中考数学模拟试卷+答案解析
- 格式:doc
- 大小:516.00 KB
- 文档页数:21
2023年中考数学模拟试卷(含解析)一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2B 铅笔填涂在答题卡相应的位置上.1.下列实数中,最小的无理数的是()A. B.1 C.πD.﹣52.计算()()32a a -÷-的结果是()A.aB.﹣aC.1D.﹣13.下列图形中,属于轴对称图形的是()A. B. C. D.4.函数5x y x =-的自变量x 的取值范围是()A.5x ≠ B.2x >且5x ≠ C.2x ≥ D.2x ≥且5x ≠5.已知直线m ∥n ,将一块含30°角的直角三角板ABC ,按如图所示方式放置,其中A 、B 两点分别落在直线m 、n 上,若∠1=35°,则∠2的度数是()A .35° B.30° C.25° D.65°6.已知某商店有两个商品都卖了80元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店()A.亏损10元B.盈利10元C.亏损20元D.盈利20元7.如图,⊙O 是等边△ABC 的内切圆,分别切AB ,BC ,AC 于点E ,F ,D ,P 是 DF上一点,则∠EPF 的度数是()A.65°B.60°C.58°D.50°8.如图,▱OABC的周长为7,∠AOC=60°,以O为原点,OC所在直线为x轴建立直角坐标系,函数k yx(x>0)的图像经过▱OABC的顶点A和BC的中点M,则k的值为()A. B.12 C. D.69.如图,直角三角形ACB中,两条直角边AC=8,BC=6,将△ACB绕着AC中点M旋转一定角度,得到△DFE,点F正好落在AB边上,和AB交于点G,则AG的长为()A.1.4B.1.8C.1.2D.1.610.已知,矩形ABCD中,E为AB上一定点,F为BC上一动点,以EF为一边作平行四边形EFGH,点G,H分别在CD和AD上,若平行四边形EFGH的面积不会随点F的位置改变而改变,则应满足()A.4AD AE =B.2=AD ABC.2AB AE =D.3AB AE=二、填空题:本大题共8小题,每小题3分,共24分,把答案直接填写在答题卡相应位置上.11.2021年5月15日,天问一号探测器成功着陆火星,迈出了我国星际探测征程的重要一步.已知火星与地球的近距离约为5500万公里,数字55000000用科学记数法表示为_____.12.某班五个兴趣小组的人数分别为4,4,5,x ,6,已知这组数据的平均数是5,则这组数据的中位数是_____.13.因式分解:322x y xy -=________________.14.如图,某人跳芭蕾舞,踮起脚尖时显得下半身比上半身更修长.若以裙子的腰节为分界点,身材比例正好符合黄金分割,已知从脚尖到头顶高度为176cm ,那么裙子的腰节到脚尖的距离为______cm .(结果保留根号)15.如图是小明同学的健康码示意图,用黑白打印机打印在边长为2cm 的正方形区域内,图中黑色部分的总面积为2cm 2,现在向正方形区域内随机掷点,点落入黑色部分的概率为_____.16.如图,在平面直角坐标系中,将线段AB 平移至线段CD 的位置,连接AC BD 、.若点()2,2B --的对应点为()1,2D ,则点()30A -,的对应点C 的坐标是____________.17.如图,正方形ABCD 的边长为2,A 为坐标原点,AB 和AD 分别在x 轴、y 轴上,点E 是BC 边的中点,过点A 的直线y kx =交线段DC 于点F ,连接EF ,若FA 平分DFE ∠,则k 的值为__________.18.如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P 、Q 同时从点B 出发,点P 沿折线BE ﹣ED ﹣DC 运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1cm/秒.设P 、Q 同发t 秒时,QBP △的面积为y cm 2.已知y 与t 的函数关系图象如图(2)(曲线OM 为抛物线的一部分),则下列结论:①AD =BE =5;②cos ∠ABE =35;③当0<t ≤5时,y =25t 2;④当t =294秒时,ABE QBP ∽;其中正确的结论是_______(填序号).三、解答题:本大题共10小题,共76分,把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.19.计算:04cos 45(2022)π︒--.20.先化简再求值:232121x x x x x x -⎛⎫-÷ ⎪+++⎝⎭,其中x 满足280x x +-=.21.求不等式组74252154x x x x -<+⎧⎨-<-⎩的整数解.22.如图,∠BAC =90°,AB =AC ,BE ⊥AD 于点E ,CF ⊥AD 于点F .(1)求证:△ABE ≌△CAF ;(2)若CF =5,BE =2,求EF 的长.23.第24届冬季奥林匹克运动会(简称“冬奥会”)于2022年2月4日在北京开幕,本届冬奥会设7个大项、15个分项、109个小项.某校组织了关于冬奥知识竞答活动,随机抽取了七年级若干名同学的成绩,并整理成如下不完整的频数分布表、频数分布直方图和扇形统计图:分组频数6070x <≤47080x <≤128090x <≤1690100x <≤请根据图表信息,解答下列问题:(1)本次知识竞答共抽取七年级同学名;在扇形统计图中,成绩在“90100x <≤”这一组所对应的扇形圆心角的度数为︒;(2)请将频数分布直方图补充完整;(3)该校计划对此次竞答活动成绩最高的小颖同学:奖励两枚“2022•北京冬梦之约”的邮票.现有如图所示“2022•北京冬梦之约”的四枚邮票供小颖选择,依次记为A ,B ,C ,D ,背面完全相同.将这四枚邮票背面朝上,洗匀放好,小颖从中随机抽取一枚不放回,再从中随机抽取一枚.请用列表或画树状图的方法,求小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的概率.24.如图1是一台放置在水平桌面上的笔记本电脑,将其侧面抽象成如图2所示的几何图形,若显示屏所在面的侧边AO与键盘所在面的侧边BO长均为24cm,点P为眼睛所在位置,D为AO的中点,连接PD,当PD⊥AO时,称点P为“最佳视角点”,作PC⊥BC,垂足C在OB的延长线上,且BC=12cm.(1)当PA=45cm时,求PC的长;(2)若∠AOC=120°,求PC的长.(结果精确到0.1cm≈1.414)25.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(2,0),B(0,1),交反比例函数y=mx(x>0)的图象于点C(3,n),点E是反比例函数图象上的一动点,横坐标为t(0<t<3),EF∥y轴交直线AB于点F,D是y轴上任意一点,连接DE、DF.(1)求一次函数和反比例函数的表达式;(2)当t为何值时,△DEF为等腰直角三角形.26.如图,AB是⊙O的直径,点D,E在⊙O上,∠A=2∠BDE,点C在AB的延长线上,∠C=∠ABD.(1)求证:CE是⊙O的切线:(2)连接BE,若⊙O的半径长为5,OF=3,求EF的长,27.我们把两个面积相等但不全等的三角形叫做偏等积三角形.(1)如图1,已知等腰直角△ABC,∠ACB=90°,请将它分成两个三角形,使它们成为偏等积三角形;(2)理解运用:如图2,已知△ABC为直角三角形,∠ACB=90°,以AB,AC为边向外作正方形ABDE,正方形ACFG,连接EG.求证:△ABC与△AEG为偏等积三角形;(3)如图3,四边形ABED△ACB、△DCE是等腰直角三角形,∠ACB=∠DCE=90°(0<∠BCE<90°),已知BE=60m,△ACD的面积为2100m2.计划修建一条经过点C的笔直的小路CF,F 在BE边上,FC的延长线经过AD中点G.若小路每米造价600元,请计算修建小路的总造价.28.如图,二次函数y=﹣16x2+bx+4的图象与x轴交于点A、B与y轴交于点C,点A的坐标为(﹣8,0),P是抛物线上一点(点P与点A、B、C不重合).(1)b=,点B的坐标是;(2)连接AC、BC,证明:∠CBA=2∠CAB;(3)点D为AC的中点,点E是抛物线在第二象限图象上一动点,作DE,把点A沿直线DE翻折,点A 的对称点为点G,点E运动时,当点G恰好落在直线BC上时,求E点的坐标.答案与解析一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2B 铅笔填涂在答题卡相应的位置上.1.下列实数中,最小的无理数的是()A. B.1C.πD.﹣5【答案】A【解析】【分析】先找出无理数,再比较大小即可求解.【详解】选项中的和π,<2<3<π,,故选:A .【点睛】本题考查了无理数的概念以及实数比较大小的知识,找出选项中的无理数是解答本体的关键.2.计算()()32a a -÷-的结果是()A.aB.﹣aC.1D.﹣1【答案】A【解析】【分析】根据同底数幂的除法法则进行计算.【详解】解:原式=()3232a a a a -÷÷-==,故选:A .【点睛】本题主要考查同底数幂的除法,熟练掌握运算方法是解题的关键.3.下列图形中,属于轴对称图形的是()A. B. C. D.【答案】B【解析】【分析】根据轴对称图形的概念求解.【详解】解:A 、不是轴对称图形,故本选项不符合;B 、是轴对称图形,故本选项符合;C 、不是轴对称图形,故本选项不符合;D 、不是轴对称图形,故本选项不符合.故选:B .【点睛】本题考查了轴对称图形的概念,识别轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.4.函数5x y x =-的自变量x 的取值范围是()A.5x ≠ B.2x >且5x ≠ C.2x ≥ D.2x ≥且5x ≠【答案】D【解析】【分析】由分式与二次根式有意义的条件得函数自变量的取值范围.【详解】解:由题意得:20,50x x -≥⎧⎨-≠⎩解得:2x ≥且 5.x ≠故选D .【点睛】本题考查的是函数自变量的取值范围,掌握分式与二次根式有意义的条件是解题的关键.5.已知直线m ∥n ,将一块含30°角的直角三角板ABC ,按如图所示方式放置,其中A 、B 两点分别落在直线m 、n 上,若∠1=35°,则∠2的度数是()A.35°B.30°C.25°D.65°【答案】D【解析】【分析】由平行线的性质:两直线平行,内错角相等直接可得答案.【详解】解:∵m ∥n ,∴∠2=∠ABC +∠1=30°+35°=65°.故选:D .【点睛】本题主要考查平行线的性质,准确判断角的位置关系是解题的关键.6.已知某商店有两个商品都卖了80元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店()A.亏损10元B.盈利10元C.亏损20元D.盈利20元【答案】B【解析】【分析】设盈利60%的进价为x 元,亏损20%的进价为y 元,根据销售问题的数量关系建立方程求出其解即可.【详解】解:设盈利60%的进价为x元,亏损20%的进价为y元,由题意,得x(1+60%)=80,y(1-20%)=80,解得:x=50,y=100,∴成本为:50+100=150元.∵售价为:80×2=160元,利润为:160-150=10元.故选:B.【点睛】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,销售问题的数量关系利润=售价-进价的运用,解答时由销售问题的数量关系建立方程是关键.7.如图,⊙O是等边△ABC的内切圆,分别切AB,BC,AC于点E,F,D,P是DF上一点,则∠EPF的度数是()A.65°B.60°C.58°D.50°【答案】B【解析】【分析】连接OE,OF.求出∠EOF的度数即可解决问题.【详解】解:如图,连接OE,OF.∵⊙O是△ABC的内切圆,E,F是切点,∴OE⊥AB,OF⊥BC,∴∠OEB=∠OFB=90°,∵△ABC是等边三角形,∴∠B=60°,∴∠EOF=120°,∴∠EPF=12∠EOF=60°,故选:B.【点睛】本题考查三角形的内切圆与内心,切线的性质,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.如图,▱OABC的周长为7,∠AOC=60°,以O为原点,OC所在直线为x轴建立直角坐标系,函数k yx(x>0)的图像经过▱OABC的顶点A和BC的中点M,则k的值为()A. B.12 C. D.6【答案】C【解析】【分析】作AD⊥x轴于D,MN⊥x轴于N,设OA=a,根据题意得到OC=72-a,解直角三角形表示出A、M的坐标,根据反比例函数图象上点的坐标特征得到关于a的方程,解得a,求得A的坐标,即可求得k的值.【详解】解:作AD⊥x轴于D,MN⊥x轴于N,∵四边形OABC是平行四边形,∴OA=BC,AB=OC,OA∥BC,∴∠BCN=∠AOC=60°.设OA=a,由▱OABC的周长为7,∴OC =72-a ,∵∠AOC =60°,1,22OD a AD a ∴==,1,22A a a ⎛⎫∴ ⎪⎝⎭,∵M 是BC 的中点,BC =OA =a ,∴CM =12a ,又∠MCN =60°,1,44CN a MN a ∴==,∴ON =OC +CN =71732424a a a -+=-,7,2443M a a ⎛⎫∴- ⎪⎝⎭,∵点A ,M 都在反比例函数k y x=的图象上,31722244a a a a ⎛⎫∴⋅=-⋅ ⎪⎝⎭,解得a =2,A ∴,1k ∴=⨯=.故选:C .【点睛】此题是反比例函数综合题,主要考查了待定系数法,平行四边形的性质以及解直角三角形,解本题的关键是列出方程求出a 的值.9.如图,直角三角形ACB 中,两条直角边AC =8,BC =6,将△ACB 绕着AC 中点M 旋转一定角度,得到△DFE ,点F 正好落在AB 边上,DE 和AB 交于点G ,则AG 的长为()A.1.4B.1.8C.1.2D.1.6【答案】A【解析】【分析】由勾股定理可求AB=10,由旋转的性质可得∠A=∠D,DM=AM,CM=MF,DE=AB=10,可得AM=MF=CM,可得∠AFC=90°,由锐角三角函数可求AF的长,由直角三角形的性质可求GF的长,即可求AG的长.【详解】解:如图,连接CF,∵AC=8,BC=6,∴AB=,∵点M是AC中点,∴AM=MC=4,∵将△ACB绕着AC中点M旋转一定角度,得到△DFE,∴∠A=∠D,DM=AM,CM=MF,DE=AB=10,∴AM=MF=CM,∴∠MAF=∠MFA,∠MFC=∠MCF,∵∠MAF+∠MFA+∠MFC+∠MCF=180°,∴∠MFA+∠MFC=90°,∴∠AFC=90°,∵12×AB×CF=12×AC×BC,∴CF=24 5,∴AF325 ==,∵∠A=∠D,∠A=∠AFM,∴∠D=∠AFM,又∵∠DFE=90°,∴DG=GF,∠E=∠GFE,∴GF=GE,∴GF=GD=GE=5,∴AG=AF-GF=325-5=75=1.4,故选:A.【点睛】本题考查了旋转的性质,勾股定理,三角形内角和定理,求AF 的长是本题的关键.10.已知,矩形ABCD 中,E 为AB 上一定点,F 为BC 上一动点,以EF 为一边作平行四边形EFGH ,点G ,H 分别在CD 和AD 上,若平行四边形EFGH 的面积不会随点F 的位置改变而改变,则应满足()A.4AD AE= B.2=AD AB C.2AB AE = D.3AB AE=【答案】C【解析】【分析】设AB a =,BC b =,BE c =,BF x =,由于四边形EFGH 为平行四边形且四边形ABCD 是矩形,所以AEH CGF ≅△△,BEF DGH ≅△△,根据()2EFGH ABCD AEH EBF S S S S =-+ △△,化简后得()2a c x bc -+,F 为BC 上一动点,x 是变量,()2a c -是x 的系数,根据平EFGH S 不会随点F 的位置改变而改变,为固定值,x 的系数为0,bc 为固定值,20a c -=,进而可得点E 是AB 的中点,即可进行判断.【详解】解:∵四边形EFGH 为平行四边形且四边形ABCD 是矩形,∴AEH CGF ≅△△,BEF DGH ≅△△,设AB a =,BC b =,BE c =,BF x =,∴()2EFGH ABCD AEH EBF S S S S =-+ △△()()11222ab a c b x cx ⎡⎤=---+⎢⎥⎣⎦()ab ab ax bc cx cx =---++ab ab ax bc cx cx=-++--()2a c x bc=-+∵F 为BC 上一动点,∴x 是变量,()2a c -是x 的系数,∵EFGH S 不会随点F 的位置改变而改变,为固定值,∴x 的系数为0,bc 为固定值,∴20a c -=,∴2a c =,∴E 是AB 的中点,∴2AB AE =,故选:C .【点睛】本题考查了矩形的性质,平行四边形的性质,掌握矩形的性质是解决本题的关键.二、填空题:本大题共8小题,每小题3分,共24分,把答案直接填写在答题卡相应位置上.11.2021年5月15日,天问一号探测器成功着陆火星,迈出了我国星际探测征程的重要一步.已知火星与地球的近距离约为5500万公里,数字55000000用科学记数法表示为_____.【答案】75.510⨯【解析】【分析】科学记数法的表现形式为10n a ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案.【详解】解:755000000 5.510=⨯故答案为:75.510⨯.【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.12.某班五个兴趣小组的人数分别为4,4,5,x ,6,已知这组数据的平均数是5,则这组数据的中位数是_____.【答案】5【解析】【分析】先根据平均数的定义计算出x 的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【详解】∵某班五个兴趣小组的人数分别为4,4,5,x ,6,已知这组数据的平均数是5,∴x =5×5﹣4﹣4﹣5﹣6=6,∴这一组数从小到大排列为:4,4,5,6,6,∴这组数据的中位数是5.故答案为:5.【点睛】本题考查了平均数和中位数,弄清题意,熟练掌握和灵活运用相关知识是解题的关键.平均数为一组数据中所有数据之和再除以这组数据的个数;将一组数据按从小到大顺序排列,处于最中间位置的一个位置的一个数据,或是最中间两个数据的平均数称为中位数.13.因式分解:322x y xy -=________________.【答案】()()211xy x x +-【解析】【分析】原式提取公因式,再利用平方差公式分解即可.【详解】32222(1)2(1)(1)x y xy xy x xy x x -=-=+-,故答案为2(1)(1)xy x x +-.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.如图,某人跳芭蕾舞,踮起脚尖时显得下半身比上半身更修长.若以裙子的腰节为分界点,身材比例正好符合黄金分割,已知从脚尖到头顶高度为176cm ,那么裙子的腰节到脚尖的距离为______cm .(结果保留根号)【答案】()88-##(-【解析】【分析】根据黄金分割的黄金数得腰节到脚尖的距离:脚尖到头顶距离=512-即可解答.【详解】解:设腰节到脚尖的距离为x cm ,根据题意,得:11762x -=,解得:88x =-,∴腰节到脚尖的距离为(88-)cm ,故答案为:88.【点睛】本题考查黄金分割,熟知黄金分割和黄金数512-=较长线段:全线段是解答的关键.15.如图是小明同学的健康码示意图,用黑白打印机打印在边长为2cm 的正方形区域内,图中黑色部分的总面积为2cm 2,现在向正方形区域内随机掷点,点落入黑色部分的概率为_____.【答案】12【解析】【分析】用黑色部分的总面积除以正方形的面积即可求得概率.【详解】解:∵正方形的面积为2×2=4cm 2,黑色部分的总面积为2cm 2,∴向正方形区域内随机掷点,点落入黑色部分的概率为2142=,故答案为:12.【点睛】本题考查了几何概率,解决本题的关键是掌握概率公式.16.如图,在平面直角坐标系中,将线段AB 平移至线段CD 的位置,连接AC BD 、.若点()2,2B --的对应点为()1,2D ,则点()30A -,的对应点C 的坐标是____________.【答案】()04,【解析】【分析】根据点B 、D 的坐标确定出平移规律,再根据平移规律解答即可.【详解】解:∵点()22B --,的对应点为()12D ,,∴平移规律为向右平移3个单位,向上平移4个单位,∴点()30A -,的对应点C 的坐标为()04,.故答案为:()04,.【点睛】本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.17.如图,正方形ABCD 的边长为2,A 为坐标原点,AB 和AD 分别在x 轴、y 轴上,点E 是BC 边的中点,过点A 的直线y kx =交线段DC 于点F ,连接EF ,若FA 平分DFE ∠,则k 的值为__________.【答案】1或3【解析】【分析】分两种情况:①当点F 在DC 之间时,作出辅助线,求出点F 的坐标即可求出k 的值;②当点F 与点C 重合时求出点F 的坐标即可求出k 的值.【详解】解:①如图,作AG ⊥EF 交EF 于点G ,连接AE,∵AF 平分∠DFE,∴DA=AG=2,在Rt △ADF 和Rt △AGF 中,DA AG AF AF=⎧⎨=⎩∴Rt △ADF ≌Rt △AGF (HL)∴DF=FG,∴点E 是BC 边的中点,∴BE=CE=1,1AE GE ∴==∴==∵在Rt △FCE 中,EF 2=FC 2+CE 2,即(DF+1)2=(2-DF)2+1,解得:DF=23,∴点F (23,2)把点F 的坐标代入y kx =得:2=23k ,解得k=3②当点F 与点C 重合时,∵四边形ABCD 是正方形,∴AF 平分∠DFE∴F (2,2)把点F 的坐标代入y kx =得:2=2k ,解得k=1故答案为:1或3【点睛】本题主要考查了一次函数综合题,涉及角平分线的性质,三角形全等的判定及性质,正方形的性质定理,及勾股定理,解题的关键是分两种情况求出k..18.如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P 、Q 同时从点B 出发,点P 沿折线BE ﹣ED ﹣DC 运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1cm/秒.设P 、Q 同发t 秒时,QBP △的面积为y cm 2.已知y 与t 的函数关系图象如图(2)(曲线OM 为抛物线的一部分),则下列结论:①AD =BE =5;②cos ∠ABE =35;③当0<t ≤5时,y =25t 2;④当t =294秒时,ABE QBP ∽;其中正确的结论是_______(填序号).【答案】①③④【解析】【详解】根据图(2)可得,当点P到达点E时点Q到达点C,∵点P、Q的运动的速度都是1cm/秒,∴BC=BE=5,∴AD=BE=5,故①小题正确;又∵从M到N的变化是2,∴ED=2,∴AE=AD﹣ED=5﹣2=3,在Rt△ABE中,AB==4,∴cos∠ABE=ABBE=45,故②小题错误;过点P作PF⊥BC于点F,∵AD∥BC,∴∠AEB=∠PBF,∴sin∠PBF=sin∠AEB=ABBE=45,∴PF=PB sin∠PBF=45t,∴当0<t≤5时,y=12BQ•PF=12t•45t=25t2,故③小题正确;当t=294秒时,点P在CD上,此时,PD=294﹣BE﹣ED=294﹣5﹣2=14,PQ=CD﹣PD=4﹣14=154,∴45415334AB BQ AE PQ ===,,∴AB BQ AE PQ=,又∵∠A =∠Q =90°,∴△ABE ∽△QBP ,故④小题正确.综上所述,正确的有①③④.三、解答题:本大题共10小题,共76分,把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.19.计算:04cos 45(2022)π︒-+-.【答案】1【解析】【分析】先计算特殊角三角函数值,零指数幂,二次根式的化简,然后根据实数的计算法则求解即可.【详解】解:04cos 45(2022)π︒+-412=⨯-1=-1=【点睛】本题主要考查了特殊角三角函数值,零指数幂,二次根式的化简,实数的混合计算,熟知相关计算法则是解题的关键.20.先化简再求值:232121x x x x x x -⎛⎫-÷ ⎪+++⎝⎭,其中x 满足280x x +-=.【答案】2x x +;8【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将280x x +-=变形为28x x +=,即可得出值.【详解】解:232121-⎛⎫-÷ ⎪+++⎝⎭x x x x x x ()2213112x x x x x x x 骣++÷ç=-´çç++-桫()()22112x x x x x -+=´+-2x x =+,∵280x x +-=,∴28x x +=,即原式的值为8.【点睛】本题考查了分式的化简求值,熟悉掌握分式混合运算法则是解题的关键.21.求不等式组74252154x x x x-<+⎧⎨-<-⎩的整数解.【答案】35x -<<【解析】【分析】分别求出每个不等式的解集,找出两个解集的公共部分可得不等式组的解集,进而求出不等式组的整数解即可.【详解】74252154x x x x -<+⎧⎨-<-⎩①②解不等式①得:3x >-,解不等式②得:5x <,∴不等式组的解集为:35x -<<.∴不等式组的整数解为:-2,-1,0,1,2,3,4,【点睛】本题考查解一元一次不等式组,正确得出两个不等式的解集是解题关键.22.如图,∠BAC =90°,AB =AC ,BE ⊥AD 于点E ,CF ⊥AD 于点F.(1)求证:△ABE ≌△CAF ;(2)若CF =5,BE =2,求EF 的长.【答案】(1)见解析(2)EF 的长为3.【解析】【分析】(1)由BE ⊥AD 于点E ,CF ⊥AD 于点F 得∠AEB =∠CFA =90°,而∠BAC =90°,根据同角的余角相等可证明∠B =∠FAC ,还有AB =CA ,即可证明△ABE ≌△CAF ;(2)由△ABE ≌△CAF ,根据全等三角形的性质即可求解.【小问1详解】证明:∵BE ⊥AD 于点E ,CF ⊥AD 于点F ,∴∠AEB =∠CFA =90°,∵∠BAC =90°,∴∠B =∠FAC =90°-∠BAE ,在△ABE 和△CAF 中,AEB CFA B FAC AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CAF (AAS );【小问2详解】解:∵△ABE ≌△CAF ,CF =5,BE =2,∴AF =BE =2,AE =CF =5,∴EF =AE -AF =5-2=3,∴EF 的长为3.【点睛】此题考查同角的余角相等、全等三角形的判定与性质等知识,正确理解与运用全等三角形的判定定理是解题的关键.23.第24届冬季奥林匹克运动会(简称“冬奥会”)于2022年2月4日在北京开幕,本届冬奥会设7个大项、15个分项、109个小项.某校组织了关于冬奥知识竞答活动,随机抽取了七年级若干名同学的成绩,并整理成如下不完整的频数分布表、频数分布直方图和扇形统计图:请根据图表信息,解答下列问题:(1)本次知识竞答共抽取七年级同学名;在扇形统计图中,成绩在“90100x <≤”这一组所对应的扇形圆心角的度数为︒;(2)请将频数分布直方图补充完整;(3)该校计划对此次竞答活动成绩最高的小颖同学:奖励两枚“2022•北京冬梦之约”的邮票.现有如图所示“2022•北京冬梦之约”的四枚邮票供小颖选择,依次记为A ,B ,C ,D ,背面完全相同.将这四枚邮票背面朝上,洗匀放好,小颖从中随机抽取一枚不放回,再从中随机抽取一枚.请用列表或画树状图的方法,求小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的概率.【答案】(1)40,72(2)见解析(3)小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的概率为16.【解析】【分析】(1)由成绩在“70<x ≤80”的人数除以所占百分比得出本次知识竞答共抽取七年级同学的人数,即可解决问题;(2)根据成绩在“90<x ≤100”这一组的人数,补全数分布直方图即可解决问题;(3)画树状图,共有12种等可能的结果,其中小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的结果有2种,再由概率公式求解即可.【小问1详解】解:本次知识竞答共抽取七年级同学为:12÷30%=40(名),则在扇形统计图中,成绩在“90<x ≤100”这一组的人数为:40-4-12-16=8(名),在扇形统计图中,成绩在“90<x ≤100”这一组所对应的扇形圆心角的度数为:360°×840=72°,故答案为:40,72;【小问2详解】解:将频数分布直方图补充完整如下:【小问3详解】解:画树状图如下:共有12种等可能的结果,其中小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的结果有2种,∴小颖同学抽到的两枚邮票恰好是B (冰墩墩)和C (雪容融)的概率为21126.【点睛】此题考查的是用树状图法求概率以及频数分布表、频数分布直方图等知识.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.24.如图1是一台放置在水平桌面上的笔记本电脑,将其侧面抽象成如图2所示的几何图形,若显示屏所在面的侧边AO与键盘所在面的侧边BO长均为24cm,点P为眼睛所在位置,D为AO的中点,连接PD,当PD⊥AO时,称点P为“最佳视角点”,作PC⊥BC,垂足C在OB的延长线上,且BC=12cm.(1)当PA=45cm时,求PC的长;(2)若∠AOC=120°,求PC的长.(结果精确到0.1cm≈1.414≈1.732)【答案】(1)27cm(2)34.6cm【解析】【分析】(1)连接PO,利用垂直平分线的性质得出PA=PO,然后利用勾股定理即可求出PC;(2)过D点作DE⊥OC于E点,过D点作DF⊥PC于F点,根据矩形的性质可知DE=FC,DF=EC,分别在在Rt△DOE和Rt△PDF中利用勾股定理以及锐角三角函数即可求出DE、EO,进而求出PF,即可得解.【小问1详解】连接PO,如图,∵点D为AO中点,且PD⊥AO,∴PD是AO的垂直平分线,∴PA=PO=45cm,∵BO=24cm,BC=12cm,∠C=90°,∴OC=OB+BC=36(cm),PC===(cm),∴在Rt△POC中,27即PC长为27cm;【小问2详解】过D 点作DE ⊥OC 于E 点,过D 点作DF ⊥PC 于F 点,如图,∵PC ⊥OC ,∴四边形DECF 是矩形,即FC =DE ,DF =EC ,在Rt △DOE 中,∠DOE =180°-∠AOC =180°-120°=60°,∵DO =AD =12AO =12(cm),∴DE =·sin DO DOE ∠=·sin 60DO ︒=(cm),EO =12DO =6(cm),∴FC =DE =cm ,DF =EC =EO +OB +BC =6+24+12=42(cm),∵∠FDO =∠DOE =60°,∠PDO =90°,∴∠PDF =90°-60°=30°,在Rt △PDF 中,PF =·tan 42tan 30423DF PDF ∠=⋅=⨯=o (cm),∴PC =PF +FC =+=,∴PC 34.6cm =≈,即PC 的长度为34.6cm .【点睛】本题考查了解直角三角形的应用、线段垂直平分线的性质、勾股定理、矩形的判定与性质、锐角三角函数等知识,准确作出辅助线构造直角三角形是解题的关键.25.如图,在平面直角坐标系中,一次函数y =kx+b 的图象经过点A (2,0),B (0,1),交反比例函数y =m x(x >0)的图象于点C (3,n ),点E 是反比例函数图象上的一动点,横坐标为t (0<t <3),EF ∥y 轴交直线AB 于点F ,D 是y 轴上任意一点,连接DE 、DF .(1)求一次函数和反比例函数的表达式;(2)当t 为何值时,△DEF 为等腰直角三角形.【答案】(1)一次函数表达式为112y x =-+,反比例函数表达式为32y x =-(2)1t =或1103【解析】【分析】(1)先用待定系数法求出一次函数的解析式,则可求出C 点坐标,再利用待定系数法求出反比例函数式即可;(2)分三种情况讨论,即①当∠FDE 为直角时,则△DEF 为等腰直角三角形,根据12DH HE HF EF ===建立方程;②当90EFD ∠=︒时,根据=EF FD 建立方程;③当∠FED 为直角时,和∠FDE 为直角时得到的等式相同;结合t 的范围,分别求出方程的解,即可解决问题.【小问1详解】解:由题意得:201a b b +=⎧⎨=⎩,解得121a b ⎧=-⎪⎨⎪=⎩,∴112y x =-+,∵C 点在一次函数图象上,∴113122n =-⨯+=-,∴132C ⎛⎫- ⎪⎝⎭,,∴13322m xy ⎛⎫==⨯-=- ⎪⎝⎭,∴32y x=-;【小问2详解】由题意得:32E y t =-,112F y t =-+,∴13122F E EF y y t t=-=-++,①如图,当FD ED =时,过D 作DH EF ⊥,∵EDF 是等腰直角三角形,∴2EF DH =,∴131222t t t-++=,整理得:25230t t --=,解得:1t =或35-,∵03t <<,∴1t =;②如图,当90EFD ∠=︒时,=EF FD ,∴13122t t t-++=,整理得:23230t t --=,解得:1103t =或1103,∵03t <<,∴1103t +=;③如图,当90FED ∠=︒时,EF ED =,∵等式同②,∴1103t +=;综上所述,当1t =或13时,DEF 为等腰直角三角形.【点睛】本题主要考查了一次函数的性质、等腰直角三角形的性质、待定系数法求函数表达式等知识点,解题的关键是要注意分类求解,避免有所遗漏.26.如图,AB 是⊙O 的直径,点D ,E 在⊙O 上,∠A =2∠BDE ,点C 在AB 的延长线上,∠C =∠ABD .(1)求证:CE 是⊙O 的切线:(2)连接BE ,若⊙O 的半径长为5,OF =3,求EF 的长,【答案】(1)见解析;(2;【解析】【分析】(1)根据圆周角定理和相似三角形的判定和性质即可证明;(2)连接OE ,BE ,AE ,根据圆周角定理和等腰三角形的性质求得∠DFC =∠CBE ,从而可得∠EFB =∠EBF ,于是EF =BE ,再由OB =OE ,可证△OBE ∽△EBF ,即可解答;【小问1详解】证明:如图,连接OE ,。
