2016届高三上学期阶段测试试题精选(12)数学 Word版含答案
- 格式:doc
- 大小:662.50 KB
- 文档页数:6
2016届高三上学期第一次月考数学(文)试题Word版含答案2016届高三上学期第一次月考数学文试卷考试时间120分钟,满分150分一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M ={x |x ≥0,x ∈R },N ={x |x 2<1,x ∈R },则M ∩N 等于( ) A .[0,1] B .[0,1) C .(0,1]D .(0,1)2.已知集合A ={1,2},B ={1,a ,b },则“a =2”是“A ?B ”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.已知命题p :所有有理数都是实数;命题q :正数的对数都是负数,则下列命题中为真命题的是( ) A .﹁p 或q B .p 且q C .﹁p 且﹁qD .﹁p 或﹁q4.设函数f (x )=x 2+1,x ≤1,2x ,x >1,则f (f (3))等于( )A.15B .3C.23D.1395.函数f (x )=log 12(x 2-4)的单调递增区间是( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)6.已知函数f (x )为奇函数,且当x >0时,f (x )=x 2+1x ,则f (-1)等于( )A .-2B .0C .1D .27. 如果函数f (x )=x 2-ax -3在区间(-∞,4]上单调递减,则实数a 满足的条件是( ) A .a ≥8 B .a ≤8 C .a ≥4D .a ≥-48. 函数f (x )=a x -2+1(a >0且a ≠1)的图像必经过点( ) A .(0,1) B .(1,1) C .(2,0)D .(2,2)9. 函数f (x )=lg(|x |-1)的大致图像是( )10. 函数f (x )=2x +3x 的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)11. 设f (x )=x ln x ,若f ′(x 0)=2,则x 0的值为( ) A .e 2B .eC.ln22D .ln212. 函数f (x )的定义域是R ,f (0)=2,对任意x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集为( ).A .{x |x >0}B .{x |x <0}C .{x |x <-1或x >1}D .{x |x <-1或0<1}<="" p="">二、填空题:本大题共4小题,每题5分.13. 已知函数y =f (x )及其导函数y =f ′(x )的图像如图所示,则曲线y =f (x )在点P 处的切线方程是__________.14. 若函数f (x )=x 2+ax +b 的两个零点是-2和3,则不等式af (-2x )>0的解集是________. 15. 函数y =12x 2-ln x 的单调递减区间为________.16. 若方程4-x 2=k (x -2)+3有两个不等的实根,则k 的取值范围是________.三、解答题:解答应写出文字说明、证明过程或演算步骤17.(10分) 化简:(1)3131421413223b a b a ab b a -(a >0,b >0);(2)(-278)23-+(0.002)12--10(5-2)-1+(2-3)0.18.(12分)已知函数f (x )=1a -1(a >0,x >0),(1)求证(用单调性的定义证明):f (x )在(0,+∞)上是增函数; (2)若f (x )在[12,2]上的值域是[12,2],求a 的值.19.(12分)已知定义在R 上的奇函数f (x )有最小正周期2,且当x ∈(0,1)时,f (x )=2x4x +1.(1)求f (1)和f (-1)的值; (2)求f (x )在[-1,1]上的解析式.20.(12分)已知函数f (x )=x 2+2ax +3,x ∈[-4,6]. (1)当a =-2时,求f (x )的最值;(2)求实数a 的取值范围,使y =f (x )在区间[-4,6]上是单调函数;(3)当a =1时,求f (|x |)的单调区间. 21.(12分)已知函数f (x )=x 3+x -16. (1)求曲线y =f (x )在点(2,-6)处的切线的方程;(2)直线l 为曲线y =f (x )的切线,且经过原点,求直线l 的方程及切点坐标; 22.(12分)已知函数f (x )=x 3-3ax -1,a ≠0. (1)求f (x )的单调区间;(2)若f (x )在x =-1处取得极值,直线y =m 与y =f (x )的图像有三个不同的交点,求m 的取值范围.2016届高三上学期第一次月考数学答题卡一、选择题(共12小题,每小题5分,共60分,每小题有一个正确答案)13、 14、15、 16、三、解答题17.(10分) 化简:(1)131421413223b a b a ab b a -(a >0,b >0);(2)(-278)23-+(0.002)12--10(5-2)-1+(2-3)0.18.(10分)已知函数f (x )=1a -1x(a >0,x >0),(1)求证(用单调性的定义证明):f (x )在(0,+∞)上是增函数; (2)若f (x )在[12,2]上的值域是[12,2],求a 的值.19.(12分)已知定义在R 上的奇函数f (x )有最小正周期2,且当x ∈(0,1)时,f (x )=2x4x +1.(1)求f (1)和f (-1)的值; (2)求f (x )在[-1,1]上的解析式.20.(12分)已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线的方程;(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标;21.(13分)已知函数f(x)=x2+2ax+3,x∈[-4,6].(1)当a=-2时,求f(x)的最值;(2)求实数a的取值范围,使y=f(x)在区间[-4,6]上是单调函数;(3)当a=1时,求f(|x|)的单调区间.22.(13分)已知函数f(x)=x3-3ax-1,a≠0.(1)求f(x)的单调区间;(2)若f(x)在x=-1处取得极值,直线y=m与y=f(x)的图像有三个不同的交点,求m的取值范围.2016届高三上学期第一次月考数学文试卷参考答案1.B2.A3.D4.D5.D6.A7.A8.D9.B10.B11.B12.A13. x -y -2=0 14. {x |-32<1}<="" p="">15. (0,1] 16. (512,34]17. 解 (1)原式=121311113233211212633311233().a b a b abab ab a b+-++----==(2)原式=(-278)23-+(1500)12--105-2+1=(-827)23+50012-10(5+2)+1=49+105-105-20+1=-1679. 18. (1)证明设x 2>x 1>0,则x 2-x 1>0,x 1x 2>0,∵f (x 2)-f (x 1)=(1a -1x 2)-(1a -1x 1)=1x 1-1x 2=x 2-x 1x 1x 2>0,∴f (x 2)>f (x 1),∴f (x )在(0,+∞)上是增函数. (2)解∵f (x )在[12,2]上的值域是[12,2],又f (x )在[12,2]上单调递增,∴f (12)=12,f (2)=2.易得a =25.19. 解(1)∵f (x )是周期为2的奇函数,∴f (1)=f (1-2)=f (-1)=-f (1),∴f (1)=0,f (-1)=0. (2)由题意知,f (0)=0. 当x ∈(-1,0)时,-x ∈(0,1).由f (x )是奇函数,∴f (x )=-f (-x )=-2-x4-x +1=-2x4x +1,综上,在[-1, 1]上,f (x )=2x4x +1,x ∈(0,1),-2x 4x+1,x ∈(-1,0),0,x ∈{-1,0,1}.20.解 (1)当a =-2时,f (x )=x 2-4x +3=(x -2)2-1,∵x ∈[-4,6],∴f (x )在[-4,2]上单调递减,在[2,6]上单调递增,∴f (x )的最小值是f (2)=-1,又f (-4)=35,f (6)=15,故f (x )的最大值是35. (2)∵函数f (x )的图像开口向上,对称轴是x =-a ,∴要使f (x )在[-4,6]上是单调函数,应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4. (3)当a =1时,f (x )=x 2+2x +3,∴f (|x |)=x 2+2|x |+3,此时定义域为x ∈[-6,6],且f (x )=?x 2+2x +3,x ∈(0,6],x 2-2x +3,x ∈[-6,0],∴f (|x |)的单调递增区间是(0, 6],单调递减区间是[-6,0].21.解 (1)可判定点(2,-6)在曲线y =f (x )上.∵f ′(x )=(x 3+x -16)′=3x 2+1.∴f ′(x )在点(2,-6)处的切线的斜率为k =f ′(2)=13. ∴切线的方程为y =13(x -2)+(-6),即y =13x -32.(2)法一设切点为(x 0,y 0),则直线l 的斜率为f ′(x 0)=3x 20+1,∴直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16,又∵直线l 过点(0,0),∴0=(3x 20+1)(-x 0)+x 30+x 0-16,整理得,x 30=-8,∴x 0=-2,∴y 0=(-2)3+(-2)-16=-26,k =3×(-2)2+1=13. ∴直线l 的方程为y =13x ,切点坐标为(-2,-26.) 法二设直线l 的方程为y =kx ,切点为(x 0,y 0),则k=y0-0x0-0=x30+x0-16x0又∵k=f′(x0)=3x20+1,∴x30+x0-16x0=3x2+1,解之得x0=-2,∴y0=(-2) 3+(-2)-16=-26,k=3×(-2)2+1=13.∴直线l的方程为y=13x,切点坐标为(-2,-26).22.解(1)f′(x)=3x2-3a=3(x2-a),当a<0时,对x∈R,有f′(x)>0,∴当a<0时,f(x)的单调增区间为(-∞,+∞).当a>0时,由f′(x)>0,解得x<-a或x>a.由f′(x)<0,解得-a<x<a,< p="">∴当a>0时,f(x)的单调增区间为(-∞,-a),(a,+∞),单调减区间为(-a,a).(2)∵f(x)在x=-1处取得极值,∴f′(-1)=3×(-1)2-3a=0,∴a=1.∴f(x)=x3-3x-1,f′(x)=3x2-3,由f′(x)=0,解得x1=-1,x2=1.由(1)中f(x)的单调性可知,f(x)在x=-1处取得极大值f(-1)=1,在x=1处取得极小值f(1)=-3.∵直线y=m与函数y=f(x)的图像有三个不同的交点,结合如图所示f(x)的图像可知:实数m的取值范围是(-3,1).</x<a,<>。
数学试卷(文史类)考生注意:1. 答卷前,考生务必在答题纸大将姓名、座位号、准考据号等填写清楚.2.本试卷共有 23 道试题,满分 150 分,考试时间 120 分钟 .一.填空题(本大题满分56 分)本大题共有14 题,只需求直接填写结果,每题填对得4分,不然一律得零分.1.函数2、已知f ( x) x( x ) 的反函数是 f (x)_____________ . a, b, a 和 b 的夹角为,则a b___________.3、幂函数y f ( x)的图象过点(, ) ,则 f ()_________ .4、方程log ( x)log(x) 的解为_______________.5、不等式(x )(x)的解集为 __________.6、若直线l的一个法向量 n (,) ,若直线 l的一个方向向量 d( ,) ,则 l与 l的夹角=.(用反三角函数表示 ).7、直线l : x y交圆 x y于 A、 B两点,则AB _______.8、已知,, 且tan(),则 cos.9、无量等比数列a n的前 n 项和为S n,若 S, S,则 lim S n_______ .n10 f (x)kx x有两个不一样的零点,则实数k 的取值范围是.、已知11、已知a、b、c是ABC 中A、B、 C 的对边,若 a, A,ABC 的面积为,则ABC 的周长为.12 、奇函数f (x)的定义域为 R ,若f ( x) 为偶函数,且 f ( ),则f () f () _______.___13、已知等比数列a n的前 n 项和为S n,若S , S , S成等差数列,且a a a,若 S n,则 n 的取值范围为.14、设x表示不超出x的最大整数,如, .. 给出以下命题:①对随意的实数x ,都有 x x x ;②对随意的实数x, y ,都有x y x y ;③ lg lg lg lg lg;④若函数 f ( x)x x ,当 x, n (n N * ) 时,令 f (x)的值域为A,记会合A中元素个数为 a n,则a n的最小值为. 此中全部真命题的序号为.n二.选择题 ( 本大题满分 20分)本大题共有 4 题,每题都给出四个结论,此中有且只有一个结论是正确的,选对得 5 分,不然一律得零分 .15、数列a n的前n项和为S n n ,则 a 的值为()A 、B、C、D、 6416、a是直线 ax y a和 x (a) y a平行且不重合的()A、充足非必需条件B、必需非充足条件C、充要条件D、既不充足又不用要条件17 、将f ( x)sin x 的图象右移() 个单位后得到 g (x) 的图象,若满足f ( x )g( x )的x , x,有x x的最小值为,则的值为()A、B、C、D、e x mx 、 x 、x R ,总有 f ( x )、f ( x2 )、f ( x3 ) 为18、已知函数 f ( x),若对随意e x某一个三角形的边长,则实数m 的取值范围是()A、,B、,C、 ,D、,三.解答题( 本大题满分74分 ) 本大题共有 5 题,解答以下各题一定写出必需的步骤.19.(此题共 2 小题,满分12 分。
