎭⎫3sin x 4,1,n =⎝⎛⎭⎫cos x 4,cos 2x 4. (1)若m·n =1,求cos ⎝⎛⎭⎫2π3-x 的值;(2)记f (x )=m·n ,在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足(2a -c )cos B =b cos C ,求函数f (A )的取值范围.解:(1)m·n =3sin x 4·cos x 4+cos 2x 4 =32sin x 2+1+cos x 22=sin ⎝⎛⎭⎫x 2+π6+12, ∵m·n =1,∴sin ⎝⎛⎭⎫x 2+π6=12.cos ⎝⎛⎭⎫x +π3=1-2sin 2⎝⎛⎭⎫x 2+π6=12, cos ⎝⎛⎭⎫2π3-x =-cos ⎝⎛⎭⎫x +π3=-12. (2)∵(2a -c )cos B =b cos C ,由正弦定理得(2sin A -sin C )cos B =sin B cos C ,∴2sin A cos B -sin C cos B =sin B cos C .∴2sin A cos B =sin(B +C ).∵A +B +C =π,∴sin(B +C )=sin A ≠0.∴cos B =12,∵0<B <π,∴B =π3,∴0<A <2π3.∴π6<A 2+π6<π2,sin ⎝⎛⎭⎫A 2+π6∈⎝⎛⎭⎫12,1. 又∵f (x )=sin ⎝⎛⎭⎫x 2+π6+12.∴f (A )=sin ⎝⎛⎭⎫A 2+π6+12.故函数f (A )的取值范围是⎝⎛⎭⎫1,32. [方法总结] 向量与三角函数结合是高考命题的一大热点.解决此类问题的关键是准确利用向量的坐标运算化简已知条件,将其转化为三角函数中的有关问题解决.若在三角形中,要注意隐含条件的挖掘.。
页眉内容第二节空间几何体的表面积和体积[知识能否忆起]柱、锥、台和球的侧面积和体积[小题能否全取]1.(教材习题改编)侧面都是直角三角形的正三棱锥,底面边长为a时,该三棱锥的全面积是( )A.3+34a2 B.34a2C.3+32a2 D.6+34a2解析:选A ∵侧面都是直角三角形,故侧棱长等于22a,∴S全=34a2+3×12×⎝⎛⎭⎪⎫22a2=3+34a2.2.已知正四棱锥的侧棱与底面的边长都为32,则这个四棱锥的外接球的表面积为( )A .12πB .36πC .72πD .108π解析:选B 依题意得,该正四棱锥的底面对角线长为32×2=6,高为22-⎝ ⎛⎭⎪⎫12×62=3,因此底面中心到各顶点的距离均等于3,所以该四棱锥的外接球的球心为底面正方形的中心,其外接球的半径为3,所以其外接球的表面积等于4π×32=36π.3.某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8,高为5的等腰三角形,侧视图是一个底边长为6,高为5的等腰三角形,则该几何体的体积为( )A .24B .80C .64D .240解析:选B 结合题意知该几何体是四棱锥,棱锥底面是长和宽分别为8和6的矩形,棱锥的高是5,可由锥体的体积公式得V =13×8×6×5=80.4.(教材习题改编)表面积为3π的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为________.解析:设圆锥的母线为l ,圆锥底面半径为r , 则πrl +πr 2=3π,πl =2πr . 解得r =1,即直径为2. 答案:25.某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,侧视图是半径为1的半圆,则该几何体的表面积是________.解析:由三视图可知此几何体的表面积分为两部分:底面积即俯视图的面积,为23;侧面积为一个完整的圆锥的侧面积,且圆锥的母线长为2,底面半径为1,所以侧面积为2π.两部分加起来即为几何体的表面积,为2(π+3).答案:2(π+3)1.几何体的侧面积和全面积:几何体侧面积是指(各个)侧面面积之和,而全面积是侧面积与所有底面积之和.对侧面积公式的记忆,最好结合几何体的侧面展开图来进行.2.求体积时应注意的几点:(1)求一些不规则几何体的体积常用割补的方法转化成已知体积公式的几何体进行解决.(2)与三视图有关的体积问题注意几何体还原的准确性及数据的准确性. 3.求组合体的表面积时注意几何体的衔接部分的处理.典题导入[例1] (2012·安徽高考)某几何体的三视图如图所示,该几何体的表面积是________.[自主解答] 由几何体的三视图可知,该几何体是底面为直角梯形的直四棱柱(如图所示).在四边形ABCD 中,作DE ⊥AB ,垂足为E ,则DE =4,AE =3,则AD =5. 所以其表面积为2×12×(2+5)×4+2×4+4×5+4×5+4×4=92.[答案] 92由题悟法1.以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.2.多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理. 3.旋转体的表面积问题注意其侧面展开图的应用.以题试法1.(2012·河南模拟)如图是某宝石饰物的三视图,已知该饰物的正视图、侧视图都是面积为32,且一个内角为60°的菱形,俯视图为正方形,那么该饰物的表面积为( )A. 3 B .2 3 C .4 3 D .4解析:选D 依题意得,该饰物是由两个完全相同的正四棱锥对接而成,正四棱锥的底面边长和侧面上的高均等于菱形的边长,因此该饰物的表面积为8×⎝ ⎛⎭⎪⎫12×1×1=4.典题导入[例2] (1)(2012·广东高考)某几何体的三视图如图所示,它的体积为( )A .72πB .48πC .30πD .24π(2)(2012·山东高考)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 为线段B 1C 上的一点,则三棱锥A -DED 1的体积为________.[自主解答] (1)由三视图知,该几何体是由圆锥和半球组合而成的,直观图如图所示,圆锥的底面半径为3,高为4,半球的半径为3.V =V 半球+V 圆锥=12·43π·33+13·π·32·4=30π.(2)VA -DED 1=VE -ADD 1=13×S △ADD 1×CD =13×12×1=16.[答案] (1)C (2)16本例(1)中几何体的三视图若变为:其体积为________.解析:由三视图还原几何体知,该几何体为圆柱与圆锥的组合体,其体积V =V 圆柱-V 圆锥=π×32×4-13π×32×4=24π.答案:24π由题悟法1.计算柱、锥、台体的体积,关键是根据条件找出相应的底面面积和高,应注意充分利用多面体的截面和旋转体的轴截面,将空间问题转化为平面问题求解.2.注意求体积的一些特殊方法:分割法、补体法、转化法等,它们是解决一些不规则几何体体积计算常用的方法,应熟练掌握.3.等积变换法:利用三棱锥的任一个面可作为三棱锥的底面.①求体积时,可选择容易计算的方式来计算;②利用“等积法”可求“点到面的距离”.以题试法2.(1)(2012·长春调研)四棱锥P -ABCD 的底面ABCD 为正方形,且PD 垂直于底面ABCD ,N 为PB 中点,则三棱锥P -ANC 与四棱锥P -ABCD 的体积比为( )A .1∶2B .1∶3C .1∶4D .1∶8解析:选C 设正方形ABCD 面积为S ,PD =h ,则体积比为13Sh -13·12S ·12h -13·12Sh 13Sh =14.(2012·浙江模拟)如图,是某几何体的三视图,则这个几何体的体积是( )A .32B .24C .8D.323解析:选B 此几何体是高为2的棱柱,底面四边形可切割成为一个边长为3的正方形和2个直角边分别为3,1的直角三角形,其底面积S =9+2×12×3×1=12,所以几何体体积V =12×2=24.典题导入[例3] (2012·新课标全国卷)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( )A.26B.36C.23D.22[自主解答] 由于三棱锥S -ABC 与三棱锥O -ABC 底面都是△ABC ,O 是SC 的中点,因此三棱锥S -ABC 的高是三棱锥O -ABC 高的2倍,所以三棱锥S -ABC 的体积也是三棱锥O -ABC 体积的2倍. 在三棱锥O -ABC 中,其棱长都是1,如图所示,S △ABC =34×AB 2=34, 高OD =12-⎝⎛⎭⎪⎫332=63, ∴V S -ABC =2V O -ABC =2×13×34×63=26.[答案] A由题悟法1.解决与球有关的“切”、“接”问题,一般要过球心及多面体中的特殊点或过线作截面,把空间问题转化为平面问题,从而寻找几何体各元素之间的关系.2.记住几个常用的结论:(1)正方体的棱长为a ,球的半径为R , ①正方体的外接球,则2R =3a ; ②正方体的内切球,则2R =a ; ③球与正方体的各棱相切,则2R =2a .(2)长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2. (3)正四面体的外接球与内切球的半径之比为1∶3.以题试法3.(1)(2012·琼州模拟)一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的外接球的表面积为( )A .23π B.8π3 C .4 3D.16π3(2)(2012·潍坊模拟)如图所示,已知球O 的面上有四点A 、B 、C 、D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,则球O 的体积等于________.解析:(1)由三视图可知几何体的直观图如图所示. 其中侧面DBC ⊥底面ABC ,取BC 的中点O 1,连接AO 1,DO 1知DO 1⊥底面ABC 且DO 1=3,AO 1=1,BO 1=O 1C =1.在Rt △ABO 1和Rt △ACO 1中,AB =AC =2, 又∵BC =2,∴∠BAC =90°.∴BC 为底面ABC 外接圆的直径,O 1为圆心, 又∵DO 1⊥底面ABC ,∴球心在DO 1上, 即△BCD 的外接圆为球大圆,设球半径为R , 则(3-R )2+12=R 2,∴R =23. ∴S 球=4πR 2=4π×⎝ ⎛⎭⎪⎫232=16π3.(2)如图,以DA ,AB ,BC 为棱长构造正方体,设正方体的外接球球O 的半径为R ,则正方体的体对角线长即为球O 的直径,所以|CD |=22+22+22=2R ,所以R =62. 故球O 的体积V =4πR33=6π.答案:(1)D (2)6π1.(2012·北京西城模拟)某几何体的三视图如图所示,该几何体的体积是( )A .8 B.83 C .4D.43解析:选D 将三视图还原,直观图如图所示,可以看出,这是一个底面为正方形(对角线长为2),高为2的四棱锥,其体积V =13S 正方形ABCD ×PA =13×12×2×2×2=43.2.(2012·山西模拟)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且AB =3,BC =2,则棱锥O -ABCD 的体积为( )A.51 B .351 C .251D .651解析:选A 依题意得,球心O 在底面ABCD 上的射影是矩形ABCD 的中心,因此棱锥O-ABCD 的高等于42-⎝ ⎛⎭⎪⎫1232+222=512,所以棱锥O -ABCD 的体积等于13×(3×2)×512=51.3.(2012·马鞍山二模)如图是一个几何体的三视图,则它的表面积为( )A .4π B.154π C .5πD.174π 解析:选D 由三视图可知该几何体是半径为1的球被挖出了18部分得到的几何体,故表面积为78·4π·12+3·14·π·12=174π. 4.(2012·济南模拟)用若干个大小相同,棱长为1的正方体摆成一个立体模型,其三视图如图所示,则此立体模型的表面积为( )A .24B .23C .22D .21解析:选C 这个空间几何体是由两部分组成的,下半部分为四个小正方体,上半部分为一个小正方体,结合直观图可知,该立体模型的表面积为22.5. (2012·江西高考)若一个几何体的三视图如下图所示,则此几何体的体积为( )A.112B .5 C.92D .4解析:选D 由三视图可知,所求几何体是一个底面为六边形,高为1的直棱柱,因此只需求出底面积即可.由俯视图和主视图可知,底面面积为1×2+2×12×2×1=4,所以该几何体的体积为4×1=4.6.如图,正方体ABCD -A ′B ′C ′D ′的棱长为4,动点E ,F 在棱AB 上,且EF =2,动点Q 在棱D ′C ′上,则三棱锥A ′-EFQ 的体积( )A .与点E ,F 位置有关B .与点Q 位置有关C .与点E ,F ,Q 位置都有关D .与点E ,F ,Q 位置均无关,是定值解析:选D 因为V A ′-EFQ =V Q -A ′EF =13×⎝ ⎛⎭⎪⎫12×2×4×4=163,故三棱锥A ′-EFQ 的体积与点E ,F ,Q 的位置均无关,是定值.7.(2012·湖州模拟)如图所示,已知一个多面体的平面展开图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是________.解析:由题知该多面体为正四棱锥,底面边长为1,侧棱长为1,斜高为32,连接顶点和底面中心即为高,可求得高为22,所以体积V =13×1×1×22=26. 答案:268.(2012·上海高考)若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为________.解析:因为半圆的面积为2π,所以半圆的半径为2,圆锥的母线长为2.底面圆的周长为2π,所以底面圆的半径为1,所以圆锥的高为3,体积为33π.答案:33π 9.(2013·郑州模拟)在三棱锥A -BCD 中,AB =CD =6,AC =BD =AD =BC =5,则该三棱锥的外接球的表面积为________.解析:依题意得,该三棱锥的三组对棱分别相等,因此可将该三棱锥补形成一个长方体,设该长方体的长、宽、高分别为a 、b 、c ,且其外接球的半径为R ,则⎩⎪⎨⎪⎧a 2+b 2=62,b 2+c 2=52,c 2+a 2=52,得a 2+b 2+c 2=43,即(2R )2=a 2+b 2+c 2=43,易知R 即为该三棱锥的外接球的半径,所以该三棱锥的外接球的表面积为4πR 2=43π.答案:43π10.(2012·江西八校模拟)如图,把边长为2的正六边形ABCDEF 沿对角线BE 折起,使AC = 6.(1)求证:面ABEF ⊥平面BCDE ; (2)求五面体ABCDEF 的体积.解:设原正六边形中,AC ∩BE =O ,DF ∩BE =O ′,由正六边形的几何性质可知OA =OC =3,AC ⊥BE ,DF ⊥BE .(1)证明:在五面体ABCDE 中,OA 2+OC 2=6=AC 2, ∴OA ⊥OC ,又OA ⊥OB ,∴OA ⊥平面BCDE .∵OA ⊂平面ABEF , ∴平面ABEF ⊥平面BCDE .(2)由BE ⊥OA ,BE ⊥OC 知BE ⊥平面AOC ,同理BE ⊥平面FO ′D ,∴平面AOC ∥平面FO ′D ,故AOC -FO ′D 是侧棱长(高)为2的直三棱柱,且三棱锥B -AOC 和E -FO ′D 为大小相同的三棱锥,∴V ABCDEF =2V B -AOC +V AOC -FO ′D=2×13×12×(3)2×1+12×(3)2×2=4.11.(2012·大同质检)如图,在四棱锥P -ABCD 中,底面是直角梯形ABCD ,其中AD ⊥AB ,CD ∥AB ,AB =4,CD =2,侧面PAD 是边长为2的等边三角形,且与底面ABCD 垂直,E 为PA 的中点.(1)求证:DE ∥平面PBC ; (2)求三棱锥A -PBC 的体积.解:(1)证明:如图,取AB 的中点F ,连接DF ,EF .在直角梯形ABCD 中,CD ∥AB ,且AB =4,CD =2,所以BF 綊CD . 所以四边形BCDF 为平行四边形. 所以DF ∥BC .在△PAB 中,PE =EA ,AF =FB ,所以EF ∥PB . 又因为DF ∩EF =F ,PB ∩BC =B , 所以平面DEF ∥平面PBC .因为DE ⊂平面DEF ,所以DE ∥平面PBC . (2)取AD 的中点O ,连接PO . 在△PAD 中,PA =PD =AD =2, 所以PO ⊥AD ,PO = 3.又因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD , 所以PO ⊥平面ABCD .在直角梯形ABCD 中,CD ∥AB ,且AB =4,AD =2,AB ⊥AD ,所以S △ABC =12×AB ×AD =12×4×2=4.故三棱锥A -PBC 的体积V A -PBC =V P -ABC =13×S △ABC ×PO =13×4×3=433.12.(2012·湖南师大附中月考)一个空间几何体的三视图及部分数据如图所示,其正视图、俯视图均为矩形,侧视图为直角三角形.(1)请画出该几何体的直观图,并求出它的体积; (2)证明:A 1C ⊥平面AB 1C 1.解:(1)几何体的直观图如图所示,四边形BB 1C 1C 是矩形,BB 1=CC 1=3,BC =B 1C 1=1,四边形AA 1C 1C 是边长为3的正方形,且平面AA 1C 1C 垂直于底面BB 1C 1C ,故该几何体是直三棱柱,其体积V =S △ABC ·BB 1=12×1×3×3=32.(2)证明:由(1)知平面AA 1C 1C ⊥平面BB 1C 1C 且B 1C 1⊥CC 1, 所以B 1C 1⊥平面ACC 1A 1.所以B 1C 1⊥A 1C . 因为四边形ACC 1A 1为正方形,所以A 1C ⊥AC 1. 而B 1C 1∩AC 1=C 1,所以A 1C ⊥平面AB 1C 1.1.(2012·潍坊模拟)已知矩形ABCD 的面积为8,当矩形ABCD 周长最小时,沿对角线AC 把△ACD 折起,则三棱锥D -ABC 的外接球表面积等于( )A .8πB .16πC .482πD .不确定的实数解析:选B 设矩形长为x ,宽为y ,周长P =2(x +y )≥4xy =82,当且仅当x =y =22时,周长有最小值.此时正方形ABCD 沿AC 折起,∵OA =OB =OC =OD ,三棱锥D -ABC 的四个顶点都在以O 为球心,以2为半径的球上,此球表面积为4π×22=16π.2.(2012·江苏高考)如图,在长方体ABCD -A 1B 1C 1D 1中,AB=AD =3 cm ,AA 1=2 cm ,则四棱锥A -BB 1D 1D 的体积为________cm 3.解析:由题意得VA -BB 1D 1D =23VABD -A 1B 1D 1=23×12×3×3×2=6.答案:63.(2013·深圳模拟)如图,平行四边形ABCD 中,AB ⊥BD ,AB =2,BD =2,沿BD 将△BCD 折起,使二面角A -BD -C 是大小为锐角α的二面角,设C 在平面ABD 上的射影为O .(1)当α为何值时,三棱锥C -OAD 的体积最大?最大值为多少? (2)当AD ⊥BC 时,求α的大小. 解:(1)由题知CO ⊥平面ABD ,∴CO ⊥BD , 又BD ⊥CD ,CO ∩CD =C ,∴BD ⊥平面COD . ∴BD ⊥OD .∴∠ODC =α.V C -AOD =13S △AOD ·OC =13×12·OD ·BD ·OC=26·OD ·OC =26·CD ·cos α·CD ·sin α =23·sin 2α≤23, 当且仅当sin 2α=1,即α=45°时取等号. ∴当α=45°时,三棱锥C -OAD 的体积最大,最大值为23.(2)连接OB ,∵CO ⊥平面ABD ,∴CO ⊥AD ,又AD ⊥BC , ∴AD ⊥平面BOC . ∴AD ⊥OB .∴∠OBD +∠ADB =90°.故∠OBD =∠DAB ,又∠ABD =∠BDO =90°, ∴Rt △ABD ∽Rt △BDO . ∴OD BD =BD AB.∴OD =BD 2AB=222=1,在Rt △COD 中,cos α=OD CD =12,得α=60°.1.两球O 1和O 2在棱长为1的正方体ABCD -A 1B 1C 1D 1的内部,且互相外切,若球O 1与过点A 的正方体的三个面相切,球O 2与过点C 1的正方体的三个面相切,则球O 1和O 2的表面积之和的最小值为( )A .(6-33)πB .(8-43)πC .(6+33)πD .(8+43)π解析:选A 设球O 1、球O 2的半径分别为r 1、r 2, 则3r 1+r 1+3r 2+r 2=3,r 1+r 2=3-32,从而4π(r 21+r 22)≥4π·r 1+r 222=(6-33)π.2.已知某球半径为R ,则该球内接长方体的表面积的最大值是( ) A .8R 2B .6R 2C .4R 2D .2R 2解析:选A 设球内接长方体的长、宽、高分别为a 、b 、c ,则a 2+b 2+c 2=(2R )2,所以S 表=2(ab +bc +ac )≤2(a 2+b 2+c 2)=8R 2,当且仅当a =b =c =233R 时,等号成立.3.右图是一个几何体的三视图(侧视图中的弧线是半圆),则该几何体的表面积是( )A .20+3πB .24+3πC .20+4πD .24+4π解析:选 A 根据几何体的三视图可知,该几何体是一个正方体和一个半圆柱的组合体,其中,正方体的棱长为2,半圆柱的底面半径为1,母线长为2.故该几何体的表面积为4×5+2×π+2×12π=20+3π.4.(2012·湖北高考)我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径.“开立圆术”相当于给出了已知球的体积V ,求其直径d 的一个近似公式d ≈ 3169V .人们还用过一些类似的近似公式,根据π=3.141 59…判断,下列近似公式中最精确的一个是( )A .d ≈ 3169VB .d ≈ 32V C .d ≈ 3300157VD .d ≈ 32111V解析:选D ∵V =43πR 3,∴2R =d = 36V π,考虑到2R 与标准值最接近,通过计算得6π-169≈0.132 08,6π-2≈-0.090 1,6π-300157≈-0.001 0,6π-2111≈0.000 8,因此最接近的为D 选项.5.(2012·上海高考)如图,AD 与BC 是四面体ABCD 中互相垂直的棱,BC =2.若AD =2c ,且AB +BD =AC +CD =2a ,其中a ,c 为常数,则四面体ABCD的体积的最大值是________.解析:如图过点B 在平面BAD 中作BE ⊥AD ,垂足为E ,连接CE ,因为BC ⊥AD ,所以AD ⊥平面BCE .所以四面体ABCD 的体积为13S △BCE ·AD .当△BCE 的面积最大时,体积最大.因为AB +BD =AC +CD =2a ,所以点B ,C在一个椭圆上运动,由椭圆知识可知当AB =BD =AC =CD =a 时,BE =CE=a 2-c 2为最大值,此时截面△BCE 面积最大,为12×2a 2-c 2-1=a 2-c 2-1,此时四面体ABCD 的体积最大,最大值为13S △BCE ·AD =2c 3·a 2-c 2-1.答案:23c a 2-c 2-1。