中考数学考试模拟卷(含答案解析)一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共40分)1.(3分)﹣3的绝对值是()A.﹣B.3 C.D.﹣32.(3分)冬季奥林匹克运动会是世界上规模最大的冬季综合性运动会,下列四个图是历届冬奥会图标中的一部分,其中是轴对称图形的为()A.B.C.D.3.(3分)节肢动物是最大的动物类群,目前已命名的种类有120万种以上,将数据120万用科学记数法表示为()A.0.12×106B.1.2×107C.1.2×105D.1.2×1064.(3分)正多边形的每个内角为108°,则它的边数是()A.4 B.6 C.7 D.55.(3分)《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架,其中《盈不足》卷记载了一道有趣的数学问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译文:“今有人合伙购物,每人出8钱,会多出3钱;每人出7钱,又差4钱.问人数、物价各多少?”设人数为x人,物价为y钱,根据题意,下面所列方程组正确的是()A.B.C.D.6.(3分)如图,一束光线AB先后经平面镜OM,ON反射后,反射光线CD与AB平行,当∠ABM =35°时,∠DCN的度数为()A.55°B.70°C.60°D.35°7.(3分)在平面直角坐标系中,将二次函数y=(x﹣1)2+1的图象向左平移1个单位长度,再向下平移2个单位长度,所得函数的解析式为()A.y=(x﹣2)2﹣1 B.y=(x﹣2)2+3 C.y=x2+1 D.y=x2﹣18.(3分)如图,由边长为1的小正方形构成的网格中,点A,B,C都在格点上,以AB为直径的圆经过点C,D,则cos∠ADC的值为()A.B.C.D.9.(3分)若关于x的分式方程:2﹣=的解为正数,则k的取值范围为()A.k<2 B.k<2且k≠0 C.k>﹣1 D.k>﹣1且k≠010.(3分)下列命题:①(m•n2)3=m3n5②数据1,3,3,5的方差为2③因式分解x3﹣4x=x(x+2)(x﹣2)④平分弦的直径垂直于弦⑤若使代数式在实数范围内有意义,则x≥1其中假命题的个数是()A.1 B.3 C.2 D.4二、细心填一填(本大题共6小题,每小题4分,满分24分,请把答案填在答題卷相应题号的横线上)11.(4.00分)计算:()0﹣1= .12.(4.00分)某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为.13.(4.00分)如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD= .14.(4.00分)不等式组的解集为.15.(4.00分)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD= .16.(4.00分)如图,直线y=x+m与双曲线y=相交于A,B两点,BC∥x轴,AC∥y轴,则△ABC面积的最小值为.三、专心解一解(本大题共9小题,满分86分,请认真读题,冷静思考解答题应写出必要的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)17.(8.00分)解方程组:.[来源:学,科,网]18.(5分)计算:•+4|1﹣|sin60°﹣()﹣1.19.(6分)先化简,再求值:(a﹣)÷,请从不等式组的整数解中选择一个合适的数求值.20.(7分)如图,一个圆环被4条线段分成4个区域,现有2022年冬奥会吉祥物“冰墩墩”和“雪容融”各一个,将这两个吉祥物放在任意两个区域内:(1)求:吉祥物“冰墩墩”放在区域①的概率;(2)求:吉祥物“冰墩墩”和“雪容融”放在相邻的两个区域的概率.(用树状图或列表法表示)21.(6分)某型号飞机的机翼形状如图所示,根据图中数据计算AB的长度(结果保留小数点后一位,≈1.7).22.(5分)某学校在本校开展了四项“课后服务”项目(项目A:足球;项目B:篮球;项目C:跳绳;项目D:书法),要求每名学生必选且只能选修其中一项,为了解学生的选修情况,学校决定进行抽样调查,并根据收集的数据绘制了图1和图2两幅不完整的统计图.(1)本次调查的学生共有人;在扇形统计图中,B所对应的扇形的圆心角的度数是°;(2)将条形统计图补充完整;(3)若全校共有1200名学生,估计该校选修篮球和跳绳两个项目的总人数.23.(8分)为落实“双减”政策,丰富课后服务的内容,某学校计划到甲、乙两个体育专卖店购买一批新的体育用品,两个商店的优惠活动如下:甲:所有商品按原价8.5折出售;乙:一次购买商品总额不超过300元的按原价付费,超过300元的部分打7折.设需要购买体育用品的原价总额为x元,去甲商店购买实付y甲元,去乙商店购买实付y乙元,其函数图象如图所示.(1)分别求y甲,y乙关于x的函数关系式;(2)两图象交于点A,求点A坐标;(3)请根据函数图象,直接写出选择去哪个体育专卖店购买体育用品更合算.24.(12.00分)已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE⊥AB,垂足为E.(1)延长DE交⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;(2)过点B作BC⊥AD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,如图2.若AB=,DH=1,∠OHD=80°,求∠BDE的大小.25.(14.00分)已知抛物线y=ax2+bx+c过点A(0,2).(1)若点(﹣,0)也在该抛物线上,求a,b满足的关系式;(2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与拋物线的另两个交点为B,C,且△ABC有一个内角为60°.①求抛物线的解析式;②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.参考答案与解析一、选择题1.【分析】应用绝对值的计算方法进行计算即可得出答案.【解答】解:|﹣3|=3.故选:B.【点评】本题主要考查了绝对值,熟练掌握绝对值的计算方法进行求解是解决本题的关键.2.【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:选项B、C、D不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项A能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:A.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:120万用科学记数法表示为:1.2×106.故选:D.4.【分析】方法一:根据相邻的内角与外角互为邻补角求出每一个外角的度数为72°,再用外角和360°除以72°,计算即可得解;方法二:设多边形的边数为n,然后根据多边形的内角和公式(n﹣2)•180°列方程求解即可.【解答】解:方法一:∵正多边形的每个内角等于108°,∴每一个外角的度数为180°﹣108°=72°,∴边数=360°÷72°=5,方法二:设多边形的边数为n,由题意得,(n﹣2)•180°=108°•n,解得n=5,所以,这个多边形的边数为5.故选:D.5.【分析】根据“每人出8钱,会多出3钱;每人出7钱,又差4钱”,即可得出关于x,y 的二元一次方程组,此题得解.【解答】解:依题意得:.故选:C.6.【分析】根据“两直线平行,同旁内角互补”解答即可.【解答】解:∵∠ABM=35°,∠ABM=∠OBC,∴∠OBC=35°,∴∠ABC=180°﹣∠ABM﹣∠OBC=180°﹣35°﹣35°=110°,∵CD∥AB,∴∠ABC+∠BCD=180°,∴∠BCD=180°﹣∠ABC=70°,∵∠BCO=∠DCN,∠BCO+∠BCD+∠DCN=180°,∴∠DCN=(180°﹣∠BCD)=55°,故选:A.7.【分析】根据图象的平移规律,可得答案.【解答】解:将二次函数y=(x﹣1)2+1的图象向左平移1个单位长度,再向下平移2个单位长度,得到的抛物线的解析式是y=(x﹣1+1)2+1﹣2,即y=x2﹣1.故选:D.8.【分析】由格点构造直角三角形,由直角三角形的边角关系以及圆周角定理可得答案.【解答】解:∵AB为直径,∴∠ACB=90°,又∵点A,B,C都在格点上,∴∠ADC=∠ABC,在Rt△ABC中,cos∠ABC====cos∠ADC,故选:B.9.【分析】先解分式方程可得x=2﹣k,再由题意可得2﹣k>0且2﹣k≠2,从而求出k的取值范围.【解答】解:2﹣=,2(x﹣2)﹣(1﹣2k)=﹣1,2x﹣4﹣1+2k=﹣1,2x=4﹣2k,x=2﹣k,∵方程的解为正数,∴2﹣k>0,∴k<2,∵x≠2,∴2﹣k≠2,∴k≠0,∴k<2且k≠0,故选:B.10.【分析】利用幂的运算性质、方差的计算公式、因式分解的方法、垂径定理及二次根式有意义的条件分别判断后即可确定正确的选项.【解答】解:①(m•n2)3=m3n6,故原命题错误,是假命题,符合题意;②数据1,3,3,5的方差为2,故原命题正确,是真命题,不符合题意;③因式分解x3﹣4x=x(x+2)(x﹣2),正确,是真命题,不符合题意;④平分弦(不是直径)的直径垂直于弦,故原命题错误,是假命题,符合题意;⑤若使代数式在实数范围内有意义,则x≥1,正确,是真命题,不符合题意,假命题有2个,故选:C.二、细心填一填11.(4.00分)计算:()0﹣1= 0 .【分析】根据零指数幂:a0=1(a≠0)进行计算即可.【解答】解:原式=1﹣1=0,故答案为:0.12.(4.00分)某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为120 .【分析】根据众数的定义:一组数据中出现次数最多的数据即为众数.【解答】解:∵这组数据中120出现次数最多,有3次,∴这组数据的众数为120,故答案为:120.13.(4.00分)如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD= 3 .【分析】根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵∠ACB=90°,D为AB的中点,∴CD=AB=×6=3.故答案为:3.14.(4.00分)不等式组的解集为x>2 .【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x>1,解不等式②得:x>2,∴不等式组的解集为x>2,故答案为:x>2.15.(4.00分)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD= ﹣1 .【分析】先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出结论.【解答】解:如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==∴CD=BF+DF﹣BC=1+﹣2=﹣1,故答案为:﹣1.16.(4.00分)如图,直线y=x+m与双曲线y=相交于A,B两点,BC∥x轴,AC∥y轴,则△ABC面积的最小值为 6 .【分析】根据双曲线y=过A,B两点,可设A(a,),B(b,),则C(a,).将y=x+m 代入y=,整理得x2+mx﹣3=0,由于直线y=x+m与双曲线y=相交于A,B两点,所以a、b 是方程x2+mx﹣3=0的两个根,根据根与系数的关系得出a+b=﹣m,ab=﹣3,那么(a﹣b)2=(a+b)2﹣4ab=m2+12.再根据三角形的面积公式得出S=AC•BC=m2+6,利用二次函数的性质即可△ABC求出当m=0时,△ABC的面积有最小值6.【解答】解:设A(a,),B(b,),则C(a,).将y=x+m代入y=,得x+m=,整理,得x2+mx﹣3=0,则a+b=﹣m,ab=﹣3,∴(a﹣b)2=(a+b)2﹣4ab=m2+12.=AC•BC∵S△ABC=(﹣)(a﹣b)=••(a﹣b)=(a﹣b)2=(m2+12)=m2+6,∴当m=0时,△ABC的面积有最小值6.故答案为6.三、专心解一解(本大题共9小题,满分86分,请认真读题,冷静思考解答题应写出必要的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)17.(8.00分)解方程组:.【分析】方程组利用加减消元法求出解即可.【解答】解:,②﹣①得:3x=9,解得:x=3,把x=3代入①得:y=﹣2,则方程组的解为.18.(5分)计算:•+4|1﹣|sin60°﹣()﹣1.【分析】先化简各式,然后再进行计算即可解答.【解答】解:•+4|1﹣|sin60°﹣()﹣1=2+4×(﹣1)×﹣2=2+2(﹣1)﹣2=2+6﹣2﹣2=4.【点评】本题考查了特殊角的三角函数值,负整数指数幂,绝对值,估算无理数的大小,二次根式的乘除法,实数的运算,准确熟练地化简各式是解题的关键.19.(6分)先化简,再求值:(a﹣)÷,请从不等式组的整数解中选择一个合适的数求值.【分析】先算括号里的异分母分式的减法,再算括号外,然后把a的值代入化简后的式子进行计算即可解答.【解答】解:(a﹣)÷=•=•=a(a+2)=a2+2a,,解得:﹣1<a≤2,∴该不等式组的整数解为:0,1,2,∵a≠0,a﹣2≠0,∴a≠0且a≠2,∴a=1,∴当a=1时,原式=12+2×1=1+2=3.【点评】本题考查了分式的混合运算,解一元一次不等式组,准确熟练地进行计算是解题的关键.20.(7分)如图,一个圆环被4条线段分成4个区域,现有2022年冬奥会吉祥物“冰墩墩”和“雪容融”各一个,将这两个吉祥物放在任意两个区域内:(1)求:吉祥物“冰墩墩”放在区域①的概率;(2)求:吉祥物“冰墩墩”和“雪容融”放在相邻的两个区域的概率.(用树状图或列表法表示)【分析】(1)直接根据概率公式求解即可;(2)画出树状图,共有12个等可能的结果,其中吉祥物“冰墩墩”和“雪容融”放在相邻的两个区域的结果有8个,再由概率公式求解即可.【解答】解:(1)吉祥物“冰墩墩”放在区域①的概率是;故答案为:;(2)根据题意画图如下:共有12种等可能的情况数,其中吉祥物“冰墩墩”和“雪容融”放在相邻的两个区域有8种,则吉祥物“冰墩墩”和“雪容融”放在相邻的两个区域的概率是=.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21.(6分)某型号飞机的机翼形状如图所示,根据图中数据计算AB的长度(结果保留小数点后一位,≈1.7).【分析】在Rt△BDE中求出ED,再在Rt△ACM中求出AM,最后根据线段的和差关系进行计算即可.【解答】解:如图,过点C、D分别作BE的平行线交BA的延长线于点M、N,在Rt△BDE中,∠BDE=90°﹣45°=45°,∴DE=BE=14m,在Rt△ACM中,∠ACM=60°,CM=BE=14m,∴AM=CM=14(m),∴AB=BM﹣AM=CE﹣AM=20+14﹣14≈10.2(m),答:AB的长约为10.2m.【点评】本题考查解直角三角形的应用,掌握直角三角形的边角关系是正确解答的前提,构造直角三角形是解决问题的关键.22.(5分)某学校在本校开展了四项“课后服务”项目(项目A:足球;项目B:篮球;项目C:跳绳;项目D:书法),要求每名学生必选且只能选修其中一项,为了解学生的选修情况,学校决定进行抽样调查,并根据收集的数据绘制了图1和图2两幅不完整的统计图.(1)本次调查的学生共有200 人;在扇形统计图中,B所对应的扇形的圆心角的度数是108 °;(2)将条形统计图补充完整;(3)若全校共有1200名学生,估计该校选修篮球和跳绳两个项目的总人数.【分析】(1)根据A项目的人数和所占的百分比,求出调查的总人数,再用360°乘以B所占的百分比即可得出答案;(2)用总人数减去其它项目的人数,求出C选项的人数,从而补全统计图;(3)用全校的总人数乘以选修篮球和跳绳两个项目的总人数所占的百分比即可.【解答】解:(1)本次调查的学生共有:30÷15%=200(人),在扇形统计图中,B所对应的扇形的圆心角的度数是:360°×=108°;故答案为:200,108;(2)C项目的人数有:200﹣30﹣60﹣20=90(人),补全统计图如下:(3)根据题意得:1200×=900(人),答:估计该校选修篮球和跳绳两个项目的总人数有900人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(8分)为落实“双减”政策,丰富课后服务的内容,某学校计划到甲、乙两个体育专卖店购买一批新的体育用品,两个商店的优惠活动如下:甲:所有商品按原价8.5折出售;乙:一次购买商品总额不超过300元的按原价付费,超过300元的部分打7折.设需要购买体育用品的原价总额为x元,去甲商店购买实付y甲元,去乙商店购买实付y乙元,其函数图象如图所示.(1)分别求y甲,y乙关于x的函数关系式;(2)两图象交于点A,求点A坐标;(3)请根据函数图象,直接写出选择去哪个体育专卖店购买体育用品更合算.【分析】(1)根据题意和题目中的数据,可以分别写出y甲,y乙关于x的函数关系式;(2)根据(1)中的结果和题意,令0.85x=0.7x+90,求出x的值,再求出相应的y的值,即可得到点A的坐标.(3)根据函数图象和(2)中点A的坐标,可以写出选择去哪个体育专卖店购买体育用品更合算.【解答】解:(1)由题意可得,y=0.85x,甲当0≤x≤300时,y乙=x,当x>300时,y乙=300+(x﹣300)×0.7=0.7x+90,则y乙=;(2)令0.85x=0.7x+90,解得x=600,将x=600代入0.85x得,0.85×600=510,即点A的坐标为(600,510);(3)由图象可得,当x<600时,去甲体育专卖店购买体育用品更合算;当x=600时,两家体育专卖店购买体育用品一样合算;当x>600时,去乙体育专卖店购买体育用品更合算.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.24.(12.00分)已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE⊥AB,垂足为E.(1)延长DE交⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;(2)过点B作BC⊥AD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,如图2.若AB=,DH=1,∠OHD=80°,求∠BDE的大小.【分析】(1)先判断出BC∥DF,再利用同角的补角相等判断出∠F=∠PCB,即可得出结论;(2)先判断出四边形DHBC是平行四边形,得出BC=DH=1,再用锐角三角函数求出∠ACB=60°,进而判断出DH=OD,求出∠ODH=20°,即可得出结论.【解答】解:(1)如图1,∵AC是⊙O的直径,∴∠ABC=90°,∵DE⊥AB,∴∠DEA=90°,∴∠DEA=∠ABC,∴BC∥DF,∴∠F=∠PBC,∵四边形BCDF是圆内接四边形,∴∠F+∠DCB=180°,∵∠PCB+∠DCB=180°,∴∠F=∠PCB,∴∠PBC=∠PCB,∴PC=PB;(2)如图2,连接OD,∵AC是⊙O的直径,∴∠ADC=90°,∵BG⊥AD,∴∠AGB=90°,∴∠ADC=∠AGB,∴BG∥DC,∵BC∥DE,∴四边形DHBC是平行四边形,∴BC=DH=1,在Rt△ABC中,AB=,tan∠ACB=,∴∠ACB=60°,∴BC=AC=OD,∴DH=OD,在等腰三角形DOH中,∠DOH=∠OHD=80°,∴∠ODH=20°,设DE交AC于N,∵BC∥DE,∴∠ONH=∠ACB=60°,∴∠NOH=180°﹣(∠ONH+∠OHD)=40°,∴∠DOC=∠DOH﹣∠NOH=40°,∵OA=OD,∴∠OAD=∠DOC=20°,∴∠CBD=∠OAD=20°,∵BC∥DE,∴∠BDE=∠CBD=20°.25.(14.00分)已知抛物线y=ax2+bx+c过点A(0,2).(1)若点(﹣,0)也在该抛物线上,求a,b满足的关系式;(2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与拋物线的另两个交点为B,C,且△ABC有一个内角为60°.①求抛物线的解析式;②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.【分析】(1)由抛物线经过点A可求出c=2,再代入(﹣,0)即可找出2a﹣b+2=0(a ≠0);(2)①根据二次函数的性质可得出抛物线的对称轴为y轴、开口向下,进而可得出b=0,由抛物线的对称性可得出△ABC为等腰三角形,结合其有一个60°的内角可得出△ABC为等边三角形,设线段BC与y轴交于点D,根据等边三角形的性质可得出点C的坐标,再利用待定系数法可求出a值,此题得解;②由①的结论可得出点M的坐标为(x1,﹣+2)、点N的坐标为(x2,﹣+2),由O、M、N三点共线可得出x2=﹣,进而可得出点N及点N′的坐标,由点A、M的坐标利用待定系数法可求出直线AM的解析式,利用一次函数图象上点的坐标特征可得出点N′在直线PM上,进而即可证出PA平分∠MPN.【解答】解:(1)∵抛物线y=ax2+bx+c过点A(0,2),∴c=2.又∵点(﹣,0)也在该抛物线上,∴a(﹣)2+b(﹣)+c=0,∴2a﹣b+2=0(a≠0).(2)①∵当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0,∴x1﹣x2<0,y1﹣y2<0,∴当x<0时,y随x的增大而增大;同理:当x>0时,y随x的增大而减小,∴抛物线的对称轴为y轴,开口向下,∴b=0.∵OA为半径的圆与拋物线的另两个交点为B、C,∴△ABC为等腰三角形,又∵△ABC有一个内角为60°,∴△ABC为等边三角形.设线段BC与y轴交于点D,则BD=CD,且∠OCD=30°,又∵OB=OC=OA=2,∴CD=OC•cos30°=,OD=OC•sin30°=1.不妨设点C在y轴右侧,则点C的坐标为(,﹣1).∵点C在抛物线上,且c=2,b=0,∴3a+2=﹣1,∴a=﹣1,∴抛物线的解析式为y=﹣x2+2.②证明:由①可知,点M的坐标为(x1,﹣+2),点N的坐标为(x2,﹣+2).直线OM的解析式为y=k1x(k1≠0).∵O、M、N三点共线,∴x1≠0,x2≠0,且=,∴﹣x1+=﹣x2+,[来源:Z。
中考数学考试模拟卷(带答案解析)一、选择题(本题包括12道小题,每小题3分,共36分)1.在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3| B.﹣2 C.0 D.π2.(4.00分)某几何体的三视图如图所示,则该几何体是()A.圆柱B.三棱柱C.长方体D.四棱锥3.下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,54.(4.00分)一个n边形的内角和为360°,则n等于()A.3 B.4 C.5 D.65.如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE 等于()A.15°B.30°C.45°D.60°6.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于127.已知m=+,则以下对m的估算正确的()A.2<m<3 B.3<m<4 C.4<m<5 D.5<m<68.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y 尺,则符合题意的方程组是()A.B.C.D.9.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD 等于()A.40°B.50°C.60°D.80°10.已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和﹣1都是关于x的方程x2+bx+a=0的根D.1和﹣1不都是关于x的方程x2+bx+a=0的根11.如图,正方形ABCD及其内切圆O,随机地往正方形内投一粒米,落在阴影部分的概率是()A.B.1﹣C.D.1﹣12.如图,点D是▱OABC内一点,AD与x轴平行,BD与y轴平行,BD=,∠BDC=120°,S=,若反比例函数y=(x<0)的图象经过C,D两点,则k的值是()△BCDA.﹣6B.﹣6 C.﹣12D.﹣12二、填空题(本题包括5道小题,每小题3分,共15分,将答案直接填在答题卡对应题的横线上)13.(3分)菱形ABCD中,对角线AC=8,BD=6,则菱形的边长为.14.(3分)如图,依据尺规作图的痕迹,求∠α的度数°.15.(3分)如图,在矩形ABCD中,E为AD上的点,AE=AB,BE=DE,则tan∠BDE=.16.(3分)在Rt△ABC中,∠C=90°,有一个锐角为60°,AB=6,若点P在直线AB上(不与点A,B重合),且∠PCB=30°,则AP的长为.17.(3分)如图,⊙O是△ABC的外接圆,AC为直径,若AB=2,BC=3,点P从B点出发,在△ABC内运动且始终保持∠CBP=∠BAP,当C,P两点距离最小时,动点P的运动路径长为.三、解答题(本题包括9道小题,共69分,每小题分值均在各题号后面标出,请在答题卡上写出各题解答的文字说明、证明过程或计算步骤)18.(8.00分)如图,▱ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.[来源:Z*xx*]19.(8.00分)先化简,再求值:(﹣1)÷,其中m=+1.20.(8.00分)求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC及线段A'B′,∠A′(∠A′=∠A),以线段A′B′为一边,在给出的图形上用尺规作出△A'B′C′,使得△A'B′C′∽△ABC,不写作法,保留作图痕迹;[来源:学§科§网]②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.21.(8.00分)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.(1)求∠BDF的大小;(2)求CG的长.22.(10.00分)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.23.(10.00分)如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值.24.(10分)如图,在Rt△AOB中,∠AOB=90°,以O为圆心,OB的长为半径的圆交边AB 于点D,点C在边OA上且CD=AC,延长CD交OB的延长线于点E.(1)求证:CD是圆的切线;(2)已知sin∠OCD=,AB=4,求AC长度及阴影部分面积.25.(10分)已知点E在正方形ABCD的对角线AC上,正方形AFEG与正方形ABCD有公共点A.(1)如图1,当点G在AD上,F在AB上,求的值为多少;(2)将正方形AFEG绕A点逆时针方向旋转α(0°<α<90°),如图2,求的值为多少;(3)AB=8,AG=AD,将正方形AFEG绕A逆时针方向旋转α(0°<α<360°),当C,G,E三点共线时,请直接写出DG的长度.26.(12分)如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y轴交于C点,直线BC 方程为y=x﹣3.(1)求抛物线的解析式;(2)点P为抛物线上一点,若S△PBC=S△ABC,请直接写出点P的坐标;(3)点Q是抛物线上一点,若∠ACQ=45°,求点Q的坐标.参考答案与解析一、选择题1.【分析】直接利用利用绝对值的性质化简,进而比较大小得出答案.【解答】解:在实数|﹣3|,﹣2,0,π中,|﹣3|=3,则﹣2<0<|﹣3|<π,故最小的数是:﹣2.故选:B.2.【分析】根据常见几何体的三视图逐一判断即可得.【解答】解:A、圆柱的主视图和左视图是矩形,但俯视图是圆,不符合题意;B、三棱柱的主视图和左视图是矩形,但俯视图是三角形,不符合题意;C、长方体的主视图、左视图及俯视图都是矩形,符合题意;D、四棱锥的主视图、左视图都是三角形,而俯视图是四边形,不符合题意;故选:C.3.