2016年普通高等学校招生全国统一考试〔##卷〕数学〔理科〕第Ⅰ卷〔共50分〕一、选择题:本大题共10小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 〔1〕[2016年##,理1,5分]若复数z 满足232i z z +=-,其中i 为虚数为单位,则z =〔〕〔A 〕12i +〔B 〕12i -〔C 〕12i -+〔D 〕12i -- [答案]B[解析]设(),,z a bi a b R =+∈,则2()i 23i 32i z z z z z a b a a b +=++=++=+=-,所以1,2a b ==-,故选B . [点评]本题考查复数的代数形式混合运算,考查计算能力.〔2〕[2016年##,理2,5分]已知集合{}{}22,,10x A y y x R B x x ==∈=-<,则AB =〔〕〔A 〕()1,1-〔B 〕()0,1〔C 〕()1,-+∞〔D 〕()0,+∞ [答案]C[解析]由题意()0,A =+∞,()1,1B =-,所以()1,AB =-+∞,故选C .[点评]本题考查并集与其运算,考查了指数函数的值域,考查一元二次不等式的解法,是基础题. 〔3〕[2016年##,理3,5分]某高校调查了200名学生每周的自习时间〔单位:小时〕,制成了如图所示的频率分布直方图,其中自习时间的X 围是[]17.5,30,样本数据分组为[)17.5,20,[)20,22.5,[)22.5,25,[)25,27.5,[]27.5,30.根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是〔〕 〔A 〕56〔B 〕60〔C 〕120〔D 〕140 [答案]D[解析]由图可知组距为2.5,每周的自习时间少于22.5小时的频率为(0.020.1) 2.50.30+⨯=, 所以,每周自习时间不少于22.5小时的人数是()20010.30140⨯-=人,故选D . [点评]本题考查的知识点是频率分布直方图,难度不大,属于基础题目.〔4〕[2016年##,理4,5分]若变量x ,y 满足22390x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则22x y +的最大值是〔〕〔A 〕4〔B 〕9〔C 〕10〔D 〕12 [答案]C[解析]由22x y +是点(),x y 到原点距离的平方,故只需求出三直线的交点()()()0,2,0,3,3,1--,所以()3,1-是最优解,22x y +的最大值是10,故选C .[点评]本题考查简单的线性规划,考查了数形结合的解题思想方法和数学转化思想方法,是中档题. 〔5〕[2016年##,理5,5分]有一个半球和四棱锥组成的几何体,其三视图如右图所示,则该几何体的体积为〔〕〔A 〕1233+π〔B 〕1233+π〔C 〕1236+π〔D 〕216+π[答案]C[解析]由三视图可知,半球的体积为26π,四棱锥的体积为13,所以该几何体的体积为1236+π,故选C .[点评]本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.〔6〕[2016年##,理6,5分]已知直线,a b 分别在两个不同的平面α,β内,则"直线a 和直线b 相交〞是"平面α和平面β相交〞的〔〕〔A 〕充分不必要条件〔B 〕必要不充分条件〔C 〕充要条件〔D 〕既不充分也不必要条件 [答案]A[解析]由直线a 和直线b 相交,可知平面αβ、有公共点,所以平面α和平面β相交.又如果平面α和平面β相交,直线a 和直线b 不一定相交,故选A .[点评]本题考查的知识点是充要条件,空间直线与平面的位置关系,难度不大,属于基础题. 〔7〕[2016年##,理7,5分]函数()()()3sin cos 3cos sin f x x xx x =+-的最小正周期是〔〕〔A 〕2π〔B 〕π〔C 〕32π〔D 〕2π[答案]B[解析]由()2sin cos 3cos 22sin 23f x x x x x π⎛⎫=+=+ ⎪⎝⎭,所以,最小正周期是π,故选B .[点评]本题考查的知识点是和差角与二倍角公式,三角函数的周期,难度中档.〔8〕[2016年##,理8,5分]已知非零向量,m n 满足143,cos ,3m n m n =<>=,若()n tm n ⊥+则实数t 的值为〔〕〔A 〕4〔B 〕4-〔C 〕94〔D 〕94-[答案]B[解析]因为21cos ,4nm m n m n n =⋅<>=,由()n tm n ⊥+,有()20n tm n tmn n +=+=,即2104t n ⎛⎫+= ⎪⎝⎭,4t =-,故选B .[点评]本题考查的知识点是平面向量数量积的运算,向量垂直的充要条件,难度不大,属于基础题.〔9〕[2016年##,理9,5分]已知函数()f x 的定义域为R ,当0x <时,3()1f x x =-;当11x -≤≤时,()()f x f x -=-;当12x >时,1122f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,则()6f =〔〕〔A 〕2-〔B 〕1-〔C 〕0〔D 〕2 [答案]D[解析]由1122f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,知当12x >时,()f x 的周期为1,所以()()61f f =.又当11x -≤≤时,()()f x f x -=-,所以()()11f f =--.于是()()()()3611112f f f ⎡⎤==--=---=⎣⎦,故选D .[点评]本题考查函数值的计算,考查函数的周期性,考查学生的计算能力,属于中档题. 〔10〕[2016年##,理10,5分]若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数具有T 性质的是〔〕〔A 〕sin y x =〔B 〕ln y x =〔C 〕x y e =〔D 〕3y x = [答案]A[解析]因为函数ln y x =,x y e =的图象上任何一点的切线的斜率都是正数;函数3y x =的图象上任何一点的切线的斜率都是非负数.都不可能在这两点处的切线互相垂直,即不具有T 性质,故选A .[点评]本题考查的知识点是利用导数研究曲线上某点切线方程,转化思想,难度中档.第II 卷〔共100分〕二、填空题:本大题共5小题,每小题5分〔11〕[2016年##,理11,5分]执行右边的程序框图,若输入的的值分别为0和9,则输出i 的值为. [答案]3[解析]i 1=时,执行循环体后1,8a b ==,a b >不成立;i 2=时,执行循环体后3,6a b ==,a b >不成立;i 3=时,执行循环体后6,3a b ==,a b >成立;所以i 3=,故填 3.[点评]本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答. 〔12〕[2016年##,理12,5分]若521ax x ⎛⎫+ ⎪⎝⎭的展开式中5x 的系数是80-,则实数a =.[答案]2-[解析]由()23222355551C C 80ax a x x x ⎛⎫==- ⎪⎝⎭,得2a =-,所以应填2-.[点评]考查了利用二项式定理的性质求二项式展开式的系数,属常规题型.〔13〕[2016年##,理13,5分]已知双曲线()2222:10,0x y E a b a b-=>>,若矩形ABCD 的四个顶点在E 上,,AB CD 的中点为E 的两个焦点,且23AB BC =,则E 的离心率为.[答案]2[解析]由题意BC 2c =,所以2AB 3BC =,于是点3,2c c ⎛⎫⎪⎝⎭在双曲线E 上,代入方程,得2222914c c a b -=,在由222a b c +=得E 的离心率为2ce a==.[点评]本题考查双曲线的离心率的求法,注意运用方程的思想,正确设出A B C D ,,,的坐标是解题的关键,考查运算能力,属于中档题.〔14〕[2016年##,理14,5分]在[]1,1-上随机的取一个数k ,则事件"直线y kx =与圆()2259x y -+=相交〞发生的概率为. [答案]34[解析]首先k 的取值空间的长度为2,由直线y kx =与圆22(5)9x y -+=相交,得事件发生时k 的取值空间为33,44⎡⎤-⎢⎥⎣⎦,其长度为32,所以所求概率为33224=. [点评]本题主要考查了几何概型的概率,以与直线与圆相交的性质,解题的关键弄清概率类型,同时考查了计算能力,属于基础题.〔15〕[2016年##,理15,5分]在已知函数()2,24,x x mf x x mx m x m⎧≤⎪=⎨-+>⎪⎩,其中0m >,若存在实数b ,使得关于x 的方程()f x b =有三个不同的根,则m 的取值X 围是.[答案]()3,+∞[解析]因为()224g x x mx m =-+的对称轴为x m =,所以x m >时()224f x x mx m =-+单调递增,只要b 大于()224g x x mx m =-+的最小值24m m -时,关于x 的方程()f x b =在x m >时有一根;又()h x x =在x m ≤,0m >时,存在实数b ,使方程()f x b =在x m ≤时有两个根,只需0b m <≤;故只需24m m m -<即可,解之,注意0m >,得3m >,故填()3+∞,. [点评]本题考查根的存在性与根的个数判断,数形结合思想的运用是关键,分析得到24m m m -<是难点,属于中档题.三、解答题:本大题共6题,共75分.〔16〕[2016年##,理16,12分]在ABC ∆中,角,,A B C 的对边分别为a,b,c ,已知()tan tan 2tan tan cos cos A BA B B A+=+. 〔1〕证明:2a b c +=; 〔2〕求cos C 的最小值.解:〔1〕由()tan tan 2tan tan cos cos A B A B B A +=+得sin sin sin 2cos cos cos cos cos cos C A BA B A B A B⨯=+,2sin sin sin C B C =+, 由正弦定理,得2a b c +=.〔2〕由()222222cos 22a b ab ca b c C ab ab +--+-==222333111122222c c ab a b =-≥-=-=+⎛⎫⎪⎝⎭.所以cos C 的最小值为12. [点评]考查切化弦公式,两角和的正弦公式,三角形的内角和为π,以与三角函数的诱导公式,正余弦定理,不等式222a b ab +≥的应用,不等式的性质.〔17〕[2016年##,理17,12分]在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O '的直径,FB 是圆台的一条母线.〔1〕已知,G H 分别为,EC FB 的中点,求证://GH 平面ABC ;〔2〕已知123,2EF FB AC AB BC ====,求二面角F BC A --的余弦值.解:〔1〕连结FC ,取FC 的中点M ,连结,GM HM ,因为//GM EF ,EF 在上底面内,GM 不在上底面内,所以//GM 上底面,所以//GM 平面ABC ;又因为//MH BC ,BC ⊂平 面ABC ,MH ⊄平面ABC ,所以//MH 平面ABC ;所以平面//GHM 平面ABC ,由GH ⊂平面GHM ,所以//GH 平面ABC .〔2〕连结OB ,AB BC =OA OB ∴⊥,以为O 原点,分别以,,OA OB OO '为,,x y z 轴,建立空间直角坐标系.123,2EF FB AC AB BC ====,22()3OO BF BO FO '=--=,于是有()23,0,0A ,()23,0,0C -,()0,23,0B ,()0,3,3F ,可得平面FBC 中的向量()0,3,3BF =-, ()23,23,0CB =,于是得平面FBC 的一个法向量为()13,3,1n =-,又平面ABC 的一个法向量为()20,0,1n =,设二面角F BC A --为θ, 则121217cos 77n n n n θ⋅===⋅.二面角F BC A --的余弦值为77. [点评]本题考查线面平行的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.〔18〕[2016年##,理18,12分]已知数列{}n a 的前n 项和238n S n n =+,{}n b 是等差数列,且1n n n a b b +=+.〔1〕求数列{}n b 的通项公式;〔2〕令1(1)(2)n n n nn a c b ++=+.求数列{}n c 的前n 项和n T .