【巩固训练】(2016·郑州高二检测)已知f(x)= 1 ,
且f′(1)=- 1 ,求n.
nx
【解析】f′(x3 )=
所以f′(1)=- ,
(1)= (x- n 1)= - 1x- n 1- 1 = - 1x- nn 1,
nx
n
n
1 由f′(1)=- 得-n =- ,得n=3.
1 11
3 n3
借助导数的几何或物理意义解释实际问题
【预习小测】
1.函数f(x)=0的导数是 ( )
A.0
B.1
C.不存在
D.不确定
【解析】选A.常数函数的导数为0.
2.已知函数f(x)= 1 ,则f′(-2)= ( )
A.4
B.1 x
C.-4
D.- 1
【解析】选D.因为4 f′(x)=
4
所以f′(-2)=
(
1 x
答案:x0=kπ,k∈Z
6.一木块沿某一斜面自由下滑,测得下滑的水平距离 scm与时间ts之间的函数关系为:s=t2,试求t=2(s)时, 此木块的瞬时速度.(仿照教材P83例1的解析过程)
【解析】由幂函数导数公式得s′(t)=2t, 故s′(2)=4, 因此当t=2(s),木块的瞬时速度为4cm/s.
2.如何区分f(x)=sinx与f(x)=cosx的导数特征? 提示:从导数公式(sinx)′=cosx,(cosx)′=-sinx看出: 一要注意函数名称的变化,二要注意符号的变化,特别 注意(cosx)′=-sinx,而不是(cosx)′=sinx.
3.函数f(x)=lnx与f(x)=logax的导数公式之间有哪些 差异与联系?
【解析】因为y′=- ,1又在点(m,n)处的导数值为-1, x2