【分析】根据三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:A、1+1=2,不满足三边关系,故错误;B、1+2<4,不满足三边关系,故错误;C、2+3>4,满足三边关系,故正确;D、2+3=5,不满足三边关系,故错误.故选:C.4.【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求n.【解答】解:根据n边形的内角和公式,得:(n﹣2)•180=360,解得n=4.故选:B.5.【分析】先判断出AD是BC的垂直平分线,进而求出∠ECB=45°,即可得出结论.【解答】解:∵等边三角形ABC中,AD⊥BC,∴BD=CD,即:AD是BC的垂直平分线,∵点E在AD上,∴BE=CE,∴∠EBC=∠ECB,∵∠EBC=45°,∴∠ECB=45°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠ACE=∠ACB﹣∠ECB=15°,故选:A.6.【分析】根据事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件进行分析即可.【解答】解:A、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;B、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误;C、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误;D、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确;故选:D.7.【分析】直接化简二次根式,得出的取值范围,进而得出答案.【解答】解:∵m=+=2+,1<<2,∴3<m<4,故选:B.8.【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【解答】解:设索长为x尺,竿子长为y尺,根据题意得:.故选:A.9.【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【解答】解:∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°﹣∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选:D.10.【分析】根据方程有两个相等的实数根可得出b=a+1或b=﹣(a+1),当b=a+1时,﹣1是方程x2+bx+a=0的根;当b=﹣(a+1)时,1是方程x2+bx+a=0的根.再结合a+1≠﹣(a+1),可得出1和﹣1不都是关于x的方程x2+bx+a=0的根.【解答】解:∵关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,∴,∴b=a+1或b=﹣(a+1).当b=a+1时,有a﹣b+1=0,此时﹣1是方程x2+bx+a=0的根;当b=﹣(a+1)时,有a+b+1=0,此时1是方程x2+bx+a=0的根.∵a+1≠0,∴a+1≠﹣(a+1),∴1和﹣1不都是关于x的方程x2+bx+a=0的根.故选:D.11.【分析】直接表示出各部分面积,进而得出落在阴影部分的概率.【解答】解:设圆的半径为a,则圆的面积为:πa2,正方形面积为:4a2,故随机地往正方形内投一粒米,落在阴影部分的概率为:.故选:B.12.【分析】过点C作CE⊥y轴,延长BD交CE于点F,易证△COE≌△ABD,求得OE=,根据S△BCD=,求得CF=9,得到点D的纵坐标为4,设C(m,),则D(m+9,4),由反比例函数y=(x<0)的图象经过C,D两点,从而求出m,进而可得k的值.【解答】解:过点C作CE⊥y轴,延长BD交CE于点F,∵四边形OABC为平行四边形,∴AB∥OC,AB=OC,∴∠COE=∠ABD,∵BD与y轴平行,∴∠ADB=90°,在△COE和△ABD中,,∴△COE≌△ABD(AAS),∴OE=BD=,∵S△BDC=BD•CF=,∴CF=9,∵∠BDC=120°,∴∠CDF=60°,∴DF=3,点D的纵坐标为4,设C(m,),则D(m+9,4),∵反比例函数y=(x<0)的图象经过C,D两点,∴k=m=4(m+9),∴m=﹣12,∴k=﹣12,故选:C.二、填空题13.(3分)菱形ABCD中,对角线AC=8,BD=6,则菱形的边长为 5 .【分析】根据菱形的对角线互相垂直平分求出OA、OB,再利用勾股定理列式进行计算即可得解.【解答】解:解:∵四边形ABCD是菱形,∴OA=AC=4,OB=BD=3,AC⊥BD,∴AB==5故答案为:514.(3分)如图,依据尺规作图的痕迹,求∠α的度数60 °.【分析】先根据矩形的性质得出AB∥DC,故可得出∠ABD的度数,由角平分线的定义求出∠EBF的度数,再由EF是线段BD的垂直平分线得出∠BEF的度数,根据三角形内角和定理得出∠BFE的度数,进而可得出结论.【解答】解:∵∠A=∠ABC=∠BCD=90°,∴四边形ABCD是矩形,∴AB∥DC,∴∠ABD=∠CDB=60°.由作法可知,BF是∠ABD的平分线,∴∠EBF=∠ABD=30°.由作法可知,EF是线段BD的垂直平分线,∴∠BEF=90°,∴∠BFE=90°﹣30°=60°,∴∠α=60°.故答案为:60.15.(3分)如图,在矩形ABCD中,E为AD上的点,AE=AB,BE=DE,则tan∠BDE=﹣1 .【分析】用含有AB的代数式表示AD,再根据锐角三角函数的定义进行计算即可.【解答】解:∵四边形ABCD是矩形,∴∠A=90°,∵AB=AE,设AB=a,则AE=a,BE==a=ED,∴AD=AE+DE=(+1)a,在Rt△ABD中,tan∠BDE===﹣1,故答案为:﹣1.16.(3分)在Rt△ABC中,∠C=90°,有一个锐角为60°,AB=6,若点P在直线AB上(不与点A,B重合),且∠PCB=30°,则AP的长为,9或3 .【分析】题中60°的锐角,可能是∠A也可能是∠B;∠PCB=30°可以分为点P在在线段AB上和P在线段AB的延长线上两种情况;直角三角形中30°角所对的直角边等于斜边的一半,同时借助勾股定理求得AP的长度.【解答】解:当∠A=30°时,∵∠C=90°,∠A=30°,∴∠CBA=60°,BC=AB=×6=3,由勾股定理得,AC=3,①点P在线段AB上,∵∠PCB=30°,∠CBA=60°∴∠CPB=90°,∴∠CPA=90°,在Rt△ACP中,∠A=30°,∴PC=AC=×3=.∴在Rt△APC中,由勾股定理得AP=.②点P在线段AB的延长线上,∵∠PCB=30°,∴∠ACP=90°+30°=120°,∵∠A=30°,∴∠CPA=30°.∵∠PCB=30°,∴∠PCB=∠CPA,∴BP=BC=3,∴AP=AB+BP=6+3=9.当∠ABC=30°时,∵∠C=90°,∠ABC=30°,∴∠A=60°,AC=AB=×6=3,由勾股定理得,BC=3,①点P在线段AB上,∵∠PCB=30°,∴∠ACP=60°,∴△ACP是等边三角形∴AP=AC=3.②点P在线段AB的延长线上,∵∠PCB=30°,∠ABC=30°,∴CP∥AP这与CP与AP交于点P矛盾,舍去.综上所得,AP的长为,9或3.故答案为:,9或3.17.(3分)如图,⊙O是△ABC的外接圆,AC为直径,若AB=2,BC=3,点P从B点出发,在△ABC内运动且始终保持∠CBP=∠BAP,当C,P两点距离最小时,动点P的运动路径长为π.【分析】如图,取AB的中点J,首先证明∠APB=90°,推出点P在以AB为直径的⊙J上运动,当J,P,C共线时,PC的值最小,解直角三角形求出∠CJB=60°可得结论.【解答】解:如图,取AB的中点J,∵AC是直径,∴∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠BAP=∠PBC,∴∠BAP+∠ABP=90°,∴∠APB=90°,∴点P在以AB为直径的⊙J上运动,当J,P,C共线时,PC的值最小,在Rt△CBJ中,BJ=,BC=3,∴tan∠CJB==,∴∠BJC=60°,∴当C,P两点距离最小时,动点P的运动路径长==π.故答案为:π.【点评】本题考查轨迹,解直角三角形,弧长公式等知识,解题的关键是正确判断出点P的运动轨迹,属于中考常考题型.三、解答题(本题包括9道小题,共69分,每小题分值均在各题号后面标出,请在答题卡上写出各题解答的文字说明、证明过程或计算步骤)18.(8.00分)如图,▱ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.【分析】由四边形ABCD是平行四边形,可得OA=OC,AD∥BC,继而可证得△AOE≌△COF(ASA),则可证得结论.【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∴∠OAE=∠OCF,在△OAE和△OCF中,,∴△AOE≌△COF(ASA),∴OE=OF.19.(8.00分)先化简,再求值:(﹣1)÷,其中m=+1.【分析】根据分式的减法和除法可以化简题目中的式子,然后将m的值代入即可解答本题.【解答】解:(﹣1)÷===,当m=+1时,原式=.20.(8.00分)求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC及线段A'B′,∠A′(∠A′=∠A),以线段A′B′为一边,在给出的图形上用尺规作出△A'B′C′,使得△A'B′C′∽△ABC,不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.【分析】(1)作∠A'B'C=∠ABC,即可得到△A'B′C′;(2)依据D是AB的中点,D'是A'B'的中点,即可得到=,根据△ABC∽△A'B'C',即可得到=,∠A'=∠A,进而得出△A'C'D'∽△ACD,可得==k.【解答】解:(1)如图所示,△A'B′C′即为所求;(2)已知,如图,△ABC∽△A'B'C',===k,D是AB的中点,D'是A'B'的中点,求证:=k.证明:∵D是AB的中点,D'是A'B'的中点,∴AD=AB,A'D'=A'B',∴==,∵△ABC∽△A'B'C',∴=,∠A'=∠A,∵=,∠A'=∠A,[来源:学科网ZXXK]∴△A'C'D'∽△ACD,∴==k.21.(8.00分)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.(1)求∠BDF的大小;(2)求CG的长.【分析】(1)由旋转的性质得,AD=AB=10,∠ABD=45°,再由平移的性质即可得出结论;(2)先判断出∠ADE=∠ACB,进而得出△ADE∽△ACB,得出比例式求出AE,即可得出结论.【解答】解:(1)∵线段AD是由线段AB绕点A按逆时针方向旋转90°得到,∴∠DAB=90°,AD=AB=10,∴∠ABD=45°,∵△EFG是△ABC沿CB方向平移得到,∴AB∥EF,∴∠BDF=∠ABD=45°;(2)由平移的性质得,AE∥CG,AB∥EF,∴∠DEA=∠DFC=∠ABC,∠ADE+∠DAB=180°,∵∠DAB=90°,∴∠ADE=90°,∵∠ACB=90°,∴∠ADE=∠ACB,∴△ADE∽△ACB,∴,∵AB=8,AB=AD=10,∴AE=12.5,由平移的性质得,CG=AE=12.5.22.(10.00分)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.【分析】(1)根据概率公式计算可得;(2)分别根据平均数的定义及其意义解答可得.【解答】解:(1)因为今年四月份甲公司揽件员人均揽件数超过40的有4天,所以甲公司揽件员人均揽件数超过40(不含40)的概率为=;(2)①甲公司各揽件员的日平均件数为=39件;②甲公司揽件员的日平均工资为70+39×2=148元,乙公司揽件员的日平均工资为=[40+]×4+×6=159.4元,因为159.4>148,所以仅从工资收入的角度考虑,小明应到乙公司应聘.23.(10.00分)如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值.【分析】(1)设AB=xm,则BC=(100﹣2x)m,利用矩形的面积公式得到x(100﹣2x)=450,解方程得x1=5,x2=45,然后计算100﹣2x后与20进行大小比较即可得到AD的长;(2)设AD=xm,利用矩形面积得到S=x(100﹣x),配方得到S=﹣(x﹣50)2+1250,讨论:当a≥50时,根据二次函数的性质得S的最大值为1250;当0<a<50时,则当0<x≤a时,根据二次函数的性质得S的最大值为50a﹣a2.【解答】解:(1)设AB=xm,则BC=(100﹣2x)m,根据题意得x(100﹣2x)=450,解得x1=5,x2=45,当x=5时,100﹣2x=90>20,不合题意舍去;当x=45时,100﹣2x=10,答:AD的长为10m;(2)设AD=xm,∴S=x(100﹣x)=﹣(x﹣50)2+1250,当a≥50时,则x=50时,S的最大值为1250;当0<a<50时,则当0<x≤a时,S随x的增大而增大,当x=a时,S的最大值为50a﹣a2,综上所述,当a≥50时,S的最大值为1250;当0<a<50时,S的最大值为50a﹣a2.24.(10分)如图,在Rt△AOB中,∠AOB=90°,以O为圆心,OB的长为半径的圆交边AB 于点D,点C在边OA上且CD=AC,延长CD交OB的延长线于点E.(1)求证:CD是圆的切线;(2)已知sin∠OCD=,AB=4,求AC长度及阴影部分面积.【分析】(1)根据等腰三角形的性质,直角三角形的两锐角互余以及等量代换得出∠ODB+∠BDE=90°,即OD⊥EC,进而得出EC是切线;(2)根据直角三角形的边角关系可求出OD、CD、AC、OC,再根据相似三角形的性质可求出EC,根据S阴影部分=S△COE﹣S扇形进行计算即可.【解答】(1)证明:如图,连接OD,∵AC=CD,∴∠A=∠ADC=∠BDE,∵∠AOB=90°,∴∠A+∠ABO=90°,又∵OB=OD,∴∠OBD=∠ODB,∴∠ODB+∠BDE=90°,即OD⊥EC,∵OD是半径,∴EC是⊙O的切线;(2)解:在Rt△COD中,由于sin∠OCD=,设OD=4x,则OC=5x,∴CD==3x=AC,在Rt△AOB中,OB=OD=4x,OA=OC+AC=8x,AB=4,由勾股定理得,OB2+OA2=AB2,即:(4x)2+(8x)2=(4)2,解得x=1或x=﹣1(舍去),∴AC=3x=3,OC=5x=5,OB=OD=4x=4,∵∠ODC=∠EOC=90°,∠OCD=∠ECO,∴△COD∽△CEO,∴=,即=,∴EC=,∴S阴影部分=S△COE﹣S扇形=××4﹣=﹣4π=,答:AC=3,阴影部分的面积为.【点评】本题考查切线的判定,扇形面积的计算以及直角三角形的边角关系,掌握切线的判定方法,直角三角形的边角关系以及扇形、三角形面积的计算方法是正确解答的前提.25.(10分)已知点E在正方形ABCD的对角线AC上,正方形AFEG与正方形ABCD有公共点A.(1)如图1,当点G在AD上,F在AB上,求的值为多少;(2)将正方形AFEG绕A点逆时针方向旋转α(0°<α<90°),如图2,求的值为多少;(3)AB=8,AG=AD,将正方形AFEG绕A逆时针方向旋转α(0°<α<360°),当C,G,E三点共线时,请直接写出DG的长度.【分析】(1)由正方形性质知∠AGE=∠D=90°、∠DAC=45°,据此可得、GE∥CD,利用平行线分线段成比例定理可得;(2)连接AE,只需证△ADG∽△ACE即可得;(3)分两种情况画出图形,证明△ADG∽△ACE,根据相似三角形的判定和性质以及勾股定理即可得出答案.【解答】解:(1)∵四边形ABCD是正方形,四边形CEGF是正方形,∴∠AGE=∠D=90°,∠DAC=45°,∴,GE∥CD,∴,∴CE=DG,∴==2;(2)连接AE,由旋转性质知∠CAE=∠DAG=α,在Rt△AEG和Rt△ACD中,=cos45°=、=cos45°=,∴,∴△ADG∽△ACE,∴=,∴=;(3)①如图:由(2)知△ADG∽△ACE,∴,∴DG=CE,∵四边形ABCD是正方形,∴AD=BC=8,AC==16,∵AG=AD,∴AG=AD=8,∵四边形CEGF是矩形,∴∠AGE=90°,GE=AG=8,∵C,G,E三点共线.∴CG===8,∴CE=CG﹣EG=8﹣8,∴DG=CE=4﹣4;②如图:由(2)知△ADG∽△ACE,∴,∴DG=CE,∵四边形ABCD是正方形,∴AD=BC=8,AC==16,∵AG=AD,∴AG=AD=8,∵四边形CEGF是矩形,∴∠AGE=90°,GE=AG=8,∵C,G,E三点共线.∴∠AGC=90°∴CG===8,∴CE=CG+EG=8+8,∴DG=CE=4+4.综上,当C,G,E三点共线时,DG的长度为4﹣4或4+4.【点评】本题是四边形综合题,考查了正方形的判定与性质,直角三角形的性质,相似三角形的判定与性质,勾股定理,熟练掌握相似三角形的判定与性质是解题的关键.26.(12分)如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y轴交于C点,直线BC 方程为y=x﹣3.(1)求抛物线的解析式;(2)点P为抛物线上一点,若S△PBC=S△ABC,请直接写出点P的坐标;(3)点Q是抛物线上一点,若∠ACQ=45°,求点Q的坐标.【分析】(1)求出B、C点坐标,并将其代入y=﹣x2+bx+c,即可求解;(2)过点P作PQ⊥x轴交BC于点Q,设P(t,﹣t2+4t﹣3),则Q(t,t﹣3),PQ=|﹣t2+3t|,由题意可求=×3×|﹣t2+3t|,求出t的值即可求解;(3)过点B作BE⊥BC交CQ于点E,过E点作EF⊥x轴交于F,由题意可得tan∠OCA=tan ∠BCE==,求出E(4,﹣1),用待定系数求出直线CE的解析式y=x﹣3,联立方程组,可求Q(,﹣).【解答】解:(1)在y=x﹣3中,令x=0,则y=﹣3,∴C(0,﹣3),令y=0,则x=3,∴B(3,0),将B、C两点代入y=﹣x2+bx+c,∴,解得,∴y=﹣x2+4x﹣3;(2)令y=0,则﹣x2+4x﹣3=0,解得x=1或x=3,∴A(1,0),∴AB=2,∴S△ABC=×2×3=3,∵S△PBC=S△ABC,∴S△PBC=,过点P作PQ⊥x轴交BC于点Q,设P(t,﹣t2+4t﹣3),则Q(t,t﹣3),∴PQ=|﹣t2+3t|,∴=×3×|﹣t2+3t|,解得t=或t=,∴P点坐标为(,)或(,)或(,)或(,);(3)过点B作BE⊥BC交CQ于点E,过E点作EF⊥x轴交于F,∵OB=OC,∴∠OCB=45°,∵∠ACQ=45°,∴∠BCQ=∠OCA,∵OA=1,∴tan∠OCA=,∴tan∠BCE==,∵BC=3,∴BE=,∵∠OBC=45°,∴∠EBF=45°,∴EF=BF=1,∴E(4,﹣1),设直线CE的解析式为y=kx+b,∴,解得,∴y=x﹣3,联立方程组,解得(舍)或,∴Q(,﹣).。
2024年中考第三次模拟考试数学(考试时间:120分钟试卷满分:100分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一.选择题(共8小题,满分16分,每小题2分)1.(2分)如图所示,该几何体的俯视图是( )A.B.C.D.2.(2分)风云二号是我国自行研制的第一代地球静止气象卫星,它在地球赤道上空距地面约35800公里的轨道上运行.将35800用科学记数法表示应为( )A.0.358×105B.35.8×103C.3.58×105D.3.58×104 3.(2分)数学世界奇妙无穷,其中曲线是微分几何的研究对象之一,下列数学曲线既是轴对称图形,又是中心对称图形的是( )A.B.C.D.4.(2分)如果一个多边形的每个内角都相等,且内角和为2340°,那么这个多边形的一个外角的度数为( )A.24°B.30°C.36°D.60°5.(2分)实数a,b,c在数轴上的对应点的位置如图所示,下列结论中正确的是( )A.b﹣c>0B.ac>0C.b+c<0D.ab<16.(2分)如图,一只松鼠先经过第一道门(A,B或C),再经过第二道门(D或E)出去,则松鼠走出笼子的路线是“先经过A门,再经过E门”的概率是( )A.B.C.D.7.(2分)已知关于x的一元二次方程kx2﹣(4k﹣1)x+4k﹣3=0有两个不相等的实数根,则实数k的取值范围是( )A.k<B.k>﹣且k≠0C.k>﹣D.k<且k≠08.(2分)在Rt△ABC中,AC=BC,点D为AB中点,∠GDH=90°,∠GDH绕点D旋转,DG,DH分别与边AC,BC交于E,F两点.下列结论:①;②AE2+BF2=EF2;③;④△DEF始终为等腰直角三角形,其中正确的个数有( )A.1个B.2个C.3个D.4个第Ⅱ卷二.填空题(共8小题,满分16分,每小题2分)9.(2分)若代数式有意义,则实数x的取值范围为 .10.(2分)因式分解:xy3﹣25xy= .11.(2分)分式方程的解为 .12.(2分)已知点A(x1,y1)与点B(x2,y2)都在反比例函数的图象上,且x2<0<x1,那么y1 y2(填“>”,“=”或“<”).13.(2分)如图,在▱ABCD中,,连接BE,交AC于点F,AC=10,则CF的长为 .14.(2分)如图,PA,PB是⊙O的切线,A,B是切点,∠P=62°,C是⊙O上的动点(异于A,B),连接CA,CB,则∠C的度数为 °.15.(2分)一笔总额为1078元的奖金,分为一等奖、二等奖和三等奖,奖金金额均为整数,每个一等奖的奖金是每个二等奖奖金的两倍,每个二等奖的奖金是每个三等奖奖金的两倍.若把这笔奖金发给6个人,评一、二、三等奖的人数分别为a,b,c,且0<a≤b≤c,那么三等奖的奖金金额是 元.16.(2分)把红、蓝、黄三种颜色的筷子各5根混在一起.如果让你闭上眼睛,每次最少拿出 根才能保证一定有2根同色的筷子;如果要保证有2双不同色的筷子,每次最少拿出 根.(2双不同色的筷子是指一双筷子为其中一种颜色,另一双筷子为另一种颜色)三.解答题(共12小题,满分68分)17.(5分)计算:.18.(5分)解不等式组:.19.(5分)已知x +y =6,xy =9,求的值.20.(6分)如图,BD 是△ABC 的角平分线,它的垂直平分线分别交AB ,BD ,BC 于点E ,F ,G ,连接DE ,DG .(1)请判断四边形EBGD 的形状,并说明理由;(2)若∠ABC =60°,∠C =45°,DE =2,求BC 的长.21.(6分)小明到文具店买文具,请你根据对话信息(小明:阿姨您好,我要买12支中性笔和20本笔记本,是不是一共112元?店员:不对呀,一共是144元.小明:啊……哦,我明白了,您是对的!我刚才把中性笔和笔记本的单价弄反了),求中性笔和笔记本的单价分别是多少元?阿姨您好,我要买12支中性笔和20本笔记本,是不是共112元.啊……哦我明白了,您是对的!我刚才把中性笔和笔记本的单价弄反了. 不对呀,是144元.22.(5分)已知一次函数 y =(k ﹣2)x ﹣3k +12.(1)k 为何值时,函数图象经过点(0,9)?(2)若一次函数 y =(k ﹣2)x ﹣3k +12 的函数值y 随x 的增大而减小,求k 的取值范围.23.(5分)某校拟派一名跳高运动员参加一项校际比赛,对甲、乙两名跳高运动员进行了8次选拔比赛,他们的成绩(单位:m )如下:甲:1.71,1.65,1.68,1.68,1.72,1.73,1.68,1.67;乙:1.60,1.74,1.72,1.69,1.62,1.71,1.69,1.75;【整理与分析】平均数众数中位数甲 1.69a 1.68乙 1.69 1.69b(1)由上表填空:a= ,b= ;(2)这两人中, 的成绩更为稳定.【判断与决策】(3)经预测,跳高1.69m就很可能获得冠军,该校为了获取跳高比赛冠军,可能选哪位运动员参赛?请说明理由.24.(6分)如图,四边形ABCD是⊙O的内接四边形,过点A作AE∥BC交CD的延长线于点E,AE=AB,AD=ED,连接BD.(1)求证:∠BAD=∠EAD;(2)连接AC,若CD=1,DE=3,求AB的长.25.(5分)【综合与实践】【实践任务】研究小组进行跨学科主题学习活动,利用函数的相关知识研究某种化学试剂的挥发情况,某研究小组在两种不同的场景下做对比实验,并收集该试剂挥发过程中剩余质量随时间变化的数据.【实验数据】该试剂挥发过程中剩余质量y(克)随时间x(分钟)变化的数据(0≤x≤20),并分别绘制在平面直角坐标系中,如图所示:任务一:求出函数表达式(1)经过描点构造函数模型来模拟两种场景下y随x变化的函数关系,发现场景A的图象是抛物线y=﹣0.04x2+bx+c的一部分,场景B的图象是直线y=ax+c(a≠0)的一部分,分别求出场景A、B相应的函数表达式;任务二:探究该化学试剂的挥发情况(2)查阅文献可知,该化学试剂发挥作用的最低质量为3克,在上述实验中,该化学试剂在哪种场景下发挥作用的时间更长?26.(6分)已知抛物线y=x2﹣(a+2)x+2a+1.(1)若a=2,求抛物线的对称轴和顶点坐标;(2)若抛物线过点(﹣1,y0),且对于抛物线上任意一点(x1,y1)都有y1≥y0,若A (m,n),B(2﹣m,p)是这条抛物线上不同的两点,求证:n+p>﹣8.27.(7分)旋转是几何图形运动中的一种重要变换,通常与全等三角形等数学知识相结合来解决实际问题,某学校数学兴趣小组在研究三角形旋转的过程中,进行如下探究:△ABC和△DEF均为等腰直角三角形,∠BAC=∠EDF=90°,点D为BC中点,将△DEF 绕点D旋转,连接AE、CF.观察猜想:(1)如图1,在△DEF旋转过程中,AE与CF的位置关系为 ;探究发现:(2)如图2,当点E、F在△ABC内且C、E、F三点共线时,试探究线段CE、AE与DE 之间的数量关系,并说明理由;解决问题:(3)若△ABC中,,在△DEF旋转过程中,当且C、E、F三点共线时,直接写出DE的长.28.(7分)对于平面直角坐标系xOy中的图形W1和图形W2,给出如下定义:在图形W1上存在两点A,B(点A,B可以重合),在图形W2上存在两点M,N(点M,N可以重合)使得AM=2BN,则称图形W1和图形W2满足限距关系.(1)如图1,点C(,0),D(0,﹣1),E(0,1),点P在线段CE上运动(点P 可以与点C,E重合),连接OP,DP.①线段DP的最小值为 ,最大值为 ;线段OP的取值范围是 ;②点O与线段DE (填“是”或“否”)满足限距关系;(2)在(1)的条件下,如图2,⊙O的半径为1,线段FG与x轴、y轴正半轴分别交于点F,G,且FG∥EC,若线段FG与⊙O满足限距关系,求点G纵坐标的取值范围;(3)⊙O的半径为r(r>0),点H,K是⊙O上的两个点,分别以H,K为圆心,3为半径作圆得到⊙H和⊙K,若对于任意点H,K,⊙H和⊙K都满足限距关系,直接写出r 的取值范围.2024年中考第三次模拟考试数学·全解全析第Ⅰ卷一.选择题(共8小题,满分16分,每小题2分)1.(2分)如图所示,该几何体的俯视图是( )A.B.C.D.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看,是一行两个矩形.故选:B.2.(2分)风云二号是我国自行研制的第一代地球静止气象卫星,它在地球赤道上空距地面约35800公里的轨道上运行.将35800用科学记数法表示应为( )A.0.358×105B.35.8×103C.3.58×105D.3.58×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:35800=3.58×104.故选:D.3.(2分)数学世界奇妙无穷,其中曲线是微分几何的研究对象之一,下列数学曲线既是轴对称图形,又是中心对称图形的是( )A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.【解答】解:A.是轴对称图形,不是中心对称图形,故此选项不合题意;B.是轴对称图形,不是中心对称图形,故此选项不合题意;C.既是中心对称图形,也是轴对称图形,符合题意;D.是轴对称图形,不是中心对称图形,故此选项不合题意.故选:C.4.(2分)如果一个多边形的每个内角都相等,且内角和为2340°,那么这个多边形的一个外角的度数为( )A.24°B.30°C.36°D.60°【分析】根据多边形的内角和公式为(n﹣2)180°列出方程,求出边数,再根据外角和定理求出这个多边形的一个外角.【解答】解:设这个多边形的边数为n,根据题意列方程:(n﹣2)180°=2340°,解得n=15,360°÷15=24°,故选:A.5.(2分)实数a,b,c在数轴上的对应点的位置如图所示,下列结论中正确的是( )A.b﹣c>0B.ac>0C.b+c<0D.ab<1【分析】根据数轴可知:﹣3<a<﹣2<b<﹣1<0<c<1,由此逐一判断各选项即可.【解答】解:由数轴可知:﹣3<a<﹣2<b<﹣1<0<c<1,A、∵﹣2<b<﹣1,0<c<1,∴b﹣c<0,故选项A不符合题意;B、∵﹣3<a<﹣2,0<c<1,∴ac<0,故选项B不符合题意;C、∵﹣2<b<﹣1,0<c<1,∴b+c<0,故选项C符合题意;D、∵﹣3<a<﹣2<b<﹣1,∴ab>1,故选项D不符合题意;故选:C.6.(2分)如图,一只松鼠先经过第一道门(A,B或C),再经过第二道门(D或E)出去,则松鼠走出笼子的路线是“先经过A门,再经过E门”的概率是( )A .B .C .D .【分析】画树状图列出所有等可能结果,从中找到松鼠走出笼子的路线是“先经过A 门,再经过E 门”的结果数,再根据概率公式求解即可.【解答】解:画树状图如下:共有6种等可能的结果,其中松鼠走出笼子的路线是“先经过A 门,再经过E 门”的只有1种结果,所以松鼠走出笼子的路线是“先经过A 门,再经过E 门”的概率为,故选:D .7.(2分)已知关于x 的一元二次方程kx 2﹣(4k ﹣1)x +4k ﹣3=0有两个不相等的实数根,则实数k 的取值范围是( )A .k <B .k >﹣且k ≠0C .k >﹣D .k <且k ≠0【分析】根据方程有两个不相等的实数根,得到根的判别式大于0且二次项系数不为0,求出k 的范围即可.【解答】解:∵关于x 的一元二次方程kx 2﹣(4k ﹣1)x +4k ﹣3=0有两个不相等的实数根,∴Δ=(4k ﹣1)2﹣4k (4k ﹣3)>0且k ≠0,解得:k且k ≠0.故选:B .8.(2分)在Rt △ABC 中,AC =BC ,点D 为AB 中点,∠GDH =90°,∠GDH 绕点D 旋转,DG,DH分别与边AC,BC交于E,F两点.下列结论:①;②AE2+BF2=EF2;③;④△DEF始终为等腰直角三角形,其中正确的个数有( )A.1个B.2个C.3个D.4个【分析】连接CD,根据等腰直角三角形的性质就可以得出△ADE≌△CDF,就可以得出AE =CF,进而得出CE=BF,就有AE+BF=AC,由勾股定理AE2+BF2=EF2,因为S四边形CEDF=S△EDC+S△EDF,得出.【解答】解:连接CD,∵AC=BC,点D为AB中点,∠ACB=90°,∴.∠A=∠B=∠ACD=∠BCD=45°,∠ADC=∠BDC=90°.∴∠ADE+∠EDC=90°,∵∠EDC+∠FDC=∠GDH=90°,∴∠ADE=CDF.在△ADE和△CDF中,,∴△ADE≌△CDF(ASA),∴AE=CF,DE=DF,S△ADE=S△CDF.∵AC=BC,∴AC﹣AE=BC﹣CF,∴CE=BF.∵AC=AE+CE,∴AC=AE+BF.∵AC2+BC2=AB2,∴,∴.∵DE=DF,∠GDH=90°,∴△DEF始终为等腰直角三角形.∵CE2+CF2=EF2,∴AE2+BF2=EF2.∵S四边形CEDF=S△EDC+S△EDF,∴.∴正确的有4个.故选:D.