解:〔1〕因为数列{}n a 的前n 项和238n S n n =+,所以111a =,当2n ≥时,221383(1)8(1)65n n n a S S n n n n n -=-=+----=+,又65n a n =+对1n =也成立,所以65n a n =+.又因为{}n b 是等差数列,设公差为d ,则12n n n n a b b b d +=+=+.当1n =时,1211b d =-;当2n =时,2217b d =-,解得3d =,所以数列{}n b 的通项公式为312n n a db n -==+. 〔2〕由111(1)(66)(33)2(2)(33)n n n n n n nn a n c n b n +++++===+⋅++,于是23416292122(33)2n n T n +=⋅+⋅+⋅+++⋅,两边同乘以2,得341226292(3)2(33)2n n n T n n ++=⋅+⋅++⋅++⋅,两式相减,得2221232(12)(33)232n n n n T n n ++=-+⋅-++⋅=⋅.[点评]本题考查数列的通项与求和,着重考查等差数列的通项与错位相减法的运用,考查分析与运算能力,属于中档题.〔19〕[2016年##,理19,12分]甲、乙两人组成"星队〞参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则"星队〞得3分;如果只有一人猜对,则"星队〞得1分;如果两人都没猜对,则"星队〞得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果也互不影响.假设"星队〞参加两轮活动,求: 〔1〕"星队〞至少猜对3个成语的概率;〔2〕"星队〞两轮得分之和X 的分布列和数学期望EX . 解:〔1〕"至少猜对3个成语〞包括"恰好猜对3个成语〞和"猜对4个成语〞.设"至少猜对3个成语〞为事件A ;"恰好猜对3个成语〞和"猜对4个成语〞分别为事件C B ,,则1122332131225()4433443312P B C C =⋅⋅⋅⋅+⋅⋅⋅⋅=;33221()44334P C =⋅⋅⋅=.所以512()()()1243P A P B P C =+=+=.〔2〕"星队〞两轮得分之和X 的所有可能取值为0,1,2,3,4,6,于是11111(0)4343144P X ==⋅⋅⋅=;112212*********(1)4343434314472P X C C ==⋅⋅⋅+⋅⋅⋅==;1211223311132125(2)443344334433144P X C ==⋅⋅⋅+⋅⋅⋅+⋅⋅⋅=;123211121(3)434314412P X C ==⋅⋅⋅==; 12321231605(4)()43434314412P X C ==⋅⋅⋅+⋅==;3232361(6)43431444P X ==⋅⋅⋅==; XX 的数学期望01234614472144121241446EX =⨯+⨯+⨯+⨯+⨯+⨯==. [点评]本题考查离散型随机变量的分布列和数学期望,属中档题.〔20〕[2016年##,理20,13分]已知221()(ln ),x f x a x x a R x-=-+∈.〔1〕讨论()f x 的单调性; 〔2〕当1a =时,证明3()()2f x f x '>+对于任意的[1,2]x ∈成立.解:〔1〕求导数3122()(1)x f x a x x'=---23(1)(2x ax x =--),当0a ≤时,x ∈(0,1),()0f x '>,()f x 单调递增,x +∞∈(1,),()0f x '<,()f x 单调递减当0a >时,()()()233112()a x x x x ax f x x x⎛--+ --⎝⎭⎝⎭'== ①当02a<<时,1,x ∈(0,1)或x ⎫+∞⎪⎪⎭∈,()0f x '>,()f x 单调递增,x ⎛ ⎝∈,()0f x '<,、()f x 单调递减;②当a =2时1,x ∈+∞(0,),()0f x '≥,()f x 单调递增, ③当a >2时,01<,x ⎛∈ ⎝或()x ∈+∞1,,()0f x '>,()f x 单调递增,x ⎫∈⎪⎪⎭1,()0f x '<, ()f x 单调递减.〔2〕当1a =时,221()ln x f x x x x=+--,2323(1)(212()1x x f x x x x x '==+--)2--, 于是2232112()()ln 1)x f x f x x x x x x x '=++-2---(--23312ln 1x x x x x =--++-,[1,2]x ∈令()g ln x x x =-,2332h()x x x x=-++-11,[1,2]x ∈,于是()()g(()f x f x x h x '-=+), 1g ()10x x x x-'=-=≥1,()g x 的最小值为()11g =;又22344326326()x x h x x x x x --+'=--+=, 设()2326x x x θ=--+,[1,2]x ∈,因为()11θ=,()210θ=-,所以必有0[1,2]x ∈,使得()00x θ=,且01x x <<时,()0x θ>,()h x 单调递增;02x x <<时,()0x θ<,()h x 单调递减;又()11h =,()122h =, 所以()h x 的最小值为()122h =.所以13()()g(()g(1(2)122f x f x x h x h '=+>+=+=))-. 即3()()2f x f x '>+对于任意的[1,2]x ∈成立. [点评]本题考查利用导数加以函数的单调性,考查了利用导数求函数的最值,考查了分类讨论的数学思想方法和数学转化思想方法,是压轴题.〔21〕[2016年##,理21,14分]平面直角坐标系xOy 中,椭圆()2222:10x y C a b a b+=>>的离心率是,抛物线2:2E x y =的焦点F 是C 的一个顶点.〔1〕求椭圆C 的方程;〔2〕设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交于不同的两点,A B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M . 〔i 〕求证:点M 在定直线上;〔ii 〕直线l 与y 轴交于点G ,记PFG ∆的面积为1S ,PDM ∆的面积为2S ,求12SS 的最大值与取得最大值时点P 的坐标.解:〔1,有224a b =,又抛物线22x y =的焦点坐标为10,2F ⎛⎫⎪⎝⎭,所以12b =,于是1a =,所以椭圆C 的方程为2241x y +=.〔2〕〔i 〕设P 点坐标为()2,02m P m m ⎛⎫> ⎪⎝⎭,由22x y =得y x '=,所以E 在点P 处的切线l 的斜率为m ,因此切线l 的方程为22m y mx =-,设()()1122,,,A x y B x y ,()00,D x y ,将22m y mx =-代入2241x y +=,得()223214410m x m x m +-+-=.于是3122414m x x m +=+,312022214x x m x m +==+, 又()220022214m m y mx m -=-=+,于是直线OD 的方程为14y x m =-. 联立方程14y x m =-与x m =,得M 的坐标为1,4M m ⎛⎫- ⎪⎝⎭.所以点M 在定直线14y =-上.〔ii 〕在切线l 的方程为22m y mx =-中,令0x =,得22m y =-,即点G 的坐标为20,2m G ⎛⎫- ⎪⎝⎭,又2,2m P m ⎛⎫ ⎪⎝⎭,10,2F ⎛⎫ ⎪⎝⎭,所以211(1)24m m S m GF +=⨯=;再由()32222,41241m m D m m ⎛⎫- ⎪ ⎪++⎝⎭,得 ()()22232222112122441841m m m m m S m m +++=⨯⨯=++于是有()()()221222241121m m S S m ++=+.令221t m =+, 得()12221211122t t S S t t t ⎛⎫-+ ⎪⎝⎭==+-,当112t =时,即2t =时,12S S 取得最大值94.此时212m =,m =所以P点的坐标为14P ⎫⎪⎪⎝⎭.所以12S S 的最大值为94,取得最大值时点P的坐标为14P ⎫⎪⎪⎝⎭. [点评]本题考查椭圆的方程的求法,注意运用椭圆的离心率和抛物线的焦点坐标,考查直线和抛物线斜的条件,以与直线方程的运用,考查三角形的面积的计算,以与化简整理的运算能力,属于难题.。
山东省潍坊市2016届高三上学期期末考试数学(理)试题_Word版含答案高三数学(理工农医类)2016.1本试卷共5页,分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟.关注微信公众号:山东刘强,免费获取最新高考模拟试题。
第I 卷(选择题共50分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每题选出答案后,用2B 铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再改涂其它答案标号.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}(){}21,0,1,2,log 10A B x x =-=+>,则A B ?=A. {}1,0-B. {}1,2C. {}0,2D. {}1,1,2- 2.已知平面向量2,3,2a b a b a b ==?=-=则A. 4B.C. D.7 3.设1:1,:212x p q x ??>-<<,则p 是q 成立的 A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.根据如下样本据得到回归直线方程9.1,y bx a a b =+==$$$$$,其中则A.9.4B.9.5C.9.6D.9.75.已知函数()()sin 206f x x πωω?=->的最小正周期为4π,则A.函数()f x 的图象关于点,06π?? ???对称 B.函数()f x 的图象关于直线6x π=对称 C.函数()f x 的图象在,2ππ?? ???上单调递减 D.函数()f x 的图象在,2ππ??上单调递增6.已知定义在R 上的偶函数()f x ,当0x ≤时,()()()[]22,,111,1,02x x x f x x ?+∈-∞-?=-∈-? ???则()()3f f =A. 9-B. 1-C.1D.97.若函数()x x a f x e +=在区间(,2-∞)上为单调递增函数,则实数a 的取值范围是A. [)0,+∞ B. (]0,e C. (],1-∞- D. (),e -∞-8.右图为某几何体的三视图,该几何体的体积为V 1,将俯视图绕其直径所在的直线旋转一周而形成的曲面所围成的几何体的体积记为122,V V V =则 A.14B. 12C. 34D. 43 9.设函数()y f x =满足()()()()011f x f x f x f x -+=+=-且,若()0,1x ∈时,()f x =21lo g 1x-,则()()12y f x =在,内是A.单调增函数,且()0f x <B. 单调减函数,且()0f x <C. 单调增函数,且()0f x >D. 单调减函数,且()0f x > 10.已知k R ∈,直线1:0l x ky +=过定点P ,直线2:220l kx y k --+=过定点Q ,两直线交于点M ,则MP MQ +的最大值是A. B.4C. D.8第II 卷(非选择题共100分)注意事项:1.将第II 卷答案用0.5mm 的黑色签字笔答在答题卡的相应位置上.2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共5小题,每小题5分,共25分11.已知双曲线()222210,x y a b a b-=>>00y +=,则其离心率e =_________.12. 62x ? ?的二项展开式中2x 的系数为________(用数字表示). 13.不等式323x x +--≥的解集是_________. 14.若,x y 满足约束条件10,3,,x y x y y k -+≥??+-≤??≥?且目标函数3z x y =+取得最大值为11,则k=______.15.若函数()y f x =满足:对()y f x =图象上任意点()()11,P x f x ,总存在点()()22,P x f x '也在()y f x =图象上,使得()()12120x x f x f x +=成立,称函数()y f x =是“特殊对点函数”.给出下列五个函数:①1y x -=;②2log y x =;③sin 1y x =+;④2xy e =-;⑤y =其中是“特殊对点函数”的序号是_________.(写出所有正确的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分)已知函数()2cos cos ,f x x x x x R =+∈.(I )把函数()f x 的图象向右平移6π个单位,得到函数()g x 的图象,求()g x 在0,2π上的最大值;(II )在ABC ?中,角A,B,C 对应的三边分别为,,,12B a b c d f ??==,ABC S ?=a c 和的值.17. (本小题满分12分)如图,已知斜三棱柱111ABC A B C -中,底面ABC 是等边三角形,侧面11BB C C 是棱形,160B BC ∠=o .