用样本估计总体[知识能否忆起]一、作频率分布直方图的步骤1.求极差(即一组数据中最大值与最小值的差).2.确定组距与组数.3.将数据分组.4.列频率分布表.5.画频率分布直方图.二、频率分布折线图和总体密度曲线1.频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得频率分布折线图.2.总体密度曲线:随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,即总体密度曲线.三、样本的数字特征四、茎叶图茎叶图的优点是可以保留原始数据,而且可以随时记录,方便记录与表示.[小题能否全取]1.(教材习题改编)( ) A .23与26 B .31与26 C .24与30D .26与30解析:选B 观察茎叶图可知,这组数据的众数是31,中位数是26.2.(教材习题改编)把样本容量为20的数据分组,分组区间与频数如下:[10,20),2;[20,30),3;[30,40),4;[40,50),5;[50,60),4;[60,70],2,则在区间[10,50)上的数据的频率是( )A .0.05B .0.25C .0.5D .0.7解析:选D 由题知,在区间[10,50)上的数据的频数是2+3+4+5=14,故其频率为1420=0.7.3.(2012·长春模拟)从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图由图中数据可知身高在[120,130]内的学生人数为( )A .20B .25C .30D .35解析:选C 由题意知a ×10+0.35+0.2+0.1+0.05=1, 则a =0.03,故学生人数为0.3×100=30.4.(教材习题改编)甲、乙两人比赛射击,两人所得的平均环数相同,其中甲所得环数的方差为5,乙所得环数如下:5、6、9、10、5,那么这两人中成绩较稳定的是________.解析:x =7,s 2乙=4.4,则s 2甲>s 2乙,故乙的成绩较稳定.答案:乙5.(2012·山西大同)将容量为n 的样本中的数据分为6组,绘制频率分布直方图,若第一组至第六组的数据的频率之比为2∶3∶4∶6∶4∶1,且前三组数据的频数之和为27,则n =________.解析:依题意得,前三组的频率总和为2+3+42+3+4+6+4+1=920,因此有27n =920,即n =60.答案:601.在频率分布直方图中,中位数左边和右边的直方图的面积相等,由此可以估计中位数的值,而平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和,众数是最高的矩形的中点的横坐标.2.注意区分直方图与条形图,条形图中的纵坐标刻度为频数或频率,直方图中的纵坐标刻度为频率/组距.3.方差与原始数据的单位不同,且平方后可能夸大了偏差的程度,虽然方差与标准差在刻画样本数据的分散程度上是一样的,但在解决实际问题时,一般多采用标准差.典题导入[例1] (2012·广东高考)某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a 的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x )与数学成绩相应分数段的人数(y )之比如下表所示,求数学成绩在[50,90)之外的人数.[自主解答] (1)由频率分布直方图知(2a +0.02+0.03+0.04)×10=1,解得a =0.005. (2)由频率分布直方图知这100名学生语文成绩的平均分为55×0.005×10+65×0.04×10+75×0.03×10+85×0.02×10+95×0.005×10=73(分).(3)由频率分布直方图知语文成绩在[50,60),[60,70),[70,80),[80,90)各分数段的人数依次为0.005×10×100=5,0.04×10×100=40,0.03×10×100=30,0.02×10×100=20.由题中给出的比例关系知数学成绩在上述各分数段的人数依次为5,40×12=20,30×43=40,20×54=25.故数学成绩在[50,90)之外的人数为100-(5+20+40+25)=10.在本例条件下估计样本数据的众数.解:众数应为最高矩形的中点对应的横坐标,故约为65.由题悟法解决频率分布直方图问题时要抓住 (1)直方图中各小长方形的面积之和为1.(2)直方图中纵轴表示频率组距,故每组样本的频率为组距×频率组距,即矩形的面积.(3)直方图中每组样本的频数为频率×总体数.以题试法1.(2012·深圳调研)某中学组织了“迎新杯”知识竞赛,从参加考试的学生中抽出若干名学生,并将其成绩绘制成频率分布直方图(如图),其中成绩的范围是[50,100],样本数据分组为[50,60),[60,70),[70,80),[80,90),[90,100],已知样本中成绩小于70分的个数是36,则样本中成绩在[60,90)内的学生人数为________.解析:依题意得,样本中成绩小于70分的频率是(0.010+0.020)×10=0.3;样本中成绩在[60,90)内的频率是(0.020+0.030+0.025)×10=0.75,因此样本中成绩在[60,90)内的学生人数为36×0.750.3=90.答案:90典题导入[例2] (2012·陕西高考)从甲、乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示).设甲、乙两组数据的平均数分别为x 甲、x 乙,中位数分别为m 甲、m 乙,则( )A.x 甲<x 乙,m 甲>m 乙B.x 甲<x 乙,m 甲<m 乙C.x 甲>x 乙,m 甲>m 乙D.x 甲>x 乙,m 甲<m 乙[自主解答] x 甲=116(41+43+30+30+38+22+25+27+10+10+14+18+18+5+6+8)=34516,x 乙=116(42+43+48+31+32+34+34+38+20+22+23+23+27+10+12+18)=45716. ∴x 甲<x乙.又∵m 甲=20,m 乙=29,∴m 甲<m 乙. [答案] B由题悟法由茎叶图可以清晰地看到数据的分布情况,这一点同频率分布直方图类似.它优于频率分布直方图的第一点是从茎叶图中能看到原始数据,没有任何信息损失;第二点是茎叶图便于记录和表示.其缺点是当样本容量较大时,作图较繁.以题试法2.(2012·淮北模考)如图所示的茎叶图记录了一组数据,关于这组数据,其中说法正确的序号是________.①众数是9;②平均数是10;③中位数是9或10;④标准差是3.4.解析:由茎叶图知,该组数据为7,8,9,9,9,10,11,12,12,13,∴众数为9,①正确;中位数是9+102=9.5,③错;平均数是x =110(7+8+9+9+9+10+11+12+12+13)=10,②正确;方差是s 2=110[(7-10)2+(8-10)2+(9-10)2+(9-10)2+(9-10)2+(10-10)2+(11-10)2+(12-10)2+(12-10)2+(13-10)2]=3.4,标准差s = 3.4,④错.答案:①②典题导入[例3] (1)(2012·江西高考)样本(x 1,x 2,…,x n )的平均数为x -,样本(y 1,y 2,…,y m )的平均数为y -(x -≠y -).若样本(x 1,x 2,…,x n ,y 1,y 2,…,y m )的平均数z -=αx -+(1-α)y -,其中0<α<12,则n ,m 的大小关系为( )A .n <mB .n >mC .n =mD .不能确定(2)(2012·山东高考)在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据每个都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是( )A .众数B .平均数C .中位数D .标准差[自主解答] (1)x =x 1+x 2+…+x n n ,y =y 1+y 2+…+y m m ,z =x 1+x 2+…+x n +y 1+y 2+…+y mm +n ,则z =n x +m y m +n =n m +n x +mm +n y .由题意知0<n m +n <12,∴n <m .(2)对样本中每个数据都加上一个非零常数时不改变样本的方差和标准差,众数、中位数、平均数都发生改变.[答案] (1)A (2)D由题悟法(1)众数体现了样本数据的最大集中点,但无法客观地反映总体特征. (2)中位数是样本数据居中的数.(3)标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据越分散,标准差、方差越小,数据越集中.以题试法3.(2012·淄博一检)一农场在同一块稻田中种植一种水稻,其连续8年的产量(单位:kg)如下:450,430,460,440,450,440,470,460,则该组数据的方差为( )A .120B .80C .15D .150解析:选D 根据题意知,该组数据的平均数为450+430+460+440+450+440+470+4608=450,所以该组数据的方差为18×(02+202+102+102+02+102+202+102)=150.1.(2013·豫西五校联考)某人5次上班途中所花的时间(单位:分钟)分别为8,12,10,11,9,估计此人每次上班途中平均花费的时间为( )A .8分钟B .9分钟C .11分钟D .10分钟解析:选D 依题意,估计此人每次上班途中平均花费的时间为8+12+10+11+95=10分钟.2.(2012·湖北高考)容量为20的样本数据,分组后的频数如下表:则样本数据落在区间[10,40)的频率为( ) A .0.35 B .0.45 C .0.55D .0.65解析:选B 求得该频数为2+3+4=9,样本容量是20,所以频率为920=0.45.3.某厂10名工人在一个小时内生产零件的个数分别是15,17,14,10,15,17,17,16,14,12,设该组数据的平均数为a ,中位数为b ,众数为c ,则有( )A .a >b >cB .b >c >aC .c >a >bD .c >b >a解析:选D 把该组数据按从小到大的顺序排列为10,12,14,14,15,15,16,17,17,17,其平均数a =110×(10+12+14+14+15+15+16+17+17+17)=14.7,中位数b =15+152=15,众数c =17,则a <b <c .4.(2013·济宁模拟)为了解一片大约一万株树木的生长情况,随机测量了其中100株树木的底部周长(单位:cm).根据所得数据画出的样本频率分布直方图如图所示,那么在这片树木中,底部周长小于110 cm 的株数大约是( )A .3 000B .6 000C .7 000D .8 000解析:选C 底部周长小于110 cm 的频率为:(0.01+0.02+0.04)×10=0.7,所以底部周长小于110 cm 的株数大约是10 000×0.7=7 000.5.(2012·江西高考)小波一星期的总开支分布如图1所示,一星期的食品开支如图2所示,则小波一星期的鸡蛋开支占总开支的百分比为( )图1图2A .30%B .10%C .3%D .不能确定解析:选C 由图1得到小波一星期的总开支,由图2得到小波一星期的食品开支,从而再借助图2计算出鸡蛋开支占总开支的百分比.由图2知,小波一星期的食品开支为30+40+100+80+50=300元,由图1知,小波一星期的总开支为30030%=1 000元,则小波一星期的鸡蛋开支占总开支的百分比为301 000×100%=3%.6.(2012·江西盟校二联)若一个样本容量为8的样本的平均数为5,方差为2.现样本中又加入一个新数据5,此时样本容量为9,平均数为x ,方差为s 2,则( )A.x =5,s 2<2B.x =5,s 2>2C.x >5,s 2<2D.x >5,s 2>2解析:选A 设18(x 1+x 2+…+x 8)=5,∴19(x 1+x 2+…+x 8+5)=5, ∴x =5,由方差定义及意义可知加新数据5后,样本数据取值的稳定性比原来强,∴s 2<2.7.(2012·湖北模拟)下图为150辆汽车通过某路段时速度的频率分布直方图,则速度在[60,70)内的汽车大约有________辆.解析:由频率分布直方图可知,汽车速度在[60,70)内的频率为0.04×10=0.4,故速度在[60,70)内的汽车为150×0.4=60辆.答案:608.(2012·湖南高考)如图所示是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为________.( 注:方差s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n-x )2],其中x 为x 1,x 2,…,x n的平均数)解析:该运动员五场比赛中的得分为8,9,10,13,15,平均得分x =8+9+10+13+155=11,方差s 2=15[(8-11)2+(9-11)2+(10-11)2+(13-11)2+(15-11)2]=6.8.答案:6.89.(2012·北京海淀)甲和乙两个城市去年上半年每月的平均气温(单位:℃)用茎叶图记录如下,根据茎叶图可知,两城市中平均温度较高的城市是________,气温波动较大的城市是________.解析:根据茎叶图可知,甲城市上半年的平均温度为 9+13+17×2+18+226=16,乙城市上半年的平均温度为12+14+17+20+24+276=19,故两城市中平均温度较高的是乙城市,观察茎叶图可知,甲城市的温度更加集中在峰值附近,故乙城市的温度波动较大.答案:乙 乙10.(2012·郑州模拟)某中学共有1 000名学生参加了该地区高三第一次质量检测的数学考试,数学成绩如下表所示:样的方法抽取100名同学进行问卷调查,甲同学在本次测试中数学成绩为95分,求他被抽中的概率;(2)已知本次数学成绩的优秀线为110分,试根据所提供数据估计该中学达到优秀线的人数;(3)作出频率分布直方图,并估计该学校本次考试的数学平均分(同一组中的数据用该组区间的中点值作代表).解:(1)分层抽样中,每个个体被抽到的概率均为样本容量总体中个体总数,故甲同学被抽到的概率P =110.(2)由题意得x =1 000-(60+90+300+160)=390. 故估计该中学达到优秀线的人数 m =160+390×120-110120-90=290.(3)频率分布直方图如图所示.该学校本次考试的数学平均分. x =60×15+90×45+300×75+390×105+160×1351 000=90.估计该学校本次考试的数学平均分为90分.11. (2012·江西重点中学联考)某日用品按行业质量标准分成五个等级,等级系数X 依次为1,2,3,4,5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:(1)若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求a ,b ,c 的值;(2)在(1)的条件下,将等级系数为4的3件日用品记为x 1,x 2,x 3,等级系数为5的2件日用品记为y 1,y 2,现从x 1,x 2,x 3,y 1,y 2这5件日用品中任取2件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这2件日用品的等级系数恰好相等的概率.解:(1)由频率分布表得a +0.2+0.45+b +c =1, 即a +b +c =0.35.因为抽取的20件日用品中,等级系数为4的恰有3件,所以b =320=0.15.等级系数为5的恰有2件,所以c =220=0.1.从而a =0.35-b -c =0.1. 所以a =0.1,b =0.15,c =0.1.(2)从日用品x 1,x 2,x 3,y 1,y 2中任取2件,所有可能的结果为:{x 1,x 2},{x 1,x 3},{x 1,y 1},{x 1,y 2},{x 2,x 3},{x 2,y 1},{x 2,y 2},{x 3,y 1},{x 3,y 2},{y 1,y 2},共10个.设事件A 表示“从日用品x 1,x 2,x 3,y 1,y 2中任取2件,其等级系数相等”,则A 包含的基本事件为:{x 1,x 2},{x 1,x 3},{x 2,x 3},{y 1,y 2},共4个.故所求的概率P (A )=410=0.4.12.(2012·北京高考)近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1 000吨生活垃圾,数据统计如下(单位:吨):(1)试估计厨余垃圾投放正确的概率; (2)试估计生活垃圾投放错误的概率;(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a ,b ,c ,其中a >0,a +b +c =600.当数据a ,b ,c 的方差s 2最大时,写出a ,b ,c 的值(结论不要求证明),并求此时s 2的值.( 注:s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x 为数据x 1,x 2,…,x n 的平均数 )解:(1)厨余垃圾投放正确的概率约为“厨余垃圾”箱里厨余垃圾量厨余垃圾总量=400400+100+100=23.(2)设“生活垃圾投放错误”为事件A ,则事件A 表示“生活垃圾投放正确”. 事件A 的概率约为“厨余垃圾”箱里厨余垃圾量、“可回收物”箱里可回收物量与“其他垃圾”箱里其他垃圾量的总和除以生活垃圾总量,即P (A )约为400+240+601 000=0.7,所以P (A )约为1-0.7=0.3.(3)当a =600,b =c =0时,s 2取得最大值. 因为x =13(a +b +c )=200,所以s 2=13×[(600-200)2+(0-200)2+(0-200)2]=80 000.1.(2013·西宁模拟)已知一组数据:a 1,a 2,a 3,a 4,a 5,a 6,a 7构成公差为d 的等差数列,且这组数据的方差等于1,则公差d 等于( )A .±14B .±12C .±128D .无法求解解析:选B 这组数据的平均数为a 1+a 2+a 3+a 4+a 5+a 6+a 77=7a 47=a 4,又因为这组数据的方差等于1,所以17[(a 1-a 4)2+(a 2-a 4)2+(a 3-a 4)2+(a 4-a 4)2+(a 5-a 4)2+(a 6-a 4)2+(a 7-a 4)2]=(3d )2+(2d )2+(d )2+0+(d )2+(2d )2+(3d )27=1,即4d 2=1,解得d =±12.2.(2012·安徽高考)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差解析:选C 由题意可知,甲的成绩为4,5,6,7,8,乙的成绩为5,5,5,6,9.所以甲、乙的成绩的平均数均为6,A 错;甲、乙的成绩的中位数分别为6,5,B 错;甲、乙的成绩的方差分别为15×[(4-6)2+(5-6)2+(6-6)2+(7-6)2+(8-6)2]=2,15×[(5-6)2+(5-6)2+(5-6)2+(6-6)2+(9-6)2]=125,C 对;甲、乙的成绩的极差均为4,D 错.3.(2012·山西山大附中月考)如图是某市有关部门根据该市干部的月收入情况,画出的样本频率分布直方图,已知图中第一组的频数为4 000,请根据该图提供的信息解答下列问题.(1)求样本中月收入在[2 500,3 500)的人数;(2)为了分析干部的收入与年龄、职业等方面的关系,必须从样本中按月收入用分层抽样方法抽出100人作进一步分析,则月收入在[1 500,2 000)的这组中应抽多少人?(3)试估计样本数据的中位数.解:(1)由题知,月收入在[1 000,1 500)的频率为0.000 8×500=0.4,又月收入在[1 000,1 500)的有4 000人,故样本容量n =4 0000.4=10 000.又月收入在[1 500,2 000)的频率为0.000 4×500=0.2, 月收入在[2 000,2 500)的频率为0.000 3×500=0.15, 月收入在[3 500,4 000]的频率为0.000 1×500=0.05,所以月收入在[2 500,3 500)的频率为1-0.4-0.2-0.15-0.05=0.2. 故样本中月收入在[2 500,3 500]的人数为0.2×10 000=2 000.(2)由(1)知,月收入在[1 500,2 000)的人数为0.2×10 000=2 000,再从10 000人中用分层抽样的方法抽出100人,则月收入在[1 500,2 000)的这组中应抽取100×2 00010 000=20(人). (3)由(1)知,月收入在[1 000,2 000)的频率为0.4+0.2=0.6>0.5,故样本数据的中位数为1 500+0.5-0.40.000 4=1 500+250=1 750.1.(2012·陕西高考)对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A .46,45,56B .46,45,53C .47,45,56D .45,47,53解析:选A 从茎叶图中可以看出样本数据的中位数为中间两个数的平均数,即45+472=46,众数为45,极差为68-12=56.2.(2012·济南调研)如图是2012年在某大学自主招生面试环节中,七位评委为某考生打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A .84,4.84B .84,1.6C .85,1.6D .85,4解析:选C 依题意得,去掉一个最高分和一个最低分后,所剩数据的平均数为80+15×(4×3+6+7)=85,方差为15×[3×(84-85)2+(86-85)2+(87-85)2]=1.6.。