第Ⅱ卷二.填空题(共8小题,满分16分,每小题2分)9.(2分)若代数式有意义,则实数x的取值范围为 x≠3 .【分析】根据分式有意义,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣3≠0,解得x≠3.故答案为:x≠3.10.(2分)因式分解:xy3﹣25xy= xy(x+5)(x﹣5) .【分析】先提公因式xy,然后根据平方差公式进行计算即可求解.【解答】解:原式=xy(y2﹣25)=xy(y+5)(y﹣5).故答案为:xy(y+5)(y﹣5).11.(2分)分式方程的解为 .【分析】去分母后化为整式方程求解,后检验即可.【解答】解:,3x=x﹣3,2x=﹣3,,经检验,是原分式方程的解.故答案为:.12.(2分)已知点A(x1,y1)与点B(x2,y2)都在反比例函数的图象上,且x2<0<x1,那么y1 > y2(填“>”,“=”或“<”).【分析】由k<0,双曲线在第二,四象限,根据x1<0<x2即可判断A在第二象限,B 在第四象限,从而判定y1>y2.【解答】解:∵k=﹣4<0,∴双曲线在第二,四象限,∵x2<0<x1,∴B在第二象限,A在第四象限,∴y1<y2;故答案为:<.13.(2分)如图,在▱ABCD中,,连接BE,交AC于点F,AC=10,则CF的长为 6 .【分析】由平行四边形的性质得AD∥CB,AD=CB,则AE=AD=CB,可证明△EAF∽△BCF,得==,则CF=AC=6,于是得到问题的答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥CB,AD=CB,∵AE=AD,∴AE=CB,∵AE∥CB,∴△EAF∽△BCF,∴==,∴CF=AC=AC=×10=6,故答案为:6.14.(2分)如图,PA,PB是⊙O的切线,A,B是切点,∠P=62°,C是⊙O上的动点(异于A,B),连接CA,CB,则∠C的度数为 59或121 °.【分析】根据切线的性质得到∠OAP=90°,∠OBP=90°,再根据四边形内角和得到∠AOB=118°,然后根据圆周角定理和圆内接四边形的性质求∠ACB的度数.【解答】解:连接OA,OB,∵PA,PB是⊙O的两条切线,∴OA⊥PA,OB⊥PB,∴∠OAP=90°,∠OBP=90°,而∠P=62°,∴∠AOB=360°﹣90°﹣90°﹣62°=118°,当点P在劣弧AB上,则∠ACB=∠AOB=59°,当点P在优弧AB上,则∠ACB=180°﹣59°=121°.故答案为:59或121.15.(2分)一笔总额为1078元的奖金,分为一等奖、二等奖和三等奖,奖金金额均为整数,每个一等奖的奖金是每个二等奖奖金的两倍,每个二等奖的奖金是每个三等奖奖金的两倍.若把这笔奖金发给6个人,评一、二、三等奖的人数分别为a,b,c,且0<a≤b≤c,那么三等奖的奖金金额是 98或77 元.【分析】由a,b,c之间的关系结合a,b,c均为整数,即可得出a,b,c的值,设三等奖的奖金金额为x元,则二等奖的奖金金额为2x元,一等奖的奖金金额为4x元,根据奖金的总额为1078元,即可得出关于x的一元一次方程,解之即可得出结论(取其为【解答】解:∵a+b+c=6,0<a≤b≤c,且a,b,c均为整数,∴,,.设三等奖的奖金金额为x元,则二等奖的奖金金额为2x元,一等奖的奖金金额为4x元,依题意,得:4x+2x+4x=1078,4x+2×2x+3x=1078,2×4x+2×2x+2x=1078,解得:x=107.8(不合题意,舍去),x=98,x=77.故答案为:98或77.16.(2分)把红、蓝、黄三种颜色的筷子各5根混在一起.如果让你闭上眼睛,每次最少拿出 4 根才能保证一定有2根同色的筷子;如果要保证有2双不同色的筷子,每次最少拿出 8 根.(2双不同色的筷子是指一双筷子为其中一种颜色,另一双筷子为另一种颜色)【分析】根据题意可知,筷子的颜色共有3种,根据抽屉原理可知,先拿出3根是三种颜色,所以一次至少要拿出3+1=4(根)筷子才能保证一定有2根同色的筷子;根据题意可知,先把其中一种颜色的全部(5根)摸出,剩下的2种颜色的筷子各再摸出1根,即2根,还不能满足条件,则此时再任意拿出1根,必定会出现有2双不同色的筷子,据此解答即可.【解答】解:3+1=4(根),答:每次最少拿出4根才能保证一定有2根同色的筷子;5+2+1=8(根),答:要保证有2双不同色的筷子,每次最少拿出8根.故答案为:4,8.三.解答题(共12小题,满分68分)17.(5分)计算:.【分析】先分别按照负整数指数幂、求立方根、绝对值的化简法则及特殊角的三角函数值化简,再合并同类项及同类二次根式即可.【解答】解:=﹣3+2+﹣1﹣4×=﹣2+﹣2=﹣2﹣.18.(5分)解不等式组:.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,由①得x≤﹣1,由②得x>﹣3,∴不等式组的解集为:﹣3<x≤﹣1.19.(5分)已知x+y=6,xy=9,求的值.【分析】首先化简,然后把x+y=6,xy=9代入化简后的算式计算即可.【解答】解:∵x+y=6,xy=9,∴====.20.(6分)如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接DE,DG.(1)请判断四边形EBGD的形状,并说明理由;(2)若∠ABC=60°,∠C=45°,DE=2,求BC的长.【分析】(1)四边形EBGD为菱形,根据邻边相等的平行四边形是菱形即可判断;(2)过D作DM⊥BC于M,分别求出CM、BM即可;【解答】解:(1)四边形EBGD 为菱形;理由:∵EG 垂直平分BD ,∴EB =ED ,GB =GD ,∴∠EBD =∠EDB ,∵∠EBD =∠DBC ,∴∠EDF =∠GBF ,∴DE ∥BG ,同理BE ∥DG ,∴四边形BEDG 为平行四边形,又∵DE =BE ,∴四边形EBGD 为菱形;(2)如图,过D 作DM ⊥BC 于M ,由(1)知,∠DGC =∠ABC =60°,∠DBM =∠ABC =30°,DE =DG =2,∴在Rt △DMG 中,得DM =3,在Rt △DMB 中,得BM =3又∵∠C =45°,∴CM =DM =3,∴BC =3+3.21.(6分)小明到文具店买文具,请你根据对话信息(小明:阿姨您好,我要买12支中性笔和20本笔记本,是不是一共112元?店员:不对呀,一共是144元.小明:啊……哦,我明白了,您是对的!我刚才把中性笔和笔记本的单价弄反了),求中性笔和笔记本的单价分别是多少元?阿姨您好,我要买12支中性笔和20本笔记本,是不是共112元.啊……哦我明白了,您是对的!我刚才把中性笔和笔记本的单价弄反了.不对呀,是144元.【分析】设中性笔的单价是x 元,笔记本的单价是y 元,利用总价=单价×数量,可列出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设中性笔的单价是x元,笔记本的单价是y元,根据题意得:,解得:.答:中性笔的单价是2元,笔记本的单价是6元.22.(5分)已知一次函数y=(k﹣2)x﹣3k+12.(1)k为何值时,函数图象经过点(0,9)?(2)若一次函数y=(k﹣2)x﹣3k+12 的函数值y随x的增大而减小,求k的取值范围.【分析】(1)根据一次函数y=(k﹣2)x﹣3k+12图象经过点(0,9),列方程即可得到结论;(2)根据k﹣2<0时一次函数y=(k﹣2)x﹣3k+12 的函数值y随x的增大而减小,求出k的取值范围即可.【解答】解:(1)∵一次函数y=(k﹣2)x﹣3k+12图象经过点(0,9),∵(k﹣2)×0﹣3k+12=9,解得k=1,故当k=1时,函数图象经过点(0,9);(2)∵一次函数y=(k﹣2)x﹣3k+12 的函数值y随x的增大而减小,∴k﹣2<0,解得k<2.故当k=1或﹣1时,一次函数y=(k﹣2)x﹣3k+12的值都是随x值的增大而减小.23.(5分)某校拟派一名跳高运动员参加一项校际比赛,对甲、乙两名跳高运动员进行了8次选拔比赛,他们的成绩(单位:m)如下:甲:1.71,1.65,1.68,1.68,1.72,1.73,1.68,1.67;乙:1.60,1.74,1.72,1.69,1.62,1.71,1.69,1.75;【整理与分析】平均数众数中位数甲 1.69a 1.68乙 1.69 1.69b(1)由上表填空:a= 1.68 ,b= 1.70 ;(2)这两人中, 甲 的成绩更为稳定.【判断与决策】(3)经预测,跳高1.69m就很可能获得冠军,该校为了获取跳高比赛冠军,可能选哪位运动员参赛?请说明理由.【分析】(1)利用众数及中位数的定义分别求得a、b的值即可;(2)根据方差的计算公式分别计算方差,再根据方差的意义判断即可;(3)看哪位运动员的成绩在1.69m以上的多即可.【解答】解:(1)∵甲的成绩中1.68出现了3次,最多,∴a=1.68,乙的中位数为b==1.70,故答案为:1.68,1.70;(2)分别计算甲、乙两人的跳高成绩的方差分别:S甲2=×[(1.71﹣1.69)2+(1.65﹣1.69)2+…+(1.67﹣1.69)2]=0.00065,S乙2=×[(1.60﹣1.69)2+(1.74﹣1.69)2+…+(1.75﹣1.69)2]=0.00255,∵S甲2<S乙2,∴甲的成绩更为稳定;故答案为:甲;(3)应该选择乙,理由如下:若1.69m才能获得冠军,那么成绩在1.69m及1.69m以上的次数乙多,所以选择乙.24.(6分)如图,四边形ABCD是⊙O的内接四边形,过点A作AE∥BC交CD的延长线于点E,AE=AB,AD=ED,连接BD.(1)求证:∠BAD=∠EAD;(2)连接AC,若CD=1,DE=3,求AB的长.【分析】(1)根据等腰三角形的性质、平行线的性质、圆内接四边形的性质证明∠BAD=∠EAD;(2)连接AC,证明△ADB≌△ADE,得到∠ABD=∠E,根据圆周角定理得到∠ABD=∠ACD,证明△ACE∽△DAE,根据相似三角形的性质列出比例式,把已知数据代入计算即可.【解答】(1)证明:∵AD=ED,∴∠EAD=∠E,∵AE∥BC,∴∠E+∠BCD=180°,∵四边形ABCD是⊙O的内接四边形,∴∠BAD+∠BCD=180°,∴∠BAD=∠EAD;(2)解:如图,连接AC,在△ADB和△ADE中,,∴△ADB≌△ADE(SAS),∴∠ABD=∠E,由圆周角定理得:∠ABD=∠ACD,∴∠ACD=∠E=∠EAD,∵∠E=∠E,∴△ACE∽△DAE,∴=,即=,解得:AE=2,∴AB=AE=2.25.(5分)【综合与实践】【实践任务】研究小组进行跨学科主题学习活动,利用函数的相关知识研究某种化学试剂的挥发情况,某研究小组在两种不同的场景下做对比实验,并收集该试剂挥发过程中剩余质量随时间变化的数据.【实验数据】该试剂挥发过程中剩余质量y(克)随时间x(分钟)变化的数据(0≤x≤20),并分别绘制在平面直角坐标系中,如图所示:任务一:求出函数表达式(1)经过描点构造函数模型来模拟两种场景下y随x变化的函数关系,发现场景A的图象是抛物线y=﹣0.04x2+bx+c的一部分,场景B的图象是直线y=ax+c(a≠0)的一部分,分别求出场景A、B相应的函数表达式;任务二:探究该化学试剂的挥发情况(2)查阅文献可知,该化学试剂发挥作用的最低质量为3克,在上述实验中,该化学试剂在哪种场景下发挥作用的时间更长?【分析】(1)应用待定系数法即可求出函数解析式;(2)分别求出y=3时,x的值,再比较即可得到答案.【解答】解:(1)场景A:把(0,21),(10,16),代入y=﹣0.04x2+bx+c,得:,解得,∴y=﹣0.04x2﹣0.1x+21;场景B:把(0,21),(5,16),代入y=ax+c,得:,解得,∴y=﹣x+21;场景A的函数表达式为y=﹣0.04x2﹣0.1x+21,场景B的函数表达式为y=﹣x+21;(2)当y=3时,场景A中,3=﹣0.04x2﹣0.1x+21,解得:x1=20,x2=﹣22.5(舍去),场景B中,3=﹣x+21,解得x=18,∵20>18,∴化学试剂在场景A下发挥作用的时间更长.26.(6分)已知抛物线y=x2﹣(a+2)x+2a+1.(1)若a=2,求抛物线的对称轴和顶点坐标;(2)若抛物线过点(﹣1,y0),且对于抛物线上任意一点(x1,y1)都有y1≥y0,若A (m,n),B(2﹣m,p)是这条抛物线上不同的两点,求证:n+p>﹣8.【分析】(1)将a=2代入二次函数,再将二次函数化为顶点式即可得到答案;(2)由题意可得(﹣1,y0)为抛物线顶点,从而得到抛物线的对称轴为x=﹣1,从而计算出a的值,再将A(m,n),B(2﹣m,p)代入如抛物线的解析式得到n+p=2(m﹣1)2﹣8,即可得到答案.【解答】解:(1)∵a=2,∴抛物线的解析式为y=x2−4x+5,∵y=x2−4x+5=(x−2)2+1,∴抛物线的对称轴为直线x=2,顶点坐标为(2,1);(2)∵抛物线过点(−1,y n),且对于抛物线上任意一点(x1,y1)都有y1≥y0,∴(−1,y0)为抛物线的顶点,∴抛物线的对称轴为直线x=﹣1,∴=−1.∴a=﹣4,∴该抛物线的解析式为y=x2+2x−7,∵A(m,n),B(2﹣m,p)是抛物线上不同的两点,∴n=m2+2m−7,p=(2−m)2+2(2−m)−7.∴n+p=m2+2m﹣7+(2﹣m)2+2(2﹣m)﹣7=2(m﹣1)2﹣8,又∵m≠2﹣m,∴m≠1,∴n+p>﹣8.27.(7分)旋转是几何图形运动中的一种重要变换,通常与全等三角形等数学知识相结合来解决实际问题,某学校数学兴趣小组在研究三角形旋转的过程中,进行如下探究:△ABC和△DEF均为等腰直角三角形,∠BAC=∠EDF=90°,点D为BC中点,将△DEF 绕点D旋转,连接AE、CF.观察猜想:(1)如图1,在△DEF旋转过程中,AE与CF的位置关系为 AE=CF ;探究发现:(2)如图2,当点E、F在△ABC内且C、E、F三点共线时,试探究线段CE、AE与DE 之间的数量关系,并说明理由;解决问题:(3)若△ABC中,,在△DEF旋转过程中,当且C、E、F三点共线时,直接写出DE的长.【分析】(1)如图所示,连接AD,根据等腰三角形的性质可证△AED≌△CFD(SAS),由此即可求解;(2)由(1)中△AED≌△CFD(SAS),再根据△DEF为等腰直角三角形,由此即可求解;(3)点C、E、F三点共线,分类讨论,根据(2),(3)中的结论即可求解.【解答】解:(1)AE=CF,理由如下,如图所示,连接AD,∵△ABC为等腰直角三角形,∠BAC=90°,∴∠B=∠ACB=45°,∵点D为BC中点,∴AD⊥BC,∴∠ACD=∠DAC=45°,∴AD=CD,∵△DEF为等腰直角三角形,∠EDF=90°,∴DE=DF,∠EDA+∠ADF=∠ADF+∠FDC=90°,∴∠EDA=∠FDC,在△AED和△CFD中,,∴△AED≌△CFD(SAS),∴AE=CF,故答案为:AE=CF;(2)证明:如图2所示,连接AD,由(1)可知,△AED≌△CFD(SAS),∴∠EAD=∠FCD,AE=CF,∴CE=CF+EF=AE+EF,∴CE﹣AE=CE﹣CF=EF,∵△DEF是等腰直角三角形,即DE=DF,∴EF2=DE2+DF2=2DE2,∴EF=DE=DF,∴CE﹣AE=DE;(3)解:AB=,AE=,C、E、N三点共线,①由(2)可知,CE﹣AE=DE,由(1)可知,∠EAD=∠FCD,∵∠ACD=∠ACE+∠FCD=45°,∠DCF+∠FCA+∠DAC=90°,∴∠EAD+∠FCA+∠DAC=90°,∴∠AEC=90°,在Rt△ACE中,AB=AC=,AE=CF=,∴CE===,∴EF=CE﹣CF=,∴DE=FE=;②如图所示,由(1)可知,△ADE≌△CDN,AE=CF=,∠DAE=∠DCF,∴∠DAE+∠EAC+∠ACD=∠DCF+∠EAC+∠ACD=90°,∴△AEC是直角三角形,∴CE===,∴EF=CF﹣CE=(不符合题意舍去);③如图,∵△DEF是等腰直角三角形,∴∠F=∠DEF=45°,同法可证△ADE≌△CDF,∴∠AED=∠F=45°,∴∠AED+∠DEF=45°+45°=90°,即△ACM是直角三角形,在Rt△ACE中,AB=AC=,AE=CF=,∴CE===,∴EF=CE+CF=,∵EF=DE,∴DE==;综上所述,DE的长为或.28.(7分)对于平面直角坐标系xOy中的图形W1和图形W2,给出如下定义:在图形W1上存在两点A,B(点A,B可以重合),在图形W2上存在两点M,N(点M,N可以重合)使得AM=2BN,则称图形W1和图形W2满足限距关系.(1)如图1,点C(,0),D(0,﹣1),E(0,1),点P在线段CE上运动(点P 可以与点C,E重合),连接OP,DP.①线段DP的最小值为 ,最大值为 2 ;线段OP的取值范围是 ;②点O与线段DE 是 (填“是”或“否”)满足限距关系;(2)在(1)的条件下,如图2,⊙O的半径为1,线段FG与x轴、y轴正半轴分别交于点F,G,且FG∥EC,若线段FG与⊙O满足限距关系,求点G纵坐标的取值范围;(3)⊙O的半径为r(r>0),点H,K是⊙O上的两个点,分别以H,K为圆心,3为半径作圆得到⊙H和⊙K,若对于任意点H,K,⊙H和⊙K都满足限距关系,直接写出r 的取值范围.【分析】(1)①根据垂线段最短以及已知条件,确定OP,DP的最大值,最小值即可解决问题;②根据限距关系的定义判断即可;(2)根据两直线平行k相等计算设FG的解析式为:y=﹣x+b,得G(0,b),F(b,0),分三种情形:①线段FG在⊙O内部,②线段FG与⊙O有交点,③线段FG 与⊙O没有交点,分别构建不等式求解即可;(3)如图3﹣1中,不妨设⊙K,⊙H的圆心在x轴上位于y轴的两侧,根据⊙H和⊙K 都满足限距关系,构建不等式求解即可.【解答】解:(1)①如图1中,∵点C(,0),E(0,1),∴OE=1,OC=,∴EC=2,∠ECO=30°,当OP⊥EC时,OP的值最小,当P与C重合时,OP的值最大是,Rt△OPC中,OP=OC=,即OP的最小值是;如图2,当DP⊥EC时,DP的值最小,Rt△DEP中,∠OEC=60°,∴∠EDP=30°,∵DE=2,∴cos30°=,∴=,∴DP=,∴当P与E重合时,DP的值最大,DP的最大值是2,线段DP的最小值为,最大值为2;线段OP的取值范围是;故答案为:,2,;②根据限距关系的定义可知,线段DE上存在两点M,N,满足OM=2ON,如图3,故点O与线段DE满足限距关系;故答案为:是;(2)∵点C(,0),E(0,1),∴设直线CE的解析式为:y=kx+m,∴,解得,∴直线CE的解析式为:y=﹣x+1,∵FG∥EC,∴设FG的解析式为:y=﹣x+b,∴G(0,b),F(b,0),∴OG=b,OF=b,当0<b<时,如图5,线段FG在⊙O内部,与⊙O无公共点,此时⊙O上的点到线段FG的最小距离为1﹣b,最大距离为1+b,∵线段FG与⊙O满足限距关系,∴1+b≥2(1﹣b),解得b≥,∴b的取值范围为≤b<;当1≤b≤6时,线段FG与⊙O有公共点,线段FG与⊙O满足限距关系,当b>6时,如图6,线段FG在⊙O的外部,与⊙O没有公共点,此时⊙O上的点到线段FG的最小距离为b﹣1,最大距离为b+1,∵线段FG与⊙O满足限距关系,∴b+1≥2(b﹣1),而b+1≥2(b﹣1)总成立,∴b>6时,线段FG与⊙O满足限距关系,综上所述,点G的纵坐标的取值范围是:b≥2;(3)如图3﹣1中,不妨设⊙K,⊙H的圆心在x轴上位于y轴的两侧,两圆的距离的最小值为2r﹣6,最大值为2r+6,∵⊙H和⊙K都满足限距关系,∴2r+6≥2(2r﹣6),解得r≤9,故r的取值范围为0<r≤9.2024年中考第三次模拟考试数学·参考答案第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)12345678B DC A CD B D第Ⅱ卷二.填空题(共8小题,满分16分,每小题2分)9.x≠3.10.xy(y+5)(y﹣5).11..12.<.13.6.14.59或121.15.98或77.16.4,8.三.解答题(共12小题,满分68分)17.(5分)解:=﹣3+2+﹣1﹣4×=﹣2+﹣2=﹣2﹣.18.(5分)解:,由①得x≤﹣1,由②得x>﹣3,∴不等式组的解集为:﹣3<x≤﹣1.19.(5分)解:∵x+y=6,xy=9,∴====.20.(6分)解:(1)四边形EBGD为菱形;理由:∵EG垂直平分BD,∴EB=ED,GB=GD,∴∠EBD=∠EDB,∵∠EBD=∠DBC,∴∠EDF=∠GBF,∴DE∥BG,同理BE∥DG,∴四边形BEDG为平行四边形,又∵DE=BE,∴四边形EBGD为菱形;。
2024年陕西省西安市新城区中考数学模拟试卷一.选择题1. 下列各数中,最小的数是( )A. B. C. 0 D. 【答案】A【解析】【分析】本题主要考查了实数比较大小,根据正数大于0,0大于负数,两个负数比较大小,绝对值越大,其值越小进行求解即可.【详解】解:∵,∴∴四个数中,最小的数是,故选:A .2. 如图,直线,含有角的三角板的直角顶点O 在直线m 上,点A 在直线n 上,若,则的度数为( )A. B. C. D. 【答案】B【解析】【分析】本题考查平行线的性质,过B 作,推出,由平行线的性质得到,,求出,即可得到.【详解】解:过B 作,∵,∴,∴,,∵,∴,5-3-5533-=>-=530-<-<<5-m n ∥45︒120∠=︒2∠15︒25︒35︒45︒BK m ∥BK n ∥120OBK ∠=∠=︒2ABK ∠=∠25ABK ABO OBK ∠=∠-∠=︒225∠=︒BK m ∥m n ∥BK n ∥120OBK ∠=∠=︒2ABK ∠=∠45ABO ∠=︒452025ABK ABO OBK ∠=∠-∠=︒-︒=︒∴.故选:B .3. 下列计算正确的是( )A. B. C. D. 【答案】B【解析】【分析】本题主要考查积的乘方,合并同类项,同底数幂的乘法.利用积的乘方的法则,合并同类项的法则,同底数幂的乘法的法则对各项进行运算即可.【详解】解:A 、与不属于同类项,不能合并,故A 不符合题意;B 、,故B 符合题意;C 、,故C 不符合题意;D 、,故D 不符合题意;故选:B .4. 在平面直角坐标系中,点所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【分析】根据点A 横纵坐标符号判定即可.【详解】解:∵A (-2,3),-2<0,3>0,∴点A (-2,3)在第二象限,故选:B .【点睛】本题考查点所在象限,熟练掌握平面直角坐标系各象限内事业的坐标符号:第一象限(+,+),第二225ABK ∠=∠=︒235x x x +=2222x x x -=236()x x x⋅-=3251128x x ⎛⎫= ⎪⎝⎭2x 3x 2222x x x -=235()x x x ⋅-=-3261128x x ⎛⎫= ⎪⎝⎭()2,3A -象限(-,+),第三象限(-,-),第四象限(+,-)是解题的关键.5. 下列平面直角坐标系内的曲线中,既是中心对称图形,也是轴对称图形的是( )A. 三叶玫瑰线B. 四叶玫瑰线C. 心形线D. 笛卡尔叶形线【答案】B【解析】【分析】根据轴对称图形和中心对称图形的定义进行逐一判断即可:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.【详解】解:A、是轴对称图形,不是中心对称图形,不符合题意;B、既是轴对称图形,也是中心对称图形,符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、是轴对称图形,不是中心对称图形,不符合题意;故选B.【点睛】本题主要考查了轴对称图形和中心对称图形的识别,熟知二者的定义是解题的关键.6. 如图,小亮为将一个衣架固定在墙上,他在衣架两端各用一个钉子进行固定,用数学知识解释他这样操作的原因,应该是()A. 过一点有无数条直线B. 两点之间线段的长度,叫做这两点之间的距离C. 经过两点有且只有一条直线D. 两点之间,线段最短【答案】C【解析】【分析】根据公理“两点确定一条直线”来解答即可.【详解】解:因为“两点确定一条直线”,所以他在衣架两端各用一个钉子进行固定.故选:C .【点睛】本题考查是直线的性质,即两点确定一条直线.7. 茅洲河的治理,实现了水清、岸绿、景美.某工程队承担茅洲河某段3000米河道的清淤任务,为了尽量减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加,,结果提前30天完成这一任务.设原计划每天完成x 米的清淤任务,则所列方程正确的是( )A. B. C. D. 【答案】D【解析】【分析】本题考查了分式方程的应用,找出等量关系是解答本题的关键.根据提前30天完成这一任务列方程即可.【详解】解:由题意,得.故选D .8. 如图,内接于,,的长为( )A. B. C. D. 【答案】B【解析】【分析】作的直径,连接,利用圆内接四边形的性质求得,得到,在中,求得半径,再根据弧长公式可得结论.的25%()3000300030125%x x +=+()3000300030125%x x +=-()3000300030125%x x =+-()3000300030125%x x =++()3000300030125%x x =++ABC O 120ABC ∠=︒AC =AC 43π83πO AD DC OC 、60D ∠=︒120AOC ∠=︒Rt ACD △【详解】解:作的直径,连接,如图,∵是的直径,∴.∵四边形内接于,,∴,∴,,∴,则,∵∴,∴,∴,∴劣弧的长为,故选:B .【点睛】此题主要考查了圆弧长公式,圆内接四边形、圆周角定理等知识,求出圆的半径是解答此题的关键.9. 已知点,在函数的图象上,当且时,都有,则的取值范围为( )A. B. C. D. 【答案】A【解析】【分析】先画出图像,根据图像可知当、时, ,则要想、则必有,求解即可.O AD DC OC 、AD O =90ACD ∠︒DABC O 120ABC ∠=︒18060D ABC ∠=︒-∠=︒30A ∠=︒120AOC ∠=︒2AD CD =222AD CD AC =+AC =(22212AD AD ⎛⎫=+ ⎪⎝⎭4=AD 122OA OC AD ===AC 120241803ππ⨯=()11M x y ,()22N x y ,|2|y x b =+123x x +>12x x <12y y <b 3b >-30b -<≤3b <03b ≤<1222x x b +=-12x x <12y y =12x x <12y y <1222x x b +>-【详解】当时,当时,当在左侧时,画出图象如上图由题意可知当、时, 要想、则必有∵∴∴当在右侧时,函数为增函数满足即可∵且∴即∴故选A .【点睛】本题考查了一次函数的图象及绝对值等知识点,熟练掌握上述知识点是解答本题的关键.10. 如图,菱形中,点E 是边的中点,垂直交的延长线于点F ,若,则菱形的边长是( )20x b +>2y x b=+20x b +<2y x b=--()11M x y ,2b x =-1222x x b +=-12x x <12y y =12x x <12y y <1222x x b +>-123x x +>322b-<3b >-()11M x y ,2b x =-12b x -<123x x +>12x x <132x ≥322b-<3b >-ABCD CD EF AB AB :1:2,BF CE EF ==ABCDA. 3B. 4C. 5D. 【答案】B【解析】【分析】过C 作CM ⊥AB 延长线于M ,根据设,由菱形的性质表示出BC =4x ,BM =3x ,根据勾股定理列方程计算即可.【详解】过C 作CM ⊥AB 延长线于M ,∵∴设∵点E 是边的中点∴∵菱形∴,CE ∥AB∵⊥,CM ⊥AB∴四边形EFMC 是矩形∴,∴BM =3x在Rt △BCM 中,∴,解得或(舍去)∴故选:B.:1:2BF CE =,2BF x CE x ==:1:2BF CE =,2BF x CE x==CD 24CD CE x==ABCD4CD BC x ==EFAB CM EF ==2MF CE x==222BM CM BC +=222(3)(4)x x +=1x ==1x -44CD x ==【点睛】本题考查了菱形的性质、矩形的判定与性质、勾股定理,关键在于熟悉各个知识点在本题的灵活运用.属于拔高题.11. 如图,扇形的圆心角是直角,半径为,C 为边上一点,将沿边折叠,圆心O 恰好落在弧上,则阴影部分面积为( )A. B. C. D. 【答案】A【解析】【分析】根据题意和折叠的性质,可以得到OA =AD ,∠OAC =∠DAC ,然后根据OA =OD ,即可得到∠OAC 和∠DAC 的度数,再根据扇形AOB 的圆心角是直角,半径为OC 的长,结合图形,可知阴影部分的面积就是扇形AOB 的面积减△AOC 和△ADC 的面积.【详解】解:连接OD ,∵△AOC 沿AC 边折叠得到△ADC ,∴OA =AD ,∠OAC =∠DAC ,又∵OA =OD ,∴OA =AD =OD ,∴△OAD 是等边三角形,∴∠OAC =∠DAC =30°,∵扇形AOB 圆心角是直角,半径为,∴OC =2,的AOB OB AOC AC AB 3π-3π-34π-2π∴阴影部分的面积.故选:A .【点睛】本题考查扇形面积的计算,解答本题的关键是明确扇形面积的计算公式,推出△OAD 是等边三角形,利用数形结合的思想解答.12. 如图,在中,,,是的中点,连接,过点作,分别交于点,与过点且垂直于的直线相交于点,连接.以下四个结论:;点是的中点;;,其中正确的结论序号是( )A. B. C. D. 【答案】B【解析】【分析】本题考查了全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,证明即可判断;设,则,由勾股定理得到,由得到,证明,得到,进而得到,即可判断;由得到,结合即可判断;过点作于,由得到,进而可得,即可判断;掌握相似三角形的判定和性质是解题的关键.【详解】解:∵,,∴,,23π⎫-=-⎪⎪⎭Rt ABC △90ABC ∠=︒BA BC =D AB CD B BG CD ⊥CD CA 、E F 、A AB G DF ①AG FG AB FB =②F GE ③AF AB =④5ABC BDF S S =△△①④①③①②③②③④AFG CFB ∽①2AB BC x ==AD BD AG x ===BG DC ==AFG CFB ∽FG =CDB BDE ∽BE x =FE x =②AFG CFB ∽13AF AC =AC =③F MF AB ⊥M FM CB ∥13AF FM AC BC ==16BDF ABC S S = ④90ABC ∠=︒BG CD ⊥90ABG CBG ∠+∠=︒90BCD CBG ∠+∠=︒∴,在和中,,∴,∴,∵点是的中点,∴,∴在中,,∴,∵,∴,∴, ∴,∵,∴,故正确;设,∵点是的中点,∴,在中, ,∴,∵,∴,∴ ∵,,ABG BCD ∠=∠ABC BCD △90ABGBCD AB BCBAG CBD ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩()ASA ABG BCD ≌AG BD =D AB 12BD AB =12AG BC =Rt ABC △90ABC ∠=︒AB BC ⊥AG AB ⊥AG BC ∥AFG CFB ∽AG FG CB FB=BA BC =AG FG AB FB =①2AB BC x ==D AB AD BD AG x ===Rt DBC △DC ==BG DC ==AFG CFB ∽12GF AG BF BC ==1123FG FB BG x ===90DBE DCB BDC ∠=∠=︒-∠BED CBD ∠=∠∴,∴,∴,∴,∴,故错误;∵,∴,∴,∵,∴,故正确;过点作于,如图,∵,∴,∴,∵,∴,即,故错误;CDB BDE ∽CD CB BD BE=·BD CB BE x CD ==FE BG GF BE x =--=FG FE ≠②AFG CFB ∽12AF AG CF AC ==13AF AC =AC =AF AB =③F MF AB ⊥M BC AB ⊥FM CB ∥13AF FM AC BC ==12BD BA =1·11121236·2BDF ABC BD FM S BD FM S AB BC AB BC ==⨯=⨯= 6ABC BDF S S = ④∴正确的结论是,故选:.