(I )求证:1BC AB ⊥;(II)若12,AB AB =11C AB C --(锐角)的余弦值.18. (本小题满分12分)公差不为零的等差数列{}n a 中,125,,a a a 成等比数列,且该数列的前10项和为100,数列{}n b 的前n 项和为n S ,且满足,n n b S a n N *=∈. (I )求数列{}n a ,{}n b 的通项公式;(II )记数列14n n a b ??+的前n 项和为n T ,求n T 的取值范围.19. (本小题满分12分)某高中学校在2015年的一次体能测试中,规定所有男生必须依次参加50米跑、立定跳远和一分钟引体向上三项测试,只有三项测试全部达标才算合格.已知男生甲的50米跑和立定跳远的测试与男生乙的50米跑测试已达标,男生甲还需要参加一分钟引体向上测试,男生乙还需要参加立定跳远和一分钟引体向上两项测试.若甲参加一分钟引体向上测试达标的概率为p ,乙参加立定跳远和一分钟引体向上测试达标的概率均为12,甲、乙每一项测试是否达标互不影响.已知甲和乙同时合格的概率为16. (I )求p 的值,并计算甲和乙恰有一人合格的概率;(II )在三项测试项目中,设甲达标的测试项目项数为x ,乙达标的测试项目的项数为,=y x y ξ+记,求随机变量ξ的分布列和数学期望.20. (本小题满分13分)已知椭圆()2222:10y x E a b a b+=>>的上、下焦点分别为12,F F ,点D 在椭圆上,212DF F F D ⊥的面积为离心率e =.抛物线()2:20C x py p =>的准线l 经过D 点.(I )求椭圆E 与抛物线C 的方程;(II )过直线l 上的动点P 作抛物线的两条切线,切点为A 、B ,直线AB 交椭圆于M,N 两点,当坐标原点O 落在以MN 为直径的圆外时,求点P 的横坐标t 的取值范围.21. (本小题满分14分)已知函数()()ln 0a f x x a x=+>. (I )求函数()[)1f x +∞在,上的最小值.(II )若存在三个不同的实数()1,2,3i x i =,满足方程()f x ax =.(i )证明:()230,1,22a a a f ∈> ;(ii )求实数a 的取值范围及123x x x ??的值.关注微信公众号:山东刘强,免费获取最新高考模拟试题。
新昌中学2015学年第一学期期中考试高三数学(理)试题一、选择题:本大题共8小题,每小题5分,共40分。
1、已知集合2{20},{12}P x x x Q x x =-≥=<≤,则()R P C Q = ( )A .(][),02,-∞+∞ B .(](),02,-∞+∞C .()[),02,-∞+∞D .()(),02,-∞+∞2、命题“000,()()0x R f x g x ∃∈=”的否定形式是 ( ) A .,()0()0x R f x g x ∀∈≠≠且B .,()0()0x R f x g x ∀∈≠≠或C .000,()0()0x R f x g x ∃∈≠≠且D .000,()0()0x R f x g x ∃∈≠≠或3、已知一元二次不等式()<0f x 解集为1{|1}2x x x <->或,则(10)>0xf 解集为 ( ) A .{|1lg 2}x x x <->或 B .{|1lg 2}x x -<< C .{|lg 2}x x >-D .{|lg 2}x x <-4、某几何体的三视图如图所示(单位:cm ),则该几何体的体积是 ( ) A .34cm B .36cmC .3163cmD .3203cm 5、等比数列{}n a中,452,5a a ==,则数列{lg }n a 的前8项和等于( )A .6B .5C .4D .36、设A ,B 是有限集,定义:{|}A B x x A x B -=∈∉且;A 表示集合A 中元素的个数。
命题①:对任意有限集,A B ,“A B ≠”是“0A B ->”的充要条件;命题②:对任意有限集,,A B C ,有A C A B B C -≤-+-。
( ) A. 命题①和命题②都成立B. 命题①和命题②都不成立C. 命题①成立,命题②不成立D. 命题①不成立,命题②成立7、如图,在正方体1111ABCD A B C D -中,点O 为线段BD 的D 1C 1B 1A 1POD CBA俯视图侧视图中点.设点P 在线段11B C 上,直线OP 与平面1A BD 所成 的角为α,则sin α的取值范围是 ( ) A. B.C. D. 8、已知F 是抛物线2y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,满足2OA OB ⋅= (其中O 为坐标原点),则ABO ∆与AFO ∆面积之和的最小值是 ( ) A .2B .3CD二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
2015-2016学年安徽省江南十校联考高三(上)期末数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合A={y|y=x},B={y|y=()x,x>1},则A∩B=()A.(0,)B.()C.(0,1)D.∅2.已知复数z满足z•(1+i2015)=i2016(i是虚数单位),则复数z在复平面内所对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.下列命题中,真命题的是()A.∀x>0,2x>x2B.∃x0∈R,e≤0C.“a>b“是“ac2>bc2”的充要条件D.“ab>1”是“a>1,b>1”的必要条件4.截至11月27日,国内某球员在2015﹣2016赛季CBA联赛的前10轮比赛中,各场得分x i(i=1,2,3,…,10)的茎叶图如图①所示,图②是该运动员某项成绩指标分析的程序框图,则输出的结果是()A.8 B.7 C.6 D.55.将函数y=cos2x的图象向右平移φ个单位得到函数y=cos2x﹣sin2x的图象,则φ的一个可能取值为()A.B.C. D.6.某中学高一、高二各有一个文科和一个理科两个实验班,现将这四个班级随机分配到上海交通大学和浙江大学两所高校进行研学,每个班级去一所高校,每所高校至少有一个班级去,则恰好有一个文科班和一个理科班分配到上海交通大学的概率为()A.B.C.D.7.已知实数x,y满足,且目标函数z=y﹣x取得最小值﹣4,则k等于()A.B.C.﹣D.﹣8.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=,且a2=b2+c2﹣bc,则△ABC的面积S的最大值为()A.B.C.D.9.已知△ABC的边BC上一动点D满足=n(n∈N*),=x+y,则数列{(n+1)x}的前n项和为()A. B. C.D.10.若抛物线C1:y=x2的焦点F到双曲线C2:﹣=1(a>0,b>0)的一条渐近线的距离为,抛物线C1上的动点P到双曲线C2的一个焦点的距离与到直线y=﹣1的距离之和的最小时为,则双曲线C2的方程为()A.﹣y2=1 B.x2﹣=1 C.﹣=1 D.﹣=111.一个三棱锥的三视图如图所示,则它的体积为()A .B .1C .D .212.函数f (x )=1+x ﹣+﹣+…+﹣在区间[﹣2,2]上的零点个数为( ) A .1 B .2 C .3 D .4二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置13.已知(+)5的展开式中的常数项为80,则65x 的系数为______.14.已知正数x ,y 满足2x +y=1,则4x 2+y 2+的最小值为______.15.若对于任意实数t ,圆C 1:(x +4)2+y 2=1与圆C 2:(x ﹣t )2+(y ﹣at +2)2=1都没有公共点,则实数a 的取值范围是______.16.已知函数f (x )=sin (ωx +φ)(ω>0,﹣≤φ≤)的图象如图所示,若函数g (x )=3[f (x )]3﹣4f (x )+m 在x 上有4个不同的零点,则实数m 的取值范围是______.三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤,解答写在答题卡的指定区域17.已知在各项均为正数的等比数列{a n }中,a 1=2,且2a 1,a 3,3a 2成等差数列. (Ⅰ)求等比数列{a n }的通项公式;(Ⅱ)若c n =a n •(),n=1,2,3,…,且数列{c n }为单调递减数列,求λ的取值范围.18.从某企业的一种产品中抽取40件产品,测量其某项质量指标,测量结果的频率分布直方图如图所示.(Ⅰ)求这40件样本该项质量指标的平均数;(Ⅱ)从180(含180)以上的样本中随机抽取2件,记质量指标在[185,190]的件数为X ,求X 的分布列及数学期望.19.如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB∥CD,∠ABC=90°,AB=2,AD=,PA=PD=CD=CB=1,E总是线段PB上的动点.(Ⅰ)当E点在什么位置时,CE∥平面PAD?证明你的结论.(Ⅱ)对于(Ⅰ)中的点E,求AE与底面ABCD所成角的正弦值;(Ⅲ)求二面角A﹣PD﹣C的正弦值.20.已知椭圆C的左、右焦点F1,F2在x轴上,左顶点为A,离心率e=,过原点O的直线(与x轴不重合)与椭圆C交于P,Q两点,直线PA,QA分别与y轴交于M,N两点,△PF1F2的周长为8+4.(Ⅰ)求椭圆C的标准方程;(Ⅱ)求的值;(Ⅲ)求四边形MF1NF2面积的最小值.21.已知函数f(x)=e﹣ax2(其中e是自然对数的底数).(Ⅰ)判断函数f(x)的奇偶性;(Ⅱ)若f(x)≤0在定义域内恒成立,求实数a的取值范围;(Ⅲ)若a=0,当x>0时,求证:对任意的正整数n都有f()<n!x﹣n.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清楚.选修4-1:几何证明选讲22.已知AB是圆O的一条弦,过点A、B分别作AE⊥AB,BF⊥AB,交弧AB上任意一点T的切线于点E、F,OT交AB于点C,求证:(Ⅰ)∠CBT=∠CFT;(Ⅱ)CT2=AE•BF.选修4-4:坐标系与参数方程23.已知曲线C的参数方程为(θ为参数).(Ⅰ)求曲线C的普通方程;(Ⅱ)若倾斜角为45°的直线l经过点P(1,2)且与直线C相交于点A、B,求线段AB的长度.选修4-5:不等式选讲24.设f(x)=|x+3|﹣a|2x﹣1|(Ⅰ)当a=1时,求f(x)>3的解集;(Ⅱ)若f(x)≥0对x∈[﹣1,1]恒成立,求实数a的取值范围.2015-2016学年安徽省江南十校联考高三(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合A={y|y=x},B={y|y=()x,x>1},则A∩B=()A.(0,)B.()C.(0,1)D.∅【考点】指数函数的定义、解析式、定义域和值域;交集及其运算.【分析】利用函数的单调性可得:A=[0,+∞),B=,即可得出A∩B.【解答】解:A={y|y=x}=[0,+∞),B={y|y=()x,x>1}=,则A∩B=,故选:A.2.已知复数z满足z•(1+i2015)=i2016(i是虚数单位),则复数z在复平面内所对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】复数代数形式的混合运算;复数的代数表示法及其几何意义.【分析】利用复数单位的幂运算,然后利用复数的乘法的运算法则化简求解即可.【解答】解:复数z满足z•(1+i2015)=i2016,可得z(1﹣i)=1,可得z===.对应点的坐标().故选:A.3.下列命题中,真命题的是()A.∀x>0,2x>x2B.∃x0∈R,e≤0C.“a>b“是“ac2>bc2”的充要条件D.“ab>1”是“a>1,b>1”的必要条件【考点】特称命题;全称命题.【分析】根据含有量词的命题的定义进行判断即可.【解答】解:A.若x=3,则23=8,32=9,此时2x>x2不成立,故A错误,B.∵∀x∈R,e x>0,∴∃x0∈R,e≤0不成立,故B错误,C.当c=0,当a>b时,“ac2>bc2”不成立,即“a>b“是“ac2>bc2”的充要条件错误,故C错误,D.当a>1,b>1时,ab>1成立,即“ab>1”是“a>1,b>1”的必要条件成立,故D正确,故选:D4.截至11月27日,国内某球员在2015﹣2016赛季CBA联赛的前10轮比赛中,各场得分x i(i=1,2,3,…,10)的茎叶图如图①所示,图②是该运动员某项成绩指标分析的程序框图,则输出的结果是()A.8 B.7 C.6 D.5【考点】程序框图.【分析】模拟执行程序框图,得到程序的功能,由茎叶图写出所有的数据,计算得分超过20分(不包括20分)的场数即可得解.【解答】解:模拟执行程序框图,可得其功能是计算得分超过20分(不包括20分)的场数,有茎叶图知,各场得分的数据为:14,17,27,21,28,20,26,26,31,44,∴根据茎叶图可知得分超过20分(不包括20分)的场数有7场.故选:B.5.将函数y=cos2x的图象向右平移φ个单位得到函数y=cos2x﹣sin2x的图象,则φ的一个可能取值为()A.B.C. D.【考点】函数y=Asin(ωx+φ)的图象变换;由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】由和差角的公式化简可得y=2cos2(x ﹣),由三角函数图象变换的规则可得.【解答】解:∵y=cos2x ﹣sin2x=2cos (2x +)=2cos (2x ﹣)=2cos2(x ﹣),∴φ的一个可能取值为.