教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校第二节等差数列及其前n 项和[知识能否忆起]一、等差数列的有关概念1.定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n +1-a n =d (n ∈N *,d 为常数).2.等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.二、等差数列的有关公式 1.通项公式:a n =a 1+(n -1)d . 2.前n 项和公式:S n =na 1+n (n -1)2d =(a 1+a n )n2. 三、等差数列的性质1.若m ,n ,p ,q ∈N *,且m +n =p +q ,{a n }为等差数列,则a m +a n =a p +a q . 2.在等差数列{a n }中,a k ,a 2k ,a 3k ,a 4k ,…仍为等差数列,公差为kd . 3.若{a n }为等差数列,则S n ,S 2n -S n ,S 3n -S 2n ,…仍为等差数列,公差为n 2d . 4.等差数列的增减性:d >0时为递增数列,且当a 1<0时前n 项和S n 有最小值.d <0时为递减数列,且当a 1>0时前n 项和S n 有最大值.5.等差数列{a n }的首项是a 1,公差为d .若其前n 项之和可以写成S n =An 2+Bn ,则A =d 2,B =a 1-d2,当d ≠0时它表示二次函数,数列{a n }的前n 项和S n =An 2+Bn 是{a n }成等差数列的充要条件.[小题能否全取]1.(2012·福建高考)等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( ) A .1 B .2 C .3D .4解析:选B 法一:设等差数列{a n }的公差为d ,由题意得⎩⎪⎨⎪⎧2a 1+4d =10,a 1+3d =7.解得⎩⎪⎨⎪⎧a 1=1,d =2.故d =2.法二:∵在等差数列{a n }中,a 1+a 5=2a 3=10,∴a 3=5. 又a 4=7,∴公差d =7-5=2.2.(教材习题改编)在等差数列{a n }中,a 2+a 6=3π2,则sin ⎝⎛⎭⎫2a 4-π3=( ) A.32B.12 C .-32D .-12解析:选D ∵a 2+a 6=3π2,∴2a 4=3π2.∴sin ⎝⎛⎭⎫2a 4-π3=sin ⎝⎛⎭⎫3π2-π3=-cos π3=-12. 3.(2012·辽宁高考)在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=( ) A .58 B .88 C .143D .176解析:选B S 11=11(a 1+a 11)2=11(a 4+a 8)2=88.4.在数列{a n }中,若a 1=1,a n +1=a n +2(n ≥1),则该数列的通项a n =________. 解析:由a n +1=a n +2知{a n }为等差数列其公差为2. 故a n =1+(n -1)×2=2n -1. 答案:2n -15.(2012·北京高考)已知{a n }为等差数列,S n 为其前n 项和,若a 1=12,S 2=a 3,则a 2=________,S n =________.解析:设{a n }的公差为d ,由S 2=a 3知,a 1+a 2=a 3,即2a 1+d =a 1+2d , 又a 1=12,所以d =12,故a 2=a 1+d =1,S n =na 1+12n (n -1)d =12n +12(n 2-n )×12=14n 2+14n .答案:1 14n 2+14n1.与前n 项和有关的三类问题(1)知三求二:已知a 1、d 、n 、a n 、S n 中的任意三个,即可求得其余两个,这体现了方程思想.(2)S n =d2n 2+⎝⎛⎭⎫a 1-d 2n =An 2+Bn ⇒d =2A . (3)利用二次函数的图象确定S n 的最值时,最高点的纵坐标不一定是最大值,最低点的纵坐标不一定是最小值.2.设元与解题的技巧已知三个或四个数组成等差数列的一类问题,要善于设元,若奇数个数成等差数列且和为定值时,可设为…,a -2d ,a -d ,a ,a +d ,a +2d ,…;若偶数个数成等差数列且和为定值时,可设为…,a -3d ,a -d ,a +d ,a +3d ,…,其余各项再依据等差数列的定义进行对称设元.等差数列的判断与证明典题导入[例1] 在数列{a n }中,a 1=-3,a n =2a n -1+2n +3(n ≥2,且n ∈N *). (1)求a 2,a 3的值;(2)设b n =a n +32n (n ∈N *),证明:{b n }是等差数列.[自主解答] (1)∵a 1=-3,a n =2a n -1+2n +3(n ≥2,且n ∈N *),∴a 2=2a 1+22+3=1,a 3=2a 2+23+3=13.(2)证明:对于任意n ∈N *,∵b n +1-b n =a n +1+32n +1-a n +32n =12n +1[(a n +1-2a n )-3]=12n +1[(2n +1+3)-3]=1,∴数列{b n }是首项为a 1+32=-3+32=0,公差为1的等差数列.由题悟法1.证明{a n }为等差数列的方法:(1)用定义证明:a n -a n -1=d (d 为常数,n ≥2)⇔{a n }为等差数列; (2)用等差中项证明:2a n +1=a n +a n +2⇔{a n }为等差数列; (3)通项法:a n 为n 的一次函数⇔{a n }为等差数列; (4)前n 项和法:S n =An 2+Bn 或S n =n (a 1+a n )2.2.用定义证明等差数列时,常采用的两个式子a n +1-a n =d 和a n -a n -1=d ,但它们的意义不同,后者必须加上“n ≥2”,否则n =1时,a 0无定义.以题试法1.已知数列{a n }的前n 项和S n 是n 的二次函数,且a 1=-2,a 2=2,S 3=6. (1)求S n ;(2)证明:数列{a n }是等差数列. 解:(1)设S n =An 2+Bn +C (A ≠0), 则⎩⎪⎨⎪⎧-2=A +B +C ,0=4A +2B +C ,6=9A +3B +C ,解得A =2,B =-4,C =0.故S n =2n 2-4n . (2)证明:∵当n =1时,a 1=S 1=-2.当n ≥2时,a n =S n -S n -1=2n 2-4n -[2(n -1)2-4(n -1)]=4n -6. ∴a n =4n -6(n ∈N *).a n +1-a n =4, ∴数列{a n }是等差数列.等差数列的基本运算典题导入[例2] (2012·重庆高考)已知{a n }为等差数列,且a 1+a 3=8,a 2+a 4=12. (1)求{a n }的通项公式;(2)记{a n }的前n 项和为S n ,若a 1,a k ,S k +2成等比数列,求正整数k 的值. [自主解答] (1)设数列{a n }的公差为d ,由题意知⎩⎪⎨⎪⎧ 2a 1+2d =8,2a 1+4d =12,解得⎩⎪⎨⎪⎧a 1=2,d =2.所以a n =a 1+(n -1)d =2+2(n -1)=2n .(2)由(1)可得S n =n (a 1+a n )2=n (2+2n )2=n (n +1).因为a 1,a k ,S k +2成等比数列,所以a 2k =a 1S k +2. 从而(2k )2=2(k +2)(k +3),即k 2-5k -6=0, 解得k =6或k =-1(舍去),因此k =6.由题悟法1.等差数列的通项公式a n =a 1+(n -1)d 及前n 项和公式S n =n (a 1+a n )2=na 1+n (n -1)2d ,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了方程的思想.2.数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.以题试法2.(1)在等差数列中,已知a 6=10,S 5=5,则S 8=________.(2)(2012·江西联考)设等差数列{a n }的前n 项和为S n ,若S 412-S 39=1,则公差为________.解析:(1)∵a 6=10,S 5=5,∴⎩⎪⎨⎪⎧a 1+5d =10,5a 1+10d =5. 解方程组得⎩⎪⎨⎪⎧a 1=-5,d =3.则S 8=8a 1+28d =8×(-5)+28×3=44. (2)依题意得S 4=4a 1+4×32d =4a 1+6d ,S 3=3a 1+3×22d =3a 1+3d ,于是有4a 1+6d 12-3a 1+3d9=1,由此解得d =6,即公差为6. 答案:(1)44 (2)6等差数列的性质典题导入[例3] (1)等差数列{a n }中,若a 1+a 4+a 7=39,a 3+a 6+a 9=27,则前9项和S 9等于( )A .66B .99C .144D .297(2)(2012·天津模拟)设等差数列{a n }的前n 项和S n ,若S 4=8,S 8=20,则a 11+a 12+a 13+a 14=( )A .18B .17C .16D .15[自主解答] (1)由等差数列的性质及a 1+a 4+a 7=39,可得3a 4=39,所以a 4=13.同理,由a 3+a 6+a 9=27,可得a 6=9.所以S 9=9(a 1+a 9)2=9(a 4+a 6)2=99.(2)设{a n }的公差为d ,则a 5+a 6+a 7+a 8=S 8-S 4=12,(a 5+a 6+a 7+a 8)-S 4=16d ,解得d =14,a 11+a 12+a 13+a 14=S 4+40d =18.[答案] (1)B (2)A由题悟法1.等差数列的性质是等差数列的定义、通项公式以及前n 项和公式等基础知识的推广与变形,熟练掌握和灵活应用这些性质可以有效、方便、快捷地解决许多等差数列问题.2.应用等差数列的性质解答问题的关键是寻找项的序号之间的关系.以题试法3.(1)(2012·江西高考)设数列{a n },{b n }都是等差数列,若a 1+b 1=7,a 3+b 3=21,则a 5+b 5=________.(2)(2012·海淀期末)若数列{a n }满足:a 1=19,a n +1=a n -3(n ∈N *),则数列{a n }的前n 项和数值最大时,n 的值为( )A .6B .7C .8D .9解析:(1)设两等差数列组成的和数列为{c n },由题意知新数列仍为等差数列且c 1=7,c 3=21,则c 5=2c 3-c 1=2×21-7=35.(2)∵a n +1-a n =-3,∴数列{a n }是以19为首项,-3为公差的等差数列,∴a n =19+(n-1)×(-3)=22-3n .设前k 项和最大,则有⎩⎪⎨⎪⎧ a k ≥0,a k +1≤0,即⎩⎪⎨⎪⎧22-3k ≥0,22-3(k +1)≤0,解得193≤k ≤223.∵k ∈N *,∴k =7.故满足条件的n 的值为7.答案:(1)35 (2)B1.(2011·江西高考){a n }为等差数列,公差d =-2,S n 为其前n 项和.若S 10=S 11,则a 1=( )A .18B .20C .22D .24解析:选B 由S 10=S 11,得a 11=S 11-S 10=0,a 1=a 11+(1-11)d =0+(-10)×(-2)=20.2.(2012·广州调研)等差数列{a n }的前n 项和为S n ,已知a 5=8,S 3=6,则S 10-S 7的值是( )A .24B .48C .60D .72解析:选B 设等差数列{a n }的公差为d ,由题意可得⎩⎪⎨⎪⎧ a 5=a 1+4d =8,S 3=3a 1+3d =6,解得⎩⎪⎨⎪⎧a 1=0,d =2,则S 10-S 7=a 8+a 9+a 10=3a 1+24d =48.3.(2013·东北三校联考)等差数列{a n }中,a 5+a 6=4,则log 2(2a 1·2a 2·…·2a 10)=( ) A .10 B .20 C .40D .2+log 25解析:选B 依题意得,a 1+a 2+a 3+…+a 10=10(a 1+a 10)2=5(a 5+a 6)=20,因此有log 2(2a 1·2a 2·…·2a 10)=a 1+a 2+a 3+…+a 10=20.4.(2012·海淀期末)已知数列{a n }满足:a 1=1,a n >0,a 2n +1-a 2n =1(n ∈N *),那么使a n <5成立的n 的最大值为( )A .4B .5C .24D .25解析:选C ∵a 2n +1-a 2n =1,∴数列{a 2n }是以a 21=1为首项,1为公差的等差数列.∴a 2n =1+(n -1)=n .又a n >0,∴a n =n .∵a n <5,∴n <5.即n <25.故n 的最大值为24.5.已知等差数列{a n }的前n 项和为S n ,并且S 10>0,S 11<0,若S n ≤S k 对n ∈N *恒成立,则正整数k 的值为( )A .5B .6C .4D .7解析:选A 由S 10>0,S 11<0知a 1>0,d <0,并且a 1+a 11<0,即a 6<0,又a 5+a 6>0,所以a 5>0,即数列的前5项都为正数,第5项之后的都为负数,所以S 5最大,则k =5.6.数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N *).若b 3=-2,b 10=12,则a 8=( )A .0B .3C .8D .11解析:选B 因为{b n }是等差数列,且b 3=-2,b 10=12, 故公差d =12-(-2)10-3=2.于是b 1=-6,且b n =2n -8(n ∈N *),即a n +1-a n =2n -8.所以a 8=a 7+6=a 6+4+6=a 5+2+4+6=…=a 1+(-6)+(-4)+(-2)+0+2+4+6=3.7.(2012·广东高考)已知递增的等差数列{a n }满足a 1=1,a 3=a 22-4,则a n =________.解析:设等差数列公差为d ,∵由a 3=a 22-4,得1+2d =(1+d )2-4,解得d 2=4,即d=±2.由于该数列为递增数列,故d =2.∴a n =1+(n -1)×2=2n -1. 答案:2n -18.已知数列{a n }为等差数列,S n 为其前n 项和,a 7-a 5=4,a 11=21,S k =9,则k =________. 解析:a 7-a 5=2d =4,则d =2.a 1=a 11-10d =21-20=1, S k =k +k (k -1)2×2=k 2=9.又k ∈N *,故k =3.答案:39.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________. 解析:∵{a n },{b n }为等差数列, ∴a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6.∵S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941,∴a 6b 6=1941.答案:194110.(2011·福建高考)已知等差数列{a n }中,a 1=1,a 3=-3. (1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值. 解:(1)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d . 由a 1=1,a 3=-3,可得1+2d =-3,解得d =-2. 从而a n =1+(n -1)×(-2)=3-2n . (2)由(1)可知a n =3-2n , 所以S n =n [1+(3-2n )]2=2n -n 2.由S k =-35,可得2k -k 2=-35, 即k 2-2k -35=0,解得k =7或k =-5. 又k ∈N *,故k =7.11.设数列{a n }的前n 项积为T n ,T n =1-a n ,(1)证明⎩⎨⎧⎭⎬⎫1T n 是等差数列;(2)求数列⎩⎨⎧⎭⎬⎫a n T n 的前n 项和S n .解:(1)证明:由T n =1-a n 得,当n ≥2时,T n =1-T nT n -1,两边同除以T n 得1T n -1T n -1=1.∵T 1=1-a 1=a 1, 故a 1=12,1T 1=1a 1=2.∴⎩⎨⎧⎭⎬⎫1T n 是首项为2,公差为1的等差数列. (2)由(1)知1T n =n +1,则T n =1n +1,从而a n =1-T n =n n +1.故a nT n=n .∴数列⎩⎨⎧⎭⎬⎫a n T n 是首项为1,公差为1的等差数列.∴S n =n (n +1)2. 12.已知在等差数列{a n }中,a 1=31,S n 是它的前n 项和,S 10=S 22.(1)求S n ;(2)这个数列的前多少项的和最大,并求出这个最大值.解:(1)∵S 10=a 1+a 2+…+a 10,S 22=a 1+a 2+…+a 22,又S 10=S 22,∴a 11+a 12+…+a 22=0,即12(a 11+a 22)2=0,故a 11+a 22=2a 1+31d =0. 又∵a 1=31,∴d =-2,∴S n =na 1+n (n -1)2d =31n -n (n -1)=32n -n 2. (2)法一:由(1)知S n =32n -n 2,故当n =16时,S n 有最大值,S n 的最大值是256.法二:由S n =32n -n 2=n (32-n ),欲使S n 有最大值,应有1<n <32,从而S n ≤⎝ ⎛⎭⎪⎫n +32-n 22=256, 当且仅当n =32-n ,即n =16时,S n 有最大值256.1.等差数列中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则该数列前13项的和是( )A .156B .52C .26D .13解析:选C ∵a 3+a 5=2a 4,a 7+a 10+a 13=3a 10,∴6(a 4+a 10)=24,故a 4+a 10=4.∴S 13=13(a 1+a 13)2=13(a 4+a 10)2=26. 2.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项和S 18=12,则数列{|a n |}的前18项和T 18的值是( )A .24B .48C .60D .84解析:选C 由a 1>0,a 10·a 11<0可知d <0,a 10>0,a 11<0,故T 18=a 1+…+a 10-a 11-…-a 18=S 10-(S 18-S 10)=60.3.数列{a n }满足a n +1+a n =4n -3(n ∈N *).(1)若{a n }是等差数列,求其通项公式;(2)若{a n }满足a 1=2,S n 为{a n }的前n 项和,求S 2n +1.解:(1)由题意得a n +1+a n =4n -3,①a n +2+a n +1=4n +1,②②-①得a n +2-a n =4,∵{a n }是等差数列,设公差为d ,∴d =2.∵a 1+a 2=1,∴a 1+a 1+d =1,∴a 1=-12, ∴a n =2n -52. (2)∵a 1=2,a 1+a 2=1,∴a 2=-1.又∵a n +2-a n =4,∴数列的奇数项与偶数项分别成等差数列,公差均为4, ∴a 2n -1=4n -2,a 2n =4n -5,S 2n +1=(a 1+a 3+…+a 2n +1)+(a 2+a 4+…+a 2n )=(n +1)×2+(n +1)n 2×4+n ×(-1)+n (n -1)2×4 =4n 2+n +2.1.已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).(1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由.解:(1)证明:∵a n =2-1a n -1(n ≥2,n ∈N *),b n =1a n -1. ∴n ≥2时,b n -b n -1=1a n -1-1a n -1-1=1⎝ ⎛⎭⎪⎫2-1a n -1-1-1a n -1-1 =a n -1a n -1-1-1a n -1-1=1. 又b 1=1a 1-1=-52. ∴数列{b n }是以-52为首项,1为公差的等差数列. (2)由(1)知,b n =n -72, 则a n =1+1b n =1+22n -7, 设函数f (x )=1+22x -7, 易知f (x )在区间⎝⎛⎭⎫-∞,72和⎝⎛⎭⎫72,+∞内为减函数. 故当n =3时,a n 取得最小值-1;当n =4时,a n 取得最大值3.2.已知等差数列{a n }的前n 项和为S n ,且满足:a 2+a 4=14,S 7=70.(1)求数列{a n }的通项公式;(2)设b n =2S n +48n,数列{b n }的最小项是第几项,并求出该项的值. 解:(1)设等差数列{a n }的公差为d ,则有⎩⎪⎨⎪⎧ 2a 1+4d =14,7a 1+21d =70, 即⎩⎪⎨⎪⎧ a 1+2d =7,a 1+3d =10,解得⎩⎪⎨⎪⎧ a 1=1,d =3.所以a n =3n -2.(2)因为S n =n 2[1+(3n -2)]=3n 2-n 2, 所以b n =3n 2-n +48n =3n +48n-1≥2 3n ·48n-1=23, 当且仅当3n =48n,即n =4时取等号, 故数列{b n }的最小项是第4项,该项的值为23.3.已知数列{a n },对于任意n ≥2,在a n -1与a n 之间插入n 个数,构成的新数列{b n }成等差数列,并记在a n -1与a n 之间插入的这n 个数均值为C n -1.(1)若a n =n 2+3n -82,求C 1,C 2,C 3; (2)在(1)的条件下是否存在常数λ,使{C n +1-λC n }是等差数列?如果存在,求出满足条件的λ,如果不存在,请说明理由.解:(1)由题意a 1=-2,a 2=1,a 3=5,a 4=10,∴在a 1与a 2之间插入-1,0,C 1=-12. 在a 2与a 3之间插入2,3,4,C 2=3.在a 3与a 4之间插入6,7,8,9,C 3=152. (2)在a n -1与a n 之间插入n 个数构成等差数列,d =a n -a n -1n +1=1, ∴C n -1=n (a n -1+a n )2n =a n -1+a n 2=n 2+2n -92. 假设存在λ使得{C n +1-λC n }是等差数列. ∴(C n +1-λC n )-(C n -λC n -1)=C n +1-C n -λ(C n -C n -1)=2n +52-λ·2n +32=(1-λ)n +52-32λ=常数,∴λ=1. 即λ=1时,{C n +1-λC n }是等差数列.。
第五节合情推理与演绎推理[知识可否忆起]一、合情推理归纳推理类比推理由某类事物的部分对象拥有某些特由两类对象拥有近似特色和此中一征,推出该类事物的所有对象都具定义类对象的某些已知特色推出另一类有这些特色的推理,或许由个别事对象也拥有这些特色的推理实归纳出一般结论的推理由部分到整体、由个别到一般的推特色由特别到特别的推理理(1找出两类事物之间的相像性或一(1经过察看个别状况发现某些相同致性;(2用一类事物的性质去推测一般步骤性质;(2从已知的相同性质中推出另一类事物的性质,得出一个明确一个明确的一般性命题(猜想的命题(猜想二、演绎推理1.定义:从一般性的原理出发,推出某个特别状况下的结论,我们把这类推理称为演绎推理.2.特色:演绎推理是由一般到特别的推理.3.模式:三段论.“三段论”是演绎推理的一般模式,包含:①大前提—已知的一般原理;“三段论”的构造②小前提—所研究的特别状况;③结论—依据一般原理,对特别状况做出的判断①大前提—M是P;“”②小前提—S是M;三段论的表示③结论—S是P[小题可否全取]1.(教材习题改编命题“有些有理数是无穷循环小数,整数是有理数,所以整数是无穷循环小数”是假命题,推理错误的原由是(A.使用了归纳推理B.使用了类比推理C.使用了“三段论”,但推理形式错误D.使用了“三段论”,但小前提错误分析:选C由条件知使用了三段论,但推理形式是错误的.2.数列2,5,11,20,x,47,⋯中的x等于(A.28B.32C.33D.27分析:选B由5-2=3,11-5=6,20-11=9.则x-20=12,所以x=32.3.(教材习题改编给出以下三个类比结论.(abn=anbn与(a+bn类比,则有(a+bn=an+bn;loga(xy=logax+logay与sin(α+β类比,则有sin(α+β=sinαsinβ;(a+b2=a2+2ab+b2与(a+b2类比,则有(a+b2=a2+2a·b+b2.此中结论正确的个数是(A.0B.1C.2D.3分析:选B只有③正确.4.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4.近似地,在空间中,若两个正四周体的棱长的比为1∶2,则它们的体积比为________.分析:==·=×=.答案:1∶85.(2012·陕西高考察看以下不等式1+<,1++<,1+++<⋯⋯照此规律,第五个不等式为___________________________________________________.分析:察看得出规律,左边为项数个连续自然数平方的倒数和,右侧为项数的2倍减1的差除以项数,即1+++++⋯+<(n∈N*,n≥2,所以第五个不等式为1+++++<.答案:1+++++<1.合情推理主要包含归纳推理和类比推理,合情推理拥有猜想和发现结论,探究和供给思路的作用.合情推理的结论可能为真,也可能为假,结论的正确性有待于进一步的证明.2.应用三段论解决问题时,应第一明确什么是大前提,什么是小前提,假如大前提、小前提与推理形式是正确的,结论必然是正确的.假如大前提错误,只管推理形式是正确的,所得结论也是错误的.归纳推理典题导入[例1] (2012·河南调研已知函数f(x=(x>0.以下定义一列函数:f1(x=f(x,f2(x=f(f1(x,f3(x=f(f2(x,,fn(x=f(fn-1(x,,n∈N*,那么由归纳推理可得函数fn(x的分析式是fn(x=________.[自主解答]依题意得,f1(x=,f2(x===,f3(x===,,由此归纳可得fn(x=(x>0.[答案](x>0由题悟法1.归纳是依照特别现象推测出一般现象,因此由归纳所得的结论超越了前提所包含的范围.2.归纳的前提是特别的状况,所以归纳是立足于察看、经验或试验的基础之上的.[注意]归纳推理所得结论未必正确,有待进一步证明,但对数学结论和科学的发现很有用.以题试法1.(2012枣·庄模拟将正奇数按以下图的规律摆列,则第21行从左向右的第5个数为(A.809B.852C.786D.893分析:选第5个数是第A 前20行共有正奇数1+3+5++39=202=400个,则第405个正奇数,所以这个数是2×405-1=809.21行从左向右的类比推理典题导入[例2]在平面几何里,有“若△ABC的三边长分别为a,b,c内切圆半径为r,则三角形面积为S△ABC=(a+b+cr”,拓展到空间,类比上述结论,“若四周体ABCD的四个面的面积分别为S1,S2,S3,S4,内切球的半径为r,则四周体的体积为________________”.[自主解答]三角形的面积类比为四周体的体积,三角形的边长类比为四周体四个面的面积,内切圆半径类比为内切球的半径.二维图形中类比为三维图形中的,得V四周体ABCD=(S1+S2+S3+S4r.[答案]V四周体ABCD=(S1+S2+S3+S4r由题悟法1.类比推理是由特别到特别的推理,命题有其特色和求解规律,能够从以下几个方面考虑类比:类比定义、类比性质、类比方法、类比构造.2.