二、填空题13.的平方根是______.【答案】【解析】【分析】根据求一个数的平方根的计算方法即可求解.【详解】解:的平方根表示为,故答案:.【点睛】本题主要考查平方根的计算方法,掌握求一个数的平方根的运算是解题的关键.14. 若点P 在线段的延长线上,,,则的长为______.【答案】5【解析】【分析】本题主要考查了线段的和差计算,根据线段的和差关系进行求解即可.【详解】解:∵点P 在线段的延长线上,,,∴,故答案为:5.15. 如图,在中,,是的内切圆,M ,N ,K 是切点,连接,.交于E ,D 两点.点F 是上的一点,连接,,则的度数是______.【答案】##62.5度【解析】【分析】本题主要考查了圆周角定理,三角形内心性质,三角形内角和定理,先根据三角形内心的性质为的①③B 9432±9432=±32±AB 8AP =3BP =AB AB 8AP =3BP =5AB AP BP =-=ABC 70B ∠=︒O ABC OA OC O MNDF EF EFD ∠62.5︒得,,进而求出,即可求出,然后根据圆周角定理得出答案.【详解】∵是的内切圆,∴,是的角平分线,∴,.∵,∴,∴,∴,∴.故答案:.16. 我们定义:如果一个函数图象上存在纵坐标是横坐标6倍的点,则把该函数称为“行知函数”,该点称为“行知点”,例如:“行知函数”,其“行知点”为.(1)直接写出函数图象上的“行知点”是__________;(2)若二次函数的图象上只有一个“行知点”,则的值为__________.【答案】①. 或 ②. 【解析】【分析】本题考查二次函数的综合应用,理解新定义,将新定义与所学二次函数,一元二次方程的知识相结合,熟练掌握跟与系数关系是解题关键.(1)根据题目所给“行知点”的定义,列出方程求解即可;(2)根据题目所给“行知点”的定义,列出方程,根据只有一个“行知点”得出该方程只有一个实数根,再根据一元二次方程根的判别式,即可解答.【详解】解:(1)根据题意可得:,整理得:,为12OAC BAC ∠=∠12OCA BCA ∠=∠∠+∠OAC OCA AOC ∠O ABC OA OC ABC 12OAC BAC ∠=∠12OCA BCA ∠=∠70B ∠=︒110BAC BCA ∠+∠=︒1()552OAC OCA BAC BCA ∠+∠=∠+∠=︒18055125AOC ∠=︒-︒=︒162.52EFD EOD ∠=∠=︒62.5︒20y x =+()424,24y x=()()21332y a x a x a =-+++a ()212,()212--,3-246x x=24x =解得:,经检验,是原分式方程的解;∴函数图象上的“行知点”是或;故答案为:或.(2)∵二次函数的图象上只有一个“行知点”,∴方程有两个相等的实数根,且,整理得:,∴,解得:,综上:a 的值为.故答案为:.17. 如图,折叠边长为4cm 的正方形纸片,折痕是,点落在点处,分别延长、交于点、,若点是边的中点,则______cm .【答案】##【解析】【分析】根据折叠的性质可得DE =DC =4,EM =CM =2,连接DF ,设FE =x ,由勾股定理得BF ,DF ,从而求出x 的值,得出FB ,再证明,利用相似三角形对应边成比例可求出FG .【详解】解:连接如图,122,2x x ==-122,2x x ==-24y x=()212,()212--,()212,()212--,()()21332y a x a x a=-+++()()216332x a x a x a=-+++30a -≠()()213302a x a x a -+-+=()()2134302a a a --⨯⨯-=123,3x x ==-3-3-ABCD DM C E ME DE AB F G M BC FG =53213FEG FBM ∆∆ ,DF∵四边形ABCD 是正方形,∴∵点M 为BC 的中点,∴由折叠得,∠∴∠,设则有∴又在中,,∵∴∴在中,∴解得,(舍去)∴∴∴4,90.AB BC CD DA A B C CDA ︒====∠=∠=∠=∠=114222BM CM BC ===⨯=2,4,ME CM DE DC ====90,DEM C ︒=∠=90DEF ︒=90,FEG ∠=︒,FE x =222DF DE EF =+2224DF x =+Rt FMB ∆2,2FM x BM =+=222FM FB BM =+FB ==4AF AB FB =-=-Rt DAF ∆222,DA AF DF +=2222444,x ⎛+=+ ⎝124,83x x ==-4,3FE =410233FM FE ME =+=+=83FB ==∵∠∴∠∴∠又∠∴△∴即∴故答案为:【点睛】本题主要考查了正方形的性质,折叠的性质,勾股定理,相似三角形的判定与性质,正确作出辅助线是解答本题的关键.三、解答题18. 解不等式:【答案】【解析】【分析】本题主要考查解一元一次不等式,根据去分母,移项,合并同类项,求出不等式的解集即可【详解】解:,去分母得,,移项得,,合并得,19. 如图,在由边长为1个单位的小正方形组成的网格中,点、、均为格点(网格线的交点),、、.90DEM ︒=90FEG ︒=,FEG B =∠.GFE MFB =∠FEG FBM∆ ,FG FE FM FB=4310833FG =5,3FG =53322x +>1x >322x +>34x +>43x >-1x >A B C ()23A ,()32B ,()10C ,(1)将向下平移3个单位,再向左平移4个单位,得到,请画出;(2)将绕点逆时针旋转,得到,请画出.(3)在(2)的旋转过程中,点经过的路径长为【答案】(1)答案见解析(2)答案见解析(3【解析】【分析】本题主要考查三角形的平移以及旋转作图,弧长公式,掌握作图方法是解题的关键.(1)先画出三角形各顶点平移后的位置,再用线段依次连接各顶点,得到平移后的三角形;(2)先画出三角形各顶点绕着点逆时针旋转后的位置,再用线段依次连接各顶点,得到旋转后的三角形;(3)根据弧长计算公式进行计算,求得旋转过程中点所经过的路径长.【小问1详解】解:如图所示, 【小问2详解】解:如图所示ABC 111A B C △111A B C △111A B C △O 90︒222A B C △222A B C △1C O 90︒1C【小问3详解】解:旋转过程中,点所经过的路径长为以为半径,为圆心角的弧长,,.20. 将字母“”,“”按照如图所示的规律摆放,其中第个图形中有个字母,有个字母;第个图形中有个字母,有个字母;第个图形中有个字母,有个字母;……根据此规律解答下面的问题:(1)第个图形中有______个字母,有______个字母;(2)第个图形中有______个字母,有______个字母(用含的式子表示);(3)第个图形中有______个字母,有______个字母.【答案】(1);(2);(3);【解析】【分析】根据图中信息找规律即可:(1)根据规律作答即可;(2)根据规律找到个数与的关系即可;(3)代入(2)中的关系式计算即可.【小问1详解】1C 1OC 90︒ 1290180C C π∴=⨯=C H 11C 4H 22C 6H 33C 8H 4C H n C H n 2024C H 410n 22n +20244050n第个图形中有个字母,有个字母;第个图形中有个字母,有个字母;第个图形中有个字母,有个字母,依此类推,第个图形中有个字母,有个字母【小问2详解】观察规律:第个图形中有个字母,第个图形中有个字母,第个图形中有个字母……因为字母的数量等于所以第个图形中有个字母同理观察规律:第个图形中有个字母,第个图形中有个字母;第个图形中有个字母……因为字母的个数是字母的个数的2倍多2,字母的数量等于则字母的个数是即第个图形中有个字母【小问3详解】根据第(2)问,将数字代入即可因为字母的数量等于所以第个图形中有个字母因为字母的个数是所以第个图形中有个字母【点睛】本题考查了图形类的规律,解题的关键在于找到规律.21. 如图,四边形是一个零件的截面图,,,,,,求这个零件截面的面积.(精确到,,,,)【答案】这个零件的截面面积约为【解析】【分析】本题考查了矩形的判定与性质,解直角三角形,正确作出辅助线是解答本题的关键.作于E ,于F ,则四边形为矩形,在中,求出、的值,在11C 4H 22C 6H 33C 8H 44C 10H11C 22C 33C C nn n C14H 26H 38H H C C nH 22n +n 22n +HC n20242024CH 22n +20244050HABCD (2AB =+4cm CD =AB BC ⊥74BAD ∠=︒60BCD ∠=︒21cm 1.41≈1.73≈sin 740.96︒≈cos 740.28︒≈tan 74 3.49︒≈235cm DE AB ⊥DF BC ⊥DEBF Rt CDF △DF FC Rt ADE △中,求出的值,进而可求出这个零件截面的面积.【详解】解:作于E ,于F ,连接,则四边形为矩形,∴,,在中, ,,∴,,.在中,,,∴,四边形的面积的面积的面积答:这个零件的截面面积约为.22. 如图,在中,,D 为边上的点,以为直径作,连接并延长交于点E ,连接,.(1)求证:是的切线.(2)若,求的长.【答案】(1)证明见解析(2).【解析】【分析】本题考查的是切线的判定、等腰三角形的性质、勾股定理.DE DE AB ⊥DF BC ⊥BD DEBF DE FB =DF EB =Rt CDF △4cm CD =60BCD ∠=︒sin 60BE DF DC ==⨯︒=cos 602(cm)FC DC ⨯︒==22(cm)AE AB BE ∴=-=+-=Rt ADE △2AE =74DAE ∠=︒tan 742 3.49 6.98(cm)DE AE =⨯︒=⨯=∴ABCD ABD =△BCD +△1122AB DE BC DF =⨯+⨯11(2 6.98(6.982)22=⨯+⨯+⨯+⨯215.96 1.73 6.9835(cm )≈⨯+≈235cm Rt ABC △90ACB ∠=︒AC AD O BD O CE CE BC =CE O 24CD BC ==,AC 8AC =(1)连接,根据等腰三角形的性质得到,由得到,得,于是得到结论;(2)设的半径为r ,则,由得到关于r 的方程,即可求出半径,进而求出的长.【小问1详解】证明:如图所示,连接,∵,∴.∵,∴.∵,∴.又∵,∴,∴,即,∴.∵是的半径,∴是的切线.【小问2详解】解:在中,,由题意得,,设的半径为r ,则,在中,,∴,OE 1234∠=∠∠=∠,1590∠+∠=︒2390∠+∠=︒90OEC ∠=︒O 2OD OE r OC r ===+,222OE CE OC +=AC OE 90ACB ∠=︒1590∠+∠=︒CE BC =12∠=∠OE OD =34∠∠=45∠=∠35∠=∠2390∠+∠=︒90OEC ∠=︒OE CE ⊥OE O CE O Rt BCD 9024DCB CD BC ∠=︒==,,4BC CE ==O 2OD OE r OC r ===+,Rt OEC △90OEC ∠=︒222OE CE OC +=∴,解得,∴,∴.23. A 、B 、C 三个电冰箱厂家在广告中都声称,他们的电冰箱在正常情况下的使用寿命都是8年,经质量检测部门对这三家销售的产品的使用寿命进行跟踪调查,统计结果如下:(单位:年)甲厂:4,5,5,5,5,7,9,,,;乙厂:6,6,8,8,8,9,,,,15;丙厂:4,4,4,6,7,9,,,,;根据以上数据,绘制了下面不完整的表格:平均数众数中位数甲厂856乙厂a 丙厂4b根据以上信息解答下列问题:(1)表格中______,______;(2)这三个厂家的销售广告分别利用了哪一种表示集中趋势的特征数?(3)如果这三个家电厂家的电子产品的售价相同,则顾客购买哪一家的电子产品更合适,并说明理由.【答案】(1)8,8;(2)见详解;(3)选乙厂的电子产品更合适;【解析】【分析】本题考查了求众数,中位数,平均数及根据众数,中位数,平均数做决策:(1)根据出现次数最多的是众数,最中间的数是中位数直接求解即可得到答案;(2)根据表格及(1)直接判断即可得到答案;(3)根据三个数据大小比较直接判断即可得到答案;【小问1详解】解:由题意可得,∵乙中8出现次数最多,∴,丙中第5,6个数是7,9,()22242r r +=+3r =26AD r ==8AC AD CD =+=121315101214131516169.68.59.4=a b =8a =∴,故答案为:8,8;【小问2详解】解:由(1)及表格得,甲平均数是8,乙众数是8,丙中位数是8,∴甲厂的销售广告利用了平均数8表示集中趋势的特征数;乙厂的销售广告利用了众数8表示集中趋势的特征数;丙厂的销售广告利用了中位数8表示集中趋势的特征数;【小问3详解】解:由题意可得,平均数:乙大于丙大于甲,众数:乙大于甲大于丙,中位数:乙大于丙大于甲,∴应选乙厂的电子产品更合适.24. 如图,在四边形是正方形,点E 为边的中点,对角线与交于点F ,连接,,且与交于点G ,连接.(1)求证:;(2)求的值;(3)求证:.【答案】(1)证明见详解;(2); (3)证明见详解;【解析】7982b +==ABCD CD BD AE BE CF BE CF DG BE CF ⊥FG EG2DG CG BG =⋅43【分析】本题考查正方形的性质,全等三角形判定与性质,相似三角形的判定与性质:(1)根据正方形的性质得到,,,根据中点得到,即可得到与即可得到证明;(2)设正方形边长为a ,根据表示出、,设,表示出,在根据勾股定理求解得到即可得到答案;(3)过G 作,根据等积法求出,在根据勾股定理求出即可得到答案;【小问1详解】证明:∵四边形是正方形,∴,,,∵点E 为边的中点,∴,在与中,∵,∴,∴,在与中,∵,∴,∴,∴,∵,∴,∴;【小问2详解】解:设正方形边长为a ,由(1)得,,,,45C D B A D B ∠=∠=︒90ADE BCD ∠=∠=︒AD DC BC ==DE CE =ADE BCD △≌△ADF CDF △≌△CEG CBG BEC ∽∽CG EG EF x =FE Rt FEG △FG GH BC ⊥GH BG ABCD 45C D B A D B ∠=∠=︒90ADE BCD ∠=∠=︒AD DC BC ==CD DE CE =ADE V BCE AD BC ADE BCE DE CE =⎧⎪∠=∠⎨⎪=⎩()SAS ADE BCE ≌DAE CBE ∠=∠ADF △CDF AD CD ADB CDB DF DF =⎧⎪∠=∠⎨⎪=⎩(SAS)ADF CDF ≌DAE FCD ∠=∠FCD CBE ∠=∠90FCD FCB ∠+∠=︒90CBE FCB BGF ∠+∠=∠=︒BE CF ⊥FCD CBE ∠=∠90BGC BCE EGC ∠=∠=∠=︒AE BE ===∴,∴,,∴,,设,∴,∴,在中,,解得:,∴,∴;【小问3详解】证明:过G 作,,CEG CBG BEC ∽∽EC EG CG BE EC BC==2EG CG a a ==CG =EG =EF x =CF AF a x ==-GF x x =-=-Rt FEG △222x x ⎫⎫-+=⎪⎪⎪⎪⎭⎭x a =GF a ==43FG EG ==GH BC ⊥∵,∴,∴,∴,∴,∴,,∴.25. 如图,二次函数,与时的函数值相等,其图象与x 轴交于A 、B 两点,与y轴正半轴交于C 点.(1)求二次函数的解析式.(2)在第一象限的抛物线上求点P ,使得最大.(3)点Q 是抛物线上x 轴上方一点,若,求Q 点坐标.【答案】(1) (2) (3)【解析】【分析】(1)把与代入,求出t 的值,即可;1122CE GH GE GC ⨯⨯=⨯⨯15GE GC GH a CE ⨯===25CHa ==2355DHa a a =-=DG a ==2222)5DG a ==22)5C a BG G ⨯==⋅2DG CG BG =⋅()()()21121y t x t x t -++=+≠0x =3x =PBC S 45CAQ ∠=︒213222y x x =-++()2,31013,39⎛⎫ ⎪⎝⎭0x =3x =()()()21121y t x t x t -++=+≠(2)过点P 作轴,交于点D .先求出直线的解析式为,设点,则点D 的坐标为,可得,再由,得到S 关于a 的函数关系式,即可求解;(3)将绕点A 顺时针旋转得到,则,取的中点H ,作直线交抛物线于Q ,则,,求出直线的解析式,即可求解.【小问1详解】解:∵与时的函数值相等,∴,解方程,得,把代入二次函数,∴二次函数的解析式为:.【小问2详解】解:如图,过点P 作轴,交于点D .把代入,得:,解得,∴点A ,∴,当时,,PD y ∥BC BC 122y x =-+213,222P a a a ⎛⎫-++ ⎪⎝⎭1,22a a ⎛⎫-+ ⎪⎝⎭2221a PD a -=+12PBC S PD OB =⋅△AC 90︒AC '()1,1C '-CC 'AH 11,22H ⎛⎫ ⎪⎝⎭45CAQ ∠=︒AH 0x =3x =()()()()221010213132t t t t =++-⨯+⨯+-⨯+⨯+12t =12t =()()()21121y t x t x t -++=+≠213222y x x =-++PD y ∥BC 0y =213222y x x =-++2132022x x -++=121,4x x =-=()()1,0,4,0B -4OB =0x =2y =∴,设直线的解析式为,把点,代入得:,解得:,∴直线的解析式为,设点,则点D 的坐标为,∴,∴,当时,有最大值,最大值为4,所以点P 的坐标;【小问3详解】解:如图,将绕点A 顺时针旋转得到,则,取的中点H ,作直线交抛物线于Q ,则,,设直线的解析式为,把代入得:()0,2C BC y kx b =+()4,0B ()0,2C 240b k b =⎧⎨+=⎩122k b ⎧=-⎪⎨⎪=⎩BC 122y x =-+213,222P a a a ⎛⎫-++ ⎪⎝⎭1,22a a ⎛⎫-+ ⎪⎝⎭2211312222222a a PD a a a ⎛⎫-+=+ ⎭=-++-⎝-⎪()22211244241222PBC PD OB a S a a a a ⎛⎫⋅=+⨯=-+=--- ⎪⎝=+⎭ 2a =PBC S ()2,3AC 90︒AC '()1,1C '-CC 'AH 11,22H ⎛⎫ ⎪⎝⎭45CAQ ∠=︒AH ()1110y k x b k =+≠()21,02,11,A H -⎛⎫ ⎪⎝⎭,解得:,∴直线的解析式为,联立得,解得或,∴.【点睛】本题主要考查了二次函数的综合题,涉及了二次函数的图象和性质,求一次函数解析式,利用数形结合思想解答是解题的关键.26. 在中,.将绕点A 顺时针旋转得到,旋转角小于,点B 的对应点为点D ,点C 的对应点为点E ,交于点O ,延长交于点P .(1)如图1,求证:;(2)当时,①如图2,若,求线段的长;②如图3,连接,延长交于点F ,判断F 是否为线段的中点,并说明理由.【答案】(1)见解析(2)①;②F 是线段的中点.理由见解析【解析】【分析】(1)由旋转的性质得到,,,根据证明,即可证明;(2)①连接,由勾股定理求得,利用全等三角形的性质和平行线的性质求得,推出,据此求解即可;②连接,延长和交于点G ,证明,求得,得到,再证明,据此即可证明F 是线段的中点.111101122k b k b -+=⎧⎪⎨+=⎪⎩111313k b ⎧=⎪⎪⎨⎪=⎪⎩AH 1133y x =+2113313222y x y x x ⎧=+⎪⎪⎨⎪=++⎪⎩10x y =-⎧⎨=⎩103139x y ⎧=⎪⎪⎨⎪=⎪⎩1013,39Q ⎛⎫ ⎪⎝⎭Rt ABC △90C ∠=︒ABC ADE V CAB ∠DE AB DE BC PC PE =AD BC ∥68CA CB ==,BP BD CE ,CE BD BD 6BP =BD AC AE =90C AEP ∠=∠=︒HL Rt Rt APE APC ≌△△PC PE =AP 10AB =DAP APD ∠=∠10DP AD ==AP AD CE Rt Rt ACP GAC ∽△△18AG =8GD BC ==GDF CBF ≌△△BD【小问1详解】证明:连接,由旋转的性质知,,,∵,∴,∴;【小问2详解】解:①连接,∵,,∴,由旋转的性质知,,, 由(1)知,∴,,∵,∴,∴,∴,∴,∴;②F 是线段的中点.理由如下,连接,延长和交于点G,如图,AP AC AE =90AED C AEP ∠=∠=∠=︒AP AP =()Rt Rt HL APE APC ≌PC PE =AP 90C ∠=︒68CA CB ==,10AB ==10AD AB ==8DE BC ==Rt Rt APE APC ≌△△PC PE =APE APC ∠=∠AD BC ∥DAP APC ∠=∠DAP APD ∠=∠10DP AD ==1082PC PE ==-=826BP BC PC =-=-=BD AP AD CE由(1)知,,∴是的垂直平分线,∴,∵,∴,∴, ∵,,∴,∴,∵,∴,,∴,∴,即F 是线段的中点.【点睛】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,旋转的性质,勾股定理,正确引出辅助线解决问题是解题的关键.AE AC =PE PC =PA CE PA CG ⊥90PAC ACG G ∠=︒-∠=∠Rt Rt ACP GAC ∽△△AC AG PC AC=2PC =6CA =18AG =18108GD BC =-==AD BC ∥G BCF ∠=∠GDF CBF ∠=∠GDF CBF ≌△△DF BF =BD。
一.选择题(共10小题,满分30分,每小题3分)1.方程2019x﹣2019=2019的解为()A.x=1B.x=0C.x=﹣1D.x=22.如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是()A.B.C.D.3.我县人口约为530060人,用科学记数法可表示为()A.53006×10人B.5.3006×105人C.53×104人D.0.53×106人4.如图,已知AB∥CD,直线AB,CD被BC所截,E点在BC上,若∠1=45°,∠2=35°,则∠3=()A.65°B.70°C.75°D.80°5.下列运算正确的是()A.a2+a2=a4B.(﹣2a3)2=4a6C.(a﹣2)(a+1)=a2+a﹣2D.(a﹣b)2=a2﹣b26.为了解我市居民用水情况,在某小区随机抽查了20户家庭,并将这些家庭的月用水量进行统计,结果如下表:月用水量(吨)456813户数45731则关于这20户家庭的月用水量,下列说法正确的是()A.中位数是5B.平均数是5C.众数是6D.方差是67.等边△ABC的边长为a,顶点A在原点,一条高线恰好落在y轴的负半轴上,则第三象限的顶点B的坐标是()A .(a2,−√32a ) B .(−√32a,−12a )C .(−a 2,−√32a )D .(−√32a,12a )8.用一个半径为15、圆心角为120°的扇形围成一个圆锥,则这个圆锥的底面半径是( ) A .5B .10C .5πD .10π9.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,过点A 作AH ⊥BC 于点H ,连接OH ,若OB =4,S 菱形ABCD =24,则OH 的长为( )A .3B .4C .5D .610.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论:①abc >0;②2a +b <0;③4a ﹣2b +c <0;④a +b +2c >0,其中正确结论的个数为( )A .4个B .3个C .2个D .1个二.填空题(共6小题,满分18分,每小题3分) 11.分式方程x−2x=12的解为 .12.计算|﹣2|﹣(﹣1)+30的结果是 .13.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4.随机摸取一个小球然后放回,再随机摸出一个小球,两次取出的小球标号的和等于5的概率是 .14.如图,在平行四边形ABCD 中,AB =2,BC =5.∠BCD 的平分线交AD 于点F ,交BA 的延长线于点E ,则AE 的长为 .15.已知A、B两地之间的路程为3000米,甲、乙两人分别从A、B两地同时出发,相向而行,甲到B地停止,乙到A地停止,出发10分钟后,甲原路原速返回A地取重要物品,取到该物品后立即原路原速前往B地(取物品的时间忽略不计),结果到达B地的时向比乙到达A地的时间晚,在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(m)与甲运动的时间x(min)之间的关系如图所示,则乙到达A 地时,甲与B地相距的路程是米.16.如图,边长为√3的正方形ABCD中,点E是BC边上一点,点F是CD边上一点,且BF⊥AE于点G,将△ABE 绕顶点A逆时针旋转°得△AB′E′,使得点B′、E′恰好分别落在AE、CD上,AE′交BF于点H.则四边形B′E′HG的面积为.三.解答题(共9小题,满分72分)17.(6分)先化简,再求值:(x+2−5x−2)÷x−33x2−6x,其中x满足x2+3x﹣1=0.18.(6分)为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A.由父母一方照看;B.由爷爷奶奶照看;C.由叔姨等近亲照看;D.直接寄宿学校.某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图.(1)该班共有名留守学生,B类型留守学生所在扇形的圆心角的度数为;(2)将条形统计图补充完整;(3)已知该校共有2400名学生,现学校打算对D类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?19.(8分)如图,在△ABC中,∠ACB=45°,过点A作AD⊥BC于点D,点E为AD上一点,且ED=BD.(1)求证:△ABD≌△CED;(2)若CE为∠ACD的角平分线,求∠BAC的度数.20.(8分)关于x的方程mx2+(m+2)x+m4=0有两个不相等的实数根.(1)求m的取值范围.(2)是否存在实数m,使方程的两个实数根的倒数和等于0?若存在,求出m的值;若不存在,说明理由.21.(8分)如图,已知反比例函数y=kx的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.22.(8分)如图,AB是⊙O的直径,已知BC为⊙O的切线,B为⊙O切点,OC与AD弦互相平行.求证:DC是⊙O的切线.23.(8分)每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元.(1)求甲、乙两种型号设备的价格;(2)该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月,若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.24.(10分)已知在梯形ABCD中,AD∥BC,AC=BC=10,cos∠ACB=45,点E在对角线AC上(不与点A、C重合),∠EDC=∠ACB,DE的延长线与射线CB交于点F,设AD的长为x.(1)如图1,当DF⊥BC时,求AD的长;(2)设EC=y,求y关于x的函数解析式,并直接写出定义域;(3)当△DFC是等腰三角形时,求AD的长.25.(10分)如图1,抛物线y=﹣x2+mx+n交x轴于点A(﹣2,0)和点B,交y轴于点C(0,2).(1)求抛物线的函数表达式;(2)若点M在抛物线上,且S△AOM=2S△BOC,求点M的坐标;(3)如图2,设点N是线段AC上的一动点,作DN⊥x轴,交抛物线于点D,求线段DN长度的最大值.答案与解析一.选择题(共10小题,满分27分)1.(3分)方程2019x﹣2019=2019的解为()A.x=1B.x=0C.x=﹣1D.x=2【解答】解:移项合并得:2019x=4038,解得:x=2,故选:D.2.(3分)如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是()A.B.C.D.【解答】解:从正面看第一层是三个小正方形,第二层在中间位置一个小正方形,故D符合题意,故选:D.3.(3分)我县人口约为530060人,用科学记数法可表示为()A.53006×10人B.5.3006×105人C.53×104人D.0.53×106人【解答】解:∵530060是6位数,∴10的指数应是5,故选:B.4.(3分)如图,已知AB∥CD,直线AB,CD被BC所截,E点在BC上,若∠1=45°,∠2=35°,则∠3=()A.65°B.70°C.75°D.80°【解答】解: ∵AB ∥CD , ∴∠C =∠1=45°, ∵∠3是△CDE 的一个外角, ∴∠3=∠C +∠2=45°+35°=80°, 故选:D .5.(3分)下列运算正确的是( ) A .a 2+a 2=a 4B .(﹣2a 3)2=4a 6C .(a ﹣2)(a +1)=a 2+a ﹣2D .(a ﹣b )2=a 2﹣b 2【解答】解:A .a 2+a 2=2a 2,错误;C .(a ﹣2)(a +1)=a 2+a ﹣2a ﹣2=a 2﹣a ﹣2,错误D .(a ﹣b )2=a 2﹣2ab +b 2,错误 故选:B .6.(3分)为了解我市居民用水情况,在某小区随机抽查了20户家庭,并将这些家庭的月用水量进行统计,结果如下表: 月用水量(吨)4 5 6 8 13 户数45731则关于这20户家庭的月用水量,下列说法正确的是( ) A .中位数是5B .平均数是5C .众数是6D .方差是6【解答】解:A 、根据按大小排列这组数据,第10,11个数据的平均数是中位数,(6+6)÷2=6,故本选项错误; B 、平均数=(4×4+5×5+6×7+8×3+13×1)÷20=6,故本选项错误; C 、6出现了7次,出现的次数最多,则众数是6,故本选项正确; D 、方差是:S 2=120[4(4﹣6)2+5(5﹣6)2+7(6﹣6)2+3(8﹣6)2+(13﹣6)2]=4.1,故本选项错误; 故选:C .7.(3分)等边△ABC 的边长为a ,顶点A 在原点,一条高线恰好落在y 轴的负半轴上,则第三象限的顶点B 的坐标是( ) A .(a2,−√32a ) B .(−√32a,−12a )C .(−a 2,−√32a ) D .(−√32a,12a )【解答】解:如图, ∵等边△ABC 的边长为a , ∴三角形高的长度为√3a2, 又∵过B 点的高线恰好落在y 轴的负半轴上, ∴B 点的坐标为(−√3a2,−12a ). 故选:B .8.(3分)用一个半径为15、圆心角为120°的扇形围成一个圆锥,则这个圆锥的底面半径是( ) A .5B .10C .5πD .10π【解答】解:设该圆锥底面圆的半径为r , 根据题意得2πr =120π×15180,解得r =5, 即该圆锥底面圆的半径为5. 故选:A .9.(3分)如图,菱形ABCD 的对角线AC ,BD 相交于点O ,过点A 作AH ⊥BC 于点H ,连接OH ,若OB =4,S 菱形ABCD=24,则OH 的长为( )A .3B .4C .5D .6【解答】解:∵ABCD 是菱形, ∴BO =DO =4,AO =CO ,S 菱形ABCD =AC×BD2=24,∴AC =6,∵AH ⊥BC ,AO =CO =3, ∴OH =12AC =3. 