故选:D .6.某中学高一、高二各有一个文科和一个理科两个实验班,现将这四个班级随机分配到上海交通大学和浙江大学两所高校进行研学,每个班级去一所高校,每所高校至少有一个班级去,则恰好有一个文科班和一个理科班分配到上海交通大学的概率为( )A .B .C .D .【考点】古典概型及其概率计算公式.【分析】求出所有的分配方案和符合条件的分配方案,代入概率计算公式计算.【解答】解:将这四个班级随机分配到上海交通大学和浙江大学两所高校进行研学,每所高校至少有一个班级去,则共有24﹣2=14种分配方案.恰有一个文科班和一个理科班分配到上海交通大学的方案共有2×2=4种,∴P==.故选:B .7.已知实数x ,y 满足,且目标函数z=y ﹣x 取得最小值﹣4,则k 等于( )A .B .C .﹣D .﹣【考点】简单线性规划.【分析】由约束条件作出可行域,由题意可知,直线y=x +z 经过可行域,且在y 轴上的截距的最小值为﹣4时,直线kx ﹣y +2过点(4,0),由此求得k 的值.【解答】解:如图,由题意可知,直线y=x +z 经过可行域,且在y 轴上的截距的最小值为﹣4.∴直线kx ﹣y +2过点(4,0),从而可得k=.故选:D .8.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=,且a2=b2+c2﹣bc,则△ABC的面积S的最大值为()A.B.C.D.【考点】余弦定理.【分析】由已知及余弦定理可得cosA=,解得A=,由余弦定理可得:b2+c2=3+bc,利用基本不等式可求bc≤3,根据三角形面积公式即可得解.【解答】解:∵a2=b2+c2﹣bc,∴由余弦定理可得:cosA==,A为三角形内角,解得A=,∵a=,∴3=b2+c2﹣bc,可得:b2+c2=3+bc,∵b2+c2≥2bc(当且仅当b=c时,等号成立),∴2bc≤3+bc,解得bc≤3,∴S△ABC=bcsinA=bc≤.故选:C.9.已知△ABC的边BC上一动点D满足=n(n∈N*),=x+y,则数列{(n+1)x}的前n项和为()A. B. C.D.【考点】数列的求和;向量的共线定理.【分析】通过=n(n∈N*)可知=+,与=x+y比较可得x=,进而计算可得结论.【解答】解:∵=n(n∈N*),∴=+,又∵=x+y,∴x=,∴数列{(n+1)x}是首项、公差均为1的等差数列,∴则数列{(n+1)x}的前n项和为,故选:C.10.若抛物线C1:y=x2的焦点F到双曲线C2:﹣=1(a>0,b>0)的一条渐近线的距离为,抛物线C1上的动点P到双曲线C2的一个焦点的距离与到直线y=﹣1的距离之和的最小时为,则双曲线C2的方程为()A.﹣y2=1 B.x2﹣=1 C.﹣=1 D.﹣=1【考点】圆锥曲线的综合.【分析】确定抛物线的焦点坐标,双曲线的渐近线方程,利用抛物线C1:y=x2的焦点F到双曲线C2:﹣=1(a>0,b>0)的一条渐近线的距离为,可得=,再利用抛物线的定义,结合抛物线C1上的动点P到双曲线C2的一个焦点的距离与到直线y=﹣1的距离之和的最小时为,可得c2+1=5,从而可求双曲线的几何量,可得结论.【解答】解:抛物线C1:y=x2的焦点F(0,1),双曲线C2:﹣=1(a>0,b>0)的一条渐近线方程为bx﹣ay=0,∵抛物线C1:y=x2的焦点F到双曲线C2:﹣=1(a>0,b>0)的一条渐近线的距离为,∴=,∵直线y=﹣1是抛物线的准线,抛物线C1上的动点P到双曲线C2的一个焦点的距离与到直线y=﹣1的距离之和的最小时为,∴根据抛物线的定义可知,当P,F及双曲线C2的一个焦点三点共线时最小,∴c2+1=5,∴c=2,∵c2=a2+b2,∴b=,a=1,∴双曲线的方程为x2﹣=1.故选:B.11.一个三棱锥的三视图如图所示,则它的体积为( )A .B .1C .D .2【考点】由三视图求面积、体积.【分析】由三视图可知该三棱锥为棱长为2的正方体切割得到的,作出图形,结合图形代入体积公式计算.【解答】解:由三视图可知该三棱锥为棱长为2的正方体切割得到的.即三棱锥A 1﹣MCD .∴V=××2×2×2=. 故选C .12.函数f (x )=1+x ﹣+﹣+…+﹣在区间[﹣2,2]上的零点个数为( )A .1B .2C .3D .4【考点】根的存在性及根的个数判断.【分析】求导f ′(x )=1﹣x +x 2﹣x 3+…+x 2014﹣x 2015,分类讨论以确定f (x )的单调性,从而确定函数的极值的正负,从而利用函数的零点判定定理判断即可. 【解答】解:∵f (x )=1+x ﹣+﹣+…+﹣,∴f ′(x )=1﹣x +x 2﹣x 3+…+x 2014﹣x 2015, 当x=﹣1时,f ′(x )=2016>0,当x ≠﹣1时,f ′(x )=,故当﹣2<x <﹣1或﹣1<x <1时,f ′(x )>0; 当1<x <2时,f ′(x )<0;故f (x )在[﹣2,1]上单调递增,在(1,2]上单调递减, 又∵f (﹣2)<0,f (1)>0,f (2)<0,∴f (x )在(﹣2,1)和(1,2)内各有一个零点, 故选:B .二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置13.已知(+)5的展开式中的常数项为80,则65x 的系数为 40 .【考点】二项式定理.【分析】在二项展开式的通项公式中,令x 的幂指数等于0,求出r 的值,即可求得常数项,再根据常数项等于80求得实数a 的值,从而求得65x 的系数.【解答】解:∵(+)5的展开式中的通项公式为 T r+1=•a r •,令=0,求得r=3,即常数项为•a 3=80,求得a=2.故展开式中的通项公式为 T r+1=•2r•,令r=2,可得则65x 的系数为40,故答案为:40.14.已知正数x ,y 满足2x +y=1,则4x 2+y 2+的最小值为 .【考点】基本不等式在最值问题中的应用.【分析】由基本不等式可得0<xy ≤,令t=xy ,0<t ≤,由4t ﹣在0<t ≤递增,可得最小值.【解答】解:正数x ,y 满足2x +y=1, 可得2x +y ≥2, 即有0<xy ≤,则4x 2+y 2+=(2x +y )2﹣4xy +=1﹣(4xy ﹣),令t=xy ,0<t ≤,由4t ﹣在0<t ≤递增,可得t=时,4t ﹣取得最大值,且为﹣,则4x2+y2+在xy=时,取得最小值,且为1+=.故答案为:.15.若对于任意实数t,圆C1:(x+4)2+y2=1与圆C2:(x﹣t)2+(y﹣at+2)2=1都没有公共点,则实数a的取值范围是a<﹣或a>0.【考点】圆与圆的位置关系及其判定.【分析】通过两个圆的方程求出两个圆的圆心与半径,利用圆心距与半径和与差的关系即可求解.【解答】解:圆C2:(x﹣t)2+(y﹣at+2)2=1的圆心在直线y=ax﹣2上,∴要使圆C1:(x+4)2+y2=1与圆C2:(x﹣t)2+(y﹣at+2)2=1没有公共点,必须使圆心C1(﹣4,0)到直线y=ax﹣2的距离大于两圆半径之和,即d=>2,∴a<﹣或a>0.故答案为:a<﹣或a>0.16.已知函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ≤)的图象如图所示,若函数g(x)=3[f(x)]3﹣4f(x)+m在x上有4个不同的零点,则实数m的取值范围是[,).【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;函数的零点与方程根的关系.【分析】利用由y=Asin(ωx+φ)的部分图象可求得A,T,从而可得ω,又曲线经过(,0),|φ|<,可得φ的值,从而可求函数f(x)的解析式,将函数进行换元,转化为一元二次函数问题,由导数求出单调区间,结合函数f(x)的图象,即可确定m的取值范围.【解答】解:由图知T=4(﹣)=2π,∴ω=1,∴f(x)=sin(x+φ),∵f()=0,∴+φ=kπ,k∈Z.∴φ=kπ﹣,k∈Z.又|φ|≤,∴φ=,∴函数f(x)的解析式为:f(x)=sin(x+).由f(x)的图象可知,对于f(x)∈[,1)上的每一个值,对应着[﹣,]上的两个x值,又g(x)=3[f(x)]3﹣4f(x)+m=0,⇔m=﹣3[f(x)]3+4f(x)有4个不同的零点,令f(x)=t,则m=﹣3t3+4t.∵m′=﹣9t2+4=﹣9(t+)(t﹣),∴m=﹣3t3+4t在[,]上单调递增,在[,1]上单调递减,而当t=时,m=;当t=时,m=;当t=1时,m=1,结合图象可知,对于m∈[,)上的每一个值,对应着t=f(x)∈[,1)上的两个值,进而对应着[﹣,]上的4个x值.故答案为:[,).三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤,解答写在答题卡的指定区域17.已知在各项均为正数的等比数列{a n}中,a1=2,且2a1,a3,3a2成等差数列.(Ⅰ)求等比数列{a n}的通项公式;(Ⅱ)若c n=a n•(),n=1,2,3,…,且数列{c n}为单调递减数列,求λ的取值范围.【考点】等差数列与等比数列的综合.【分析】(Ⅰ)设等比数列的公比为q(q>0),由等差数列的中项性质和等比数列的通项公式,解方程可得q=2,进而得到所求通项;(Ⅱ)把数列{a n}的通项公式a n代入c n=2n•(﹣λ),由c n+1﹣c n分离λ后,求出﹣的最大值得答案.【解答】解:(Ⅰ)设等比数列的公比为q(q>0),由2a1,a3,3a2成等差数列,可得2a 3=2a 1+3a 2,即为2a 1q 2=2a 1+3a 1q ,可得2q 2﹣3q ﹣2=0,解得q=2(﹣舍去), 则a n =a 1q n ﹣1=2n ;(Ⅱ)c n =a n •()=2n •(),由数列{c n }为单调递减数列,可得则c n+1﹣c n =2n+1•(﹣λ)﹣2n •()=2n •(﹣﹣λ)<0对一切n ∈N *恒成立,即﹣﹣λ<0,即λ>﹣==,当n=1或2时,n +取得最小值,且为3,则﹣的最大值为=,即有λ>.即λ的取值范围是(,+∞).18.从某企业的一种产品中抽取40件产品,测量其某项质量指标,测量结果的频率分布直方图如图所示.(Ⅰ)求这40件样本该项质量指标的平均数;(Ⅱ)从180(含180)以上的样本中随机抽取2件,记质量指标在[185,190]的件数为X ,求X 的分布列及数学期望.【考点】离散型随机变量的期望与方差. 【分析】(Ⅰ)根据频率分布直方图,计算数据的平均值是各小矩形底边中点与对应的频率乘积的和;(Ⅱ)首先分别求质量指标在[180,185]的件数:0.020×5×40=4,质量指标在[185,190]的件数有:0.010×5×40=2,然后求出X=0、1、2时的概率,进而求出X 的分布列及数学期望即可.【解答】解:(Ⅰ)由频率分布直方图可知,这40件样本该项质量指标的平均数=162.5×0.05+167.5×0.125+172.5×0.35+177.5×0.325+182.5×0.1+187.5×0.05=174.75cm ;(Ⅱ)由频率分布直方图可知,质量指标在[180,185]的件数:0.020×5×40=4,质量指标在[185,190]的件数有:0.010×5×40=2,∴X的可能值为:0,1,2;P(X=0)==,P(X=1)==,P(X=2)==,数学期望E(X)=0×+1×+2×=.19.如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB∥CD,∠ABC=90°,AB=2,AD=,PA=PD=CD=CB=1,E总是线段PB上的动点.(Ⅰ)当E点在什么位置时,CE∥平面PAD?证明你的结论.(Ⅱ)对于(Ⅰ)中的点E,求AE与底面ABCD所成角的正弦值;(Ⅲ)求二面角A﹣PD﹣C的正弦值.【考点】用空间向量求平面间的夹角;平面与平面垂直的性质;二面角的平面角及求法.【分析】(Ⅰ)取PA的中点F,连接DF,EF,由已知结合三角形中位线定理可得四边形DFEC是平行四边形,从而得到CE∥DF.再由线面平行的判定得答案;(Ⅱ)由题意证明OA,OG,OP两两互相垂直,故以OA,OG,OP所在直线分别为x,y,z轴建立如图所示空间直角坐标系Oxyz.求出所用点的坐标,求得的坐标,再求出底面ABCD的一个法向量,则AE与底面ABCD所成角的正弦值可求;(Ⅲ)分别求出平面APD与平面PCD的一个法向量,求出两法向量所成角的余弦值,则二面角A﹣PD﹣C的正弦值可求.【解答】解:(Ⅰ)当E为PB的中点时,CE∥平面PAD.证明如下:取PA的中点F,连接DF,EF,则EF∥,.由已知CD,CD=,则EF∥CD,EF=CD.∴四边形DFEC是平行四边形,∴CE∥DF.又CE⊄平面PAD,DF⊂平面PAD,∴CE∥平面PAD;(Ⅱ)取AD中点O,AB的中点G,连接OP,OG,∵PA=PD,∴PO⊥AD,又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,∴PO⊥平面ABCD.由已知可得AD2+BD2=AB2,∴BD⊥AD,又OG∥BD,∴OG⊥AD,∴OA,OG,OP两两互相垂直,故以OA,OG,OP所在直线分别为x,y,z轴建立如图所示空间直角坐标系Oxyz.A(),P(0,0,),B(),E(),D(),C(,,0).∴,是平面ABCD的一个法向量,设AE与底面ABCD所成角为θ,则sinθ=|cos|==;(Ⅲ)平面APD的一个法向量为,,=(,,﹣).再设平面PCD的一个法向量为,由,得,取z=1,则x=﹣1,y=﹣1,∴.∴二面角A﹣PD﹣C的余弦值的绝对值为=.∴二面角A﹣PD﹣C的正弦值为.20.