类比推理的一般步骤:(1找出两类事物之间的相像性或一致性;(2用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想.以题试法2.若{an}是等差数列,m、n、p是互不相等的正整数,则有:(m-nap+(n-pam+(p-man=0,类比上述性质,相应地,平等比数列{bn},有__________________.=分析:设{bn}的首项为b1,公比为q,则b·b·b==(b1qp-1m-n·(b1qm-1n-p·(b1qn-1p-m=b·q0=1.答案:b·b·b=1演绎推理典题导入[例3]数列{an}的前n项和记为Sn,已知a1=1,an+1=Sn(n∈N*.证明:(1数列是等比数列;(2Sn+1=4an.[自主解答](1∵an+1=Sn+1-Sn,an+1=Sn,(n+2Sn=n(Sn+1-Sn,即nSn+1=2(n+1Sn.故=2·,(小前提故是以2为公比,1为首项的等比数列.(结论(大前提是等比数列的定义,这里省略了(2由(1可知=4·(n≥2,Sn+1=4(n+1·=4··Sn-1=4an(n≥2.(小前提又∵a2=3S1=3,S2=a1+a2=1+3=4=4a1,(小前提∴关于随意正整数n,都有Sn+1=4an.(结论由题悟法演绎推理是从一般到特别的推理,其一般形式是三段论,应用三段论解决问题时,应当第一明确什么是大前提和小前提,假如前提是明显的,则能够省略.以题试法3.以下图,D,E,F分别是BC,CA,AB上的点,∠BFD=∠A,且DE∥BA.求证:ED=AF(要求注明每一步推理的大前提、小前提和结论,并最后把推理过程用简单的形式表示出来.证明:(1同位角相等,两条直线平行,(大前提BFD与∠A是同位角,且∠BFD=∠A,(小前提所以DF∥EA.(结论(2两组对边分别平行的四边形是平行四边形,(大前提DE∥BA且DF∥EA,(小前提所以四边形AFDE为平行四边形.(结论(3平行四边形的对边相等,(大前提ED和AF为平行四边形的对边,(小前提所以ED=AF.(结论上边的证明可简单地写成:四边形AFDE是平行四边形?ED=AF.1.推理“①矩形是平行四边形;②三角形不是平行四边形;③三角形不是矩形”中的小前提是(A.①B.②C.③D.①和②分析:选B由演绎推理三段论可知,①是大前提;②是小前提;③是结论.应选 B.2.(2012·肥模拟正弦函数是奇函数,合f(x=sin(x2+1是正弦函数,所以f(x=sin(x2+1是奇函数,以上推理(A.结论正确B.大前提不正确C.小前提不正确D.全不正确分析:选C由于f(x=sin(x2+1不是正弦函数,所以小前提不正确.3.(2012·兴模拟在平面几何中有以下结论:正三角形泰ABC的内切圆面积为S1,外接圆面积为S2,则=,推行到空间能够获得近似结论;已知正四周体P-ABC的内切球体积为V1,外接球体积为V2,则=(A.B.C.D.分析:选D正四周体的内切球与外接球的半径之比为1∶3,故=.4.(2012·州模拟给出下边类比推理德(此中Q为有理数集,R为实数集,C为复数集:①“若a,b∈R,则a-b=0?a=b”类比推出“a,c∈C,则a-c=0?a=c”;②“若a,b,c,d∈R,则复数a+bi=c+di?a=c,b=d”类比推出“a,b,c,d∈Q,则a+b=c+d?a=c,b=d”;③“a,b∈R,则a-b>0?a>b”类比推出“若a,b∈C,则a-b>0?a>b”;④“若x∈R,则|x|<1?-1<x<1”类比推出“若z∈C,则|z|<1?-1<z<1”.此中类比结论正确的个数为(A.1B.2C.3D.4分析:选B类比结论正确的有①②.5.察看以下图的正方形图案,每条边(包含两个端点有n(n≥2,n∈N*个圆点,第n个图案中圆点的总数是Sn.按此规律推测出Sn与n的关系式为(A.Sn=2nB.Sn=4nC.Sn=2nD.Sn=4n-4分析:选D由n=2,n=3,n=4的图案,推测第成正方形的四条边,每条边上有n个圆点,则圆点的个数为n个图案是这样组成的:各个圆点排Sn=4n-4.6.(2012·汉市适应性训练以下推理中属于归纳推理且结论正确的选项是武(A.设数列{an}的前n项和为Sn.由an=2n-1,求出S1=12,S2=22,S3=32,,推断:Sn=n2B.由f(x=xcosx知足f(-x=-f(x对?x∈R都建立,推测:f(x=xcosx为奇函数C.由圆x2+y2=r2的面积S=πr2,推测:椭圆+=1(a>b>0的面积S=πabD.由(1+12>21,(2+12>22,(3+12>23,,推测:对全部n∈N*,(n+12>2n其前分析:选n项和等于A 选项 A由一些特别案例得出一般性结论,且注意到数列{an}是等差数列,Sn==n2,选项D中的推理属于归纳推理,但结论不正确.所以选 A.7.(2013·杭州模拟设n为正整数,f(n=1++++,计算得f(2=,f(4>2,f(8>,f(16>3,察看上述结果,可推测一般的结论为________.分析:由前四个式子可得,第的结论为f(2n≥.n个不等式的左边应当为f(2n,右侧应当为,即可得一般答案:f(2n≥8.(2011·西高考察看以下等式陕1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49照此规律,第n个等式为________.分析:每行最左边数分别为1、2、3、,所以第n行最左边的数为n;每行数的个数分别为1、3、5、,则第n行的个数为2n-1.所以第n行数挨次是n、n+1、n+2、、3n-2.其和为n+(n+1+(n+2++(3n-2=(2n-12.答案:n+(n+1+(n+2++(3n-2=(2n-129.(2012杭·州模拟在平面上,我们假如用一条直线去截正方形的一个角,那么截下的一个直角三角形,按图所标边长,由勾股定理有:c2=a2+b2.假想正方形换成正方体,把截线换成如图的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O-LMN,假如用S1,S2,S3表示三个侧面面积,S4表示截面面积,那么类比获得的结论是________.分析:将侧面面积类比为直角三角形的直角边,截面面积类比为直角三角形的斜边,可得S+S+S=S.答案:S+S+S=S10.平面中的三角形和空间中的四周体有好多相近似的性质,比如在三角形中:(1三角形两边之和大于第三边;(2三角形的面积S=×底×高;(3三角形的中位线平行于第三边且等于第三边的;请类比上述性质,写出空间中四周体的有关结论.解:由三角形的性质,可类比得空间四周体的有关性质为:(1四周体的随意三个面的面积之和大于第四个面的面积;(2四周体的体积V=×底面积×高;(3四周体的中位面平行于第四个面且面积等于第四个面的面积的.11.定义“等和数列”:在一个数列中,假如每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{an}是等和数列,且a1=2,公和为 5.(1求a18的值;(2求该数列的前n项和Sn.解:(1由等和数列的定义,数列{an}是等和数列,且a1=2,公和为5,易知a2n-1=2,a2n=3(n=1,2,故a18=3.(2当n为偶数时,Sn=a1+a2++an=(a1+a3++an-1+(a2+a4++an=2+2+++3+3++=n;当n为奇数时,Sn=Sn-1+an=(n-1+2=n-.综上所述:Sn=12.某少量民族的刺绣有着悠长的历史,如图(1、(2、(3、(4为她们刺绣最简单的四个图案,这些图案都是由小正方形组成,小正方形数越多刺绣越美丽.现按相同的规律刺绣(小正方形的摆放规律相同,设第n个图形包含f(n个小正方形.(1求出f(5的值;(2利用合情推理的“归纳推理思想”归纳出f(n+1与f(n之间的关系式,并依据你获得的关系式求出f(n的表达式;(3求++++的值.解:(1f(5=41.(2由于f(2-f(1=4=4×1,f(3-f(2=8=4×2,f(4-f(3=12=4×3,f(5-f(4=16=4×4,由上式规律,所以得出f(n+1-f(n=4n.由于f(n+1-f(n=4n,所以f(n+1=f(n+4n,f(n=f(n-1+4(n-1f(n-2+4(n-1+4(n-2f(n-3+4(n-1+4(n-2+4(n-3=f(1+4(n-1+4(n-2+4(n-3++42n2-2n+1.(3当n≥2时,(-,∴++++1+1+=-.1.(2012江·西高考察看以下各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,,则a10+b10=(A.28B.76C.123D.199分析:选C记an+bn=f(n,则f(3=f(1+f(2=1+3=4;f(4=f(2+f(3=3+4=7;f(5=f(3+f(4=11.经过察看不难发现f(n=f(n-1+f(n-2(n∈N*,n≥3,则f(6=f(4+f(5=18;f(7=f(5+f(6=29;f(8=f(6+f(7=47;f(9=f(7+f(8=76;f(10=f(8+f(9=123.所以a10+b10=123.2.关于命题:若O是线段AB上一点,则有||·+||·=0.将它类比到平面的情况是:若O是△ABC内一点,则有到空间情况应当是:若O是四周体S△OBC·+S△OCA·+S△OBA·ABCD内一点,则有________.=0,将它类比分析:将平面中的有关结论类比到空间,往常是将平面中的图形的面积类比为空间中的几何体的体积,所以依题意可知若O为四周体ABCD内一点,则有VO-BCD·+VO-ACD·+VO-ABD·+VO-ABC·=0.答案:VO-BCD·+VO-ACD·+VO-ABD·+VO-ABC·=03.(2012·建高考某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常福数:(1sin213°+cos217°-sin13cos°17;°(2sin215°+cos215°-sin15cos°15;°(3sin218°+cos212°-sin18cos°12;°(4sin2(-18°+cos248°-sin(-18°cos48;°(5sin2(-25°+cos255°-sin(-25°cos55.°(1试从上述五个式子中选择一个,求出这个常数;(2依据(1的计算结果,将该同学的发现推行为三角恒等式,并证明你的结论.解:(1选择(2式,计算以下:sin215°+cos215°-sin15cos°15=°1-sin30°1-=.(2三角恒等式为sin2α+cos2(30°-α-sinα·cos(30-°α=.证明以下:法一:sin2α+cos2(30°-α-sinαcos(30°-α=sin2α+(cos30°cosα+sin30sin°α2-sinα(cos30°·cosα+sin30°sinαsin2α+cos2α+sinαcosα+sin2α-sinαcosα-sin2αsin2α+cos2α.法二:sin2α+cos2(30°-α-sinαcos(30°-α=+-sinα(cos30°cosα+sin30sin°α=-cos2α++(cos60cos°2α+sin60°sin2α-sinαcosα-sin2α=-cos2α++cos2α+sin2α-sin2α-(1-cos2α1-cos2α-+cos2α=.1.(2012·西高考察看以下事实:江|x|+|y|=1的不一样整数解(x,y的个数为4,|x|+|y|=2的不一样整数解(x,y的个数为8,|x|+|y|=3的不一样整数解(x,y的个数为12,,则|x|+|y|=20的不一样整数解(x,y的个数为(A.76B.80C.86D.92分析:选B由特别到一般,先分别计算|x|+|y|的值为1,2,3时,对应的(x,y的不一样整数解的个数,再猜想|x|+|y|=n时,对应的不一样整数解的个数.经过察看能够发现|x|+|y|的值为1,2,3时,对应的(x,y的不一样整数解的个数为4,8,12,可推出当|x|+|y|=n时,对应的不一样整数解(x,y的个数为4n,所以|x|+|y|=20的不一样整数解(x,y的个数为80.2.(2012·东、豫北名校测试已知以低等式:豫3-4=(32-42,32-3×4+42=(33+43,33-32×4+3×42-43=(34-44,34-33×4+32×42-3×43+44=(35+45,则由上述等式可归纳获得3n-3n-1×4+3n-2×42-+(-1n4n=________(n∈N*.分析:依题意及不完整归纳法得,3n-3n-1×4+3n-2×42-+(-1n4n=[3n+1-(-4n+1].答案:[3n+1-(-4n+1]。
第六节简单的三角恒等变换[知识能否忆起]半角公式(不要求记忆) 1.用cos α表示sin 2α2,cos 2α2,tan2α2.sin2α2=1-cos α2;cos2α2=1+cos α2;tan2α2=1-cos α1+cos α. 2.用cos α表示sin α2,cos α2,tan α2.sin α2=±1-cos α2;cos α2=± 1+cos α2; tan α2=±1-cos α1+cos α.3.用sin α,cos α表示tan α2.tan α2=sin α1+cos α=1-cos αsin α.[小题能否全取]1.(教材习题改编)已知cos α=13,α∈(π,2π),则cos α2等于()A.63B .-63 C.33D .-33解析:选B ∵cos α=13,α∈(π,2π),∴α2∈⎝ ⎛⎭⎪⎫π2,π,∴cos α2=-1+cos α2=- 1+132=-63.2.已知函数f (x )=cos 2⎝ ⎛⎭⎪⎫π4+x -cos 2⎝ ⎛⎭⎪⎫π4-x ,则f ⎝ ⎛⎭⎪⎫π12等于( )A.12B .-12 C.32D .-32解析:选B f (x )=cos 2⎝ ⎛⎭⎪⎫π4+x -sin 2⎝ ⎛⎭⎪⎫x +π4=-sin 2x ,∴f ⎝ ⎛⎭⎪⎫π12=-sin π6=-12.3.已知tan α=12,则cos 2α+sin 2α+1cos 2α等于( ) A .3 B .6 C .12 D.32解析:选A cos 2α+sin 2α+1cos 2α=2cos 2α+2sin α·cos αcos 2α =2+2tan α=3. 4.sin 20°cos 20°cos 50°=________.解析:sin 20°cos 20°cos 50°=12sin 40°cos 50°=12sin 40°sin 40°=12.答案:125.若1+tan α1-tan α=2 013,则1cos 2α+tan 2α=________.解析:1cos 2α+tan 2α=1+sin 2αcos 2α=cos α+sin α2cos 2α-sin 2α=cos α+sin αcos α-sin α=1+tan α1-tan α=2 013.答案:2 013三角恒等变换的常见形式三角恒等变换中常见的三种形式:一是化简;二是求值;三是三角恒等式的证明. (1)三角函数的化简常见的方法有切化弦、利用诱导公式、同角三角函数关系式及和、差、倍角公式进行转化求解.(2)三角函数求值分为给值求值(条件求值)与给角求值,对条件求值问题要充分利用条件进行转化求解.(3)三角恒等式的证明,要看左右两侧函数名、角之间的关系,不同名则化同名,不同角则化同角,利用公式求解变形即可.三角函数式的化简典题导入[例1] 化简2cos 4x -2cos 2x +122tan ⎝ ⎛⎭⎪⎫π4-x sin 2⎝ ⎛⎭⎪⎫π4+x .[自主解答] 原式=-2sin 2x cos 2x +122sin ⎝ ⎛⎭⎪⎫π4-x cos 2⎝ ⎛⎭⎪⎫π4-x cos ⎝ ⎛⎭⎪⎫π4-x=121-sin 22x2sin ⎝ ⎛⎭⎪⎫π4-x cos ⎝ ⎛⎭⎪⎫π4-x =12cos 22x sin ⎝ ⎛⎭⎪⎫π2-2x=12cos 2x . 由题悟法三角函数式的化简要遵循“三看”原则(1)一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”;(3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式要通分”等.以题试法1.化简⎝ ⎛⎭⎪⎪⎫1tan α2-tan α2·⎝ ⎛⎭⎪⎫1+tan α·tan α2.解:法一:原式=⎝ ⎛⎭⎪⎫cos α2sin α2-sin α2cos α2·⎝⎛⎭⎪⎫1+sin αcos α·sin α2cosα2=cos2α2-sin2α2sin α2·co s α2·cos αcos α2+sin αsinα2cos αcosα2=2cos αsin α·cos ⎝⎛⎭⎪⎫α-α2cos αcosα2=2cos αsin α·cos α2cos αcosα2=2sin α.法二:原式=1-tan2α2tanα2·⎝⎛⎭⎪⎫1+sin αsin α2cos αcos α2=2tan α·cos αcos α2+sin αsinα2cos αcosα2 =2cos αsin α·cosα2cos α·co sα2=2sin α. 三角函数式的求值典题导入[例2] (1)(2012·某某高考)sin 47°-sin 17°cos 30°cos 17°=( )A .-32B .-12C.12D.32. (2)已知α、β为锐角,sin α=35,cos ()α+β=-45,则2α+β=________.[自主解答] (1)原式=sin 30°+17°-sin17°cos 30°cos 17°=sin 30°cos 17°+cos 30°sin 17°-sin 17°cos 30°cos 17°=sin 30°cos 17°cos 17°=sin 30°=12.(2)∵sin α=35,α∈⎝ ⎛⎭⎪⎫0,π2,∴cos α=45,∵cos(α+β)=-45,α+β∈(0,π),∴sin(α+β)=35,∴sin(2α+β)=sin[α+(α+β)]=sin αcos(α+β)+cos αsin(α+β)=35×⎝ ⎛⎭⎪⎫-45+45×35=0. 又2α+β∈⎝⎛⎭⎪⎫0,3π2.∴2α+β=π. [答案] (1)C (2)π由题悟法三角函数求值有三类(1)“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的X 围,确定角.以题试法2.(2012·某某一测)已知函数f (x )=tan ⎝⎛⎭⎪⎫3x +π4.(1)求f ⎝ ⎛⎭⎪⎫π9的值;(2)设α∈⎝ ⎛⎭⎪⎫π,3π2,若f ⎝ ⎛⎭⎪⎫α3+π4=2,求cos ⎝ ⎛⎭⎪⎫α-π4的值. 解:(1)f ⎝ ⎛⎭⎪⎫π9=tan ⎝ ⎛⎭⎪⎫π3+π4=tan π3+tanπ41-tan π3tanπ4=3+11-3=-2- 3. (2)因为f ⎝ ⎛⎭⎪⎫α3+π4=tan ⎝⎛⎭⎪⎫α+3π4+π4=tan(α+π)=tan α=2,所以sin αcos α=2,即sin α=2cos α.①又sin 2α+cos 2α=1,② 由①②解得cos 2α=15.因为α∈⎝⎛⎭⎪⎫π,3π2,所以cos α=-55,sin α=-255. 所以cos ⎝ ⎛⎭⎪⎫α-π4=cos αcos π4+sin αsin π4=-55×22+⎝ ⎛⎭⎪⎫-255×22=-31010.三角恒等变换的综合应用典题导入[例3] (2011·某某高考)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x +7π4+cos ⎝⎛⎭⎪⎫x -3π4,x ∈R .(1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:[f (β)]2-2=0.[自主解答] (1)∵f (x )=sin ⎝ ⎛⎭⎪⎫x +7π4-2π+cos ⎝ ⎛⎭⎪⎫x -π4-π2=sin ⎝ ⎛⎭⎪⎫x -π4+sin ⎝ ⎛⎭⎪⎫x -π4=2sin ⎝⎛⎭⎪⎫x -π4,∴T =2π,f (x )的最小值为-2.(2)证明:由已知得cos βcos α+sin βsin α=45,cos βcos α-sin βsin α=-45.两式相加得2cos βcos α=0.∵0<α<β≤π2,∴β=π2.∴[f (β)]2-2=4sin 2π4-2=0.在本例条件不变情况下,求函数f (x )的零点的集合.解:由(1)知f (x )=2sin ⎝⎛⎭⎪⎫x -π4,∴sin ⎝⎛⎭⎪⎫x -π4=0,∴x -π4=k π(k ∈Z ),∴x =k π+π4(k ∈Z ).故函数f (x )的零点的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k π+π4,k ∈Z .由题悟法三角变换的综合应用主要是将三角变换与三角函数的性质相结合,通过变换把函数化为y =A sin(ωx +φ)的形式再研究性质,解题时注意观察角、名、结构等特征,注意利用整体思想解决相关问题.以题试法3.已知函数f (x )=2cos x cos ⎝⎛⎭⎪⎫x -π6-3sin 2x +sin x cos x .(1)求f (x )的最小正周期;(2)当α∈[0,π]时,若f (α)=1,求α的值.解:(1)因为f (x )=2cos x cos ⎝⎛⎭⎪⎫x -π6-3sin 2x +sin x cos x=3cos 2x +sin x cos x -3sin 2x +sin x cos x =3cos 2x +sin 2x =2sin ⎝ ⎛⎭⎪⎫2x +π3, 所以最小正周期T =π.(2)由f (α)=1,得2sin ⎝ ⎛⎭⎪⎫2α+π3=1, 又α∈[0,π],所以2α+π3∈⎣⎢⎡⎦⎥⎤π3,7π3,所以2α+π3=5π6或2α+π3=13π6,故α=π4或α=11π12.1.在△ABC 中,tan B =-2,tan C =13,则A 等于( )A.π4B.3π4C.π3D.π6解析:选A tan A =tan[π-(B +C )]=-tan(B +C )=-tan B +tan C1-tan B tan C =--2+131--2×13=1.故A =π4.2.sin180°+2α1+cos 2α·cos 2αcos 90°+α等于( )A .-sin αB .-cos αC .sin αD .cos α解析:选D 原式=-sin 2α·cos 2α1+cos 2α·-sin α=2sin α·cos α·cos 2α2cos 2α·sin α=cos α. 3.(2013·某某调研)已知直线l: x tan α-y -3tan β=0的斜率为2,在y 轴上的截距为1,则tan(α+β)=( )A .-73B.73C.57D .1 解析:选D 依题意得,tan α=2,-3tan β=1, 即tan β=-13,tan(α+β)=tan α+tan β1-tan αtan β=2-131+23=1.4.(2012·某某高考)若θ∈⎣⎢⎡⎦⎥⎤π4,π2,sin 2θ=378,则sin θ=( )A.35B.45C.74D.34解析:选D 因为θ∈⎣⎢⎡⎦⎥⎤π4,π2,所以2θ∈⎣⎢⎡⎦⎥⎤π2,π,所以cos 2θ<0,所以cos 2θ=-1-sin 22θ=-18.又cos 2θ=1-2sin 2θ=-18,所以sin 2θ=916,所以sin θ=34.5.(2012·某某质检)计算tan ⎝ ⎛⎭⎪⎫π4+α·cos 2α2cos 2⎝ ⎛⎭⎪⎫π4-α的值为( )A .-2B .2C .-1D .1解析:选D tan ⎝ ⎛⎭⎪⎫π4+α·cos 2α2cos 2⎝ ⎛⎭⎪⎫π4-α=sin ⎝ ⎛⎭⎪⎫π4+α·cos 2α2sin 2⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫π4+α=cos 2α2sin ⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫π4+α=cos 2αsin 2⎝ ⎛⎭⎪⎫π4+α=cos 2αsin ⎝ ⎛⎭⎪⎫π2+2α=cos 2αcos 2α=1.6.定义运算⎪⎪⎪⎪⎪⎪ab cd =ad -bc .若cos α=17,⎪⎪⎪⎪⎪⎪sin α sin βcos α cos β=3314,0<β<α<π2,则β等于( )A.π12B.π6 C.π4D.