故选:A .10.(3分)已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论:①abc >0;②2a +b <0;③4a ﹣2b +c <0;④a +b +2c >0,其中正确结论的个数为( )A .4个B .3个C .2个D .1个【解答】解:∵抛物线开口向下,与y 轴的交点在x 轴上方, ∴a <0,c >0, ∵0<−b2a<1, ∴b >0,且b <﹣2a , ∴abc <0,2a +b <0, 故①不正确,②正确,∵当x =﹣2时,y <0,当x =1时,y >0, ∴4a ﹣2b +c <0,a +b +c >0, ∴a +b +2c >0,故③④都正确, 综上可知正确的有②③④, 故选:B .二.填空题(共6小题,满分18分,每小题3分) 11.(3分)分式方程x−2x=12的解为 x =4 .【解答】解:去分母得:2x ﹣4=x , 解得:x =4,经检验x =4是分式方程的解,故答案为:x =412.(3分)计算|﹣2|﹣(﹣1)+30的结果是 4 .【解答】解:原式=2+1+1=4,故答案为:413.(3分)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4.随机摸取一个小球然后放回,再随机摸出一个小球,两次取出的小球标号的和等于5的概率是14 .【解答】解:画树状图如下:随机地摸出一个小球,然后放回,再随机地摸出一个小球,共有16种等可能的结果数,其中两次摸出的小球标号的和等于5的占4种,所有两次摸出的小球标号的和等于5的概率为416=14, 故答案为:14. 14.(3分)如图,在平行四边形ABCD 中,AB =2,BC =5.∠BCD 的平分线交AD 于点F ,交BA 的延长线于点E ,则AE 的长为 3 .【解答】解:在平行四边形ABCD 中,AB =2,BC =5,∴CD =AB =2,AD =BC =5,AD ∥BC ,∴∠DFC =∠FCB ,∵CE 平分∠DCB ,∴∠DCF =∠BCF ,∴∠DFC =∠DCF ,∴DC =DF =2,∴AF =3,∵AB ∥CD ,∴∠E =∠DCF ,又∵∠EF A =∠DFC ,∠DFC =∠DCF ,∴∠AEF =∠EF A ,∴AE =AF =3,故答案为:3.15.(3分)已知A 、B 两地之间的路程为3000米,甲、乙两人分别从A 、B 两地同时出发,相向而行,甲到B 地停止,乙到A 地停止,出发10分钟后,甲原路原速返回A 地取重要物品,取到该物品后立即原路原速前往B 地(取物品的时间忽略不计),结果到达B 地的时向比乙到达A 地的时间晚,在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y (m )与甲运动的时间x (min )之间的关系如图所示,则乙到达A 地时,甲与B 地相距的路程是 250 米.【解答】解:设甲的速度为am /min ,乙的速度为bm /min ,{10(a +b)=3000−2100(4009−20)×(a +b)=3000−20b, 解得,{a =50b =40, 则乙到达A 地时用的时间为:3000÷40=75min ,∴乙到达A 地时,甲与B 地相距的路程是:3000﹣50×(75﹣20)=250m ,故答案为:250.16.(3分)如图,边长为√3的正方形ABCD 中,点E 是BC 边上一点,点F 是CD 边上一点,且BF ⊥AE 于点G ,将△ABE 绕顶点A 逆时针旋转°得△AB ′E ′,使得点B ′、E ′恰好分别落在AE 、CD 上,AE ′交BF 于点H .则四边形B ′E ′HG 的面积为 √38.【解答】解:∵四边形ABCD 为正方形,∴BA =AD ,∠ABC =∠C =∠BAC =∠D =90°,∵△ABE 绕顶点A 逆时针旋转°得△AB ′E ′,∴AB ′=AB ,∠BAE =∠B ′AE ′,∠AB ′E ′=∠ABC =90°,△ABE ≌△AB ′E ′,在Rt △AB ′E ′和Rt △ADE ′中{AE′=AE′AB′=AD, ∴Rt △AB ′E ′≌Rt △ADE (HL ),∴∠B ′AE ′=∠DAE ′,∴∠B ′AE ′=∠DAE ′=∠BAE =13×90°=30°, 在Rt △ABG 中,BG =12AB =√32, 在Rt △BEG 中,GE =√33BG =√33×√32=12, ∵AG ⊥BH ,∠BAG =∠HAG ,∴△ABH 为等腰三角形,∴BG =GH ,∴S △AGH =S △ABG ,∴四边形B ′E ′HG 的面积=S △AB ′E ′﹣S △AGH =S △ABE ﹣S △ABG =S △BGE =12×√32×12=√38.故答案为√38.三.解答题(共9小题,满分72分)17.(6分)先化简,再求值:(x +2−5x−2)÷x−33x 2−6x ,其中x 满足x 2+3x ﹣1=0. 【解答】解:(x +2−5x−2)÷x−33x 2−6x =((x+2)(x−2)−5x−2)÷x−33x(x−2)=x 2−9x−2×3x(x−2)x−3=(x+3)(x−3)x−2×3x(x−2)x−3 =3x 2+9x ,∵x 2+3x ﹣1=0,∴x 2+3x =1,∴原式=3x 2+9x =3(x 2+3x )=3×1=3.18.(6分)为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A .由父母一方照看;B .由爷爷奶奶照看;C .由叔姨等近亲照看;D .直接寄宿学校.某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图.(1)该班共有 10 名留守学生,B 类型留守学生所在扇形的圆心角的度数为 144 ;(2)将条形统计图补充完整;(3)已知该校共有2400名学生,现学校打算对D 类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?【解答】解:(1)2÷20%=10(人),410×100%×360°=144°,故答案为:10,144;(2)10﹣2﹣4﹣2=2(人),如图所示:(3)2400×210×20%=96(人),答:估计该校将有96名留守学生在此关爱活动中受益.19.(8分)如图,在△ABC中,∠ACB=45°,过点A作AD⊥BC于点D,点E为AD上一点,且ED=BD.(1)求证:△ABD≌△CED;(2)若CE为∠ACD的角平分线,求∠BAC的度数.【解答】(1)证明:∵AD⊥BC,∠ACB=45°,∴∠ADB=∠CDE=90°,△ADC是等腰直角三角形,∴AD=CD,∠CAD=∠ACD=45°,在△ABD与△CED中,{AD=CD∠ADB=∠CDE BD=ED,∴△ABD≌△CED(SAS);(2)解:∵CE为∠ACD的角平分线,∴∠ECD=12∠ACD=22.5°,由(1)得:△ABD≌△CED,∴∠BAD=∠ECD=22.5°,∴∠BAC=∠BAD+∠CAD=22.5°+45°=67.5°.20.(8分)关于x的方程mx2+(m+2)x+m4=0有两个不相等的实数根.(1)求m的取值范围.(2)是否存在实数m,使方程的两个实数根的倒数和等于0?若存在,求出m的值;若不存在,说明理由.【解答】解:(1)∵关于x的方程mx2+(m+2)x+m4=0有两个不相等的实数根,∴{m≠0△=(m+2)2−4m⋅m4>0,解得:m>﹣1且m≠0.(2)假设存在,设方程的两根分别为x1、x2,则x1+x2=−m+2m,x1x2=14.∵1x1+1x2=x1+x2x1x2=−4(m+2)m=0,∴m=﹣2.∵m>﹣1且m≠0,∴m=﹣2不符合题意,舍去.∴假设不成立,即不存在实数m,使方程的两个实数根的倒数和等于0.21.(8分)如图,已知反比例函数y=kx的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.【解答】解:(1)把A点(1,4)分别代入反比例函数y=kx,一次函数y=x+b,得k=1×4,1+b=4,解得k=4,b=3,∵点B(﹣4,n)也在反比例函数y=4x的图象上,∴n=4−4=−1;(2)如图,设直线y=x+3与y轴的交点为C,∵当x=0时,y=3,∴C(0,3),∴S△AOB=S△AOC+S△BOC=12×3×1+12×3×4=7.5;(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.22.(8分)如图,AB是⊙O的直径,已知BC为⊙O的切线,B为⊙O切点,OC与AD弦互相平行.求证:DC是⊙O的切线.【解答】证明:连接OD,∵AB 是⊙O 的直径,∴OA =OB =OD ,∵BC 是⊙O 的切线,∴∠OBC =90°,∵OC ∥AD ,∴∠A =∠COB ,∠ODA =∠COD ,∵OA =OD ,∴∠A =∠ODA ,∴∠COD =∠COB ,在△COD 和△COB 中,{OC =OC∠COD =∠BOC OD =OB,∴△COD ≌△COB (SAS ),∴∠ODC =∠OBC =90°,∴OD ⊥CD ,∴DC 是⊙O 的切线.23.(8分)每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元.(1)求甲、乙两种型号设备的价格;(2)该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月,若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.【解答】解:(1)设甲,乙两种型号设备每台的价格分别为x 万元和y 万元,由题意得:{3x −2y =162x +6=3y, 解得:{x =12y =10, 则甲,乙两种型号设备每台的价格分别为12万元和10万元.(2)设购买甲型设备m 台,乙型设备(10﹣m )台,则:12m +10(10﹣m )≤110,∴m≤5,∵m取非负整数∴m=0,1,2,3,4,5,∴有6种购买方案.(3)由题意:240m+180(10﹣m)≥2040,∴m≥4∴m为4或5.当m=4时,购买资金为:12×4+10×6=108(万元),当m=5时,购买资金为:12×5+10×5=110(万元),则最省钱的购买方案为,选购甲型设备4台,乙型设备6台.24.(10分)已知在梯形ABCD中,AD∥BC,AC=BC=10,cos∠ACB=45,点E在对角线AC上(不与点A、C重合),∠EDC=∠ACB,DE的延长线与射线CB交于点F,设AD的长为x.(1)如图1,当DF⊥BC时,求AD的长;(2)设EC=y,求y关于x的函数解析式,并直接写出定义域;(3)当△DFC是等腰三角形时,求AD的长.【解答】解:(1)设:∠ACB=∠EDC=∠α=∠CAD,∵cosα=45,∴sinα=35,过点A作AH⊥BC交于点H, AH=AC•sinα=6=DF,BH=2,如图1,设:FC=4a,∴cos∠ACB=45,则EF=3a,EC=5a,∵∠EDC=∠α=∠CAD,∠ACD=∠ACD,∴△ADC∽△DCE,∴AC•CE=CD2=DF2+FC2=36+16a2=10•5a,解得:a=2或98(舍去a=2),AD=HF=10﹣2﹣4a=7 2;(2)过点C作CH⊥AD交AD的延长线于点H,CD2=CH2+DH2=(AC sinα)2+(AC cosα﹣x)2,即:CD2=36+(8﹣x)2,由(1)得:AC•CE=CD2,即:y=110x2−85x+10(0<x<16且x≠10)…①,(3)①当DF=DC时,∵∠ECF=∠FDC=α,∠DFC=∠DFC,∴△DFC∽△CFE,∵DF=DC,∴FC=EC=y,∴x+y=10,即:10=110x2−85x+10+x,解得:x=6;②当FC=DC,则∠DFC=∠FDC=α,则:EF=EC=y,DE=AE=10﹣y,在等腰△ADE中,cos∠DAE=cosα=12ADAE=12x10−y=45,即:5x+8y=80,将上式代入①式并解得:x =394; ③当FC =FD , 则∠FCD =∠FDC =α,而∠ECF =α≠∠FCD ,不成立,故:该情况不存在;故:AD 的长为6和394.25.(10分)如图1,抛物线y =﹣x 2+mx +n 交x 轴于点A (﹣2,0)和点B ,交y 轴于点C (0,2).(1)求抛物线的函数表达式;(2)若点M 在抛物线上,且S △AOM =2S △BOC ,求点M 的坐标;(3)如图2,设点N 是线段AC 上的一动点,作DN ⊥x 轴,交抛物线于点D ,求线段DN 长度的最大值.【解答】解:(1)A (﹣2,0),C (0,2)代入抛物线的解析式y =﹣x 2+mx +n ,得{−4−2m +n =0n =2,解得{m =−1n =2, ∴抛物线的解析式为y =﹣x 2﹣x +2.(2)由(1)知,该抛物线的解析式为y =﹣x 2﹣x +2,则易得B (1,0),设M (m ,n )然后依据S △AOM =2S △BOC 列方程可得:12•AO ×|n |=2×12×OB ×OC ,∴12×2×|﹣m 2﹣m +2|=2,∴m 2+m =0或m 2+m ﹣4=0,解得x =0或﹣1或−1±√172, ∴符合条件的点M 的坐标为:(0,2)或(﹣1,2)或(−1+√172,﹣2)或(−1−√172,﹣2). (3)设直线AC 的解析式为y =kx +b ,将A (﹣2,0),C (0,2)代入得到{−2k +b =0b =2,解得{k =1b =2, ∴直线AC 的解析式为y =x +2,设N (x ,x +2)(﹣2≤x ≤0),则D (x ,﹣x 2﹣x +2), ND =(﹣x 2﹣x +2)﹣(x +2)=﹣x 2﹣2x =﹣(x +1)2+1, ∵﹣1<0,∴x =﹣1时,ND 有最大值1.∴ND 的最大值为1。
2023年数学中考真题模拟试卷(含解析)一、单选题1.不等式组21x x <⎧⎨>-⎩的解集在数轴上表示为()A .B .C .D .2.不等式组24030x x -<⎧⎨+≥⎩的解集在数轴上表示为()A .B .C .D .3.如图,AB 与CD 相交于点O ,OE 是AOC ∠的平分线,且OC 恰好平分EOB ∠,则下列结论中:①AOE EOC ∠=∠;②EOC COB ∠=∠;③AOD AOE ∠=∠;④2DOB AOD ∠=∠,正确的个数有()A .1个B .2个C .3个D .4个4.如果从1,2,3,4,5,6这六个数中任意选取一个数,那么取到的数恰好是3的整数倍的概率是()A .12B .13C .14D .165.如图所示,该几何体的俯视图是()A .B .C .D .6.如图,已知抛物线2y ax bx c =++的对称轴为直线1x =.给出下列结论:①<0abc ;②20a b +=;③0a b c -+=;④2am bm a b +≥+.其中,正确的结论有()A .1个B .2个C .3个D .4个7.如图,正方形ABCD 中,点P 、F 分别是边BC 、AB 的中点,连接AP 、DF 交于点E ,则下列结论错误的是()A .AP DF =B .AP DF ⊥C .CE CD =D .CE EP EF=+8.如图,正方形ABCD 的边长为定值,E 是边CD 上的动点(不与点C ,D 重合),AE 交对角线BD 于点F , FG AE ⊥交BC 于点G ,GH BD ⊥于点H ,连结AG 交BD 于点N .现给出下列命题:① AF FG =;②DF DE =;③FH 的长度为定值;④GE BG DE =+;⑤222BN DF NF +=.真命题有()A .2个B .3个C .4个D .5个二、填空题9.如图,直线a ∥b ,EF ⊥CD 于点F ,∠2=65°,则∠1的度数是_____.10.抛物线24(3)2y x =+-的顶点坐标是______.11.在一次数学探究活动课中,某同学有一块矩形纸片ABCD ,已知AD =13,AB =5,M 为射线AD 上的一个动点,将△ABM 沿BM 折叠得到△NBM ,若△NBC 是直角三角形,则所有符合条件的M 点所对应的AM 的和为__________.12.小红买书需用48元,付款时小红恰好用了1元和5元的纸币共12张,则小红所用的5元纸币为______张.13.阅读下列材料:在平面直角坐标系中,点00(,)P x y 到直线Ax +By +C =0(A 2+B 2≠0)的距离公式为:0022Ax By Cd A B ++=+.例如:求点P (1,3)到直线4330x y +-=的距离.解:由直线4330x y +-=知:A =4,B =3,C =-3,所以P (1,3)到直线4x +3y -3=0的距离为:224133343d ⨯+⨯-=+.根据以上材料,求点1(0,2)P 到直线51126y x =-的距离是_______.14.如图,AC 与BD 交于O ,AB CD =,要使ABC DCB ∆≅∆,可以补充一个边或角的条件是_______.15.已知,BD 为等腰三角形ABC 的腰上的高,=1BD ,tan 3ABD ∠=,则CD 的长为___________.16.如图,在平面直角坐标系中,直线l :33交x 轴于点A ,交y 轴于点B ,点A1、A2、A3,…在x 轴的正半轴上,点B1、B2、B3,…在直线l 上.若△OB1A1,△A1B2A2,△A2B3A3,…均为等边三角形,则△A6B7A7的周长是______.三、解答题17.如图,平行四边形ABCD中E,F是直线AC上两点,且AE=CF.求证:BE∥DF.18.“五一”小长假期间,小李一家想到以下四个5A级风景区旅游:A.石林风景区;B.香格里拉普达措国家公园;C.腾冲火山地质公园;D.玉龙雪山景区.但因为时间短,小李一家只能选择其中两个景区游玩(1)若小李从四个景区中随机抽出两个景区,请用树状图或列表法求出所有可能的结果;(2)在随机抽出的两个景区中,求抽到玉龙雪山风景区的概率.19.某旅馆的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天35元.一个50人的旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天共花去住宿费1510元.设该旅游团租住三人间客房x间,两人间客房y间,请列出满足题意的方程组_____.20.解不等式123214xx x +<⎧⎪⎨--≥-⎪⎩,并利用数轴确定该不等式组的解.21.如图,直线AB∥CD,直线EF与AB相交于点P,与CD相交于点Q,且PM⊥EF,若∠1=68°,求∠2的度数.22.2020年的全球新冠肺炎,使许多国家经济受到严重的打击,我国的疫情也很严重.某记者随机调查了部分市民,发现市民们对新冠肺炎成因所持的观点不一,经对调查结果整理,绘制了如下尚不完全的统计图表.组别观点频数(人数)A食用野生动物160B家禽感染人mC牲畜感染人nD有人制造病毒240E其他120请根据图表中提供的信息解答下列问题:(1)求出统计表中,m n的值,并求出扇形统计图中E组所占的百分比;(2)若宁波市常住人口约有850万人,请你估计其中持D组“观点”的市民人数;(3)若在这次接受调查的市民中,随机抽取一人,则此人持C组“观点”的概率是多少?(如23.在平面直角坐标系xOy中,已知点A坐标是(2,4),点B在x轴上,OB AB图所示),二次函数的图像经过点O、A、B三点,顶点为D.(1)求点B与点D的坐标;(2)求二次函数图像的对称轴与线段AB的交点E的坐标;(3)二次函数的图像经过平移后,点A落在原二次函数图像的对称轴上,点D落在线段AB上,求图像平移后得到的二次函数解析式.24.如图,抛物线与x轴交两点A(﹣1,0),B(3,0),过点A作直线AC与抛物线交于C点,它的坐标为(2,﹣3).(1)求抛物线及直线AC的解析式;(2)P是线段AC上的一个动点,(不与A,C重合),过P点作y轴的平行线交抛物线于E点,点E与点A、C围成三角形,求出△ACE面积的最大值;(3)点G为抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,直接写出所有满足条件的F点坐标;如果不存在,如果不存在,请说明理由.25.如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB2F(m,0)是x轴的正半轴上一点,将抛物线C 绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N 能否成为正方形?若能,求出m的值;若不能,请说明理由.参考答案与解析1.B【分析】先求出不等式组的解集,然后根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则将不等式组的解集在数轴上表示出来,再比较得到答案.【详解】解:不等式组21x x <⎧⎨>-⎩的解集为:-1<x <2,解集在数轴上的表示为:.故选:B .【点睛】本题考查了求解不等式组的解集,及把不等式的解集在数轴上表示出来,解题的关键是掌握在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.2.C【分析】先解不等式组,求出不等式组的解集,再根据“小于和大于用空心圆,有等于的时候用实心圆解集;找到那个数在数轴上位置,往上引垂线,大于左画,小于右画”判断即可.【详解】解:24030x x -<⎧⎨+≥⎩①②解不等式①得:2x <解不等式②得:3x ≥-∴不等式组的解集为:32x -≤<,在数轴上表示不等式组的解集为:故选:C .【点睛】本题考查的知识点是在数轴上表示不等式(组)的解集,解答本题的关键是正确的求出不等式组的解集.3.D【分析】根据角平分线的定义和对顶角的性质,逐项判断即可求解.【详解】解:∵OE 是AOC ∠的平分线,∴AOE EOC ∠=∠,故①正确;∵OC 恰好平分EOB ∠,∴EOC COB ∠=∠,故②正确;∴AOE COB ∠=∠,∵COB AOD ∠=∠,∴AOD AOE ∠=∠,故③正确;∵2AOC AOE ∠=∠,∴2AOC AOD ∠=∠,∵AOC BOD ∠=∠,∴2DOB AOD ∠=∠,故④正确;∴正确的有4个.故选:D【点睛】本题主要考查了角平分线的定义和对顶角的性质,熟练掌握一般地,从一个角的顶点出发,在角的内部把这个角分成两个相等的角的射线,叫做这个角的平分线;对顶角相等是解题的关键.4.B【分析】由题意得取到的数恰好是3的整数倍的数有3和6,进而问题可求解.【详解】解:由题意得:取到的数恰好是3的整数倍的数有3和6,∴取到的数恰好是3的整数倍的概率是2163P ==;故选B .【点睛】本题主要考查概率,熟练掌握概率的求解是解题的关键.5.B【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】从上边看是1个正方形,左下角的正方形的边是浅线,故选B .【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.6.C【分析】根据二次函数的图象与系数的关系,二次函数的性质即可求出答案.【详解】解:由图象可得:a <0,c >0,﹣2b a=1,∴b =-2a >0,∴<0abc ;∴①正确,∵﹣2b a=1,∴b =-2a ,∴20a b +=,∴②正确,∵对称轴为直线1x =,∴312x +=,解得x =-1,∴(3,0)的对称点为(-1,0)当x =﹣1时,y =a ﹣b +c ,∴a ﹣b +c =0,∴③正确,当x =m 时,y =a 2m +bm +c ,当x =1时,y 有最大值为a +b +c ,∴a 2m +bm +c ≤a +b +c ,∴a 2m +bm ≤a +b ,∴④不正确,故选:C .【点睛】本题考查了二次函数的图像,二次函数的对称轴,二次函数的最值,熟练掌握二次函数图像与各系数的关系,理解最值的意义是解题的关键.7.D【详解】分析:证明△ABP ≌△DAF 可判断AP 与DF 的位置关系与数量关系;延长AP 与DC 的延长线交于点G ,用EC 是斜边DG 上的中线证明;过点C 作CH ⊥EG 于点H ,可证PH =EF ,则EP =EF =EH ,比较EH 与EC 的关系.详解:A .易证△ABP ≌△DAF (SAS )得,AP =DF ;B .由△ABP ≌△DAF (SAS )得,∠BAP =∠ADF ,因为∠ADF +∠AFD =90°,所以∠BAP +∠AFD =90°,所以∠AEF =90°,所以AP ⊥DF ;C.延长AP与DC的延长线交于点G,易证△ABP≌△GCP(ASA),所以CG=AB,又AB=CD,所以CG=CD,因为∠DEG=90°,所以CE=CD;D.过点C作CH⊥EG于点H,易证△AEF≌△CHP(ASA),所以EF=HP,所以EP+EF=EP+PH=EH<EC,即EP+EF<CD.故选D.点睛:正方形中如果有中点,一般采用倍中线法,构建全等三角形,把已知条件和要解决的问题集中在一起.8.C【分析】根据题意,连接CF,由正方形的性质,可以得到△ABF≌△CBF,则AF=CF,∠BAF=∠BCF,由∠BAF=∠FGC=∠BCF,得到AF=CF=FG,故①正确;连接AC,与BD 相交于点O,由正方形性质和等腰直角三角形性质,证明△AOF≌△FHG,即可得到EH=AO,则③正确;把△ADE顺时针旋转90°,得到△ABM,则证明△MAG≌△EAG,得到MG=EG,即可得到EG=DE+BG,故④正确;②无法证明成立,即可得到答案.【详解】解:连接CF,在正方形ABCD 中,AB=BC ,∠ABF=∠CBF=45°,在△ABF 和△CBF 中,45AB BC ABF CBF BF BF =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABF ≌△CBF (SAS ),∴AF=CF ,∠BAF=∠BCF ,∵FG ⊥AE ,∴在四边形ABGF 中,∠BAF+∠BGF=360°-90°-90°=180°,又∵∠BGF+∠CGF=180°,∴∠BAF=∠CGF ,∴∠CGF=∠BCF∴CF=FG ,∴AF=FG ;①正确;连接AC 交BD 于O.∵四边形ABCD 是正方形,HG ⊥BD ,∴∠AOF=∠FHG=90°,∵∠OAF+∠AFO=90°,∠GFH+∠AFO=90°,∴∠OAF=∠GFH ,∵FA=FG ,∴△AOF ≌△FHG ,∴FH=OA=定值,③正确;如图,把△ADE 顺时针旋转90°,得到△ABM,∴AM=AE ,BM=DE ,∠BAM=∠DAE ,∵AF=FG ,AF ⊥FG ,∴△AFG 是等腰直角三角形,∴∠FAG=45°,∴∠MAG=∠BAG+∠DAE=45°,∴∠MAG=∠FAG ,在△AMG 和△AEG 中,45AM AE EAG MAG AG AG =⎧⎪∠=∠=︒⎨⎪=⎩,∴△AMG ≌△AEG ,∴MG=EG ,∵MG=MB+BG=DE+BG ,∴GE=DE+BG ,故④正确;如图,△ADE 顺时针旋转90°,得到△ABM ,记F 的对应点为P ,连接BP 、PN ,则有BP=DF ,∠ABP=∠ADB=45°,∵∠ABD=45°,∴∠PBN=90°,∴BP 2+BN 2=PN 2,由上可知△AFG 是等腰直角三角形,∠FAG=45°,∴∠MAG=∠BAG+∠DAE=45°,∴∠MAG=∠FAG ,在△ANP 和△ANF 中,45AP AF EAG MAG AN AN =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ANP ≌△ANF ,∴PN=NF ,∴BP 2+BN 2=NF 2,即DF 2+BN 2=NF 2,故⑤正确;根据题意,无法证明②正确,∴真命题有四个,故选C.【点睛】本题考查了正方形的性质,全等三角形的判定与性质等知识,解题的关键是作辅助线构造出等腰三角形和全等三角形.9.25°.【详解】∵a ∥b ,∴∠FDE =∠2=65°.∵EF ⊥CD ,∴∠EFD =90°.∴∠1=180°-∠EFD -∠FDE =180°-90°-65°=25°.10.()3,2--【分析】直接利用二次函数的顶点式解析式读取即可.【详解】解:∵()2432y x =+-,∴顶点坐标为()3,2--,故答案为:()3,2--.【点睛】本题考查了二次函数的顶点式解析式,解题关键是掌握()()20y a x h k a =++≠的顶点坐标为(),h k -.11.26【详解】解:①若M 接近A ,如图1,此时∠BNC =90°,但∠BNM =∠A =90°,∴M 、N 、C 共线,由面积法S △BMC =12MC •BN =12×13×5,∵BN =AB =5,∴MC =13,由勾股定理得:DM =12,AM =1.②若M 在AD 上,但使∠ABM >45°,如图2,此时∠BNC >∠BNM =∠A =90°,∴△BCN 不可能是直角三角形.③若M 在AD 的延长线上,如图3,要使∠BNC =∠BNM =∠A =90°,则M 、C 、N 共线.设MD =x ,则,AM =13+x ,MN =13+x .∵CN =12,∴MC =13+x -12=x +1.在R t △CDM 中,由勾股定理得:2225(1)x x +=+,解得:x =12,∴AM =25.综上所述:所有MA 的和=1+25=26.故答案为26.【点睛】本题是矩形与折叠问题.解题的关键是分三种情况讨论.难度比较大.12.9【分析】设小红所用的1元纸币为x 张,小红所用的5元纸币为y 张,根据“买书需用48元,用了1元和5元的纸币共12张”列方程组,解方程组即可得.【详解】解:设小红所用的1元纸币为x 张,小红所用的5元纸币为y 张,54812x y x y +=⎧⎨+=⎩解得:39x y =⎧⎨=⎩∴小红所用的1元纸币为3张,5元纸币为9张,故答案为:9.【点睛】本题考查了二元一次方程组的应用,理解题意得出等量关系是列方程组求解的关键.13.2【分析】根据点到直线的距离公式,列出方程即可解决问题.【详解】解:∵51126y x =-,∴51220x y --=,∴求点1(0,2)P 到直线51220x y --=的距离为:26213d ===;故答案为:2.【点睛】本题考查一次函数图象上点的坐标特征,点到直线的距离公式的知识,解题的关键是理解题意,学会把直线的解析式转化为Ax+By+C=0的形式,学会构建方程解决问题.14.AC BD =或ABC DCB ∠=∠或A D ∠=∠或ABO DCO∠=∠【分析】由已知可知有两条边对应相等,据此结合全等三角形的判定定理,针对边角进行分析判断即可得到答案.【详解】解:由题意,∵AB CD =,BC 为公共边,∴当AC BD =,满足SSS ,符合题意;当ABC DCB ∠=∠,满足SAS ,符合题意;当A D ∠=∠,先证明△ABO ≌△DCO ,然后得到ABC DCB ∠=∠,符合题意;当ABO DCO ∠=∠,先证明△ABO ≌△DCO ,然后得到ABC DCB ∠=∠,符合题意;故答案为:AC BD =或ABC DCB ∠=∠或A D ∠=∠或ABO DCO ∠=∠.【点睛】本题考查了全等三角形的判定定理,熟练掌握SSS ,SAS ,ASA ,AAS 证明三角形全等的方法是解题的关键.15.(2+或(2【分析】分两种情况,当A ∠为锐角时,当A ∠为钝角时,利用勾股定理求解.【详解】解: BD 为等腰三角形ABC 的腰上的高,=1BD ,tan ABD ∠=,当A ∠为锐角时,如图1,当=AB AC 时,tan AD ABD BD∠==,∴AD =2AB ∴=,2AC AB ∴==,2CD AC AD ∴=-=-;如图2,当=AC BC 时,tan AD ABD BD∠==,∴AD =设=CD x ,则AC AD CD x BC =--=,)2221x x ∴=+,解得3x =,即3CD =;当A ∠为钝角时,如图3,当=AB AC 时,tan AD ABD BD ∠==,∴AD =2AB ∴=,2CD AC AD ∴=+=+综上所述,CD 的长度为(2+或(2或3.