已知椭圆C的左、右焦点F1,F2在x轴上,左顶点为A,离心率e=,过原点O的直线(与x轴不重合)与椭圆C交于P,Q两点,直线PA,QA分别与y轴交于M,N两点,△PF1F2的周长为8+4.(Ⅰ)求椭圆C的标准方程;(Ⅱ)求的值;(Ⅲ)求四边形MF1NF2面积的最小值.【考点】直线与圆锥曲线的综合问题.【分析】(Ⅰ)根据e=,2a+2c=8+4,求解即可;(Ⅱ)设P(x0,y0),则Q(﹣x0,﹣y0),求出的坐标,然后求的值即可;(Ⅲ)先把四边形MF1NF2面积表示出来,然后求其最小值即可.【解答】解:(Ⅰ)∵e=,2a+2c=8+4,∴a=4,c=2,∴b=2,故椭圆的方程为:(Ⅱ)设P(x0,y0),则Q(﹣x0,﹣y0),且,即,∵A(﹣4,0),∴直线PA的方程为y=,∴M(0,).同理,直线QA的方程为,∴N(0,),又F 1(﹣2,0),∴,,∴=12+(Ⅲ)|MN |=||=||=||=|,∴四边形MF 1NF 2的面积S==,∵|y 0|∈(0,2],∴当y 0=±2时,S 有最小值8.21.已知函数f (x )=e﹣ax 2(其中e 是自然对数的底数).(Ⅰ)判断函数f (x )的奇偶性;(Ⅱ)若f (x )≤0在定义域内恒成立,求实数a 的取值范围;(Ⅲ)若a=0,当x >0时,求证:对任意的正整数n 都有f ()<n!x ﹣n .【考点】函数恒成立问题. 【分析】(Ⅰ)利用定义判断,先判断定义域关于原点对称,再判断f (﹣x )=f (x );(Ⅱ)不等式可整理为a ≥恒成立,只需求出右式的最大值即可,利用构造函数令g(x )=,求出导函数g'(x )=﹣(2x +1),得出函数的单调性,求出最大值;(Ⅲ)若a=0,f (x )=,得出x n <n!e x ,利用数学归纳法证明不等式对一切n ∈N *都成立即可. 【解答】解:(Ⅰ)函数定义域为(﹣∞,0)∪(0,+∞)关于原点对称, ∵f (﹣x )=f (x ),∴函数f (x )为偶函数;(Ⅱ)由偶函数性质可知,只需求当x ∈(﹣∞,0)时, f (x )=﹣ax 2≤0恒成立,∴a ≥恒成立,令g (x )=,g'(x )=﹣(2x +1),当x ∈(﹣∞,)时,g'(x )>0,g (x )递增,当x ∈(,0)时,g'(x )<0,g (x )递减,∴g(x)的最大值为g(﹣)=4e﹣2,∴a≥4e﹣2,(Ⅲ)若a=0,f(x)=e,当x>0时,f(x)=,f()=e﹣x<n!x﹣n.∴x n<n!e x,(i)当n=1时,设g(x)=e x﹣x,(x>0),∵x>0时,g'(x)=e x﹣1>0,∴g(x)是增函数,故g(x)>g(0)=1>0,即e x>x,(x>0)所以,当n=1时,不等式成立(ii)假设n=k(k∈N*)时,不等式成立,即x k<k!•e x当n=k+1时设h(x)=(k+1)!•e x﹣x k+1,(x>0)有h'(x)=(k+1)!•e x﹣(k+1)x k=(k+1)(k!•e x﹣x k)>0故h(x)=(k+1)!•e x﹣x k+1,(x>0)为增函数,所以,h(x)>h(0)=(k+1)!>0,即x k+1<(k+1)!•e x,这说明当n=k+1时不等式也成立,根据(i)(ii)可知不等式对一切n∈N*都成立,故原不等式对一切n∈N*都成立.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清楚.选修4-1:几何证明选讲22.已知AB是圆O的一条弦,过点A、B分别作AE⊥AB,BF⊥AB,交弧AB上任意一点T的切线于点E、F,OT交AB于点C,求证:(Ⅰ)∠CBT=∠CFT;(Ⅱ)CT2=AE•BF.【考点】与圆有关的比例线段.【分析】(Ⅰ)证明B,C,T,F四点共圆,可得∠CBT=∠CFT;(Ⅱ)延长EF与ABM交于P,利用△PBF∽△PTC,△PAE∽△PTC,结合切割线定理,即可证明CT2=AE•BF.【解答】证明:(Ⅰ)∵OT⊥EF,BF⊥AB,∠CTF=∠CBF=90°,∴∠CTF+∠CBF=180°,∴B,C,T,F四点共圆,∴∠CBT=∠CFT;(Ⅱ)延长EF与ABM交于P,则△PBF∽△PTC,∴=①,△PAE∽△PTC,∴=②①×②=由切割线定理可得PT2=PA•PB,∴CT2=AE•BF.选修4-4:坐标系与参数方程23.已知曲线C的参数方程为(θ为参数).(Ⅰ)求曲线C的普通方程;(Ⅱ)若倾斜角为45°的直线l经过点P(1,2)且与直线C相交于点A、B,求线段AB的长度.【考点】参数方程化成普通方程.【分析】(I)用x,y表示出cosθ,sinθ,根据正余弦的平方和等于1消参数得到普通方程;(II)写出直线l的参数方程,代入曲线的普通方程得到关于参数t的一元二次方程,根据参数的几何意义解出AB.【解答】解:(1)∵(θ为参数),∴cosθ=,sinθ=,∴.∴曲线C的普通方程为.(II)直线l的参数方程为(t为参数).将l的参数方程代入得7t2+22t+14=0,设A,B两点对应的参数分别为t1,t2,则t1+t2=﹣,t1t2=2.∴t1,t2符号相同.∴|AB|=|t1﹣t2|===.选修4-5:不等式选讲24.设f(x)=|x+3|﹣a|2x﹣1|(Ⅰ)当a=1时,求f(x)>3的解集;(Ⅱ)若f(x)≥0对x∈[﹣1,1]恒成立,求实数a的取值范围.【考点】函数恒成立问题;绝对值不等式的解法.【分析】(Ⅰ)当a=1时,对x分类讨论,去绝对值,分别求出f(x)>3,得解集为(,1);(Ⅱ)若f(x)≥0对x∈[﹣1,1]恒成立,对x分类讨论:当x=时,a∈R;当x≠时,||≥a对[﹣1,)∪(,1]恒成立,只需求出左式的最小值即可.利用分离常数法得出=+∈(﹣∞,﹣)∪(4,+∞),进而求出最小值.【解答】解:(Ⅰ)当a=1时,当x<﹣3时,f(x)=x﹣4,f(x)>3,∴无解当﹣3≤x≤时,f(x)=3x+2,f(x)>3,∴<x,当x>时,f(x)=4﹣x,f(x)>3,∴x<1,∴解集为(,1);(Ⅱ)若f(x)≥0对x∈[﹣1,1]恒成立,∴|x+3|≥a|2x﹣1|恒成立,当x=时,a∈R,当x≠时,∴||≥a对[﹣1,)∪(,1]恒成立,∵=+∈(﹣∞,﹣)∪(4,+∞),∴||的最小值为,∴a≤.2016年9月14日。
2016届高三第一次联考数学试题(理科)第I 卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合22{230},{log (1)2}A x x x B x x =--≥=-<,则()..R A B = A .()1,3 B .()1,3- C .()3,5 D . ()1,5- 2.命题“若220x y +=,则0x y ==”的否命题为A .若220x y +=,则0x ≠且0y ≠ B .若220x y +=,则0x ≠或0y ≠ C .若220x y +≠,则0x ≠且0y ≠ D .若220x y +≠,则0x ≠或0y ≠3.欧拉公式cos sin ixe x i x =+(i 为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,2ie 表示的复数在复平面中位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限4.函数222,1,()log (1),1,x x f x x x ⎧-≤=⎨->⎩则52f f ⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦A .12-B .1-C .5-D .125.等差数列{}n a 前n 项和为n S ,且20162015120162015S S=+,则数列{}n a 的公差为A .1B .2C .2015D .20166.若ln 2,5a b == 01,s i n 4c x d x π=⎰,则,,a b c 的大小关系 A .a b c << B .b a c << C .c b a << D .b c a <<7.已知1sin cos 63παα⎛⎫--= ⎪⎝⎭,则cos 23πα⎛⎫+= ⎪⎝⎭A .518B .-518C .79D .-798.已知某几何体的三视图的侧视图是一个正三角形,如图所示,则该几何体的 体积等于A .B .C .D .9.已知函数()()()21sin ,02f x x ωω=->的周期为π,若将其图象沿x 轴向右平移a 个单位()0a >,所得图象关于原点对称,则实数a 的最小值为A .πB .34π C .2π D .4π 10.如图所示,在正六边形ABCDEF 中,点P 是△CDE 内(包括边界)的一个动点,设(),AP AF AB R λμλμ=+∈,则λμ+的取值范围是A .3,42⎡⎤⎢⎥⎣⎦ B .[]3,4 C .35,22⎡⎤⎢⎥⎣⎦ D .3,24⎡⎤⎢⎥⎣⎦11.若一个四棱锥底面为正方形,顶点在底面的射影为正方形的中心,且该四棱锥的体积为9,当其外接球表面积最小时,它的高为A .3B .C .D . 12.关于函数()2ln f x x x=+,下列说法错误的是 A .2x =是()f x 的极小值点B .函数()y f x x =-有且只有1个零点C .存在正实数k ,使得()f x kx >恒成立D .对任意两个正实数12,x x ,且21x x >,若()()12f x f x =,则124x x +>第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.已知平面直角坐标系中,b ()3,4=,a b ⋅3=-,则向量a 在向量b 的方向上的投影是________. 14.若函数()1,021,20x x f x x -<≤⎧=⎨--≤≤⎩,()()[],2,2g x f x ax x =+∈-为偶函数,则实数a =_________.15.设实数x ,y 满足约束条件202x y y x -≥⎧⎪⎨≥-⎪⎩,则2z x y =+的最大值为________.16.如图所示,已知ABC ∆中,90C ∠= ,6,8AC BC ==,D 为边AC 上 的一点,K 为BD 上的一点,且ABC KAD AKD ∠=∠=∠,则DC =________.第16题图第10题图-12三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)在等比数列{}n a 中,3339,S 22a ==. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设2216log n nb a +=,且{}n b 为递增数列,若11n n n c b b +=⋅,求证:12314n c c c c ++++< .18.(本小题满分12分)如图,ABC ∆中,三个内角B 、A 、C 成等差数列,且10,15AC BC ==. (Ⅰ)求ABC ∆的面积; (Ⅱ)已知平面直角坐标系xOy,点()10,0D ,若函数()s i n ()(0,0,)2f x M x M π=ω+ϕ>ω>ϕ<的图象经过A 、C 、D 三点,且A 、D 为()f x 的图象与x 轴相邻的两个交点,求()f x 的解析式.19. (本小题满分12分)如图,已知长方形ABCD中,AB =AD =M 为DC 的中点.将ADM ∆沿AM 折起,使得平面ADM ⊥平面ABCM .(Ⅰ)求证:AD BM ⊥;(Ⅱ)若点E 是线段DB 上的一动点,问点E 在何位置时,二面角E AM D --.20. (本小题满分12分)小明同学制作了一个简易的网球发射器,可用于帮忙练习定点接发球,如图1所示,网球场前半区、后半区总长为23.77米,球网的中间部分高度为0.914米,发射器固定安装在后半区离球网底部8米处中轴线上,发射方向与球网底部所在直线垂直.为计算方便,球场长度和球网中间高度分别按24米和1米计算,发射器和网球大小均忽略不计.如图2所示,以发射器所在位置为坐标原点建立平面直角坐标系xOy ,x 轴在地平面上的球场中轴线上,y 轴垂直于地平面,单位长度为1米.已知若不考虑球网的影响,网球发射后的轨迹在方程2211(1)(0)280y kx k x k =-+>表示的曲线上,其中k 与发射方向有关.发射器的射程是指网球落地点的横坐标.(Ⅰ)求发射器的最大射程;(Ⅱ)请计算k 在什么范围内,发射器能将球发过网(即网球飞行到球网正上空时,网球离地距离大于1米)?若发射器将网球发过球网后,在网球着地前,小明要想在前半区中轴线的正上空选择一个离地面2.55米处的击球点正好击中网球,试问击球点的横坐标a 最大为多少?并请说明理由.21. (本小题满分12分)已知函数()e ,xf x x R =∈.(Ⅰ)若直线y kx =与()f x 的反函数的图象相切,求实数k 的值;(Ⅱ)设,a b R ∈,且()()()(),,,,22f a f b f a f b a b a b A f B C a b +-+⎛⎫≠===⎪-⎝⎭试比较,,A B C 三者的大小,并说明理由.第19题图第20题图图1图2第18题图第22题图请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.答时用2B 铅笔在答题卡上把所选题目的题号涂黑.22.(本小题满分10分)选修4-1几何证明选讲如图,BC 是圆O 的直径,点F 在弧BC 上,点A 为弧BF 的中点,作AD BC ⊥于点D ,BF 与AD 交于点E ,BF 与AC 交于点G .(Ⅰ)证明:AE BE =; (Ⅱ)若9,7AG GC ==,求圆O 的半径.23.(本小题满分10分)选修4-4极坐标与参数方程已知曲线C 的极坐标方程为2sin cos 10ρθρθ+=,将曲线1cos :sin x C y αα=⎧⎨=⎩(α为参数)经过伸缩变换32x xy y'=⎧⎨'=⎩后得到曲线2C .(Ⅰ)求曲线2C 的参数方程; (Ⅱ)若点M 在曲线2C 上运动,试求出M 到曲线C 的距离的最小值.24.(本小题满分10分)选修4-5不等式证明选讲已知函数()1020f x x x =-+-,且满足()1010f x a <+(a R ∈)的解集不是空集.(Ⅰ)求实数a 的取值集合A ; (Ⅱ)若,,b A a b ∈≠求证:abbaa b a b >.数学试题(理科)参考答案一、选择题 ADBAB DCCDB AC二、填空题 35- 12- 10 73三、解答题17. (1)1q =时,32n a =; ………………2分1q ≠时,116()2n n a -=⋅- ………………4分(2)由题意知:116()2n n a -=⋅- ………………6分∴2116()4n n a +=⋅∴2n b n = ………………8分 ∴111111()2(2n 2)4(n 1)41n c n n n n ===-⋅+⋅++ ………………10分∴123111(1)414n c c c c n ++++=-<+ ………………12分 18. (1)在△ABC 中,60B = ………………1分 由余弦定理可知:2222c o s 60a b c b c =+- ………………2分∴2101250c c --=5c A B ∴== ………………4分 又∵10cos605AO =⋅=BO ∴=125(5633)22ABC S ∴=+⨯= . ………………6分(2)T=2×(10+5)=30,∴15πω= ………………8分∵(5)Msin((5))015f π-=⋅-+ϕ=s i n ()03π∴-+ϕ=,,3k k Z π∴-+ϕ=π∈2πϕ< ,3π∴ϕ=。