π3解析:选D 依题意有sin αcos β-cos αsin β =sin(α-β)=3314,又0<β<α<π2,∴0<α-β<π2,故cos(α-β)=1-sin2α-β=1314,而cos α=17,∴sin α=437,于是sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β) =437×1314-17×3314=32. 故β=π3.7.若tan ⎝ ⎛⎭⎪⎫π4-θ=3,则cos 2θ1+sin 2θ=________. 解析:∵tan ⎝ ⎛⎭⎪⎫π4-θ=1-tan θ1+tan θ=3,∴tan θ=-12.∴cos 2θ1+sin 2θ=cos 2θ-sin 2θsin 2θ+2sin θcos θ+cos 2θ =1-tan 2θtan 2θ+2tan θ+1=1-1414-1+1=3.答案:38.若锐角α、β满足(1+3tan α)(1+3tan β)=4,则α+β=________. 解析:由(1+3tan α)(1+3tan β)=4, 可得tan α+tan β1-tan αtan β=3,即tan(α+β)= 3.又α+β∈(0,π),所以α+β=π3.答案:π39.计算:cos 10°+3sin 10°1-cos 80°=________.解析:cos 10°+3sin 10°1-cos 80°=2sin 30°cos 10°+cos 30°sin 10°2sin 240°=2sin 40°2sin 40°= 2.答案: 210.已知函数f (x )=sin x +cos x ,f ′(x )是f (x )的导函数. (1)求f ′(x )及函数y =f ′(x )的最小正周期;(2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,求函数F (x )=f (x )f ′(x )+f 2(x )的值域.解:(1)由题意可知,f ′(x )=cos x -sin x =-2·sin ⎝⎛⎭⎪⎫x -π4,所以y =f ′(x )的最小正周期为T =2π. (2)F (x )=cos 2x -sin 2x +1+2sin x cos x =1+sin 2x +cos 2x =1+2sin ⎝⎛⎭⎪⎫2x +π4.∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴2x +π4∈⎣⎢⎡⎦⎥⎤π4,5π4,∴sin ⎝ ⎛⎭⎪⎫2x +π4∈⎣⎢⎡⎦⎥⎤-22,1. ∴函数F (x )的值域为[0,1+ 2 ].11.已知0<α<π2<β<π,tan α2=12,cos(β-α)=210.(1)求sin α的值; (2)求β的值.解:(1)∵tan α2=12,∴tan α=2tanα21-tan 2α2=2×121-⎝ ⎛⎭⎪⎫122=43,由⎩⎪⎨⎪⎧sin αcos α=43,sin 2α+cos 2α=1,解得sin α=45⎝ ⎛⎭⎪⎫sin α=-45舍去.(2)由(1)知cos α=1-sin 2α=1-⎝ ⎛⎭⎪⎫452=35, 又0<α<π2<β<π,∴β-α∈(0,π),而cos(β-α)=210, ∴sin(β-α)=1-cos 2β-α=1-⎝⎛⎭⎪⎫2102=7210, 于是sin β=sin[α+(β-α)]=sin αcos(β-α)+cos αsin(β-α) =45×210+35×7210=22. 又β∈⎝ ⎛⎭⎪⎫π2,π,∴β=3π4.12.已知sin(2α+β)=3sin β,设tan α=x ,tan β=y ,记y =f (x ). (1)求证:tan(α+β)=2tan α; (2)求f (x )的解析式.解:(1)证明:由sin(2α+β)=3sin β, 得sin [(α+β)+α]=3sin [(α+β)-α],即sin(α+β)cos α+cos(α+β)sin α=3sin(α+β)cos α-3cos(α+β)sinα,∴sin(α+β)cos α=2cos(α+β)sin α. ∴tan(α+β)=2tan α.(2)由(1)得tan α+tan β1-tan αtan β=2tan α,即x +y1-xy =2x ,∴y =x 1+2x 2,即f (x )=x1+2x2.1.(2012·某某质检)已知曲线y =2sin ⎝ ⎛⎭⎪⎫x +π4cos ⎝ ⎛⎭⎪⎫π4-x 与直线y =12相交,若在y 轴右侧的交点自左向右依次记为P 1,P 2,P 3,…,则|15P P |等于( )A .π B.2π C .3π D.4π解析:选B 注意到y =2sin ⎝ ⎛⎭⎪⎫x +π4cos ⎝ ⎛⎭⎪⎫π4-x =2sin 2⎝ ⎛⎭⎪⎫x +π4=1-cos 2⎝⎛⎭⎪⎫x +π4=1+sin 2x ,又函数y =1+sin 2x 的最小正周期是2π2=π,结合函数y =1+sin 2x 的图象(如图所示)可知,|15P P |=2π.2.3-sin 70°2-cos 210°等于( ) A.12B.22 C .2 D.32解析:选C 3-sin 70°2-cos 2 10°=3-cos 20°2-cos 210°=3-2cos 210°-12-cos 210°=22-cos 210°2-cos 210°=2. 3.(2012·某某重点高中模拟)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3+sin ⎝ ⎛⎭⎪⎫2x -π3+3cos 2x-m ,若f (x )的最大值为1.(1)求m 的值,并求f (x )的单调递增区间;(2)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若f (B )=3-1,且3a =b +c ,试判断三角形的形状.解:(1)f (x )=2sin 2x ·cos π3+3cos 2x -m =sin 2x +3cos 2x -m =2sin ⎝ ⎛⎭⎪⎫2x +π3-m .又f (x )max =2-m ,所以2-m =1,得m =1. 由-π2+2k π≤2x +π3≤π2+2k π(k ∈Z )得到k π-5π12≤x ≤k π+π12(k ∈Z ),所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-5π12,k π+π12(k ∈Z ).(2)由f (B )=3-1,得2sin ⎝ ⎛⎭⎪⎫2B +π3-1=3-1, 所以B =π6.又3a =b +c ,则3sin A =sin B +sin C ,3sin A =12+sin ⎝ ⎛⎭⎪⎫5π6-A ,即sin ⎝ ⎛⎭⎪⎫A -π6=12,所以A =π3,C =π2,故△ABC 为直角三角形.1.求证:tan α+1tan ⎝ ⎛⎭⎪⎫π4+α2=1cos α.证明:左边=sin αcos α+cos ⎝ ⎛⎭⎪⎫π4+α2sin ⎝ ⎛⎭⎪⎫π4+α2=sin αsin ⎝ ⎛⎭⎪⎫π4+α2+cos αcos ⎝ ⎛⎭⎪⎫π4+α2cos αsin ⎝ ⎛⎭⎪⎫π4+α2=cos ⎝ ⎛⎭⎪⎫π4+α2-αcos αsin ⎝ ⎛⎭⎪⎫π4+α2=cos ⎝ ⎛⎭⎪⎫π4-α2cos αsin ⎝ ⎛⎭⎪⎫π4+α2=sin ⎝ ⎛⎭⎪⎫π4+α2cos αsin ⎝ ⎛⎭⎪⎫π4+α2=1cos α=右边.故原式得证.2.已知f (x )=⎝ ⎛⎭⎪⎫1+1tan x sin 2x -2sin ⎝ ⎛⎭⎪⎫x +π4·sin ⎝ ⎛⎭⎪⎫x -π4. (1)若tan α=2,求f (α)的值; (2)若x ∈⎣⎢⎡⎦⎥⎤π12,π2,求f (x )的取值X 围.解:(1)f (x )=(sin 2x +sin x cos x )+2sin ⎝ ⎛⎭⎪⎫x +π4·cos ⎝⎛⎭⎪⎫x +π4=1-cos 2x 2+12sin 2x +sin ⎝⎛⎭⎪⎫2x +π2=12+12(sin 2x -cos 2x )+cos 2x=12(sin 2x +cos 2x )+12. 由tan α=2,得sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1=45. cos 2α=cos 2α-sin 2αsin 2α+cos 2α=1-tan 2α1+tan 2α=-35. 所以f (α)=12(sin 2α+cos 2α)+12=35.(2)由(1)得f (x )=12(sin 2x +cos 2x )+12=22sin ⎝⎛⎭⎪⎫2x +π4+12.由x ∈⎣⎢⎡⎦⎥⎤π12,π2,得5π12≤2x +π4≤54π. 故-22≤sin ⎝⎛⎭⎪⎫2x +π4≤1,则0≤f (x )≤2+12,所以f (x )的取值X 围是⎣⎢⎡⎦⎥⎤0,2+12.。
抛_物_线[知识能否忆起]1.抛物线定义平面内与一个定点F和一条定直线l(l不经过点F)距离相等的点的轨迹叫做抛物线,点F叫做抛物线的焦点,直线l叫做抛物线的准线.2.抛物线的标准方程与几何性质[小题能否全取]1.(教材习题改编)已知抛物线的焦点坐标是(0,-3),则抛物线的标准方程是( ) A .x 2=-12y B .x 2=12y C .y 2=-12xD .y 2=12x解析:选A ∵p2=3,∴p =6,∴x 2=-12y .2.(教材习题改编)抛物线y =ax 2的准线方程是y =2,则a 的值是( ) A.18 B .-18C .8D .-8解析:选B 抛物线的标准方程为x 2=1ay .则a <0且2=-14a ,得a =-18.3.已知倾斜角为60°的直线l 通过抛物线x 2=4y 的焦点,且与抛物线相交于A ,B 两点,则弦AB 的长为( )A .4B .6C .10D .16解析:选D 设点A (x 1,y 1),B (x 2,y 2),则依题意得焦点F (0,1),准线方程是y =-1,直线l :y =3x +1,由⎩⎨⎧y =3x +1,x 2=4y ,消去x 得y 2-14y +1=0,y 1+y 2=14,|AB |=|AF |+|BF |=(y 1+1)+(y 2+1)=(y 1+y 2)+2=16.4.(2012²郑州模拟)已知斜率为2的直线l 过抛物线y 2=ax (a >0)的焦点F ,且与y 轴相交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线方程为________.解析:依题意得,|OF |=a 4,又直线l 的斜率为2,可知|AO |=2|OF |=a2,△AOF 的面积等于12²|AO |²|OF |=a 216=4,则a 2=64.又a >0,所以a =8,该抛物线的方程是y 2=8x .答案:y 2=8x5.设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是________.解析:其准线方程为x =-2,又由点P 到y 轴的距离为4,则P 点横坐标x P =4,由定义知|PF |=x P +p2=6.答案:61.抛物线方程中,字母p 的几何意义是抛物线的焦点F 到准线的距离,p2等于焦点到抛物线顶点的距离,记牢对解题非常有帮助.2.用抛物线定义解决问题,体现了等价转换思想的应用.3.由y 2=mx (m ≠0)或x 2=my (m ≠0)求焦点坐标时,只需将x 或y 的系数除以4,再确定焦点位置即可.典题导入[例1] (1)(2011²辽宁高考)已知F 是拋物线y 2=x 的焦点,A ,B 是该拋物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为( )A.34 B .1 C.54D.74(2)(2012²曲阜师大附中质检)在抛物线C :y =2x 2上有一点P ,若它到点A (1,3)的距离与它到抛物线C 的焦点的距离之和最小,则点P 的坐标是( )A .(-2,1)B .(1,2)C .(2,1)D .(-1,2)[自主解答] (1)如图,由抛物线的定义知,|AM |+|BN |=|AF |+|BF |=3,|CD |=32,所以中点C 的横坐标为32-14=54.(2)由题知点A 在抛物线内部,根据抛物线定义,问题等价于求抛物线上一点P ,使得该点到点A 与到抛物线的准线的距离之和最小,显然点P 是直线x =1与抛物线的交点,故所求P 点的坐标是(1,2).[答案] (1)C (2)B由题悟法涉及抛物线上的点到焦点(准线)的距离问题,可优先考虑利用抛物线的定义转化为点到准线(焦点)的距离问题求解.以题试法1.(2012²安徽高考)过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点.若|AF |=3,则|BF |=________.解析:由题意知,抛物线的焦点F 的坐标为(1,0),又∵|AF |=3,由抛物线定义知,点A 到准线x =-1的距离为3,∴点A 的横坐标为2.将x =2代入y 2=4x 得y 2=8,由图知,y =22, ∴A (2,22),∴直线AF 的方程为y =22(x -1).又⎩⎨⎧y =22x -1,y 2=4x ,解得⎩⎪⎨⎪⎧x =12,y =-2,或⎩⎨⎧x =2,y =2 2.由图知,点B 的坐标为⎝ ⎛⎭⎪⎫12,-2, ∴|BF |=12-(-1)=32.答案:32典题导入[例2] (1)(2012²山东高考)已知双曲线C 1:x 2a 2-y 2b2=1(a >0,b >0)的离心率为2.若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为( )A .x 2=833yB .x 2=1633yC .x 2=8yD .x 2=16y(2)(2012²四川高考)已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点M (2,y 0).若点M 到该抛物线焦点的距离为3,则|OM |=( )A .2 2B .2 3C .4D .2 5[自主解答] (1)∵双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,∴c a =a 2+b 2a=2,∴b =3a ,∴双曲线的渐近线方程为3x ±y =0,∴抛物线C 2:x 2=2py (p >0)的焦点⎝ ⎛⎭⎪⎫0,p 2到双曲线的渐近线的距离为⎪⎪⎪⎪⎪⎪3³0±p 22=2,∴p =8.∴所求的抛物线方程为x 2=16y .(2)依题意,设抛物线方程是y 2=2px (p >0),则有2+p2=3,得p =2,故抛物线方程是y 2=4x ,点M 的坐标是(2,±22),|OM |=22+8=2 3.[答案] (1)D (2)B由题悟法1.求抛物线的方程一般是利用待定系数法,即求p 但要注意判断标准方程的形式. 2.研究抛物线的几何性质时,一是注意定义转化应用;二是要结合图形分析,同时注意平面几何性质的应用.以题试法2.(2012²南京模拟)已知抛物线x 2=4y 的焦点为F ,准线与y 轴的交点为M ,N 为抛物线上的一点,且|NF |=32|MN |,则∠NMF =________.( )解析:过N 作准线的垂线,垂足为H ,则|NF |=|NH |=32|MN |,如图.∴cos ∠MNH =32, ∴∠MNH =π6,∴∠NMF =π6.答案:π6典题导入[例3] (2012²福建高考)如图,等边三角形OAB 的边长为83,且其三个顶点均在抛物线E :x 2=2py (p >0)上.(1)求抛物线E 的方程;(2)设动直线l 与抛物线E 相切于点P ,与直线y =-1相交于点Q .证明以PQ 为直径的圆恒过y 轴上某定点.[自主解答] (1)依题意,|OB |=83,∠BOy =30°.设B (x ,y ),则x =|OB |sin 30°=43,y =|OB |cos 30°=12. 因为点B (43,12)在x 2=2py 上,所以(43)2=2p ³12,解得p =2. 故抛物线E 的方程为x 2=4y . (2)证明:由(1)知y =14x 2,y ′=12x .设P (x 0,y 0),则x 0≠0,y 0=14x 20,且l 的方程为y -y 0=12x 0(x -x 0),即y =12x 0x -14x 20.由⎩⎪⎨⎪⎧y =12x 0x -14x 20,y =-1,得⎩⎪⎨⎪⎧x =x 20-42x 0,y =-1.所以Q 为⎝ ⎛⎭⎪⎫x 20-42x 0,-1.设M (0,y 1),令MP ²MQ =0对满足y 0=14x 20(x 0≠0)的x 0,y 0恒成立.由于MP =(x 0,y 0-y 1),MQ =⎝ ⎛⎭⎪⎫x 20-42x 0,-1-y 1, 由MP ²MQ =0,得x 20-42-y 0-y 0y 1+y 1+y 21=0,即(y 21+y 1-2)+(1-y 1)y 0=0.(*)由于(*)式对满足y 0=14x 20(x 0≠0)的y 0恒成立,所以⎩⎪⎨⎪⎧1-y 1=0,y 21+y 1-2=0,解得y 1=1.故以PQ 为直径的圆恒过y 轴上的定点M (0,1).由题悟法1.设抛物线方程为y 2=2px (p >0),直线Ax +By +C =0,将直线方程与抛物线方程联立,消去x 得到关于y 的方程my 2+ny +q =0.(1)若m ≠0,当Δ>0时,直线与抛物线有两个公共点; 当Δ=0时,直线与抛物线只有一个公共点; 当Δ<0时,直线与抛物线没有公共点.(2)若m =0,直线与抛物线只有一个公共点,此时直线与抛物线的对称轴平行.2.与焦点弦有关的常用结论.(以右图为依据)(1)y 1y 2=-p 2,x 1x 2=p 24.(2)|AB |=x 1+x 2+p =2psin 2θ(θ为AB 的倾斜角).(3)S △AOB =p 22sin θ(θ为AB 的倾斜角).(4)1|AF |+1|BF |为定值2p. (5)以AB 为直径的圆与准线相切. (6)以AF 或BF 为直径的圆与y 轴相切. (7)∠CFD =90°.以题试法3.(2012²泉州模拟)如图,点O 为坐标原点,直线l 经过抛物线C :y 2=4x 的焦点F .(1)若点O 到直线l 的距离为12,求直线l 的方程;(2)设点A 是直线l 与抛物线C 在第一象限的交点.点B 是以点F 为圆心,|FA |为半径的圆与x 轴的交点,试判断AB 与抛物线C 的位置关系,并给出证明.解:(1)抛物线的焦点F (1,0),当直线l 的斜率不存在时,即x =1不符合题意.当直线l 的斜率存在时,设直线l 的方程为:y =k (x -1),即kx -y -k =0. 所以,|-k |1+k 2=12,解得k =±33.故直线l 的方程为:y =±33(x -1),即x ±3y -1=0. (2)直线AB 与抛物线相切,证明如下: 设A (x 0,y 0),则y 20=4x 0.因为|BF |=|AF |=x 0+1,所以B (-x 0,0). 所以直线AB 的方程为:y =y 02x 0(x +x 0), 整理得:x =2x 0yy 0-x 0①把方程①代入y 2=4x 得:y 0y 2-8x 0y +4x 0y 0=0, Δ=64x 20-16x 0y 20=64x 20-64x 20=0, 所以直线AB 与抛物线相切.1.(2012²济南模拟)抛物线的焦点为椭圆x 24+y 29=1的下焦点,顶点在椭圆中心,则抛物线方程为( )A .x 2=-45y B .y 2=-45x C .x 2=-413yD .y 2=-413x解析:选A 由椭圆方程知,a 2=9,b 2=4,焦点在y 轴上,下焦点坐标为(0,-c ),其中c =a 2-b 2= 5.∴抛物线焦点坐标为(0,-5),∴抛物线方程为x 2=-45y .2.(2012²东北三校联考)若抛物线y 2=2px (p >0)上一点P 到焦点和抛物线的对称轴的距离分别为10和6,则p 的值为( )A .2B .18C .2或18D .4或16解析:选C 设P (x 0,y 0),则⎩⎪⎨⎪⎧x 0+p2=10,|y 0|=6,y 2=2px 0,∴36=2p ⎝⎛⎭⎪⎫10-p 2,即p 2-20p +36=0,解得p =2或18.3.(2013²大同模拟)已知抛物线y 2=2px (p >0)的准线与曲线x 2+y 2-6x -7=0相切,则p 的值为( )A .2B .1 C.12D.14解析:选A 注意到抛物线y 2=2px 的准线方程是x =-p2,曲线x 2+y 2-6x -7=0,即(x -3)2+y 2=16是圆心为(3,0),半径为4的圆.于是依题意有⎪⎪⎪⎪⎪⎪p2+3=4.又p >0,因此有p2+3=4,解得p =2. 4.(2012²郑州模拟)已知过抛物线y 2=6x 焦点的弦长为12,则此弦所在直线的倾斜角是( )A.π6或5π6B.π4或3π4C.π3或2π3D.π2解析:选B 由焦点弦长公式|AB |=2p sin 2θ得6sin 2θ=12,所以sin θ=22,所以θ=π4或3π4. 5.(2012²唐山模拟)抛物线y 2=2px 的焦点为F ,点A 、B 、C 在此抛物线上,点A 坐标为(1,2).若点F 恰为△ABC 的重心,则直线BC 的方程为( )A .x +y =0B .x -y =0C .2x +y -1=0D .2x -y -1=0解析:选C ∵点A 在抛物线上,∴4=2p ,p =2,抛物线方程为y 2=4x ,焦点F (1,0) 设点B (x 1,y 1),点C (x 2,y 2),则有y 21=4x 1,①y 22=4x 2,②由①-②得(y 1-y 2)(y 1+y 2)=4(x 1-x 2) 得k BC =y 1-y 2x 1-x 2=4y 1+y 2. 又∵y 1+y 2+23=0,∴y 1+y 2=-2,∴k BC =-2. 又∵x 1+x 2+13=1,∴x 1+x 2=2,∴BC 中点为(1,-1),则BC 所在直线方程为y +1=-2(x -1),即2x +y -1=0.6.(2013²湖北模拟)已知直线y =k (x -m )与抛物线y 2=2px (p >0)交于A 、B 两点,且OA ⊥OB ,OD ⊥AB 于D .若动点D 的坐标满足方程x 2+y 2-4x =0,则m =( )A .1B .2C .3D .4解析:选D 设点D (a ,b ),则由OD ⊥AB 于D ,得⎩⎪⎨⎪⎧b a =-1k ,b =k a -m ,则b =-km1+k2,a =-bk ;又动点D 的坐标满足方程x 2+y 2-4x =0,即a 2+b 2-4a =0,将a =-bk 代入上式,得b 2k 2+b 2+4bk =0,即bk 2+b +4k =0,-k 3m 1+k 2-km 1+k2+4k =0,又k ≠0,则(1+k 2)(4-m )=0,因此m =4.7.(2012²乌鲁木齐模拟)过抛物线y 2=4x 的焦点F 的直线交y 轴于点A ,抛物线上有一点B 满足OB ,=OA ,+OF, (O 为坐标原点),则△BOF 的面积是________.解析:由题可知F (1,0),可设过焦点F 的直线方程为y =k (x -1)(可知k 存在),则A (0,-k ),∴B (1,-k ),由点B 在抛物线上,得k 2=4,k =±2,即B (1,±2),S △BOF =12²|OF |²|y B |=12³1³2=1.答案:18.(2012²渭南模拟)已知抛物线C :y =14x 2,则过抛物线焦点F 且斜率为12的直线l 被抛物线截得的线段长为________.解析:由题意得l 的方程为y =12x +1,即x =2(y -1).代入抛物线方程得y =(y -1)2,即y 2-3y +1=0.设线段端点坐标为(x 1,y 1),(x 2,y 2),则线段长度为y 1+y 2+p =5.答案:59.(2012²广州模拟)已知直线y =k (x -2)(k >0)与抛物线y 2=8x 相交于A ,B 两点,F 为抛物线的焦点,若|FA |=2|FB |,则k 的值为________.解析:直线y =k (x -2)恰好经过抛物线y 2=8x 的焦点F (2,0),由⎩⎪⎨⎪⎧y 2=8x ,y =k x -2可得ky 2-8y -16k =0,因为|FA |=2|FB |,所以y A =-2y B ,则y A +y B =-2y B +y B =8k,所以y B=-8k,y A ²y B =-16,所以-2y 2B =-16,即y B =±22,又k >0,故k =2 2.答案:2 210.已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 1)两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC =OA +λOB,求λ的值.