【点睛】本题主要考查了等腰三角形的性质,勾股定理,分类讨论是解答本题的关键.16.【详解】试题解析:当x=0时,y=1,则B (0,1),当y=0时,x=A 0),∴OB=1,∵tan ∠OAB=3OB OA ==,∴∠OAB=30°,∵△OB1A1,△A1B2A2,△A2B3A3,…均为等边三角形,∴∠A1OB1=∠A2A1B2=∠A3A2B3=60°,∴∠OB1A=∠AB2A1=∠AB3A2=30°,∴OB1=OA=,A1B2=AA1,A2B3=AA2,则OA1=OB1A1B2=AA1∴A1A2=A1B2=AA1=2OA1同理:A2A3=A2B3=2A1A2A3A4=2A2A3A4A5=2A3A4A5A6=2A4A5∴A6A7=2A5A6∴△A6B7A7的周长是:17.见解析【分析】根据平行四边形的性质,证得△CFD≌△AEB,即可得证结论.【详解】证:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ACD=∠CAB.∵CF=AE,∴△CFD≌△AEB(SAS),∴∠F=∠E,∴BE∥DF.【点睛】此题考查了平行四边形的性质和全等三角形的证明,熟练掌握平行四边形的有关性质和全等三角形的证明是解题的关键.18.(1)共有12种等可能结果;(2)12【分析】(1)用A、B、C、D分别表示石林风景区;香格里拉普达措国家公园;腾冲火山地质公园;玉龙雪山景区四个景区,然后画树状图展示所有12种等可能的结果数;(2)在12种等可能的结果中找出玉龙风景区被选中的结果数,然后根据概率公式求解.【详解】解:(1)画树状图如下:由树状图知,共有12种等可能结果;(2)∵抽到玉龙雪山风景区的结果数为6,∴抽到玉龙雪山风景区的概率为12.【点睛】本题考查利用列举法求概率,学生们要熟练掌握画树状图法和列表法,是解本题的关键.19.325075701510x y x y +=⎧⎨+=⎩【分析】因为求两个未知量,因此可设两个未知数,设租住三人间x 间,两人间y 间,根据题意可列二元一次方程组即可.【详解】解:根据题意可得三人间每间住宿费为25×3=75元;两人间每间住宿费为:35×2=70元;设租住三人间x 间,两人间y 间,可列方程:325075701510x y x y +=⎧⎨+=⎩20.21x -£<,数轴见解析【分析】分别计算出各不等式的解集,再求出其公共解集即可.【详解】解:123214x x x +<⎧⎪⎨--≥-⎪⎩①②由①得,1x <由②得,2x ≥-在数轴上表示为:,故原不等式组的解集为:21x -£<.【点睛】本题考查解一元一次不等式组,掌握不等式组取解集的方法“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题的关键.21.∠2=22°.【分析】根据平行线的性质求得∠1=∠QPA=50°,由于∠2+∠QPA=90°,即可求得∠2的度数.【详解】解:∵AB ∥CD ,∠1=68°,∴∠1=∠QPA=68°.∵PM ⊥EF ,∴∠2+∠QPA=90°.∴∠2+68°=90°,∴∠2=22°.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是本题的关键.22.(1)80m =;200n =;15%;(2)255万人;(3)14【分析】(1)总人数=A 组人数÷所占百分比,m =总人数×所占百分比,n =总人数-80-m -120-60,E 组的百分比=E 组的人数除以总人数;(2)算出D 组所占的百分比,然后用850乘以D 组所占的百分几即可求解;(3)根据概率公式计算即可.【详解】解:(1)总人数为16020%800÷=(人),80010%80m =⨯=,80016080240120200n =----=,E 组所占的百分比为120100%15%800⨯=;(2)240850255800⨯=(万人);(3)P (持C 组观点)20018004==.【点睛】本题考查扇形统计图,以及用样本来估计总体,掌握扇形统计图的统计意义是解题的关键.23.(1)点B 的坐标为(5,0),点D 的坐标为(52,256)(2)(52,103)(3)()228333y x =--+【分析】(1)设点B 的坐标为(m ,0),经过A 、B 、O 三点的二次函数解析式为2y ax bx c =++,先根据OB =AB ,利用勾股定理求出点B 的坐标,然后用待定系数法求出二次函数解析式即可求出点D 的坐标;(2)先求出直线AB 的解析式,再根据(1)所求得到抛物线对称轴,即可求出点E 的坐标;(3)只需要求出平移后的抛物线顶点坐标即可得到答案.(1)解:设点B 的坐标为(m ,0),经过A 、B 、O 三点的二次函数解析式为2y ax bx c =++,∵OB =AB ,∴()22224m m =-+,∴5m =,∴点B 的坐标为(5,0),∴42425500a b c a b c c ++=⎧⎪++=⎨⎪=⎩,∴231030a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,∴二次函数解析式为22210252533326y x x x ⎛⎫=-+=--+ ⎪⎝⎭,∴点D 的坐标为(52,256);(2)解:设直线AB 的解析式为1y kx b =+,∴112450k b k b +=⎧⎨+=⎩,∴143203k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线AB 的解析式为42033=-+y x ,∵二次函数解析式为22210252533326y x x x ⎛⎫=-+=--+ ⎪⎝⎭,∴二次函数的对称轴为直线52x =,当52x =时,4520103233y =-⨯+=,∴点E 的坐标为(52,103);(3)解:∵二次函数的图像经过平移后,点A 落在原二次函数图像的对称轴上,∴点A 向右平移了51222-=个单位长度;∴平移后抛物线的顶点的横坐标为51322+=,当3x =时,42083333y =-⨯+=,∴平移后的抛物线顶点坐标为(3,83),∴平移后的抛物线解析式为()228333y x =--+.【点睛】本题主要考查了勾股定理,一次函数与二次函数综合,待定系数法求函数解析式,二次函数图象的平移等等,熟知二次函数的相关知识是解题的关键.24.(1)直线AC 的函数解析式是y=﹣x ﹣1;(2)S △ACE =278;(3)存在4个符合条件的F 点.【分析】(1)将A 、B 坐标代入y=x 2+bx+c ,利用待定系数法可求得二次函数解析式,设直线AC 的解析式为:y=mx+n ,将A 、C 坐标代入,利用待定系数法即可求得直线AC 的解析式;(2)设点P 的横坐标为x (﹣1≤x≤2),则P (x ,﹣x ﹣1),E (x ,x 2﹣2x ﹣3),由S △ACE =12PE•|x C ﹣x A |,而|x C ﹣x A |的值是确定的,因此只要求得PE 的最大值即可;(3)分CG 与AF 平行、CF 与AG 平行,分别画出符合题意的图形,分别进行求解即可得.【详解】(1)将A (﹣1,0),B (3,0)代入y=x 2+bx+c ,得01093b c b c =-+⎧⎨=++⎩,解得:23b c =-⎧⎨=-⎩,∴y=x 2﹣2x ﹣3,设直线AC 的解析式为:y=mx+n ,将A 、C 坐标代入得032m n m n =-+⎧⎨-=+⎩,解得:11m n =-⎧⎨=-⎩,∴直线AC 的函数解析式是y=﹣x ﹣1;(2)设点P 的横坐标为x (﹣1≤x≤2),则P (x ,﹣x ﹣1),E (x ,x 2﹣2x ﹣3),∵点P 在点E 的上方,∴PE=(﹣x ﹣1)﹣(x 2﹣2x ﹣3)=﹣x 2+x+2=﹣(x ﹣12)2+94,∴当x=12时,PE 的最大值为94,∴S △ACE =12PE•|x C ﹣x A |=12×94×3=278;(3)①如图,连接C 与抛物线和y 轴的交点,∵C (2,﹣3),G (0,﹣3)∴CG ∥X 轴,此时AF=CG=2,∴F 点的坐标是(﹣3,0);②如图,AF=CG=2,A 点的坐标为(﹣1,0),因此F 点的坐标为(1,0);③如图,此时C,G两点的纵坐标互为相反数,因此G点的纵坐标为3,代入抛物线中即可得出G点的坐标为(73),由于直线GF的斜率与直线AC的相同,因此可设直线GF 的解析式为y=﹣x+h,将G点代入后可得出直线的解析式为y=﹣7.因此直线GF与x轴的交点F的坐标为(70);④如图,同③可求出F的坐标为(47,0);综合四种情况可得出,存在4个这样的点F ,分别是F 1(1,0),F 2(﹣3,0),F 3(7,0),F 4(47,0).【点睛】本题考查了待定系数法求抛物线解析式、一次函数解析式,二次函数的性质,平行四边形的性质等,综合性较强,熟练掌握待定系数法是解题的关键.25.(1)2142y x =-+;(2)2<m <22;(3)m =6或m 173.【分析】(1)由题意抛物线的顶点C (0,4),A (220),设抛物线的解析式为24y ax =+,把A (220)代入可得a =12-,由此即可解决问题;(2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为()21242y x m =--,由()221421242y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y 得到222280x mx m -+-=,由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()222(2)428020280m m m m ⎧--->⎪⎪>⎨⎪->⎪⎩,解不等式组即可解决问题;(3)情形1,四边形PMP ′N 能成为正方形.作PE ⊥x 轴于E ,MH ⊥x 轴于H .由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,推出PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,可得M (m +2,m ﹣2),理由待定系数法即可解决问题;情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),利用待定系数法即可解决问题.【详解】(1)由题意抛物线的顶点C (0,4),A (220),设抛物线的解析式为24y ax =+,把A(0)代入可得a =12-,∴抛物线C 的函数表达式为2142y x =-+.(2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为()21242y x m =--,由()221421242y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y 得到222280x mx m -+-=,由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()222(2)428020280m m m m ⎧--->⎪⎪>⎨⎪->⎪⎩,解得2<m<∴满足条件的m 的取值范围为2<m<(3)结论:四边形PMP ′N 能成为正方形.理由:1情形1,如图,作PE ⊥x 轴于E ,MH ⊥x 轴于H.由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,∴PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,∴M (m +2,m ﹣2),∵点M 在2142y x =-+上,∴()212242m m -=-++,解得m﹣3﹣3(舍弃),∴m﹣3时,四边形PMP ′N 是正方形.情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),把M (m ﹣2,2﹣m )代入2142y x =-+中,()212242m m -=--+,解得m =6或0(舍弃),∴m =6时,四边形PMP ′N 是正方形.综上所述:m =6或m ﹣3时,四边形PMP ′N 是正方形.。
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题1. 下列实数中,无理数是( )A. 3.14B. 2.12122C. 39D. 237 2. 如图是一个大正方体切去一个小正方体形成的几何体,它的左视图是( )A. B. C. D. 3. 下列计算正确的是( )A. ()222a b a b +=+B. ()3326a a -=- C. 428a a a ⋅= D. ()()2111a a a -+--=- 4. 如图所示,已知AB ∥CD ,EF 平分∠CEG ,∠1=80°,则∠2的度数为( )A. 20°B. 40°C. 50°D. 60°5. 若正比例函数y kx =图象的经过一、三象限,且过点()2,4A a 和()2,B a ,则的值为( ) A. B. C. D.6. 如图,ABC ∆中,,70,AB AC C BD =∠=︒是AC 边上的高线,点在AB 上,且BE BD =,则ADE ∠的度数为( )A. 20︒B. 25︒C. 30D. 35︒ 7. 将直线1:12L y x =-向左平移个单位长度得到直线,则直线解析式为( ) A. 112y x =+ B. 122y x =+ C. 132y x =+ D. 112y x =-+ 8. 如图,菱形ABCD 的对角线,AC BD 相交于点,过点作AE BC ⊥于点,连接OE .若6OB =,菱形ABCD 的面积为,则OE 的长为( )A. B. 4.5 C. D.9. 如图,四边形ABCD 内接于半径为的O 中,连接AC ,若,45AB CD ACB =∠=︒,12ACD BAC ∠=∠,则BC 的长度为( )A. 3B. 62C. 3D. 9210. 已知抛物线2:4W y x x c =-+,其顶点为,与轴交于点,将抛物线绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,若四边形''ABA B 为矩形,则的值为( )A. 32-B. 3C. 32D. 52二、填空题11. 分解因式:224ax ay -=________.12. 已知正六边形的周长为,则这个正六边形的边心距是_______. 13. 如图,在平面直角坐标系中,过原点的直线与反比例函数80y x x=-(<)交于点,与反比例函数 ()0k y x x=>交于点,过点作轴的垂线,过点作轴的垂线,两直线交于点,若ABC ∆的面积为,则的值为_______.14. 如图,正方形ABCD 的边长为,点在AD 上,连接 BP CP 、,则 s in BPC ∠的最大值为________.三.解答题15. 计算:211133tan 3033-⎛⎫⨯-+︒ ⎪⎝⎭. 16. 化简:221111x x x x x ⎛⎫-+--÷ ⎪++⎝⎭. 17. 如图,已知ABC ∆,点AB 边上,且90ACD ∠=︒,请用尺规作图法在BC 边上求作一点,使得APC ADC ∠=∠.(保留作图痕迹,不写作法)18. 如图,已知点 ,,,A D C B 在同一直线上,,//,//AD BC DE CF AE BF =;求证:AE BF =.19. 2021年高考方案与高校招生政策都将有重大的变化,我市某部门为了了解政策的宣传情况,对某初级中学学生进行了随机抽样调查,根据学生对政策的了解程度由高到低分为,,,四个等级,并对调查结果分析后绘制了如下两幅不完整的统计图,请你根据图中提供的信息完成下列问题:(1)求被调查学生人数,并将条形统计图补充完整;(2)求扇形统计图中的等对应的扇形圆心角的度数;(3)已知该校有1500名学生,估计该校学生对政策内容了解程度为等学生有多少人?20. 如图,在建筑物顶部有一长方形广告牌架CDEF ,已知2CD m =,在地面上处测得广告牌 上端的仰角为,且34tan α=,前进10m 到达处,在处测得广告牌架下端的仰角为45︒,求广告牌 架下端到地面的距离.21. 在抗击新型冠状病毒感染的肺炎疫情过程中,某医药研究所正在试研发一种抑制新型冠状病毒的药物,据临床观察:如果成人按规定的剂量注射这种药物,注射药物后每毫升血液中的含药量 (微克)与时间 (小时)之间的关系近似地满足图中折线.(1)求注射药物后每毫升血液中含药量与时间之间的函数关系式,并写出自变量的取值范围;(2)据临床观察:每毫升血液中含药量不少于微克时,对控制病情是有效的.如果病人按规定的剂量注射 该药物后,求控制病情的有效时间.22. 现有,,,A B C D 四张不透明的卡片,除正面上的图案不同外,其他均相同,将这四张卡片背 面向上洗匀后放在桌面上.(1)从中随机取出一张卡片,卡片上图案是中心对称图形的概率是_____;(2)若从四张卡片中随机拿出两张卡片,请用画树状图或列表的方法,求抽取的两张卡片都是轴对称图形的概率.23. 如图,已知以Rt ABC ∆的边AB 为直径作ABC ∆的外接圆的,O ABC ∠平分线BE 交AC 于,交O 于,过作//EF AC 交BA 的延长线于.(1)求证:EF 是O 切线;(2)若15,10,AB EF ==求AE 的长.24. 如图,已知抛物线2y x bx c =-++与直线AB 交于点()3,0A -,点()1,4B .(1)求抛物线的解析式;(2)点M 是轴上方抛物线上一点,点是直线AB 上一点,若A O M N 、、、以为顶点的四边形是以 OA 为边的平行四边形,求点M 的坐标.25. 问题发现(1)如图①,ABC ∆为边长为的等边三角形,是AB 边上一点且CD 平分ABC ∆的面积,则线段CD 的长度为____;问题探究(2)如图②,ABCD 中,6,8,60AB BC B ==∠=︒,点M 在AD 上,点在BC 上,若MN 平分ABCD 的面积,且MN 最短,请你画出符合要求的线段MM ,并求出此时MN 与AM 的长度.问题解决(3)如图③,某公园的一块空地由三条道路围成,即线段AC AB BC 、、,已知160AB =米,120BC =米,90,AC ABC ∠=︒的圆心在AB 边上,现规划在空地上种植草坪,并AC 的中点修一条直路PM (点M 在 AB 上).请问是否存在PM ,使得PM 平分该空地的面积?若存在,请求出此时AM 的长度;若不存在,请说明理由.答案与解析一、选择题1. 下列实数中,无理数是()A. 3.14B. 2.12122C. 39D. 23 7【答案】C【解析】【分析】根据无理数的定义,逐一判断选项,即可得到答案.【详解】∵3.14,2.12122,237是分数,属于有理数,39是无理数,∴C符合题意,故选C.【点睛】本题主要考查无理数的定义,掌握实数的分类以及无理数的定义,是解题的关键.2. 如图是一个大正方体切去一个小正方体形成的几何体,它的左视图是( )A. B. C. D.【答案】B【解析】【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中【详解】从几何体的左边看可得到一个正方形,正方形的右上角处有一个小正方形,故选B.【点睛】本题考查了三视图的知识,掌握主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图是解题的关键.3. 下列计算正确的是()A. ()222a b a b +=+B. ()3326a a -=- C. 428a a a ⋅=D. ()()2111a a a -+--=- 【答案】D【解析】【分析】 根据完全平方公式,积的乘方公式,同底数幂的乘法法则以及平方差公式,逐一判断选项,即可.【详解】A. ()2222a b a ab b +=++,故本选项错误,B. ()3328a a -=-,故本选项错误,C 426a a a ⋅=,故本选项错误,D. ()()22211(1)1a a a a -+--=--=-,故本选项正确. 故选D .【点睛】本题主要考查完全平方公式,积的乘方公式,同底数幂的乘法法则以及平方差公式,熟练掌握上述公式和法则是解题的关键.4. 如图所示,已知AB∥CD,EF 平分∠CEG,∠1=80°,则∠2的度数为( )A. 20°B. 40°C. 50°D. 60°【答案】C【解析】 【详解】解:∵EF 平分∠CEG ,∴∠CEG=2∠CEF又∵AB ∥CD ,∴∠2=∠CEF=(180°-∠1)÷2=50°,故选:C .5. 若正比例函数y kx =图象的经过一、三象限,且过点()2,4A a 和()2,B a ,则的值为( ) A.B. C. D.【答案】D【解析】【分析】把()2,4A a 和()2,B a 代入y kx =,结合函数y kx =图象的经过一、三象限,即可得到答案. 【详解】∵正比例函数y kx =图象过点()2,4A a 和()2,B a , ∴422ak a k =⎧⎨=⎩,解得:1k =±, ∵正比例函数y kx =图象的经过一、三象限,∴k >0,∴k=1.故选D .【点睛】本题主要考查正比例函数的待定系数法以及比例系数的几何意义,掌握正比例函数y kx =图象的经过一、三象限,则k >0,是解题的关键.6. 如图,ABC ∆中,,70,AB AC C BD =∠=︒是AC 边上的高线,点在AB 上,且BE BD =,则ADE ∠的度数为( )A. 20︒B. 25︒C. 30D. 35︒【答案】B【解析】【分析】 根据等腰三角形的性质,得∠ABC=∠C ,∠A=40°,由直角三角形的性质得∠ABD=50°,从而得∠BDE=65°,进而即可求解.【详解】∵ABC ∆中,,70AB AC C =∠=︒,∴∠ABC=∠C=70°,∠A=180°-70°=70°=40°,∵BD 是AC 边上的高线,∴∠ADB=90°,∴∠ABD=90°-40°=50°,∵BE BD =,∴∠BDE=∠BED=(180°-50°)÷2=65°,∴ADE ∠=90°-65°=25°.故选B .【点睛】本题主要考查等腰三角形的性质定理,直角三角形的性质定理,掌握等腰三角形的底角相等,直角三角形的两个锐角互余,是解题的关键.7. 将直线1:12L y x =-向左平移个单位长度得到直线,则直线的解析式为( ) A 112y x =+ B. 122y x =+ C. 132y x =+ D. 112y x =-+ 【答案】A【解析】【分析】根据一次函数的平移规律:”左加右减,上加下减”,即可得到答案.【详解】将直线1:12L y x =-向左平移个单位长度得到:11(4)1122y x x =+-=+, 故选A .【点睛】本题主要考查一次函数的平移后所得的新一次函数解析式,掌握一次函数的平移规律:”左加右减,上加下减”,是解题的关键.8. 如图,菱形ABCD 的对角线,AC BD 相交于点,过点作AE BC ⊥于点,连接OE .若6OB =,菱形ABCD 的面积为,则OE 的长为( )A.B. 4.5C.D.【答案】B【解析】【分析】由6OB =,菱形ABCD 的面积为,得OC=4.5,根据直角三角形的性质,即可求解.【详解】∵6OB =,菱形ABCD 的面积为,∴54413.5BOC S =÷=,∵AC ⊥BD ,∴OC=13.5×2÷6=4.5, ∵AE BC ⊥,AO=CO ,∴OE=OC=4.5,故选B .【点睛】本题主要考查菱形的性质定理和直角三角形的性质定理,掌握菱形的对角线互相垂直平分,直角三角形斜边上的中线等于斜边的一半,是解题的关键.9. 如图,四边形ABCD 内接于半径为的O 中,连接AC ,若,45AB CD ACB =∠=︒,12ACD BAC ∠=∠,则BC 的长度为( )A. 63B. 2C. 93D. 2【答案】A【解析】【分析】 连接OA ,OB ,OC ,OD ,过点O 作OM ⊥BC 于点M ,易得∠AOB=∠COD=90°,∠DAC=∠ACB=45°,从而得∠OAD=∠CAB ,进而得∠OAD=∠AOD ,可得∠AOD=60°,∠BOC=120°,进而即可求解.【详解】连接OA ,OB ,OC ,OD ,过点O 作OM ⊥BC 于点M ,∵在四边形ABCD 内接于半径为的O 中,,45AB CD ACB =∠=︒,∴∠AOB=∠COD=2∠ACB=90°,∠DAC=∠ACB=45°,∵OA=OB ,∴∠OAB=45°,∴∠OAD=∠DAC+∠CAO=∠OAB+∠CAO=∠CAB ,又∵∠ACD=12∠AOD ,12ACD BAC ∠=∠, ∴∠AOD=∠BAC ,∴∠OAD=∠AOD ,∴AD=OD ,∵OD=OA ,∴∆AOD 是等边三角形,∴∠AOD=60°,∴∠BOC=360°-90°-90°-60°=120°,∵OC=OC=6,∴∠OCM=30°, ∴CM=32OC=33, ∴BC=2 CM==63.故选A .【点睛】本题主要考查圆的基本性质,熟练掌握圆周角定理以及推论,圆心角定理,垂径定理,等腰三角形的性质定理,是解题的关键.10. 已知抛物线2:4W y x x c =-+,其顶点为,与轴交于点,将抛物线绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,若四边形''ABA B 为矩形,则的值为( )A. 3 3 C. 32 D. 52【答案】D【解析】【分析】先求出A(2,c-4),B(0,c),'(24),'(0)A c B c ---,,,,结合矩形性质,列出关于c 的方程,即可求解. 【详解】∵抛物线2:4W y x x c =-+,其顶点为,与轴交于点,∴A(2,c-4),B(0,c),∵将抛物线绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,∴'(24),'(0)A c B c ---,,,, ∵四边形''ABA B 为矩形,∴''AA BB =,∴[][]2222(2)(4)(4)(2)c c c --+---=,解得:52c =. 故选D .【点睛】本题主要考查二次函数图象的几何变换以及矩形的性质,掌握二次函数图象上点的坐标特征,关于原点中心对称的点的坐标特征以及矩形的对角线相等,是解题的关键. 二、填空题11. 分解因式:224ax ay -=________.【答案】a(x-2y)( x+2y)【解析】【分析】先提取公因式,再利用平方差公式进行分解因式,即可.【详解】224ax ay -=a(x 2-4y 2)= a(x-2y)( x+2y).故答案是:a(x-2y)( x+2y).【点睛】本题主要考查分解因式,掌握提取公因式法和公式法分解因式,是解题的关键.12. 已知正六边形的周长为,则这个正六边形的边心距是_______.【解析】【分析】设正六边形的中心为点O ,AB 为一条边,过点O 作OC ⊥AB 于点C ,连接OA ,OB ,易得∆AOB 是等边三角形,进而即可求解.【详解】设正六边形的中心为点O ,AB 为一条边,过点O 作OC ⊥AB 于点C ,连接OA ,OB , ∴∠AOB=60°,OA=OB ,即:∆AOB 是等边三角形,∴∠OAB=60°,∵正六边形的周长为,∴OA=OB =AB=2,∴OC=32OA=3. ∴这个正六边形的边心距是:3.故答案是:3.【点睛】本题主要考查正六边形的性质以及等边三角形的判定和性质定理,掌握等边三角形的性质定理,是解题的关键.13. 如图,在平面直角坐标系中,过原点的直线与反比例函数80y x x=-(<)交于点,与反比例函数 ()0k y x x=>交于点,过点作轴的垂线,过点作轴的垂线,两直线交于点,若ABC ∆的面积为,则的值为_______.【答案】-2【解析】【分析】设A(a ,8a -),B(b ,k b ),AC 交x 轴于点D ,BC 交y 轴于点E ,易得∆DAO ~∆ EOB ,从而得2()AOD BOE S AD S OE=,进而得228b k a-=,由ABC ∆的面积为,得1610b a ka -=+,进而得到关于b a 的方程,即可求解. 【详解】设A(a ,8a -),B(b ,k b ),AC 交x 轴于点D ,BC 交y 轴于点E ,由题意得:k <0,a <0,b >0, ∴4AOD S =,22BOE k k S ==-,AD=8a -,OE=k b-, ∵AD ∥OE ,OD ∥BE ,∴∠DAO=∠EOB ,∠AOD=∠OBE ,∴∆DAO ~∆ EOB ,∴2()AOD BOE S AD S OE =,即:2842a k k b -⎛⎫ ⎪= ⎪ ⎪--⎝⎭,化简得:228a k b =-, ∴228b k a -=, ∵ABC ∆的面积为,∴(b-a )(8a --k b)=18,化简:22810a k b ab kab -=+, ∴21610b ab kab -=+,即:1610b a ka -=+,∴24-8-5=0b b a a ⎛⎫ ⎪⎝⎭,解得:12b a =-或52b a =(不合题意,舍去), ∴228b k a-==-2. 故答案是:-2.【点睛】本题主要考查反比例函数的图象和性质,比例系数的几何意义以及相似三角形的判定和性质定理,根据函数图象上点的坐标特征,三角形的面积公式以及相似三角形的性质,列出方程,是解题的关键. 14. 如图,正方形ABCD 的边长为,点在AD 上,连接 BP CP 、,则 s in BPC ∠的最大值为________.【答案】45【解析】【分析】 先证明当AP=DP=2时, s in BPC ∠有最大值,过点B 作BE ⊥PC 于点E ,根据勾股定理求出PB=PC=25根据三角形的面积法,求出BE 的值,进而即可得到答案.【详解】设∠APB=x ,∠DPC=y ,∴∠BPC=180°-∠APB -∠DPC=180°-(x+y ),∵当x >0,y >0时,2()0x y ≥, ∴20x y xy +-≥,即:2x y xy +≥x=y 时,2x y xy +=,∴当x=y 时,x+y 有最小值,此时,∠BPC=180°-(x+y )有最大值,即 s in BPC ∠有最大值.∵在正方形ABCD 中,∠A=∠D ,AB=CD ,当∠APB=∠DPC 时,∴∆APB ≅ DPC (AAS ),∴AP=DP=2,∴PB=PC=222425+=,过点B 作BE ⊥PC 于点E ,∵114422BCP S PC BE =⨯⨯=⋅, ∴BE=855, ∴ s in BPC ∠=8545525BE PB ==. 故答案是:45.【点睛】本题主要考查正方形的性质定理,勾股定理,锐角三角函数的定义以及全等三角形的判定和性质定理,证明当点P 是AD 的中点时, s in BPC ∠有最大值,是解题的关键.三.解答题15. 计算:211133tan 3033-⎛⎫⨯-+︒ ⎪⎝⎭. 【答案】【解析】【分析】先算负整数指数幂,绝对值以及特殊角三角函数值,再进行加减运算,即可求解.【详解】原式=13931)333⨯-+⨯=3313=.【点睛】本题主要考查实数的混合运算,掌握负整数指数幂的运算法则,求绝对值法则以及特殊角三角函数值,是解题的关键.16. 化简:221111x x x x x ⎛⎫-+--÷ ⎪++⎝⎭. 【答案】-x+1【解析】【分析】先算分式的减法运算,再把除法化为乘法,然后进行约分,即可得到答案.【详解】原式=212111x x x x x x ⎛⎫+-+-+⋅ ⎪+-⎝⎭=221111x x x x x ⎛⎫-+-+⋅ ⎪+-⎝⎭=2(1)111x x x x -+-⋅+- =-(x-1)=-x+1.【点睛】本题主要考查分式的化简,掌握分式的通分和约分,是解题的关键.17. 如图,已知ABC ∆,点在AB 边上,且90ACD ∠=︒,请用尺规作图法在BC 边上求作一点,使得APC ADC ∠=∠.(保留作图痕迹,不写作法)【答案】见详解【解析】【分析】作AD 的垂直平分线交AD 于点O ,以点O 为圆心,OD 长为半径,画圆,交BC 于点P ,即可.