2016届高三六校第一次联考文科数学试题命题学校:珠海一中2015,9,7本试题共4页,第1至21题为必做题,从第22、23、24三个小题中选做一题, 总分值150分,考试用时120分钟。
一、选择题:本大题共12小题,每题5分,总分值60分,在每题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U ={1,2,3,4,5},集合A ={2,3,4},B ={1,4},则(∁U A )∪B 为( ) A .{1} B .{1,5} C .{1,4} D .{1,4,5} 2.假设z 是z 的共轭复数,且满足i i z 24)1(2+=-⋅,则=z 〔 〕A .i 21+-B .i 21--C .i 21+D .i 21- 3.已知命题q p ,,则“q p ∧是真命题”是“p ⌝为假命题”的〔 〕 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 4.设等比数列}{n a 的公比21=q ,前n 项和为n S ,则=33a S ( ) A .5 B .7 C .8 D .155.以下四个函数中,既是偶函数又在(0,+∞)上为增函数的是( )A .x x y 22-= B .3x y = C .21ln x y -= D .1||+=x y6.已知双曲线的渐近线方程为x y 2±=,焦点坐标为)(0,6),0,6(-,则双曲线方程为〔 〕A .18222=-y xB .12822=-y xC .14222=-y xD .12422=-y x 7.函数)0)(3sin()(>+=ωπωx x f 相邻两个对称中心的距离为2π,以下哪个区间是函数)(x f 的单调减区间〔 〕A .]0,3[π-B .]3,0[πC .]2,12[ππ D .]65,2[ππ8.曲线x x y 2ln -=在点)2,1(-处的切线与坐标轴所围成的三角形的面积是( )A .21 B .43C .1D .2 9.在边长为2的正方体内部随机取一个点,则该点到正方体8个顶点的距离都不小于1的概率为〔 〕 A .61 B .65 C .6π D .6-1π 10.一个空间几何体的三视图如以下图,其中正视图是边长为2的正三角形,俯视图是边长分别为1,2的矩形,则该几何体的侧面积为〔 〕A .43+B .63+C .432+D .632+11.执行如右图所示的程序框图,假设输出的n =9,则输入的整数p 的最小值是( )A .50B .77C .78D .30612.已知抛物线x y =2上一定点B(1,1)和两个动点P 、Q ,当P 在抛物线上运动时,BP ⊥PQ ,则Q 点的纵坐标的取值范围是( ) A .),,(∞+⋃∞-2[]2- B .),,(∞+⋃∞-3[]1- C .),,(∞+⋃∞-3[]0 D .),,(∞+⋃∞-4[]1二、填空题:本大题共4小题,每题5分,总分值20分。
2015—2016学年度高三阶段性检测数学(理工类)试题2016.01 本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试时间120分钟.考试结束后,将本试卷和答题卡一并收回.注意事项:1.答第I卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试卷上.3.答第II卷时必须使用0.5毫米的黑色墨水签字笔书写,要字体工整,笔迹清晰,严格在题号所指示的答题区域内作答.超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.参考公式:锥体的体积公式V=Sh.其中S是锥体的底面积,h是锥体的高.第I卷(选择题共50分)一、选择题:本大题共10小题,每小题5分。
共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则A. B. C. D.2.下列说法中错误的是A.若命题,则B.“”是“”的充分不必要条件C.命题“若”的逆否命题为:“若,则0”D.若为假命题,则均为假命题3.由曲线,直线所围成的封闭图形的面积为A. B. C. D.4. C 解析:因为,,所以,故选C.5. 李华经营了两家电动轿车销售连锁店,其月利润(单位:元)分别为,(其中x为销售辆数),若某月两连锁店共销售了110辆,则能获得的最大利润为()A.11000B. 22000C. 33000D. 400005.C解析:设甲连锁店销售x辆,则乙连锁店销售辆,故利润,所以当x=60辆时,有最大利润33000元,故选C。
6.已知函数,且,则的值是()A. B. C. D.6.A解析:因为,所以,所以,故选A.7. “”是“函数在区间内单调递减”的()A充分非必要条件.必要非充分条件.充要条件.既非充分又非必要条件.7. D 解析:若函数在区间内单调递减,则有,即,所以“”是“函数在区间内单调递减”的非充分非必要条件,所以选D.8. (文)已知全集,,,则集合为( )A.B.C.D.8.(文) C解析:因为,,所以,所以.故选C.8.(理)曲线在点处的切线为,则由曲线、直线及轴围成的封闭图形的面积是().A. 1B.C.D.8. (理)B解析:曲线在点处的切线为,与x轴的交点为,所以由曲线、直线及轴围成的封闭图形的面积是9.设函数的零点为的零点为可以是A. B.C. D.10.已知点A是抛物线的对称轴与准线的交点,点B为该抛物线的焦点,点P在该抛物线上且满足取最小值时,点P恰好在以A,B为焦点的双曲线上,则该双曲线的离心率为A. B. C. D.第II卷(非选择题共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.已知经计算得,……,观察上述结果,可归纳出的一般结论为▲.12.一个棱锥的三视图如图所示,则该棱锥的体积是▲.13.已知两直线截圆C所得的弦长均为2,则圆C的面积是▲.14.定义是向量的“向量积”,它的长度,其中为向量的夹角.若向量▲.15.已知函数时,函数的最大值与最小值的差为,则实数▲.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16. (本小题满分12分)在中,角A,B,C的对边分别是向量. (1)求角A的大小;(2)设的最小正周期为,求在区间上的值域.17. (本小题满分12分)如图,已知四边形ABCD和BCEG均为直角梯形,AD//BC,CE//BG,且,平面平面BCEG,BC=CD=CE=.(1)证明:AG//平面BDE;(2)求平面BDE和平面ADE所成锐二面角的余弦值.18. (本小题满分12分)第二届世界互联网大会在浙江省乌镇开幕后,某科技企业为抓住互联网带来的机遇,决定开发生产一款大型电子设备.生产这种设备的年固定成本为500万元,每生产x台,需另投入成本为(万元);若年产量不小于80台时,(万元).每台设备售价为100万元,通过市场分析,该企业生产的电子设备能全部售完.(1)求年利润y(万元)关于年产量x(台)的函数关系式;(2)年产量为多少台时,该企业在这一电子设备的生产中所获利润最大?19. (本小题满分12分)已知数列是各项均为正数的等差数列,首项,其前n项和为;数列是等比数列,首项.(1)求数列的通项公式;(2)若,求数列的前n项和.20. (本小题满分13分)已知函数.(1)若函数的图象在点处的切线与x轴平行,求实数a的值;(2)讨论的单调性;(3)若恒成立,求实数的最大值.21. (本小题满分14分)椭圆的上顶点为P,是C上的一点,以PQ为直径的圆经过椭圆C的右焦点F.(1)求椭圆C的方程;(2)过椭圆C的右焦点F且与坐标不垂直的直线l交椭圆于A,B两点,在直线x=2上是否存在一点D,使得为等边三角形?若存在,求出直线l的斜率;若不存在,请说明理由.。
天水一中2013级第三次检测考试数学(文普)出题人:蔡恒录、张莉娜 审题人:张硕光一、选择题(每小题5分,共60分)1.设全集{}1,2,3,4,5I =,集合{}A=2,3,5,集合{}1,2B =,则()I C B A 为( ) A 、{}2 B 、{}3,5 C 、{}1,3,4,5 D 、{}3,4,5; 2. 131i i-=+( ) A .i 21+ B .i 21+- C .i 21- D .i 21--3.设向量,a b ,满足()1,2,0a b a a b ==+=, 则a 与b 的夹角是( )A . 30B . 60C . 90D . 1204.设m ,n 是两条不同的直线,α,β是两个不同的平面,则( )A .若m∥α,m∥β,则α∥βB .若m∥α,m∥n,则n∥αC .若m⊥α,m∥β,则α⊥βD .若m∥α,n ⊂α,则m∥n5.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,则“a>b”是“cos2A<cos2B”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知直线l :x ﹣ky ﹣5=0与圆O :x 2+y 2=10交于A ,B 两点且=0,则k=( ) A .2 B .±2 C .± D .7.已知正项等比数列{a n }满足a 7=a 6+2a 5,若a m ,a n 满足=8a 1,则+的最小值为( ) A .2 B .4 C .6 D .88. 设x ,y 满足约束条件2208400,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,若目标函数()0,0z ax by a b =+>>的最大值为8,则ab 的最大值为( )A.1B.2C.3D.49.在△ABC 中,AD 为BC 边上的高,给出下列结论:以上结论正确的个数为( )A .0B .1C .2D .310.已知函数的最小正周期为π,将y=f (x )的图象向左平移|φ|个单位长度,所得图象关于y 轴对称,则φ的一个值是( )A .B .C .D .11过双曲线的右焦点F 作实轴所在直线的垂线,交双曲线于A ,B 两点,设双曲线的左顶 点为M ,若点M 在以AB 为直径的圆的内部,则此双曲线的离心率e 的取值范围为( )A .(32,+∞)B .(1,32) C .(2,+∞) D .(1,2) 12. 已知定义在R 上的函数f (x )满足:f (x )=且f (x+2)=f (x ),g (x )=,则方程f (x )=g (x )在区间上的所有实根之和为( )A .﹣8B .﹣7C .﹣6D .0二、填空题(每小题5分,共20分)13. 函数1()1ln(1)f x x =--的定义域为 . 14若M 是抛物线y 2=4x 上一点,且在x 轴上方,F 是抛物线的焦点,直线FM 的倾斜角为60°,则|FM|= .15已知某几何体的三视图如图所示,其中俯视图中圆的直径为4,该几何体的体积为 .16. 定义方程()()f x f x '=的实数根o x 叫做函数()f x 的“新驻点”,如果函数()g x x =,()ln(1)h x x =+,()cos x x ϕ=(()x π∈π2,)的“新驻点”分别为α,β,γ,那么α,β,γ的大小关系是 .三、解答题(共70分)17. 在锐角ABC ∆中,a ,b ,c 分别为内角A ,B ,C 所对的边,且满足32sin 0a b A -=. (I )求角B 的大小;(II )若5a c +=,且a c >,7b =,求AC AB ⋅的值18. 已知等差数列{a n }满足:a 3=7,a 5+a 7=26,{a n }的前n 项和为S n .(I )求a n 及S n ;(II )求数列{}的前n 项和为T n .19. 如图1,在直角梯形ABCD 中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2.