解:(1)直线AB 的方程是y =22⎝ ⎛⎭⎪⎫x -p 2,与y 2=2px 联立,从而有4x 2-5px +p 2=0,所以x 1+x 2=5p 4.由抛物线定义得|AB |=x 1+x 2+p =9, 所以p =4,从而抛物线方程是y 2=8x .(2)由p =4,4x 2-5px +p 2=0可简化为x 2-5x +4=0,从而x 1=1,x 2=4,y 1=-22,y 2=42,从而A (1,-22),B (4,42).设OC=(x 3,y 3)=(1,-22)+λ(4,42)=(4λ+1,42λ-22),又y 23=8x 3,即[22(2λ-1)]2=8(4λ+1),即(2λ-1)2=4λ+1, 解得λ=0或λ=2.11.如图,过抛物线y 2=4px (p >0)上一定点M (x 0,y 0)(y 0>0)作两条直线,分别交抛物线于A (x 1,y 1),B (x 2,y 2).(1)求该抛物线上纵坐标为4p 的点到点(p,0)的距离; (2)当MA 与MB 的斜率都存在,且y 1+y 2y 0=-2时,求MA 与MB 的斜率之和; (3)证明:直线AB 不可能平行于x 轴.解:(1)当y =4p 时,x =4p ,抛物线的准线方程为x =-p ,焦点为(p,0),抛物线上纵坐标为4p 的点到点(p,0)的距离,就是该点到焦点的距离,由抛物线的定义得,所求距离为4p -(-p )=5p .(2)设直线MA 的斜率为k MA ,MB 的斜率为k MB , 由y 21=4px 1,y 20=4px 0,得k MA =y 1-y 0x 1-x 0=4py 1+y 0, 同理k MB =4py 2+y 0, 又y 1+y 2y 0=-2,所以y 1+y 2=-2y 0,因为k MA +k MB =4p y 1+y 0+4p y 2+y 0=4p y 1+y 2+2y 0y 1+y 0y 2+y 0=0,所以k MA +k MB =0,故MA 与MB 的斜率之和为0.(3)证明:设直线AB 的斜率为k AB ,则k AB =y 2-y 1x 2-x 1=y 2-y 1y 224p -y 214p=4py 1+y 2,由(2)知y 1+y 2=-2y 0,所以k AB =-2p y 0,由于M (x 0,y 0)为定点,所以-2p y 0为定值且-2py 0≠0,故直线AB 不可能平行于x 轴.12.(2012²安徽模拟)已知椭圆C 1:x 24+y 2b 2=1(0<b <2)的离心率为32,抛物线C 2:x2=2py (p >0)的焦点是椭圆的顶点.(1)求抛物线C 2的方程;(2)过点M (-1,0)的直线l 与抛物线C 2交于E ,F 两点,过E ,F 作抛物线C 2的切线l 1,l 2,当l 1⊥l 2时,求直线l 的方程.解:(1)∵椭圆C 1的长半轴长a =2,半焦距c =4-b 2.由e =c a =4-b 22=32得b 2=1,∴椭圆C 1的上顶点为(0,1),即抛物线C 2的焦点为(0,1),故抛物线C 2的方程为x 2=4y .(2)由已知可得直线l 的斜率必存在,设直线l 的方程为y =k (x +1),E (x 1,y 1),F (x 2,y 2).由x 2=4y 得y =14x 2,∴y ′=12x .∴切线l 1,l 2的斜率分别为12x 1,12x 2.当l 1⊥l 2时,12x 1²12x 2=-1,即x 1x 2=-4.由⎩⎪⎨⎪⎧y =k x +1x 2=4y 得x 2-4kx -4k =0,∴Δ=(4k )2-4³(-4k )>0,解得k <-1或k >0.①且x 1x 2=-4k =-4,即k =1,满足①式,∴直线l 的方程为x -y +1=0.1.(2013²郑州模拟)如图,过抛物线y 2=2px (p >0)的焦点F 的直线l 交抛物线于点A 、B ,交其准线于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线的方程为( )A .y 2=9x B .y 2=6x C .y 2=3xD .y 2=3x解析:选C 过点B 作准线的垂线,垂足为B 1,记准线与x 轴的交点为F 1,则依题意得|BB 1||FF 1|=|BC ||CF |=23,所以|BB 1|=23|FF 1|=2p3,由抛物线的定义得|BF |=|BB 1|=2p3.过A ,B 作x 轴的垂线,垂足分别为D ,E ,由△BEF ∽△ADF 得23p 3=p -2p 33-p ,解得p =32.所以此抛物线的方程是y 2=3x .2.(2012²安徽高考)过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点,O 为坐标原点.若|AF |=3,则△AOB 的面积为( )A.22 B. 2 C.322D .2 2解析:选C 由题意,抛物线y 2=4x 的焦点为F (1,0),准线方程为l :x =-1,可得A 点的横坐标为2,代入y 2=4x 得y 2=8,不妨设A (2,22),则直线AB 的方程为y=22(x-1),与y 2=4x 联立得2x 2-5x +2=0,可得B ⎝ ⎛⎭⎪⎫12,-2,所以S △AOB =S △AOF +S △BOF =12³1³|y A-y B |=322.3.(2012²浙江高考)如图,在直角坐标系xOy 中,点P ⎝ ⎛⎭⎪⎫1,12到抛物线C :y 2=2px (p >0)的准线的距离为54.点M (t,1)是C 上的定点,A ,B 是C上的两动点,且线段AB 被直线OM 平分.(1)求p ,t 的值;(2)求△ABP 面积的最大值. 解:(1)由题意知⎩⎪⎨⎪⎧2pt =1,1+p 2=54,得⎩⎪⎨⎪⎧p =12,t =1.(2)设A (x 1,y 1),B (x 2,y 2),线段AB 的中点为Q (m ,m ),设直线AB 的斜率为k (k ≠0).由⎩⎪⎨⎪⎧y 21=x 1,y 22=x 2,得(y 1-y 2)(y 1+y 2)=x 1-x 2, 故k ²2m =1,所以直线AB 的方程为y -m =12m (x -m ),即x -2my +2m 2-m =0.由⎩⎪⎨⎪⎧x -2my +2m 2-m =0,y 2=x ,消去x ,整理得y 2-2my +2m 2-m =0,所以Δ=4m -4m 2>0,y 1+y 2=2m ,y 1²y 2=2m 2-m .从而|AB |= 1+1k2²|y 1-y 2|=1+4m 2²4m -4m 2.设点P 到直线AB 的距离为d ,则d =|1-2m +2m 2|1+4m 2,设△ABP 的面积为S , 则S =12|AB |²d =|1-2(m -m 2)|²m -m 2.由Δ=4m -4m 2>0,得0<m <1.令u =m -m 2,0<u ≤12,则S =u -2u 3,S ′(u )=1-6u 2.由S ′(u )=0,得u =66∈⎝ ⎛⎦⎥⎤0,12, 所以S (u )max =S ⎝⎛⎭⎪⎫66=69. 故△ABP 面积的最大值为69.1.(2012²北京高考)在直角坐标系xOy 中,直线l 过抛物线y 2=4x 的焦点F ,且与该抛物线相交于A ,B 两点,其中点A 在x 轴上方.若直线l 的倾斜角为60°,则△OAF 的面积为________.解析:直线l 的方程为y =3(x -1),即x =33y +1,代入抛物线方程得y 2-433y -4=0,解得y A =433+ 163+162=23(y B <0,舍去),故△OAF 的面积为12³1³23= 3.答案: 32.(2012²东城模拟)已知顶点在坐标原点,焦点在x 轴正半轴的抛物线上有一点A ⎝ ⎛⎭⎪⎫12,m ,A 点到抛物线焦点的距离为1. (1)求该抛物线的方程;(2)设M (x 0,y 0)为抛物线上的一个定点,过M 作抛物线的两条相互垂直的弦MP ,MQ ,求证:PQ 恒过定点(x 0+2,-y 0);(3)直线x +my +1=0与抛物线交于E ,F 两点,问在抛物线上是否存在点N ,使得△NEF 为以EF 为斜边的直角三角形?若有,求出该点存在时需满足的条件;若无,请说明理由.解:(1)由题意可设抛物线的方程为y 2=2px (p >0),则由抛物线的定义可得p 2+12=1,即p =1,所以该抛物线的方程为y 2=2x .(2)由题意知直线PQ 与x 轴不平行,设直线PQ 的方程为x =my +n ,代入y 2=2x 得y 2-2my -2n =0.所以y 1+y 2=2m ,y 1y 2=-2n ,其中y 1,y 2分别是P ,Q 的纵坐标,x 1,x 2分别是P ,Q 的横坐标.因为MP ⊥MQ ,所以k MP ²k MQ =-1.即y 1-y 0x 1-x 0²y 2-y 0x 2-x 0=-1, 又由x 1=y 212,x 2=y 222,x 0=y 202,代入上式得2y 1+y 0²2y 2+y 0=-1,所以(y 1+y 0)(y 2+y 0)=-4. 即y 1y 2+(y 1+y 2)y 0+y 20+4=0,所以(-2n )+2my 0+2x 0+4=0,即n =my 0+x 0+2. 所以直线PQ 的方程为x =my +my 0+x 0+2, 所以直线PQ 恒过定点(x 0+2,-y 0).(3)假设存在点N (x 0,y 0),设E (x 1,y 1),F (x 2,y 2).由⎩⎪⎨⎪⎧y 2=2x ,x +my +1=0,消去x 得y2+2my +2=0,则y 1+y 2=-2m ,y 1y 2=2,且(2m )2-8>0,即m 2>2.由于NE ⊥NF ,所以y 1-y 0x 1-x 0²y 2-y 0x 2-x 0=-1,又点E ,F ,N 在抛物线上,所以x 1=y 212,x 2=y 222,x 0=y 202,代入y 1-y 0x 1-x 0²y 2-y 0x 2-x 0=-1,得2y 1+y 0²2y 2+y 0=-1,即(y 1+y 0)(y 2+y 0)=-4,即y 1y 2+y 0(y 1+y 2)+y 20+4=0,将y 1+y 2=-2m ,y 1y 2=2代入并整理得y 20-2my 0+6=0,只要4m2-24>0,即m 2>6,该方程即有实数解.所以只要m 2>6就存在满足条件的点N ,当m 2≤6时不存在满足条件的点N .。
第二节同角三角函数的根本关系与诱导公式[ 知识能否忆起 ]1.同角三角函数的根本关系式(1 平方关系: sin2α+cos2α=1(α∈R.(2 商数关系: tan α=.2.六组诱导公式角2kπ+α(k∈Zπ +α-απ-α-α+α函数正弦sin_α-sin_α-sin_αsin_αcos_αcos_α余弦cos_α-cos_αcos_α-cos_αsin_α-sin_α正切tan_ αtan_α-tan_α-tan_α对于角“±α〞(k∈Z 的三角函数记忆口诀“奇变偶不变,符号看象限〞,“奇变偶不变〞是指“当 k 为奇数时,正弦变余弦,余弦变正弦;当 k 为偶数时,函数名不变〞.“符号看象限〞是指“在α的三角函数值前面加上当α为锐角时,原函数值的符号〞.[ 小题能否全取 ]1.sin 585°的值为 (A.- B.C.- D.解析:选 A sin 585 °= sin(360 °+225°=s in 225°= sin(180°+45°=- sin 45°=-.2.(教材习题改编 sin( π+θ=-cos(2π-θ,|θ|< ,那么θ等于 (A.- B.-C. D.解析:选 D∵sin(π+θ=-cos(2π-θ,∴- sin θ=-cos θ,∴ tan θ= .∵|θ|< ,∴θ= .3. tan θ= 2,那么= (A.2 B.- 2C.0 D.解析:选 B原式====- 2.4. (教材习题改编如果sin( +πA =,那么c os 的值是 ________.解析:∵ sin( π+ A =,∴- sin A = .∴c os=- sin A =.答案:5.α是第二象限角,tan α=-,那么cos α= ________.解析:由题意知cos α<0,又 sin 2α+cos2α=1,tan α==- .∴ cos α=- .答案:-应用诱导公式时应注意的问题(1 利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负号—脱周期—化锐角.特别注意函数名称和符号确实定.(2 在利用同角三角函数的平方关系时,假设开方,要特别注意判断符号.(3 注意求值与化简后的结果要尽可能有理化、整式化.同角三角函数的根本关系式典题导入[例 1](1(2021 江·西高考假设tan θ+= 4,那么 sin 2θ=(A. B.C. D.(2 sin(3π+α=2sin,那么= ________.[自主解答]+=,(1∵ tan θ4∴+=4,∴=4,即=4,∴sin 2θ=.(2 法一:由 sin(3π+α=2sin 得 tan α=2.原式===- .法二:由得 sin α= 2cos α.原式==- .[答案] (1D (2-在(2 的条件下, sin2α+sin 2α= ________.解析:原式= sin2α+2sin αcos α=== .答案:由题悟法1.利用 sin2α+cos2α=1 可以实现角α的正弦、余弦的互化,利用= tan α可以实现角α的弦切互化.2.应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用 (sin α±cos α2=1±2sin αcos α,可以知一求二 (参阅本节题型技法点拨.3.注意公式逆用及变形应用:1= sin2α+ cos2α, sin2α=1- cos2α, cos2α= 1- sin2α.以题试法1. (1(2021 长·沙模拟假设角α的终边落在第三象限,那么+的值为( A.3 B.- 3C.1 D.- 1(2 sin α= 2sin β, tan α= 3tan β,那么 cos α= ________.解析: (1 由角α的终边落在第三象限得sin α<0, cos α<0,故原式=+=+=-1- 2=- 3.(2∵ sin α= 2sin β, tan α= 3tan β,∴sin2α= 4sin2β,①tan2α= 9tan2β,②由①÷②得: 9cos2α= 4cos2β,③①+③得: sin2α+ 9cos2α=4,∵c os2α+ sin2α= 1,∴cos2α=,即 cos α=±.答案: (1B(2 ±三角函数的诱导公式典题导入[例 2](1= ________.(2 A=+ (k∈Z,那么 A 的值构成的集合是(A . {1 ,- 1,2,- 2}B. { - 1,1}C. {2 ,- 2} D .{1 ,- 1,0,2,- 2}[自主解答 ] (1 原式====-=-·=- 1.(2 当 k 为偶数时, A=+= 2;k 为奇数时, A=-=- 2.[答案 ] (1- 1(2C由题悟法利用诱导公式化简求值时的原那么(1 “负化正〞,运用-α的诱导公式将任意负角的三角函数化为任意正角的三角函数.(2 “大化小〞,利用 k·360 °+α(k∈Z的诱导公式将大于 360 °的角的三角函数化为 0°到360 °的三角函数.(3 “小化锐〞,将大于90°的角化为0°到 90°的角的三角函数.(4 “锐求值〞,得到 0°到 90°的三角函数后,假设是特殊角直接求得,假设是非特殊角可由计算器求得.以题试法2. (1(2021 滨·州模拟sin 600 +°tan 240 的°值等于 (A.- B.C.-D. +(2 f(x= asin( xπ+α+ bcos( xπ-β,其中α,β, a, b 均为非零实数,假设f(2 012=- 1,那么 f(2 013 等于 ________.解析: (1sin 600°+ tan 240°= sin(720 °- 120°+ tan(180 °+ 60°=- sin 120°+ tan 60°=-+=.(2 由诱导公式知f(2 012 = asin α+bcos β=- 1,∴f(2 013 = asin( π+α+bcos( π-β=- (asin α+ bcos β= 1.答案: (1B (21诱导公式在三角形中的应用典题导入[例 3]在△ABC中,假设sin(2-πA=-sin(π-B,cos A=-cos (π-B,求△ABC的三个内角.[自主解答 ]由得sin A =sin B , cos A= cos B 两式平方相加得2cos2A = 1,即 cos A =或 cos A=- .(1 当 cos A=时, cos B=,又角 A 、 B 是三角形的内角,∴A =, B =,∴C=π- (A + B = .(2 当 cos A=-时, cos B=-,又角 A 、B 是三角形的内角,∴A=,B=,不合题意.综上知, A=, B=, C= .由题悟法1.诱导公式在三角形中经常使用,常用的角的变形有: A + B =π- C,2A + 2B = 2π-2C,++=等,于是可得sin(A + B = sin C, cos= sin 等;2.求角时,通常是先求出该角的某一个三角函数值,再结合其范围,确定该角的大小.以题试法3.在三角形ABC 中,(1 求证: cos2+ cos2= 1;(2 假设 cossintan (C-π <0,求证:三角形ABC 为钝角三角形.证明: (1 在△ ABC 中, A+B=π- C,那么=-,所以 cos= cos= sin,故 cos2+ cos2= 1.(2 假设 cossintan (C-π <0,那么(- sin A(-cos Btan C<0,即 sin Acos Btan C<0,∵在△ ABC 中, 0<A<π,0< B<π,0<C<π,∴s in A>0 ,或∴B 为钝角或 C 为钝角,故△ ABC 为钝角三角形.1. sin(θ+π <0, cos(θ-π >0,那么以下不等关系中必定成立的是( A . sin θ<0,cos θ>0B. sin θ>0, cos θ<0C. sin θ>0,cos θ>0 D . sin θ<0 , cos θ<0解析:选 B sin(θ+π<0,∴- sin θ<0, sin θ>0.∵c os(θ-π>0,∴- cos θ>0.∴ cos θ<0.2. (2021 ·徽名校模拟安tan x= 2,那么 sin2x+ 1= (A.0 B.C. D.解析:选 B sin2x+ 1=== .3. (2021 ·西高考假设=,那么江tan 2α= (A.- B.C.- D.解析:选 B∵ ==,∴ tanα=-3.∴tan 2α== .4. (2021 ·博模拟淄sin 2α=-,α∈,那么 sin α+cos α=( A.- B.C.- D.解析:选 B(sin α+cos α2= 1+ 2sin αcos α=1+ sin 2α=,又α∈, sin α+ cos α>0,所以 sin α+cos α=.5. cos=,且 |φ|<,那么 tan φ= (A.- B.C.- D.解析:选 D cos= sin φ=,又|φ|<,那么 cos φ=,所以 tan φ= .6. 2tan α·sin α= 3,-<α< 0,那么 sin α= (A.B .-C.D.-解析:选 B由2tanα·sinα=3得,=3,即 2cos2α+ 3cos α- 2= 0,又-<α< 0,解得 cos α= (cos α=- 2 舍去,故 sin α=- .7. cos- sin 的值是 ________.解析:原式= cos+ sin = cos+ sin= .答案:8.假设= 2,那么 sin( θ- 5π sin= ________.解析:由= 2,得sin θ+ cos θ= 2(sin θ- cos θ,两边平方得:1+ 2sin θcos θ=4(1- 2sin θcos θ,故 sin θcos θ=,∴sin(θ- 5πsin= sin θcos θ= .答案:9. (2021 ·山模拟中cos=,那么 sin= ________.解析: sin= sin=- sin =- cos=- .答案:-10.求值: sin(- 1 200 ·°cos 1 290 +°cos(-1 020 °·sin( - 1 050 +°tan 945 . °解:原式=- sin 1 200 ·°cos 1 290 +° cos 1 020 °·(- sin 1 050 +°tan 945 °=- sin 120 ·°cos 210 °+ cos 300 °·(- sin 330 °+ tan 225 °=(- sin 60 ·°(- cos 30 °+ cos 60 °·sin 30 +°tan 45 °=×+×+ 1= 2.11. cos( π+α=-,且α是第四象限角,计算:(1sin(2 -πα;(2(n∈Z.解:∵ cos(π+α=-,∴-cos α=-, cos α=.又∵ α是第四象限角,∴s in α=-=- .(1sin(2π-α= sin [2π+(-α]= sin(-α=-sinα=;(2=====-=- 4.12.(2021 ·信阳模拟角α的终边经过点 P.(1 求 sin的α值;(2 求·的值.解:(1∵ |OP|=1,∴点 P 在单位圆上.由正弦函数的定义得sinα=-.(2 原式=·==,由余弦函数的定义得cos α=.故所求式子的值为 . 1.=-,那么的值是 (A.B .-C.2 D.- 2解析:选 A由于·==-1,故=.2.假设角α的终边上有一点P(- 4, a,且 sinα· cos=,那么α a的值为(A.4 B.±4C.- 4 或- D.解析:选 C依题意可知角α的终边在第三象限,点P(- 4,a 在其终边上且sinα· cos=α易得 tan α=或,那么a=- 4 或- .3. A 、 B、 C 是三角形的内角,sin A ,- cos A 是方程 x2- x+ 2a=0 的两根.(1求角 A;(2 假设=- 3,求 tan B.解: (1 由可得,sin A -cos A =1.①又 sin2A + cos2A= 1,所以 sin2A +(sin A - 12= 1,即 4sin2A - 2sin A = 0,得 sin A = 0(舍去或 sin A =,那么 A=或,将 A =或代入①知 A =时不成立,故 A=.(2 由=- 3,得 sin2B - sin Bcos B - 2cos2B= 0,∵c os B ≠0,∴ tan2B -tan B- 2=0,∴tan B = 2 或 tan B=- 1.∵tan B =- 1 使 cos2B- sin2B= 0,舍去,故 tan B = 2.1. sin= m,那么 cos 等于 (A . mB .- mC.D.-解析:选 A∵sin=m,∴cos= sin= m.2.求证: sinθ+(1tan+θcos=θ+.证明:左边= sinθ+cosθ=s in +θ+ cos θ+=+=+=+=右边.3. sin( -πα- cos( π+α= .求以下各式的值:(1sin α- cos α;(2sin3+ cos3.解:由 sin( π-α- cos(π+α=,得 sin α+ cos α=,①将①两边平方,得1+ 2sin α·cos α=,故 2sin α·cos α=- .又<α<π,∴ sin α>0, cos α<0.(1(sin α- cos α2= 1- 2sin α·cos α= 1-=,∴ sin α- cos α= .(2sin3+ cos3=cos3α-sin3α= (cos α- sin α(cos2α+ cos α·sin α+sin2α=-×=- .。
教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校第四节函数y=sin(ωx+φ)的图象及三角函数模型的简单应用[知识能否忆起]一、y=A sin(ωx+φ)的有关概念二、用五点法画y=A sin(ωx+φ)一个周期内的简图用五点法画y=A sin(ωx+φ)一个周期内的简图时,要找五个关键点,如下表所示:ωx+φ 0 π2 π 3π2 2π y =A sin(ωx +φ) 0A-A三、函数y =sin x 的图象变换得到y =A sin(ωx +φ)的图象的步骤[小题能否全取]1.函数y =sin x2的图象的一条对称轴的方程是( )A .x =0B .x =π2C .x =πD .x =2π解析:选C 由x 2=π2+k π得x =π+2k π(k ∈Z ).故x =π是函数y =sin x2的一条对称轴.2.(教材习题改编)已知简谐运动f (x )=2sin ⎝⎛⎭⎫π3x +φ⎝⎛⎭⎫|φ|<π2的图象经过点(0,1),则该简谐运动的最小正周期T 和初相φ分别为( )A .T =6,φ=π6B .T =6,φ=π3C .T =6π,φ=π6D .T =6π,φ=π3解析:选A 最小正周期为T =2ππ3=6;由2sin φ=1,得sin φ=12,φ=π6.3.(2012·安徽高考)要得到函数y =cos(2x +1)的图象,只要将函数y =cos 2x 的图象( ) A .向左平移1个单位 B .向右平移1个单位 C .向左平移12个单位D .向右平移12个单位解析:选C ∵y =cos(2x +1)=cos 2⎝⎛⎭⎫x +12, ∴只要将函数y =cos 2x 的图象向左平移12个单位即可.4.用五点法作函数y =sin ⎝⎛⎭⎫x -π6在一个周期内的图象时,主要确定的五个点是________、________、________、________、________.答案:⎝⎛⎭⎫π6,0 ⎝⎛⎭⎫2π3,1 ⎝⎛⎭⎫7π6,0 ⎝⎛⎭⎫5π3,-1 ⎝⎛⎭⎫13π6,0 5.函数y =A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0)在闭区间[-π,0]上的图象如图所示,则ω=________.解析:观察函数图象可得周期T =2π3,则T =2π3=2πω,所以ω=3.答案:31.确定y =A sin(ωx +φ)+k (A >0,ω>0,|φ|<π)中的参数的方法:在由图象求解析式时,若最大值为M ,最小值为m ,则A =M -m 2,k =M +m2,ω由周期T 确定,即由2πω=T 求出,φ由特殊点确定.2.由y =sin x 的图象变换到y =A sin(ωx +φ)的图象,两种变换的区别:先相位变换再周期变换(伸缩变换),平移的量是|φ|个单位;而先周期变换(伸缩变换)再相位变换,平移的量是|φ|ω(ω>0)个单位.原因在于相位变换和周期变换都是针对x 而言,即x 本身加减多少值,而不是于ωx 加减多少值.典题导入[例1] 已知函数f (x )=3sin ⎝⎛⎭⎫12x -π4,x ∈R .(1)画出函数f (x )在长度为一个周期的闭区间上的简图; (2)将函数y =sin x 的图象作怎样的变换可得到f (x )的图象? [自主解答] (1)列表取值:描出五个关键点并用光滑曲线连接,得到一个周期的简图.(2)先把y =sin x 的图象向右平移π4个单位,然后把所有点的横坐标扩大为原来的2倍,再把所有点的纵坐标扩大为原来的3倍,得到f (x )的图象.由题悟法函数y =A sin(ωx +φ)(A >0,ω>0)的图象的作法(1)五点法:用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象.(2)图象变换法:由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象,有两种主要途径:“先平移后伸缩”与“先伸缩后平移”.以题试法1.(2012·江西省重点中学联考)把函数y =sin ⎝⎛⎭⎫x +π6图象上各点的横坐标缩短为原来的12倍(纵坐标不变),再将图象向右平移π3个单位,那么所得图象的一条对称轴方程为( )A .x =-π2B .x =-π4C .x =π8D .x =π4解析:选A 依题意得,经过图象变换后得到的图象相应的解析式是y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π3+π6=sin ⎝⎛⎭⎫2x -π2=-cos 2x ,注意到当x =-π2时,y =-cos(-π)=1,此时y =-cos 2x 取得最大值,因此直线x =-π2是该图象的一条对称轴.典题导入[例2] (2011·江苏高考)函数f (x )=A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0)的部分图象如图所示,则f (0)的值是________.[自主解答] 由图可知:A =2,T 4=7π12-π3=π4,所以T =π,ω=2πT =2,又函数图象经过点⎝⎛⎭⎫π3,0,所以2×π3+φ=π,则φ=π3,故函数的解析式为f (x )=2sin ⎝⎛⎭⎫2x +π3, 所以f (0)=2sin π3=62.[答案]62若本例函数的部分图象变为如图所示,试求f (0).解:由图知A =5,由T 2=5π2-π=3π2,得T =3π, ∴ω=2πT =23.此时y =5sin ⎝⎛⎭⎫23x +φ. 将最高点坐标⎝⎛⎭⎫π4,5代入y =5sin ⎝⎛⎭⎫23x +φ, 得5sin ⎝⎛⎭⎫π6+φ=5,∴π6+φ=2k π+π2,∴φ=2k π+π3(k ∈Z ). ∴f (x )=5sin ⎝⎛⎭⎫23x +π3,f (0)=5sin π3=532.由题悟法确定y =A sin(ωx +φ)+b (A >0,ω>0)的步骤和方法(1)求A ,b ,确定函数的最大值M 和最小值m ,则A =M -m 2,b =M +m2.(2)求ω,确定函数的周期T ,则可得ω=2πT .(3)求φ,常用的方法有:①代入法:把图象上的一个已知点代入(此时A ,ω,b 已知)或代入图象与直线y =b 的交点求解(此时要注意交点在上升区间上还是在下降区间上).②五点法:确定φ值时,往往以寻找“五点法”中的某一个点为突破口.具体如下: “第一点”(即图象上升时与x 轴的交点)时ωx +φ=0;“第二点”(即图象的“峰点”)时ωx +φ=π2;“第三点”(即图象下降时与x 轴的交点)时ωx +φ=π;“第四点”(即图象的“谷点”)时ωx +φ=3π2;“第五点”时ωx +φ=2π(如例2).以题试法2.(1) (2012·浙江金华模拟)已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的图象与y 轴交于点(0,3),在y 轴右边到y 轴最近的最高点坐标为⎝⎛⎭⎫π12,2,则不等式f (x )>1的解集是( )A.⎝⎛⎭⎫k π-π6,k π+56π,k ∈Z B.⎝⎛⎭⎫k π-π12,k π+56π,k ∈Z C.⎝⎛⎭⎫k π-π16,k π+π4,k ∈Z D.⎝⎛⎭⎫k π-π12,k π+π4,k ∈Z 解析:选D 依题意A =2,2sin φ=3且|φ|<π2,则φ=π3,由2sin ⎝⎛⎭⎫πω12+π3=2得πω12+π3=π2,则ω=2, 由f (x )=2sin ⎝⎛⎭⎫2x +π3>1,得2k π+π6<2x +π3<2k π+5π6(k ∈Z ),所以k π-π12<x <k π+π4(k ∈Z ).(2)(2012·长春调研)函数y =cos(ωx +φ)(ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,A 、B 分别为最高点、最低点,且AB =22,则该函数图象的一条对称轴为( )A .x =2πB .x =π2C .x =2D .x =1解析:选D 由y =cos(ωx +φ)为奇函数知φ=k π+π2,其中k ∈Z .又0<φ<π,所以φ=π2,则y =cos ⎝⎛⎭⎫ωx +π2=-sin ωx .由AB =22知 ⎝⎛⎭⎫T 22+22=22,所以T =4=2πω,得ω=π2,y =-sinπx 2.结合选项知当x =1时,y =-sin π×12=-1,此时函数y =-sin πx2取得最小值,因此该函数图象的一条对称轴为x =1.典题导入[例3] 已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的图象与y 轴的交点为(0,1),它在y 轴右侧的第一个最高点和第一个最低点的坐标分别为(x 0,2)和(x 0+2π,-2).(1)求f (x )的解析式及x 0的值; (2)求f (x )的增区间;(3)若x ∈[-π,π],求f (x )的值域.[自主解答] (1)由图象知A =2,由T 2=2π得T =4π,所以ω=12.∴f (x )=2sin ⎝⎛⎭⎫12x +φ, ∴f (0)=2sin φ=1,又∵|φ|<π2,∴φ=π6,∴f (x )=2sin ⎝⎛⎭⎫12x +π6, 由f (x 0)=2sin ⎝⎛⎭⎫12x 0+π6=2, ∴12x 0+π6=π2+2k π, x 0=4k π+2π3,k ∈Z ,又(x 0,2)是y 轴右侧的第一个最高点, ∴x 0=2π3.(2)由-π2+2k π≤12x +π6≤π2+2k π,k ∈Z 得-4π3+4k π≤x ≤2π3+4k π,所以f (x )的增区间为⎣⎡⎦⎤-4π3+4k π,2π3+4k π,k ∈Z . (3)∵-π≤x ≤π, ∴-π3≤12x +π6≤2π3,∴-32≤sin ⎝⎛⎭⎫12x +π6≤1, ∴-3≤f (x )≤2,所以f (x )的值域为[-3,2].由题悟法利用三角函数图象与x 轴的相邻两个交点之间的距离为三角函数的12个最小正周期,可求解参数ω的值,利用图象的最高点、低点为三角函数最值点,可求解参数A 的值.在求函数值域时,由定义域转化成ωx +φ的范围,即把ωx +φ看作一个整体,再结合三角函数的图象求解.以题试法3.函数f (x )=A sin ⎝⎛⎭⎫ωx -π6+1(A >0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离为π2.(1)求函数f (x )的解析式;(2)设α∈⎝⎛⎭⎫0,π2,则f ⎝⎛⎭⎫α2=2,求α的值. 解:(1)因为A +1=3,所以A =2.又因为函数图象相邻对称轴之间的距离为半个周期,所以T 2=π2,得T =π,所以ω=2πT =2,所以f (x )=2sin ⎝⎛⎭⎫2x -π6+1. (2)因为f ⎝⎛⎭⎫α2=2sin ⎝⎛⎭⎫α-π6+1=2, 所以sin ⎝⎛⎭⎫α-π6=12. 因为0<α<π2,所以-π6<α-π6<π3,所以α-π6=π6,所以α=π3.1.函数y =cos x (x ∈R )的图象向左平移π2个单位后,得到函数y =g (x )的图象,则g (x )的解析式应为( )A .-sin xB .sin xC .-cos xD .cos x解析:选A 由图象的平移得g (x )=cos ⎝⎛⎭⎫x +π2=-sin x . 2.(2012·潍坊模拟)将函数y =cos 2x 的图象向右平移π4个单位长度,得到函数y =f (x )·sinx 的图象,则f (x )的表达式可以是( )A .f (x )=-2cos xB .f (x )=2cos xC .f (x )=22sin 2xD .f (x )=22(sin 2x +cos 2x ) 解析:选B 平移后的函数解析式是y =cos 2⎝⎛⎭⎫x -π4=sin 2x =2sin x cos x ,故函数f (x )的表达式可以是f (x )=2cos x .3.(2012·天津高考)将函数f (x )=sin ωx (其中ω>0)的图象向右平移π4个单位长度,所得图象经过点⎝⎛⎭⎫3π4,0,则ω的最小值是( )A.13 B .1 C.53D .2解析:选D 将函数f (x )=sin ωx 的图象向右平移π4个单位长度,得到的图象对应的函数解析式为f (x )=sin ω⎝⎛⎭⎫x -π4=sin ⎝⎛⎭⎫ωx -ωπ4.又因为函数图象过点⎝⎛⎭⎫3π4,0,所以sin ⎝⎛⎭⎫3ωπ4-ωπ4=sin ωπ2=0,所以ωπ2=k π,即ω=2k (k ∈Z ),因为ω>0,所以ω的最小值为 2.4.(2012·海淀区期末练习)函数f (x )=A sin(2x +φ)(A >0,φ∈R )的部分图象如图所示,那么f (0)=( )A .-12B .-32C .-1D .- 3解析:选C 由图可知,A =2,f ⎝⎛⎭⎫π3=2, ∴2sin ⎝⎛⎭⎫2π3+φ=2,sin ⎝⎛⎭⎫2π3+φ=1,∴2π3+φ=π2+2k π(k ∈Z ),φ=-π6+2k π(k ∈Z ), ∴f (0)=2sin φ=2sin ⎝⎛⎭⎫-π6+2k π=2×⎝⎛⎭⎫-12=-1. 5.(2013·福州质检)已知函数f (x )=2sin(ωx +φ)(ω>0)的部分图象如图所示,则函数f (x )的一个单调递增区间是( )A.⎣⎡⎦⎤-7π12,5π12 B.⎣⎡⎦⎤-7π12,-π12 C.⎣⎡⎦⎤-π12,7π12D.⎣⎡⎦⎤-π12,5π12 解析:选D 由函数的图象可得14T =2π3-5π12,∴T =π,则ω=2,又图象过点⎝⎛⎭⎫5π12,2,∴2sin ⎝⎛⎭⎫2×5π12+φ=2, ∴φ=-π3+2k π,k ∈Z ,∴f (x )=2sin ⎝⎛⎭⎫2x -π3,其单调递增区间为⎣⎡⎦⎤k π-π12,k π+5π12,k ∈Z ,取k =0,即得选项D.6.(2012·潍坊模拟)如图,为了研究钟表与三角函数的关系,建立如图所示的坐标系,设秒针尖位置P (x ,y ).若初始位置为P 0⎝⎛⎭⎫32,12,当秒针从P 0(注:此时t =0)正常开始走时,那么点P 的纵坐标y 与时间t 的函数关系为( )A .y =sin ⎝⎛⎭⎫π30t +π6B .y =sin ⎝⎛⎭⎫-π60t -π6C .y =sin ⎝⎛⎭⎫-π30t +π6D .y =sin ⎝⎛⎭⎫-π30t -π3 解析:选C 由题意可得,函数的初相位是π6,排除B 、D.又函数周期是60(秒)且秒针按顺时针旋转,即T =2π|ω|=60,所以|ω|=π30,即ω=-π30.7.(2012·南京模拟)已知函数f (x )=A tan(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2,y =f (x )的部分图象如图,则f ⎝⎛⎭⎫π24=________.解析:由题中图象可知,此正切函数的半周期等于3π8-π8=2π8=π4,即周期为π2,所以,ω=2.由题意可知,图象过定点⎝⎛⎭⎫3π8,0,所以0=A tan ⎝⎛⎭⎫2×3π8+φ,即3π4+φ=k π(k ∈Z ),所以,φ=k π-3π4(k ∈Z ),又|φ|<π2,所以,φ=π4.再由图象过定点(0,1),得A =1.综上可知,f (x )=tan ⎝⎛⎭⎫2x +π4.故有f ⎝⎛⎭⎫π24=tan ⎝⎛⎭⎫2×π24+π4=tan π3=3.答案: 38.(2012·成都模拟)如图,单摆从某点开始来回摆动,离开平衡位置O 的距离s (cm)和时间t (s)的关系式为s =6sin ⎝⎛⎭⎫2πt +π6,那么单摆来回摆动一次所需的时间为________s.解析:单摆来回摆动一次所需的时间即为一个周期T =2π2π=1.答案:19.给出下列六种图象变换方法:(1)图象上所有点的纵坐标不变,横坐标缩短到原来的12;(2)图象上所有点的纵坐标不变,横坐标伸长到原来的2倍; (3)图象向右平移π3个单位;(4)图象向左平移π3个单位;(5)图象向右平移2π3个单位;(6)图象向左平移2π3个单位.请用上述变换中的两种变换,将函数y =sin x 的图象变换到函数y =sin ⎝⎛⎭⎫x 2+π3的图象,那么这两种变换正确的标号是________(要求按变换先后顺序填上一种你认为正确的标号即可).解析:y =sin x ――→(4) y =sin ⎝⎛⎭⎫x +π3――→(2)y =sin ⎝⎛⎭⎫x 2+π3,或y =sin x ――→(2)y =sin 12x ――→(6) y =sin 12⎝⎛⎭⎫x +2π3=sin ⎝⎛⎭⎫x 2+π3. 答案:(4)(2)(或((2)(6)))10.(2012·苏州模拟)已知函数y =A sin(ωx +φ)+n 的最大值为4,最小值为0,最小正周期为π2,直线x =π3是其图象的一条对称轴,若A >0,ω>0,0<φ<π2,求函数的解析式.解:由题意可得⎩⎪⎨⎪⎧ A +n =4,-A +n =0,解得⎩⎪⎨⎪⎧A =2,n =2.又因为函数的最小正周期为π2,所以ω=2ππ2=4.由直线x =π3是一条对称轴可得4×π3+φ=k π+π2(k ∈Z ),故φ=k π-5π6(k ∈Z ),又0<φ<π2,所以φ=π6.综上可得y =2sin ⎝⎛⎭⎫4x +π6+2. 11.设函数f (x )=cos(ωx +φ)⎝⎛⎭⎫ω>0,-π2<φ<0的最小正周期为π,且f ⎝⎛⎭⎫π4=32.(1)求ω和φ的值;(2)在给定坐标系中作出函数f (x )在[0,π]上的图象. 解:(1)周期T =2πω=π,∴ω=2,∵f ⎝⎛⎭⎫π4=cos ⎝⎛⎭⎫2×π4+φ=cos ⎝⎛⎭⎫π2+φ=-sin φ=32,∵-π2<φ<0,∴φ=-π3. (2)∵f (x )=cos ⎝⎛⎭⎫2x -π3,列表如下:12.已知函数f (x )=23sin ⎝⎛⎭⎫x 2+π4cos ⎝⎛⎭⎫x 2+π4-sin (x +π). (1)求f (x )的最小正周期;(2)若将f (x )的图象向右平移π6个单位,得到函数g (x )的图象,求函数g (x )在区间[0,π]上的最大值和最小值.解:(1)因为f (x )=3sin ⎝⎛⎭⎫x +π2+sin x =3cos x +sin x =2⎝⎛⎭⎫32cos x +12sin x =2sin ⎝⎛⎭⎫x +π3, 所以f (x )的最小正周期为2π.(2)∵将f (x )的图象向右平移π6个单位,得到函数g (x )的图象,∴g (x )=f ⎝⎛⎭⎫x -π6=2sin ⎣⎡⎦⎤⎝⎛⎭⎫x -π6+π3=2sin ⎝⎛⎭⎫x +π6. ∵x ∈[0,π],∴x +π6∈⎣⎡⎦⎤π6,7π6, ∴当x +π6=π2,即x =π3时,sin ⎝⎛⎭⎫x +π6=1,g (x )取得最大值2. 当x +π6=7π6,即x =π时,sin ⎝⎛⎭⎫x +π6=-12,g (x )取得最小值-1.1.(2012·江西九校联考)已知A ,B ,C ,D 是函数y =sin(ωx +φ)⎝⎛⎭⎫ω>0,0<φ<π2一个周期内的图象上的四个点,如图所示,A ⎝⎛⎭⎫-π6,0,B 为y 轴上的点,C 为图象上的最低点,E 为该函数图象的一个对称中心,B 与D 关于点E 对称,CD u u u r 在x 轴上的投影为π12,则ω,φ的值为( )A .ω=2,φ=π3B .ω=2,φ=π6C .ω=12,φ=π3D .ω=12,φ=π6解析:选A 由CD u u u r 在x 轴上的投影为π12,知OF =π12,又A ⎝⎛⎭⎫-π6,0,所以AF =T 4=π2ω=π4,所以ω=2. 同时函数图象可以看做是由y =sin x 的图象向左平移而来,故可知φω=φ2=π6,即φ=π3.2.已知f (x )=sin ⎝⎛⎭⎫x +π2,g (x )=cos ⎝⎛⎭⎫x -π2,则下列结论中正确的是( ) A .函数y =f (x )·g (x )的周期为2 B .函数y =f (x )·g (x )的最大值为1C .将f (x )的图象向左平移π2个单位后得到g (x )的图象D .将f (x )的图象向右平移π2个单位后得到g (x )的图象解析:选D ∵f (x )=sin ⎝⎛⎭⎫x +π2=cos x ,g (x )=cos ⎝⎛⎭⎫x -π2=cos ⎝⎛⎭⎫π2-x =sin x , ∴y =f (x )·g (x )=cos x ·sin x =12sin 2x .T =2π2=π,最大值为12,∴选项A 、B 错误.又∵f (x )=cos x 2π−−−−−−→向右平移位个单 g (x )=cos ⎝⎛⎭⎫x -π2 ∴选项C 错误,D 正确.3.为迎接夏季旅游旺季的到来,少林寺单独设置了一个专门安排游客住宿的客栈,寺庙的工作人员发现为游客准备的一些食物有些月份剩余不少,浪费很严重,为了控制经营成本,减少浪费,就想适时调整投入.为此他们统计每个月入住的游客人数,发现每年各个月份来客栈入住的游客人数会发生周期性的变化,并且有以下规律:①每年相同的月份,入住客栈的游客人数基本相同;②入住客栈的游客人数在2月份最少,在8月份最多,相差约400人; ③2月份入住客栈的游客约为100人,随后逐月递增直到8月份达到最多. (1)试用一个正弦型三角函数描述一年中入住客栈的游客人数与月份之间的关系; (2)请问哪几个月份要准备400份以上的食物?解:(1)设该函数为f (x )=A sin(ωx +φ)+B (A >0,ω>0,0<|φ|<π),根据条件①,可知这个函数的周期是12;由②可知,f (2)最小,f (8)最大,且f (8)-f (2)=400,故该函数的振幅为200;由③可知,f (x )在[2,8]上单调递增,且f (2)=100,所以f (8)=500.根据上述分析可得,2πω=12,故ω=π6,且⎩⎪⎨⎪⎧ -A +B =100,A +B =500,解得⎩⎪⎨⎪⎧A =200,B =300.根据分析可知,当x =2时f (x )最小,当x =8时f (x )最大, 故sin ⎝⎛⎭⎫2×π6+φ=-1,且sin ⎝⎛⎭⎫8×π6+φ=1. 又因为0<|φ|<π,故φ=-5π6.所以入住客栈的游客人数与月份之间的关系式为 f (x )=200sin ⎝⎛⎭⎫π6x -5π6+300.(2)由条件可知,200sin ⎝⎛⎭⎫π6x -5π6+300≥400,化简,得 sin ⎝⎛⎭⎫π6x -5π6≥12⇒2k π+π6≤π6x -5π6≤2k π+5π6,k ∈Z , 解得12k +6≤x ≤12k +10,k ∈Z .因为x ∈N *,且1≤x ≤12,故x =6,7,8,9,10.即只有6,7,8,9,10五个月份要准备400份以上的食物.1.定义行列式运算⎪⎪⎪⎪⎪⎪a 1 a 2a 3 a 4=a 1a 4-a 2a 3.将函数f (x )=⎪⎪⎪⎪⎪⎪3 sin x 1 cos x 的图象向左平移n (n >0)个单位,所得图象对应的函数为偶函数,则n 的最小值为( )A.π6 B.π3 C.5π6D.2π3解析:选C 依题意可得f (x )=⎪⎪⎪⎪⎪⎪3 sin x 1 cos x =3cos x -sin x =2 cos ⎝⎛⎭⎫x +π6,图象向左平移n (n >0)个单位得f (x +n )=2cos ⎝⎛⎭⎫x +n +π6,要使平移后的函数为偶函数,则n 的最小值为5π6. 2.已知函数f (x )=A sin(3x +φ)(A >0,0<φ<π)在x =π12时取得最大值4.(1)求f (x )的最小正周期; (2)求f (x )的解析式. 解:(1)∵f (x )=A sin(3x +φ), ∴T =2π3,即f (x )的最小正周期为2π3.(2)∵当x =π12时,f (x )有最大值4,∴A =4.∴4=4sin ⎝⎛⎭⎫3×π12+φ,∴sin ⎝⎛⎭⎫π4+φ=1. 即π4+φ=2k π+π2,得φ=2k π+π4()k ∈Z . ∵0<φ<π,∴φ=π4.∴f (x )=4sin ⎝⎛⎭⎫3x +π4. 3.(2012·北京模拟)设函数f (x )=sin(2x +φ)(-π<φ<0),y =f (x )图象的一条对称轴是直线x =π8. (1)求φ;(2)求函数y =f (x )的单调递增区间; (3)画出函数y =f (x )在区间[0,π]上的图象. 解:(1)∵x =π8是函数y =f (x )的图象的对称轴,∴sin ⎝⎛⎭⎫2×π8+φ=±1, ∴π4+φ=k π+π2,k ∈Z , ∵-π<φ<0,∴φ=-3π4.(2)由(1)知φ=-3π4,因此y =sin ⎝⎛⎭⎫2x -3π4. 由题意得2k π-π2≤2x -3π4≤2k π+π2,k ∈Z .解得k π+π8≤x ≤k π+5π8,k ∈Z .所以函数y =sin ⎝⎛⎭⎫2x -3π4的单调递增区间为⎣⎡⎦⎤k π+π8,k π+5π8,k ∈Z . (3)由y =sin ⎝⎛⎭⎫2x -3π4列表如下:故函数y =f (x )在区间[0,π]上的图象为:。