将△ADC 沿AC 折起,使平面ADC⊥平面ABC ,得到几何体D ﹣ABC ,如图2所示.(Ⅰ)求证:BC⊥平面ACD ;(Ⅱ)求几何体D ﹣A BC 的体积.20.已知圆C :012822=+-+y y x ,直线l :02=++a y ax .(Ⅰ)当a 为何值时,直线l 与圆C 相切;(Ⅱ)当直线l 与圆C 相交于A B 、两点,且22=AB 时,求直线l 的方程.21 已知点)0,1(A ,点P 是圆C :22(1)8x y ++=上的任意一点,,线段PA 的垂直 平分线与直线CP 交于点E .(1)求点E 的轨迹方程;(2)若直线y kx m =+与点E 的轨迹有两个不同的交点P 和Q ,且原点O 总在以PQ为直径的圆的内部,求实数m 的取值范围.22已知函数f (x )=lnx ﹣a (x ﹣1)(a ∈R ).(Ⅰ)若a=﹣2,求曲线y=f (x )在点(1,f (1))处的切线方程;(Ⅱ)若不等式f (x )<0对任意x ∈(1,+∞)恒成立,求实数a 的取值范围;文普答案BDDCC BADDD CB13.(1,1+e) 14 ,4 15 . 163π 16 γαβ 18.1, ()21,2n n a n S n n =+=+ 2,()()31142122n S n n =--++ 答案及解析:20 2.(Ⅰ)34a =-(Ⅱ)1-7a =-或 21答案及解析: (1)由题意知,22EP EA CE EP =+=,∴222CE EA CA +=>=,∴E 的轨迹是以C 、A 为焦点的椭圆,其轨迹方程为:2212x y += ……………4分 (2)设112,2(,)()P x y Q x y 、,则将直线与椭圆的方程联立得:2222y kx m x y =+⎧⎨+=⎩, 消去y,得:222(21)4220k x kmx m +++-= 220,21(*);m k ∆><+ 212122422,2121km m x x x x k k -+=-=++ ……………6分 因为O 在以PQ 为直径的圆的内部,故12120,0,OP OQ x y y ⋅<+<即x ………7分而22121222()(),21m k y y kx m kx m k -=++=+ 由22212122222202121m m k x x y y k k --+=+<++ …………………9分 得:2222,3k m +< 223m ∴<, 且满足(*)式 M 的取值范围是66( 22答案及解析: 【考点】导数在最大值、最小值问题中的应用;利用导数研究曲线上某点切线方程.【专题】导数的概念及应用;导数的综合应用.【分析】(1)一求切点,二求切点处的导数,即切线的斜率;(2)只需求出函数f(x)在区间[1,+∞)上的最大值即可,利用导数研究单调性,进一步求其最值构造不等式求解;比较大小可将两个值看成函数值,然后利用函数的性质求解.解:(Ⅰ)因为a=﹣2时,f(x)=inx+x﹣1,.所以切点为(1,0),k=f′(1)=2.所以a=﹣2时,曲线y=f(x)在点(1,f(1))处的切线方程为y=2x﹣2.( II)( i)由f(x)=lnx﹣a(x﹣1),所以,①当a≤0时,x∈(1,+∞),f′(x)>0,∴f(x)在(1,+∞)上单调递增,f(x)>f(1)=0,∴a≤0不合题意.②当a≥2即时,在(1,+∞)上恒成立,∴f(x)在(1,+∞)上单调递减,有f(x)<f(1)=0,∴a≥2满足题意.③若0<a<2即时,由f′(x)>0,可得,由f′(x)<0,可得x,∴f(x)在上单调递增,在上单调递减,∴,∴0<a<2不合题意.综上所述,实数a的取值范围是[2,+∞).( ii)a≥2时,“比较e a﹣2与a e﹣2的大小”等价于“比较a﹣2与(e﹣2lna)的大小”设g(x)=x﹣2﹣(e﹣2)lnx,(x≥2).则.∴g(x)在[2,+∞)上单调递增,因为g(e)=0.当x∈[2,e)时,g(x)<0,即x﹣2<(e﹣2)lnx,所以e x﹣2<x e﹣2.当x∈(e,+∞)时g(x)>0,即x﹣2>(e﹣2)lnx,∴e x﹣2>x e﹣2.综上所述,当a∈[2,e)时,e a﹣2<a e﹣2;当a=e时,e a﹣2=a e﹣2;当a∈(e,+∞)时,e a﹣2>a e﹣2.【点评】本题主要考查函数、导数、不等式等基本知识;考查运算求解能力、推理论证能力;考查化归与转化思想、函数与方程的思想、分类整合思想、数形结合思想.。
数学试题(一)(理)一、选择题:本大题共10小题,每小题5分。
共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}21log ,1,,12xA y y x xB y y x ⎧⎫⎪⎪⎛⎫==>==>⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B ⋂=A. 102y y ⎧⎫<<⎨⎬⎩⎭B. {}01y y <<C. 112yy ⎧⎫<<⎨⎬⎩⎭D. φ2.下列说法中错误的是A.若命题2:,10p x R x x ∃∈++<,则2:,10p x R x x ⌝∀∈++≥ B.“1x =”是“2320x x -+=”的充分不必要条件C.命题“若2320,1x x x -+==则”的逆否命题为:“若1x ≠,则232x x -+≠0” D.若p q ∧为假命题,则,p q 均为假命题3.由曲线1xy =,直线,3y x x ==所围成的封闭图形的面积为 A. 1ln 32+ B. 4ln 3-C. 92D. 1164.C详细分析:因为0.20331>= ,πππ0log 1log 3log π1,=<<=33log log 10<=,所以a b c >>,故选C. 5. 李华经营了两家电动轿车销售连锁店,其月利润(单位:元)分别为21590016000L x x =-+-,23002000L x =-(其中x 为销售辆数),若某月两连锁店共销售了110辆,则能获得的最大利润为( )A.11000B. 22000C. 33000D. 40000 5.C 详细分析:设甲连锁店销售x 辆,则乙连锁店销售110x -辆,故利润2590016000300(110)2000L x x x =-+-+-- 2560015000x x =-++25(60)33000x =--+,所以当x=60辆时,有最大利润33000元,故选C 。
6.已知函数()sin cos f x x x =+,且'()3()f x f x =,则x 2tan 的值是( ) A.34-B.34C.43-D.436.A 详细分析:因为'()cosx sinx 3sinx 3cos f x x =-=+,所以1tan 2x =-,所以22tan 14tan 211tan 314x x x -===---,故选A. 7. “2a =”是“函数2()32f x x a =+-在区间(,2]-∞-内单调递减”的( ) A 充分非必要条件. )(B 必要非充分条件.)(C 充要条件. )(D 既非充分又非必要条件.7. D 详细分析:若函数2()32f x x a =+-在区间(,2]-∞-内单调递减,则有322a-≥-,即43a ≤,所以“2a =”是“函数2()32f x x a =+-在区间(,2]-∞-内单调递减”的非充分非必要条件,所以选D.8. (文)已知全集{}08U x Z x =∈<<,{2,3,5}M =,{}28120N x x x =-+=,则集合{1,4,7}为 ( )A . ()U M N ⋃ðB .()U M N ⋂ðC . ()U M N ⋃ðD . ()U M N ⋂ð8.(文) C 详细分析:因为{}1,2,3,4,5,6,7U =,{}2,6N =,所以{}2,3,5,6M N = ,所以{}1,4,7U M N ⋃=ð.故选C.8.(理) 曲线3:(0)C y x x =≥在点1x =处的切线为l ,则由曲线C 、直线l 及x 轴围成的封闭图形的面积是 ( ). A. 1 B.112 C. 43 D. 348. (理)B 详细分析:曲线3:(0)C y x x =≥在点1x =处的切线为32y x =-,32y x =- 与x 轴的交点为2(,0)3,所以由曲线C 、直线l 及x 轴围成的封闭图形的面积是113422031113111(32)(2)204246123S x dx x x x x =--=--=-=⎰⎰9.设函数()422xf x x =+-的零点为()1,xg x 的零点为()21214x x x g x -≤,若,则可以是 A. ()1g x =B. ()21xg x =-C. ()1ln 2g x x ⎛⎫=-⎪⎝⎭D. ()41g x x =-10.已知点A 是抛物线214y x =的对称轴与准线的交点,点B 为该抛物线的焦点,点P 在该抛物线上且满足PB m PA m =,当取最小值时,点P 恰好在以A,B 为焦点的双曲线上,则该双曲线的离心率为A.B.C.1+D.1(二)(文)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}220A x x x =-≥,集合{}21x B x A B =>⋂=,则 A. (]0,2B. []0,2C. [)2,+∞D. ()2,+∞2.设0.30.40.3log 2,2,0.3a b c ===,则,,a b c 的大小关系是 A. a b c <<B. a c b <<C. c a b <<D. c b a <<3.直线l 过定点()1,2-且在两坐标轴上的截距相等,则直线l 的方程为 A. 2010x y x y +=+-=或B. 2010x y x y -=+-=或C. 2030x y x y +=-+=或D. 1030x y x y +-=-+=或4.下列说法错误的是A.命题“若23201x x x -+==,则”的逆否命题为“若21320x x x ≠-+≠,则” B.“11a b >>且”是“1ab >”的充分不必要条件 C.若命题00:,21000:,21000x x p x N p x N ∃∈>⌝∀∈≤,则D.若p q ∧为假命题,则,p q 均为假命题5.已知函数()()sin f x A x ωϕ=+(其中0,0,2A πωϕ>><)的部分图象如图所示,则()f x 的解析式为 A. ()2sin 3f x x π⎛⎫=+⎪⎝⎭B. ()2sin 26f x x π⎛⎫=+⎪⎝⎭C. ()2sin 26f x x π⎛⎫=-⎪⎝⎭D. ()2sin 46f x x π⎛⎫=-⎪⎝⎭6.某几何体的三视图如图所示,则这个几何体的体积是A. 4+B. 8+C.D.7.在ABC ∆中,角A,B,C 所对的边分别为,,a b c ,若22,sin c b A B -==,则角C=A.6πB.3πC. 23πD. 56π8.设变量,x y 满足约束条件10,20,240.x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩若目标函数z ax y =+取得最大值时的最优解不唯一,则实数a 的值为 A. 1-B.2C. 12-或D.1或2-9.已知抛物线2y =-的焦点到双曲线()222210,0x y a b a b-=>>的一条渐近线的距离,则该双曲线的离心率为A.B.C.D.11.函数())(,0,||f x x x ωϕωϕ=+∈><R π)2的部分图象如图所示,则()f x 的单调递减区间为 ( )A .511[,],1212k k k z ππππ++∈ B. 511[],66k x k k z ππππ+≤≤+∈C. 511[2,2],1212k k k z ππππ++∈D. 5[,],1212k k k z ππππ-++∈11.A 详细分析:由图知()f x 在5π12x =时取到最大值,且最小正周期T 满足35ππ+.4123T =, 故A =,,2T πω==,所以5)12πθ⨯+=,所以5+=62ππθ,即=3πθ-,所以())3f x x π=-,令3222232k x k πππππ+≤-≤+得511,1212k x k k z ππππ+≤≤+∈。
故选A.12.若函数)(x f 满足:在定义域D 内存在实数0x ,使得)1()()1(00f x f x f +=+成立,则称函数)(x f 为“1的饱和函数”.给出下列四个函数:①xx f 1)(=;②xx f 2)(=;③)2lg()(2+=x x f ;④x x f πcos )(=.其中是“1的饱和函数”的所有函数的序号为( ). A . ①③ B . ②④ C . ①② D . ③④12.B 详细分析: 对于①,若存在实数0x ,满足)1()()1(00f x f x f +=+,则111100+=+x x ,所以0(010020=/=++x x x 且)10-=/x ,显然该方程无实根,因此①不是“1的饱和函数”;对于②,若存在实数0x ,满足+0(x f )1()()10f x f +=,则222001+=+x x ,解得10=x ,因此②是“1的饱和函数”;对于③,若存在实数0x ,满足00(1)=()(1)f x f x f ++,则++20)1lg[(x )21lg()2lg(]2220+++=x ,化简得0322020=+-x x ,显然该方程无实根,因此③不是“1的饱和函数”;对于④,注意到==+34cos )131(πf 21-,21cos 3cos )1()31(-=+=+ππf f ,即+=+)31()131(f f )1(f ,因此④是“1的饱和函数”,综上可知,其中是“1的饱和函数”的所有函数的序号是②④,故选B .参考答案(一)(二)。