双_曲_线[知识能否忆起]1.双曲线的定义平面内与定点F1、F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.2.双曲线的标准方程和几何性质[小题能否全取]1.(教材习题改编)若双曲线方程为x 2-2y 2=1,则它的左焦点的坐标为( )A.⎝ ⎛⎭⎪⎪⎫-22,0B.⎝ ⎛⎭⎪⎪⎫-52,0C.⎝ ⎛⎭⎪⎪⎫-62,0D.()-3,0解析:选C ∵双曲线方程可化为x 2-y 212=1,∴a 2=1,b 2=12.∴c 2=a 2+b 2=32,c =62. ∴左焦点坐标为⎝ ⎛⎭⎪⎪⎫-62,0.2.(教材习题改编)若双曲线x 2a2-y 2=1的一个焦点为(2,0),则它的离心率为( )A.255B.32C.233D .2解析:选C 依题意得a 2+1=4,a 2=3, 故e =2a 2=23=233.3.设F 1,F 2是双曲线x 2-y 224=1的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于( )A .42B .8 3C .24D .48解析:选C 由P 是双曲线上的一点和3|PF 1|=4|PF 2|可知,|PF 1|-|PF 2|=2,解得|PF 1|=8,|PF 2|=6.又|F 1F 2|=2c =10,所以△PF 1F 2为直角三角形,所以△PF 1F 2的面积S =12×6×8=24.4.双曲线x 2a2-y 2=1(a >0)的离心率为2,则该双曲线的渐近线方程为________________.解析:由题意知a 2+1a=1+⎝ ⎛⎭⎪⎫1a 2=2,解得a =33,故该双曲线的渐近线方程是3x ±y =0,即y =±3x .答案:y =±3x5.已知F 1(0,-5),F 2(0,5),一曲线上任意一点M 满足|MF 1|-|MF 2|=8,若该曲线的一条渐近线的斜率为k ,该曲线的离心率为e ,则|k |·e =________.解析:根据双曲线的定义可知,该曲线为焦点在y 轴上的双曲线的上支,∵c =5,a =4,∴b =3,e =c a =54,|k |=43.∴|k |·e =43×54=53.答案:531.区分双曲线与椭圆中a 、b 、c 的关系,在椭圆中a 2=b 2+c 2,而在双曲线中c 2=a 2+b 2.双曲线的离心率e >1;椭圆的离心率e ∈(0,1).2.渐近线与离心率:x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线的斜率为b a=b 2a 2=c 2-a 2a 2=e 2-1.可以看出,双曲线的渐近线和离心率的实质都表示双曲线张口的大小.[注意] 当a >b >0时,双曲线的离心率满足1<e <2;当a =b >0时,e =2(亦称为等轴双曲线); 当b >a >0时,e >2.3.直线与双曲线交于一点时,不一定相切,例如:当直线与双曲线的渐近线平行时,直线与双曲线相交于一点,但不是相切;反之,当直线与双曲线相切时,直线与双曲线仅有一个交点.典题导入[例1] (1)(2012·湖南高考)已知双曲线C:x2a2-y2b2=1的焦距为10,点P(2,1)在C的渐近线上,则C的方程为( )A.x220-y25=1 B.x25-y220=1C.x280-y220=1 D.x220-y280=1(2)(2012·辽宁高考)已知双曲线x2-y2=1,点F1,F2为其两个焦点,点P为双曲线上一点,若PF1⊥PF2,则|PF1|+|PF2|的值为________.[自主解答] (1)∵x2a2-y2b2=1的焦距为10,∴c=5=a2+b2.①又双曲线渐近线方程为y =±b ax ,且P (2,1)在渐近线上,∴2ba=1,即a =2b .②由①②解得a =25,b =5.(2)不妨设点P 在双曲线的右支上,因为PF 1⊥PF 2, 所以(22)2=|PF 1|2+|PF 2|2,又因为|PF 1|-|PF 2|=2,所以(|PF 1|-|PF 2|)2=4,可得2|PF 1|·|PF 2|=4, 则(|PF 1|+|PF 2|)2=|PF 1|2+|PF 2|2+2|PF 1|·|PF 2|=12,所以|PF 1|+|PF 2|=2 3.[答案] (1)A (2)23由题悟法1.应用双曲线的定义需注意的问题在双曲线的定义中要注意双曲线上的点(动点)具备的几何条件,即“到两定点(焦点)的距离之差的绝对值为一常数,且该常数必须小于两定点的距离”.若定义中的“绝对值”去掉,点的轨迹是双曲线的一支.2.双曲线方程的求法(1)若不能明确焦点在哪条坐标轴上,设双曲线方程为mx 2+ny 2=1(mn <0). (2)与双曲线x 2a 2-y 2b 2=1有共同渐近线的双曲线方程可设为x 2a 2-y 2b 2=λ(λ≠0).(3)若已知渐近线方程为mx +ny =0,则双曲线方程可设为m 2x 2-n 2y 2=λ(λ≠0).以题试法1.(2012·大连模拟)设P 是双曲线x 216-y 220=1上一点,F 1,F 2分别是双曲线左右两个焦点,若|PF 1|=9,则|PF 2|=( )A .1B .17C .1或17D .以上答案均不对解析:选B 由双曲线定义||PF 1|-|PF 2||=8,又∵|PF 1|=9,∴|PF 2|=1或17,但双曲线的右顶点到右焦点距离最小为c -a =6-4=2>1,∴|PF 2|=17.典题导入[例2] (2012·浙江高考)如图,F 1,F 2分别是双曲线C :x 2a 2-y 2b 2=1(a ,b >0)的左、右焦点,B 是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P ,Q 两点,线段PQ 的垂直平分线与x 轴交于点M .若|MF 2|=|F 1F 2|,则C 的离心率是( )A.233B.62C.2D.3 [自主解答] 设双曲线的焦点坐标为F 1(-c,0),F 2(c,0). ∵B (0,b ),∴F 1B 所在的直线为-x c +yb=1.①双曲线渐近线为y =±bax ,由⎩⎪⎨⎪⎧ y =b ax ,-x c +y b =1,得Q ⎝ ⎛⎭⎪⎫ac c -a ,bc c -a . 由⎩⎪⎨⎪⎧y =-ba x ,-x c +y b =1,得P ⎝ ⎛⎭⎪⎫-ac a +c ,bc a +c ,∴PQ 的中点坐标为⎝ ⎛⎭⎪⎫a 2c c 2-a 2,bc 2c 2-a 2. 由a 2+b 2=c 2得,PQ 的中点坐标可化为⎝ ⎛⎭⎪⎫a 2c b2,c 2b .直线F 1B 的斜率为k =b c,∴PQ 的垂直平分线为y -c 2b=-c b ⎝⎛⎭⎪⎫x -a 2cb 2.令y =0,得x =a 2cb 2+c ,∴M ⎝ ⎛⎭⎪⎫a 2c b 2+c ,0,∴|F 2M |=a 2cb 2.由|MF 2|=|F 1F 2|得a 2cb 2=a 2cc 2-a 2=2c ,即3a 2=2c 2,∴e 2=32,∴e =62.[答案] B若本例条件变为“此双曲线的一条渐近线与x 轴的夹角为α,且π4<α<π3”,求双曲线的离心率的取值范围.解:根据题意知1<b a<3, 即1<e 2-1< 3.所以2<e <2. 即离心率的取值范围为(2,2).由题悟法1.已知渐近线方程y =mx ,求离心率时,若焦点位置不确定时,m =b a(m >0)或m =ab,故离心率有两种可能.2.解决与双曲线几何性质相关的问题时,要注意数形结合思想的应用.以题试法2.(1)(2012·福建高考)已知双曲线x 2a 2-y 25=1的右焦点为(3,0),则该双曲线的离心率等于( )A.31414B.324C.32D.43解析:选C 由题意知c =3,故a 2+5=9,解得a =2,故该双曲线的离心率e =c a =32.(2)(2012·大同模拟)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)与抛物线y 2=8x 有一个公共的焦点F ,且两曲线的一个交点为P ,若|PF |=5,则双曲线的渐近线方程为( )A .y =±33x B .y =±3x C .y =±2x D .y =±22x解析:选B 设点P (m ,n ),依题意得,点F (2,0),由点P 在抛物线y 2=8x 上,且|PF |=5得⎩⎪⎨⎪⎧m +2=5,n 2=8m ,由此解得m =3,n 2=24.于是有⎩⎪⎨⎪⎧a 2+b 2=4,9a 2-24b2=1,由此解得a 2=1,b 2=3,该双曲线的渐近线方程为y =±bax =±3x .直线与双曲线的位置关系典题导入[例3] (2012·南昌模拟)已知双曲线x 2a 2-y 2b 2=1(b >a >0),O 为坐标原点,离心率e =2,点M (5,3)在双曲线上.(1)求双曲线的方程;(2)若直线l 与双曲线交于P ,Q 两点,且OP u u u r ·OQ u u u r =0.求1|OP |2+1|OQ |2的值.[自主解答] (1)∵e =2,∴c =2a ,b 2=c 2-a 2=3a 2, 双曲线方程为x 2a 2-y 23a 2=1,即3x 2-y 2=3a 2.∵点M (5,3)在双曲线上,∴15-3=3a 2.∴a 2=4.∴所求双曲线的方程为x 24-y 212=1.(2)设直线OP 的方程为y =kx (k ≠0),联立x 24-y 212=1,得⎩⎪⎨⎪⎧x 2=123-k 2,y 2=12k 23-k 2,∴|OP |2=x 2+y 2=12k 2+13-k 2.则OQ 的方程为y =-1kx ,同理有|OQ |2=12⎝ ⎛⎭⎪⎫1+1k 23-1k 2=12k 2+13k 2-1,∴1|OP |2+1|OQ |2=3-k 2+3k 2-112k 2+1=2+2k 212k 2+1=16.由题悟法1.解决此类问题的常用方法是设出直线方程或双曲线方程,然后把直线方程和双曲线方程组成方程组,消元后转化成关于x (或y )的一元二次方程.利用根与系数的关系,整体代入.2.与中点有关的问题常用点差法.[注意] 根据直线的斜率k 与渐近线的斜率的关系来判断直线与双曲线的位置关系.以题试法3.(2012·长春模拟)F 1,F 2分别为双曲线x 2a2-y 2b 2=1(a >0,b >0)的左,右焦点,过点F 2作此双曲线一条渐近线的垂线,垂足为M ,满足|1MF u u u u r ,|=3|2MF u u u u r,|,则此双曲线的渐近线方程为________________.解析:由双曲线的性质可得|2MF u u u u r ,|=b ,则|1MF u u u u r,|=3b .在△MF 1O中,|OM u u u u r ,|=a ,|1OF u u u r ,|=c ,cos ∠F 1OM =-ac,由余弦定理可知a 2+c 2-3b22ac =-a c,又c 2=a 2+b 2,所以a 2=2b 2,即b a=22,故此双曲线的渐近线方程为y =±22x .答案:y =±22x1.(2013·唐山模拟)已知双曲线的渐近线为y =±3x ,焦点坐标为(-4,0),(4,0),则双曲线方程为( )A.x 24-y 212=1 B.x 22-y 24=1 C.x 224-y 28=1D.x 28-y 224=1 解析:选A 由题意可设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),由已知条件可得⎩⎪⎨⎪⎧b a =3,c =4,即⎩⎪⎨⎪⎧ba =3,a 2+b 2=42,解得⎩⎪⎨⎪⎧a 2=4,b 2=12,故双曲线方程为x 24-y 212=1.2.若双曲线过点(m ,n )(m >n >0),且渐近线方程为y =±x ,则双曲线的焦点( ) A .在x 轴上B .在y 轴上C .在x 轴或y 轴上D .无法判断是否在坐标轴上解析:选A ∵m >n >0,∴点(m ,n )在第一象限且在直线y =x 的下方,故焦点在x 轴上.3.(2012·华南师大附中模拟)已知m 是两个正数2,8的等比中项,则圆锥曲线x 2+y 2m=1的离心率为( )A.32或 52B.32C. 5D.32或 5解析:选D ∵m 2=16,∴m =±4,故该曲线为椭圆或双曲线.当m =4时,e =ca=a 2-b 2a=32.当m =-4时,e =c a=a 2+b 2a= 5.4.(2012·浙江高考)如图,中心均为原点O 的双曲线与椭圆有公共焦点,M ,N 是双曲线的两顶点.若M ,O ,N 将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是( )A .3B .2 C.3D.2解析:选B 设焦点为F (±c,0),双曲线的实半轴长为a ,则双曲线的离心率e 1=ca,椭圆的离心率e 2=c 2a ,所以e 1e 2=2.5.(2013·哈尔滨模拟)已知P 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)上的点,F 1,F 2是其焦点,双曲线的离心率是54,且1PF u u u r ,·2PF u u u r ,=0,若△PF 1F 2的面积为9,则a +b 的值为( )A .5B .6C .7D .8解析:选C 由1PF u u u r ,·2PF u u u r ,=0得1PF u u u r ,⊥2PF u u u r ,,设|1PF u u u r ,|=m ,|2PF u u u r,|=n ,不妨设m >n ,则m 2+n 2=4c 2,m -n =2a ,12mn =9,c a =54,解得⎩⎪⎨⎪⎧a =4,c =5,∴b =3,∴a +b =7.6.(2012·浙江模拟)平面内有一固定线段AB ,|AB |=4,动点P 满足|PA |-|PB |=3,O 为AB 中点,则|OP |的最小值为( )A .3B .2C.32D .1解析:选C 依题意得,动点P 位于以点A ,B 为焦点、实轴长为3的双曲线的一支上,结合图形可知,该曲线上与点O 距离最近的点是该双曲线的一个顶点,因此|OP |的最小值等于32.7.(2012·西城模拟)若双曲线x 2-ky 2=1的一个焦点是(3,0),则实数k =________. 解析:∵双曲线x 2-ky 2=1的一个焦点是(3,0), ∴1+1k =32=9,可得k =18.答案:188.(2012·天津高考)已知双曲线C 1:x 2a2-y 2b 2=1(a >0,b >0)与双曲线C 2:x 24-y 216=1有相同的渐近线,且C 1的右焦点为F (5,0),则a =________,b =________.解析:双曲线x 24-y 216=1的渐近线为y =±2x ,则ba=2,即b =2a ,又因为c =5,a 2+b 2=c 2,所以a =1,b =2.答案:1 29.(2012·济南模拟)过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F 作圆x 2+y 2=a 24的切线,切点为E ,延长FE 交双曲线右支于点P ,若E 为PF 的中点,则双曲线的离心率为________.解析:设双曲线的右焦点为F ′.由于E 为PF 的中点,坐标原点O 为FF ′的中点,所以EO ∥PF ′,又EO ⊥PF ,所以PF ′⊥PF ,且|PF ′|=2×a2=a ,故|PF |=3a ,根据勾股定理得|FF ′|=10a .所以双曲线的离心率为10a 2a =102.答案:10210.(2012·宿州模拟)已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点(4,-10).点M (3,m )在双曲线上.(1)求双曲线方程;(2)求证:1MF u u u u r ·2MF u u u u r =0.解:(1)∵e =2,∴可设双曲线方程为x 2-y 2=λ(λ≠0). ∵过点(4,-10),∴16-10=λ,即λ=6.∴双曲线方程为x 26-y 26=1.(2)证明:由(1)可知,双曲线中a =b =6,∴c =23,∴F 1(-23,0),F 2(23,0),∴kMF 1=m3+23,kMF 2=m3-23,kMF 1·kMF 2=m 29-12=-m 23. ∵点(3,m )在双曲线上,∴9-m 2=6,m 2=3, 故kMF 1·kMF 2=-1,∴MF 1⊥MF 2.∴1MF u u u u r ·2MF u u u u r=0.11.(2012·广东名校质检)已知双曲线的方程是16x 2-9y 2=144. (1)求双曲线的焦点坐标、离心率和渐近线方程;(2)设F 1和F 2是双曲线的左、右焦点,点P 在双曲线上,且|PF 1|·|PF 2|=32,求∠F 1PF 2的大小.解:(1)由16x 2-9y 2=144得x 29-y 216=1,所以a =3,b =4,c =5,所以焦点坐标F 1(-5,0),F 2(5,0),离心率e =53,渐近线方程为y =±43x .(2)由双曲线的定义可知||PF 1|-|PF 2||=6, cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=|PF 1|-|PF 2|2+2|PF1||PF 2|-|F 1F 2|22|PF 1||PF 2|=36+64-10064=0,则∠F 1PF 2=90°.12.如图,P 是以F 1、F 2为焦点的双曲线C :x 2a 2-y 2b 2=1上的一点,已知PF u u u r 1·PF u u u r 2=0,且|PF u u u r 1|=2|PF u u u r2|.(1)求双曲线的离心率e ;(2)过点P 作直线分别与双曲线的两渐近线相交于P 1,P 2两点,若OP u u u r 1·OP u u u r 2=-274,2PP u u u r 1+PP u u u r2=0.求双曲线C 的方程.解:(1)由PF u u u r 1·PF u u u r 2=0,得PF u u u r 1⊥PF u u u r 2,即△F 1PF 2为直角三角形.设|PF u u u r 2|=r ,|PF u u u r1|=2r ,所以(2r )2+r 2=4c 2,2r -r =2a ,即5×(2a )2=4c 2.所以e =5.(2)b a=e 2-1=2,可设P 1(x 1,2x 1),P 2(x 2,-2x 2),P (x ,y ),则OP u u u r 1·OP u u u r 2=x 1x 2-4x 1x 2=-274,所以x 1x 2=94.①由2PP u u u r 1+PP u u u r 2=0,得⎩⎪⎨⎪⎧x 2-x =-2x 1-x ,-2x 2-y =-22x 1-y ,即x =2x 1+x 23,y =22x 1-x 23.又因为点P 在双曲线x 2a 2-y 2b 2=1上,所以2x 1+x 229a 2-42x 1-x 229b 2=1.又b 2=4a 2,代入上式整理得x 1x 2=98a 2.②由①②得a 2=2,b 2=8. 故所求双曲线方程为x 22-y 28=1.1.(2012·长春模拟)设e 1、e 2分别为具有公共焦点F 1、F 2的椭圆和双曲线的离心率,P是两曲线的一个公共点,且满足|1PF u u u r ,+2PF u u u r ,|=|12F F u u u u r ,|,则e 1e 2e 21+e 22的值为( )A.22 B .2 C.2D .1解析:选A 依题意,设|PF 1|=m ,|PF 2|=n ,|F 1F 2|=2c ,不妨设m >n .则由|1PF u u u r,+2PF u u u r ,|=|12F F u u u u r ,|得|1PF u u u r ,+2PF u u u r ,|=|2PF u u u r ,-1PF u u u r ,|=|1PF u u u r ,-2PF u u u r ,|,即|1PF u u u r ,+2PF u u u r ,|2=|1PF u u u r ,-2PF u u u r ,|2,所以1PF u u u r ,·2PF u u u r ,=0,所以m 2+n 2=4c 2.又e 1=2c m +n,e 2=2cm -n,所以1e 21+1e 22=2m 2+n 24c 2=2,所以e 1e 2e 21+e 22=11e 22+1e 21=22. 2.已知双曲线x 2a2-y 2b 2=1(a >1,b >0)的焦距为2c ,直线l 过点(a,0)和(0,b ),点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥45c ,则双曲线的离心率e 的取值范围为________.解析:由题意知直线l 的方程为x a +yb=1,即bx +ay -ab =0.由点到直线的距离公式得,点(1,0)到直线l 的距离d 1=b a -1a 2+b 2,同理得,点(-1,0)到直线l 的距离d 2=b a +1a 2+b 2,s =d 1+d 2=2aba 2+b2=2ab c .由s ≥45c ,得2ab c ≥45c ,即5a c 2-a 2≥2c 2.所以5e 2-1≥2e 2,即4e 4-25e 2+25≤0,解得54≤e 2≤5. 由于e >1,所以e 的取值范围为⎣⎢⎢⎡⎦⎥⎥⎤ 52, 5 .答案:⎣⎢⎢⎡⎦⎥⎥⎤52, 5 3.设A ,B 分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左,右顶点,双曲线的实轴长为43,焦点到渐近线的距离为 3.(1)求双曲线的方程; (2)已知直线y =33x -2与双曲线的右支交于M 、N 两点,且在双曲线的右支上存在点D ,使OM u u u u r ,+ON u u u r ,=t OD u u u r,,求t 的值及点D 的坐标.解:(1)由题意知a =23,故一条渐近线为y =b23x ,即bx -23y =0,则|bc |b 2+12=3,得b 2=3,故双曲线的方程为x 212-y 23=1. (2)设M (x 1,y 1),N (x 2,y 2),D (x 0,y 0), 则x 1+x 2=tx 0,y 1+y 2=ty 0, 将直线方程代入双曲线方程得x 2-163x +84=0,则x 1+x 2=163,y 1+y 2=12,则⎩⎪⎨⎪⎧x 0y 0=433,x 2012-y203=1,得⎩⎪⎨⎪⎧x 0=43,y 0=3,故t =4,点D 的坐标为(43,3).1.(2012·岳阳模拟)直线x =2与双曲线C :x 24-y 2=1的渐近线交于E 1,E 2两点,记1OE u u u u r,=e 1,2OE u u u u r,=e 2,任取双曲线C 上的点P ,若OP u u u r ,=a e 1+b e 2,则实数a 和b 满足的一个等式是________.解析:可求出e 1=(2,1),e 2=(2,-1),设P (x 0,y 0),则⎩⎪⎨⎪⎧2a +2b =x 0,a -b =y 0,则(a +b )2-(a -b )2=1,得ab =14.答案:ab =142.已知双曲线x 2a2-y 2b 2=1的左,右焦点分别为F 1、F 2,过点F 2作与x 轴垂直的直线与双曲线一个交点为P ,且∠PF 1F 2=π6,则双曲线的渐近线方程为________________.解析:根据已知得点P 的坐标为⎝ ⎛⎭⎪⎫c ,±b 2a ,则|PF 2|=b 2a ,又∠PF 1F 2=π6,则|PF 1|=2b 2a ,故2b 2a -b 2a =2a ,所以b 2a 2=2,ba=2,所以该双曲线的渐近线方程为y =±2x .答案:y =±2x3.(2012·大同模拟)已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为(3,0).(1)求双曲线C 的方程; (2)若直线l :y =kx +2与双曲线C 恒有两个不同的交点A 和B ,且OA ―→,·OB ―→,>2(其中O 为原点),求k 的取值范围.解:(1)设双曲线C 的方程为x 2a 2-y 2b 2=1(a >0,b >0),由已知得a =3,c =2,再由c 2=a 2+b 2得b 2=1,所以双曲线C 的方程为x 23-y 2=1.(2)将y =kx +2代入x 23-y 2=1,整理得(1-3k 2)x 2-62kx -9=0,由题意得⎩⎪⎨⎪⎧1-3k 2≠0,Δ=62k 2+361-3k 2=361-k 2>0,故k 2≠13且k 2<1,① 设A (x A ,y A ),B (x B ,y B ),则x A +x B =62k1-3k 2,x A ·x B =-91-3k 2,由OA u u u r ,·OB u u u r,>2得x A x B +y A y B >2,又x A x B +y A y B =x A x B +(kx A +2)(kx B +2)=(k 2+1)x A x B +2k (x A +x B )+2=(k 2+1)·-91-3k 2+2k ·62k1-3k 2+2=3k 2+73k 2-1, 于是3k 2+73k 2-1>2,即-3k 2+93k 2-1>0,解不等式得13<k 2<3,②由①②得13<k 2<1,所以k 的取值范围为⎝ ⎛⎭⎪⎪⎫-1,-33∪⎝ ⎛⎭⎪⎪⎫33,1.。