【详解】如图所示:∆ADC 的外接圆与BC 的交点P ,即为所求.【点睛】本题主要考查尺规作垂直平分线以及三角形的外接圆,掌握直角三角形的外接圆的圆心是斜边的中点,圆周角定理的推论,是解题的关键.18. 如图,已知点 ,,,A D C B 在同一直线上,,//,//AD BC DE CF AE BF =;求证:AE BF =.【答案】见详解【解析】【分析】根据平行线的性质得∠A=∠B ,∠CDE=∠DCF ,从而得∠ADE=∠BCF ,再根据ASA ,即可得到结论.【详解】∵//DE CF ,∴∠CDE=∠DCF ,∴∠ADE=∠BCF ,∵//AE BF ,∴∠A=∠B ,又∵AD BC =,∴∆ADE ≅∆BCF (ASA ),∴AE BF =.【点睛】本题主要考查三角形全等的判定和性质定理以及平行线的性质定理,掌握 ASA 证明三角形全等,是解题的关键.19. 2021年高考方案与高校招生政策都将有重大的变化,我市某部门为了了解政策的宣传情况,对某初级中学学生进行了随机抽样调查,根据学生对政策的了解程度由高到低分为,,,四个等级,并对调查结果分析后绘制了如下两幅不完整的统计图,请你根据图中提供的信息完成下列问题:(1)求被调查学生的人数,并将条形统计图补充完整;(2)求扇形统计图中的等对应的扇形圆心角的度数;(3)已知该校有1500名学生,估计该校学生对政策内容了解程度为等的学生有多少人?【答案】(1)被调查学生的人数为200人.补全条形统计图见解析;(2)等对应的圆心角的度数为18︒;(3)对政策内容了解程度达到等的学生人数有75人.【解析】【分析】(1)从两个统计图中可得B 组的人数为50人,占调查人数的25%,可求出调查人数,从而计算出A 等人数和D 等人数,补全条形统计图,(2)用360°乘以D 组所占的百分比即可,(3)样本估计总体,用样本中D 组所占的百分比乘以总人数即可.【详解】(1)5020025%=(人) ∴被调查学生的人数为200人.等的人数:20060%120⨯=(人),等的人数:200120502010---=(人),补全条形统计图如下.(2)1036018200⨯︒=︒ ∴等对应的圆心角的度数为18︒. (3)10150075200⨯=(人) ∴对政策内容了解程度达到等的学生人数有75人.【点睛】考查条形统计图、扇形统计图的制作方法,从两个统计图中获取有用的数据,理清统计图中各个数据之间的关系是解决问题的关键,用样本估计总体是统计中常用的方法.20. 如图,在建筑物顶部有一长方形广告牌架CDEF ,已知2CD m =,在地面上处测得广告牌 上端的仰角为,且34tan α=,前进10m 到达处,在处测得广告牌架下端的仰角为45︒,求广告牌 架下端到地面的距离.【答案】22m【解析】【分析】延长CD 交AB 的延长线于H ,设DH=xm ,在Rt △DHB 中,利用正切的定义,用x 表示出BH ,在Rt △CAH 中,根据正切的定义,列出关于x 的方程,即可求解.【详解】延长CD 交AB 延长线于H ,则CD ⊥AB ,设DH=xm ,则CH=(x+2)m ,在Rt △DHB 中,tan45°=DH BH, ∴BH=DH tan45°=xm ,∴AH=AB+BH=(x+10)m ,在Rt △CAH 中,tan=CH AH ,即210x x ++=0.75, 解得:x=22, 答:广告牌架下端D 到地面的距离为22m .【点睛】本题主要考查解直角三角形的实际应用,熟练掌握锐角三角函数的定义,添加合适的辅助线,构造直角三角形,是解题的关键.21. 在抗击新型冠状病毒感染的肺炎疫情过程中,某医药研究所正在试研发一种抑制新型冠状病毒的药物,据临床观察:如果成人按规定的剂量注射这种药物,注射药物后每毫升血液中的含药量 (微克)与时间 (小时)之间的关系近似地满足图中折线. (1)求注射药物后每毫升血液中含药量与时间之间的函数关系式,并写出自变量的取值范围;(2)据临床观察:每毫升血液中含药量不少于微克时,对控制病情是有效的.如果病人按规定的剂量注射 该药物后,求控制病情的有效时间.【答案】(1)2206(110)33(01)y t t t t ⎧⎪=⎨-+<≤≤≤⎪⎩;(2)103(小时) 【解析】【分析】(1)当0≤t ≤1时,是正比例函数,用待定系数法进行求解,即可,当1<t ≤10时,是一次函数,用待定系数法求函数的关系式,即可;(2)当0≤t ≤1时,当含药量上升到4微克时,控制病情开始有效,令y=4,代入y=6t ,求出对应的t 值,同理,当1<t ≤10时,求出另一个t 值,他们的差就是药的有效时间.【详解】(1)当0≤t ≤1时,设y=k 1t ,则6=k 1×1,∴k 1=6,∴y=6t .当1<t ≤10时,设y=k 2t+b ,∴226010k b k b =+=+⎧⎨⎩,解得:223203k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴ y=23-t+203, 综上所述:2206(110)33(01)y t t t t ⎧⎪=⎨-+<≤≤≤⎪⎩; (2)当0≤t ≤1时,令y=4,即:6t=4,解得:t=23, 当0<t ≤10时,令y=4,即:23-t+203=4,解得:t=4, ∴控制病情的有效时间为:4−23=103(小时). 【点睛】本题主要考查一次函数的实际应用,掌握一次函数的图象上的点的坐标特征和待定系数法,是解题的关键.22. 现有,,,A B C D 四张不透明的卡片,除正面上的图案不同外,其他均相同,将这四张卡片背 面向上洗匀后放在桌面上.(1)从中随机取出一张卡片,卡片上的图案是中心对称图形的概率是_____;(2)若从四张卡片中随机拿出两张卡片,请用画树状图或列表的方法,求抽取的两张卡片都是轴对称图形的概率.【答案】(1)14;(2)12 【解析】【分析】(1)直接利用概率公式求解可得;(2)画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【详解】(1)∵4中卡片中,只有1张是中心对称图形,∴从中随机抽取1张卡片,卡片上的图案是中心对称图形的概率为14, 故答案为:14; (2)画树状图如下:由树状图知,共有12种等可能结果,其中两次所抽取的卡片恰好都是轴对称图形的有6种结果, ∴两次所抽取的卡片恰好都是轴对称图形的概率为:61122=.【点睛】本题主要考查等可能随机事件的概率,学会画树状图,掌握概率公式,是解题的关键. 23. 如图,已知以Rt ABC ∆的边AB 为直径作ABC ∆的外接圆的,O ABC ∠平分线BE 交AC 于,交O 于,过作//EF AC 交BA 的延长线于.(1)求证:EF 是O 切线;(2)若15,10,AB EF ==求AE 的长.【答案】(1)见详解;(2)35【解析】【分析】(1)要证EF 是 O 的切线,只要连接OE ,再证∠FEO=90°即可;(2)证明△FEA ∽△FBE ,得出EF AF BF EF =,从而得到AF 的值,进而得到12AE BE =,结合勾股定理得到关于AE 的方程,即可求出AE 的长.【详解】(1)连接OE ,∵∠B 的平分线BE 交AC 于D ,∴∠CBE=∠OBE ,∵EF ∥AC ,∴∠CAE=∠FEA ,∵∠OBE=∠OEB ,∠CBE=∠CAE ,∴∠FEA=∠OEB ,∵AB 是O 的直径,∴∠AEB=90°,∴∠FEO=90°,∴EF 是O 切线;(2)∵∠FEA=∠OEB=∠OBE ,∠F=∠F ,∴∆FEA ~∆FBE , ∴EF AF BF EF =, 即:2EF AF BF =⋅,∴AF×(AF+15)=10×10,解得:AF=5或AF=-20(舍去), ∴51102AE AF BE EF ===, ∵在Rt ∆ABE 中,AE 2+BE 2=AB 2,∴AE 2+(2AE )2=152,∴AE=35.【点睛】本题主要考查切线的判定定理,圆周角定理,相似三角形的判定和性质定理以及勾股定理,掌握切线的判定定理以及相似三角形的判定和性质定理是解题的关键.24. 如图,已知抛物线2y x bx c =-++与直线AB 交于点()3,0A -,点()1,4B .(1)求抛物线的解析式;(2)点M 是轴上方抛物线上一点,点是直线AB 上一点,若A O M N 、、、以为顶点的四边形是以 OA 为边的平行四边形,求点M 的坐标.【答案】(1)2 6y x x =--+;(2)(0,6)或(-2,4)或(17-+17-).【解析】【分析】(1)根据待定系数法,即可得到答案;(2)先求出直线AB 的解析式,由平行四边形的性质得AO=MN=3且AO ∥MN ,设M(x ,26x x --+),则N(x+3,x+6)或N(x-3,x),根据M ,N 的纵坐标相等,列出关于x 的方程,即可求解.【详解】(1)∵抛物线2y x bx c =-++与直线AB 交于点() 3,0A -,点() 1,4B , ∴ 09341b c b c =--+=-++⎧⎨⎩,解得: 16b c =-=⎧⎨⎩, ∴抛物线解析式为:26y x x =--+; (2)设直线AB 的解析式为:y=kx+m , 把() 3,0A -,() 1,4B ,代入得: 034k m k m =-+=+⎧⎨⎩,解得: 13k m ==⎧⎨⎩, ∴直线AB 的解析式为:y=x+3.∵以A O M N 、、、为顶点的四边形是以OA 为边的平行四边形,∴AO=MN=3且AO ∥MN ,∵点M 是轴上方抛物线上一点,点是直线AB 上一点,∴设M(x ,26x x --+),则N(x+3,x+6)或N(x-3,x),∴26x x --+=x+6或26x x --+=x ,解得:10x =,22x =-,317x =-417x =-令y=0代入26y x x =--+,得:2 60x x --+=,解得:x=-3或x=2,∴抛物线与x 轴的另一个交点坐标为(2,0),∵点M 是轴上方抛物线上一点,∴点M 的横坐标取值范围为:-3<x <2,∴点M 的坐标为:(0,6)或(-2,4)或(17-+,17-+).【点睛】本题主要考查二次函数与一次函数的综合以及平行四边形的性质,掌握待定系数法,函数图象上的点的坐标特征以及平行四边形的对边平行且相等,是解题的关键.25. 问题发现(1)如图①,ABC ∆为边长为的等边三角形,是AB 边上一点且CD 平分ABC ∆的面积,则线段CD 的长度为____;问题探究(2)如图②,ABCD 中,6,8,60AB BC B ==∠=︒,点M 在AD 上,点在BC 上,若MN 平分ABCD 的面积,且MN 最短,请你画出符合要求的线段MM ,并求出此时MN 与AM 的长度.问题解决(3)如图③,某公园的一块空地由三条道路围成,即线段AC AB BC 、、,已知160AB =米,120BC =米,90,AC ABC ∠=︒的圆心在AB 边上,现规划在空地上种植草坪,并AC 的中点修一条直路PM (点M 在 AB 上).请问是否存在PM ,使得PM 平分该空地的面积?若存在,请求出此时AM 的长度;若不存在,请说明理由.【答案】(12)AM=2.5,作图见详解;(3)存在PM ,使得PM 平分该空地的面积,AM= 146(米).【解析】【分析】(1)作CD ⊥AB 于点D ,利用等边三角形三线合一的性质和直角三角形的性质求出AD 的长,即可;(2)经过平行四边形对角线的交点的直线将平行四边形的面积分成相等的两部分,当MN ⊥BC 时,MN 最短,过A 作AE ⊥BC 于点E ,根据三角函数的定义,求AE 的长,即是MN 的长,再求出EN 的长,即AM 的长;(3)作AC 的垂直平分线EF 交AB 于点O ,交AC 于点D ,则点O 为AC 所在圆的圆心,通过锐角三角函数的定义,求得OD 的值,从而得AOD S ,OBCD S 四边形,在线段OB 上取点M ,连接PM ,使∆OPM 的面积=1050,进而求出OM ,即可求出AM 的值,然后得到结论.【详解】(1)如图①,作CD ⊥AB 于点D ,∵ABC ∆为边长为的等边三角形,∴AD=BD ,∴CD 平分ABC ∆的面积,∴(2)连接AC 、BD 交于点O ,过点O 作直线MN ,交AD 于M ,交BC 于N ,如图②,∵四边形ABCD 为平行四边形,∴OA=OC ,AD ∥BC ,∴∠CAD=∠ACB ,∵∠AOM=∠CON ,∴△AOM ≌△CON (ASA ),∴S △AOM =S △CON ,同理可得:△OMD ≌△ONB ,△AOB ≌△COD ,∴S △OMD =S △ONB ,S △AOB =S △COD ,∴S △AOM +S △AOB +S △BON =S △CON +S △COD +S △OMD ,即:MN 将四边形ABCD 分成面积相等的两部分,当MN ⊥BC 时,MN 最短,如图③所示,过A 作AE ⊥BC 于点E ,在Rt △ABE 中,∵∠ABC=60°,∴sin60°=AE AB,∴AE=2× ∵AD ∥BC ,AE ⊥BC ,MN ⊥BC ,∴∴此时MN 的长度为∵AE ∥MN ,AO=CO ,∴EN=CN ,∵BE=12AB=3, ∴CE=BC-BE=8-3=5,∴EN=2.5,∵AD ∥BC ,AE ⊥BC ,MN ⊥BC ,∴四边形AENM 是矩形,即:AM=EN=2.5;(3)存在PM ,使得PM 平分该空地的面积,理由如下:作AC 的垂直平分线EF 交AB 于点O ,交AC 于点D ,则点O 为AC 所在圆的圆心,如图④, ∵点P 是AC 的中点,∴点P 在直线EF 上,∵160AB =(米),120BC =(米),90ABC ∠=︒,∴=200(米),AD=12AC=100(米), ∵tan ∠BAC =34OD BC AD AB ==, ∴OD=34AD=75(米),∴11007537502AOD S =⨯⨯=(平方米), ∵112016096002ABC S =⨯⨯=(平方米), ∴960037505850OBCD S =-=四边形(平方米),∴图形OBCP 的面积比图形AOP 的面积多2100平方米,∴在线段OB 上取点M ,连接PM ,使∆OPM 的面积=1050(平方米),即可.∵sin ∠BAC=35OD BC OA AC ==, ∴OA=53OD=53×75=125(米), ∴OP=OA=125(米),过点M 作MN ⊥EF 于点N ,∴12OP ∙MN=1050,即:MN=2100÷125=845(米), ∵MN ∥AC ,∴∆AOD ~∆MON ,∴AD AO MN MO =,即:100125845MO =,解得:MO=21(米), ∴AM=AO+MO=125+21=146(米),∵AM <AB ,∴存在PM ,使得PM 平分该空地的面积,此时,AM= 146(米).【点睛】本题主要等边三角形的性质,平行四边形的性质,圆的基本性质,三角函数的定义以及相似三角形的判定和性质,熟练掌握垂径定理,三角函数的定义和相似三角形的性质,合理添加辅助线,构造直角三角形和相似三角形,是解题的关键.。
2023年中考数学模拟试卷一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1.(3分)在平面直角坐标系中,点(﹣1,m2+1)一定在()A.第一象限B.第二象限C.第三象限D.第四象限2.(3分)化简:(﹣2a)•a﹣(﹣2a)2的结果是()A.0B.2a2C.﹣6a2D.﹣4a23.(3分)在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2.下列说法中不正确的是()A.当a<5时,点B在⊙A内B.当1<a<5时,点B在⊙A内C.当a<1时,点B在⊙A外D.当a>5时,点B在⊙A外4.(3分)如图,分别是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,则组成这个几何体的小正方体的个数是()A.2个或3个B.3个或4个C.4个或5个D.5个或6个5.(3分)设有反比例函数,(x1,y1)、(x2,y2)为其图象上的两点,若x1<0<x2时y1>y2,则k的取值范围是()A.k>0B.k<0C.k>﹣1D.k<﹣16.(3分)如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)据相关报道,近5年中国农村年均脱贫1370万人.1370万可用科学记数法表示为.8.(3分)不等式组的解集是.9.(3分)分解因式:x3﹣x=.10.(3分)如图,在△ABC中,点P是△ABC的内心,则∠PBC+∠PCA+∠PAB=度.11.(3分)如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P的坐标为.12.(3分)平面内有四个点A、O、B、C,其中∠AOB=120°,∠ACB=60°,AO=BO =2,则满足题意的OC长度为整数的值可以是.三、(本大题共5小题,每小题6分,共30分)13.(6分)(1)解方程:+=1.(2)计算:14.(6分)(1)如图1,点P是正方形ABCD内的一点,把△ABP绕点B顺时针方向旋转,使点A与点C重合,点P的对应点是Q.若PA=3,PB=2,PC=5,求∠BQC的度数.(2)点P是等边三角形ABC内的一点,若PA=12,PB=5,PC=13,求∠BPA的度数.15.(6分)如图,在△ABC中,AB=AC,BD⊥AC于点D,CE⊥AB于点E,BD与CE相交于点O,请仅用无刻度的直尺,分别按下列要求作图.(保留作图痕迹,不写作法)(1)在图①中作线段BC的中点P;(2)在图②中,在OB,OC上分别取点M,N,使MN∥BC.16.(6分)如图,过点A(2,0)的两条直线l1,l2分别交y轴于点B,C,其中点B在原点上方,点C在原点下方,已知AB=.(1)求点B的坐标;(2)若△ABC的面积为4,求直线l2的解析式.17.(6分)深圳市政府计划投资1.4万亿元实施东进战略.为了解深圳市民对东进战略的关注情况.某校数学兴趣小组随机采访部分深圳市民,对采访情况制作了统计图表的一部分如下:关注情况频数频率A.高度关注m0.1B.一般关注1000.5C.不关注30nD.不知道500.25(1)根据上述统计图可得此次采访的人数为人,m=,n=;(2)根据以上信息补全条形统计图;(3)根据上述采访结果,请估计在15000名深圳市民中,高度关注东进战略的深圳市民约有人.四、(本大题共3小题,每小题8分,共24分)18.(8分)某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)19.(8分)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,请完成下列表格:事件A必然事件随机事件m的值(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于,求m的值.20.(8分)如图,等腰梯形ABCD放置在平面直角坐标系中,已知A(﹣2,0)、B(6,0)、D(0,3),反比例函数的图象经过点C.(1)求点C坐标和反比例函数的解析式;(2)将等腰梯形ABCD向上平移m个单位后,使点B恰好落在双曲线上,求m的值.五、(本大题共2小题,每小题9分,共18分)21.(9分)如图,已知⊙O的半径为2,AB为直径,CD为弦.AB与CD交于点M,将沿CD翻折后,点A与圆心O重合,延长OA至P,使AP=OA,连接PC(1)求CD的长;(2)求证:PC是⊙O的切线;(3)点G为的中点,在PC延长线上有一动点Q,连接QG交AB于点E.交于点F(F与B、C不重合).问GE•GF是否为定值?如果是,求出该定值;如果不是,请说明理由.22.(9分)若抛物线L:y=ax2+bx+c(a,b,c是常数,abc≠0)与直线l都经过y轴上的一点P,且抛物线L的顶点Q在直线l上,则称此直线l与该抛物线L具有“一带一路”关系.此时,直线l叫做抛物线L的“带线”,抛物线L叫做直线l的“路线”.(1)若直线y=mx+1与抛物线y=x2﹣2x+n具有“一带一路”关系,求m,n的值;(2)若某“路线”L的顶点在反比例函数y=的图象上,它的“带线”l的解析式为y =2x﹣4,求此“路线”L的解析式;(3)当常数k满足≤k≤2时,求抛物线L:y=ax2+(3k2﹣2k+1)x+k的“带线”l与x轴,y轴所围成的三角形面积的取值范围.六、(本大题共12分)23.(12分)课题:两个重叠的正多边形,其中的一个绕某一顶点旋转所形成的有关问题.实验与论证:设旋转角∠A1A0B1=α(α<∠A1A0A2),θ3、θ4、θ5、θ6所表示的角如图所示.(1)用含α的式子表示角的度数:θ3=,θ4=,θ5=;(2)图1﹣图4中,连接A0H时,在不添加其他辅助线的情况下,是否存在与直线A0H 垂直且被它平分的线段?若存在,请选择其中的一个图给出证明;若不存在,请说明理由;归纳与猜想:设正n边形A0A1A2…A n﹣1与正n边形A0B1B2…B n﹣1重合(其中,A1与B1重合),现将正多边形A0B1B2…B n﹣1绕顶点A0逆时针旋转α(0°<α<°);(3)设θn与上述“θ3、θ4、…”的意义一样,请直接写出θn的度数;(4)试猜想在正n边形的情形下,是否存在与直线A0H垂直且被它平分的线段?若存在,请将这条线段用相应的顶点字母表示出来(不要求证明);若不存在,请说明理由.2023年中考数学模拟试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1.(3分)在平面直角坐标系中,点(﹣1,m2+1)一定在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】应先判断出点的横纵坐标的符号,进而判断点所在的象限.【解答】解:因为点(﹣1,m2+1),横坐标<0,纵坐标m2+1一定大于0,所以满足点在第二象限的条件.故选:B.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.(3分)化简:(﹣2a)•a﹣(﹣2a)2的结果是()A.0B.2a2C.﹣6a2D.﹣4a2【分析】根据单项式的乘法法则,积的乘方的性质,合并同类项的法则,计算后直接选取答案.【解答】解:(﹣2a)•a﹣(﹣2a)2,=﹣2a2﹣4a2,=﹣6a2.故选:C.【点评】本题考查积的乘方,单项式的乘法,要注意符号的运算,是同学们容易出错的地方.3.(3分)在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2.下列说法中不正确的是()A.当a<5时,点B在⊙A内B.当1<a<5时,点B在⊙A内C.当a<1时,点B在⊙A外D.当a>5时,点B在⊙A外【分析】先找出与点A的距离为2的点1和5,再根据“点与圆的位置关系的判定方法”即可解.【解答】解:由于圆心A在数轴上的坐标为3,圆的半径为2,∴当d=r时,⊙A与数轴交于两点:1、5,故当a=1、5时点B在⊙A上;当d<r即当1<a<5时,点B在⊙A内;当d>r即当a<1或a>5时,点B在⊙A外.由以上结论可知选项B、C、D正确,选项A错误.故选:A.【点评】本题考查点与圆的位置关系的判定方法.若用d、r分别表示点到圆心的距离和圆的半径,则当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.4.(3分)如图,分别是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,则组成这个几何体的小正方体的个数是()A.2个或3个B.3个或4个C.4个或5个D.5个或6个【分析】根据题意,主视图以及俯视图都是由3个小正方形组成,利用空间想象力可得出该几何体由4或5个小正方形组成.【解答】解:根据本题的题意,由主视图可设计该几何体如图:想得到题意中的俯视图,只需在图(2)中的A位置添加一个或叠放1个或两个小正方形,故组成这个几何体的小正方形的个数为4个或5个.故选:C.【点评】本题考查了由几何体的视图获得几何体的方法.在判断过程中要寻求解答的好思路,不要被几何体的各种可能情况所困绕.5.(3分)设有反比例函数,(x1,y1)、(x2,y2)为其图象上的两点,若x1<0<x2时y1>y2,则k的取值范围是()A.k>0B.k<0C.k>﹣1D.k<﹣1【分析】若x1<0<x2时,则对应的两个点(x1,y1)、(x2,y2)分别位于两个不同的象限,当y1>y2时,反比例系数一定小于0,从而求得k的范围.【解答】解:根据题意得:k+1<0;解得:k<﹣1.故选:D.【点评】本题容易出现的错误是,简单利用y随x的增大而减小,而错误的认为反比例系数是正数,忘记反比例函数的性质,叙述时的前提是:在每个象限内.6.(3分)如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A.B.C.D.【分析】根据题目提供的条件可以求出函数的解析式,根据解析式判断函数的图象的形状.【解答】解:①x≤1时,两个三角形重叠面积为小三角形的面积,∴y=×1×=,②当1<x≤2时,重叠三角形的边长为2﹣x,高为,y=(2﹣x)×=x2﹣x+,③当x=2时,两个三角形没有重叠的部分,即重叠面积为0,故选:B.【点评】本题主要考查了本题考查了动点问题的函数图象,此类题目的图象往往是几个函数的组合体.二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)据相关报道,近5年中国农村年均脱贫1370万人.1370万可用科学记数法表示为 1.37×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1370万=13700000=1.37×107,故答案为:1.37×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(3分)不等式组的解集是x>.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x>,由②得,x>﹣2,故此不等式组的解集为:x>.故答案为:x>.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.(3分)分解因式:x3﹣x=x(x+1)(x﹣1).【分析】本题可先提公因式x,分解成x(x2﹣1),而x2﹣1可利用平方差公式分解.【解答】解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).【点评】本题考查了提公因式法,公式法分解因式,先提取公因式后再利用平方差公式继续进行因式分解,分解因式一定要彻底.10.(3分)如图,在△ABC中,点P是△ABC的内心,则∠PBC+∠PCA+∠PAB=90度.【分析】根据三角形的内心的定义知内心是三角形三角平分线的交点,根据三角形内角和定理可以得到题目中的三个角的和.【解答】解:∵点P是△ABC的内心,∴PB平分∠ABC,PA平分∠BAC,PC平分∠ACB,∵∠ABC+∠ACB+∠BAC=180°,∴∠PBC+∠PCA+∠PAB=90°,故答案为:90°【点评】本题考查了三角形的内心的性质,解题的关键是正确的理解三角形的内心的定义,是三角形三内角的平分线的交点.11.(3分)如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P的坐标为(6053,2).【分析】首先求出P1~P5的坐标,探究规律后,利用规律解决问题.【解答】解:第一次P1(5,2),第二次P2(8,1),第三次P3(10,1),第四次P4(13,2),第五次P5(17,2),…发现点P的位置4次一个循环,∵2017÷4=504余1,P2017的纵坐标与P1相同为2,横坐标为5+12×504=6053,∴P2017(6053,2),故答案为(6053,2).【点评】本题考查坐标与图形的变化、规律型:点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法,属于中考常考题型.12.(3分)平面内有四个点A、O、B、C,其中∠AOB=120°,∠ACB=60°,AO=BO =2,则满足题意的OC长度为整数的值可以是2,3,4.【分析】分类讨论:如图1,根据圆周角定理可以推出点C在以点O为圆心的圆上;如图2,根据已知条件可知对角∠AOB+∠ACB=180°,则四个点A、O、B、C共圆.分类讨论:如图1,如图2,在不同的四边形中,利用垂径定理、等边△MAO的性质来求OC的长度.【解答】解:如图1,∵∠AOB=120°,∠ACB=60°,∴∠ACB=∠AOB=60°,∴点C在以点O为圆心的圆上,且在优弧AB上.∴OC=AO=BO=2;如图2,∵∠AOB=120°,∠ACB=60°,∴∠AOB+∠ACB=180°,∴四个点A、O、B、C共圆.设这四点都在⊙M上.点C在优弧AB上运动.连接OM、AM、AB、MB.∵∠ACB=60°,∴∠AMB=2∠ACB=120°.∵AO=BO=2,∴∠AMO=∠BMO=60°.又∵MA=MO,∴△AMO是等边三角形,∴MA=AO=2,∴MA<OC≤2MA,即2<OC≤4,∴OC可以取整数3和4.综上所述,OC可以取整数2,3,4.故答案是:2,3,4.【点评】本题考查了垂径定理、等边三角形的判定与性质.此题需要分类讨论,以防漏解.在解题时,还利用了圆周角定理,圆周角、弧、弦间的关系.三、(本大题共5小题,每小题6分,共30分)13.(6分)(1)解方程:+=1.(2)计算:【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)原式利用零指数幂、负整数指数幂法则,以及绝对值的代数意义计算即可求出值.【解答】解:(1)方程两边同乘以(x+2)(x﹣2),得(x﹣2)2+4=x2﹣4,解得:x=3,检验:当x=3时,(x+2)(x﹣2)=5≠0,则x=3是原分式方程的解;(2)原式=3﹣1+2=4.【点评】此题考查了解分式方程,以及实数的运算,解分式方程利用了转化的思想,解分式方程注意要检验.14.(6分)(1)如图1,点P是正方形ABCD内的一点,把△ABP绕点B顺时针方向旋转,使点A与点C重合,点P的对应点是Q.若PA=3,PB=2,PC=5,求∠BQC的度数.(2)点P是等边三角形ABC内的一点,若PA=12,PB=5,PC=13,求∠BPA的度数.【分析】(1)根据题意得出△ABP绕点B顺时针方向旋转了90°,才使点A与C重合,进而得出∠PBQ=90°,再利用勾股定理得出∠PQC的度数,进而求出∠BQC的度数;(2)由题意可得出:△ABP绕点B顺时针方向旋转60°,才使点A与C重合,进而得出∠PP'C=90°,即可得出∠BPA的度数.【解答】解:(1)连接PQ.由旋转可知:,QC=PA=3.又∵ABCD是正方形,∴△ABP绕点B顺时针方向旋转了90°,才使点A与C重合,即∠PBQ=90°,∴∠PQB=45°,PQ=4.则在△PQC中,PQ=4,QC=3,PC=5,∴PC2=PQ2+QC2.即∠PQC=90°.故∠BQC=90°+45°=135°.(2)将此时点P的对应点是点P′.由旋转知,△APB≌△CP′B,即∠BPA=∠BP′C,P′B=PB=5,P′C=PA=12.又∵△ABC是正三角形,∴△ABP绕点B顺时针方向旋转60°,才使点A与C重合,得∠PBP′=60°,又∵P′B=PB=5,∴△PBP′也是正三角形,即∠PP′B=60°,PP′=5.因此,在△PP′C中,PC=13,PP′=5,P′C=12,∴PC2=PP′2+P′C2.即∠PP′C=90°.故∠BPA=∠BP′C=60°+90°=150°.【点评】此题主要考查了旋转的性质以及勾股定理逆定理和正方形的性质等知识,熟练利用勾股定理逆定理得出是解题关键.15.(6分)如图,在△ABC中,AB=AC,BD⊥AC于点D,CE⊥AB于点E,BD与CE相交于点O,请仅用无刻度的直尺,分别按下列要求作图.(保留作图痕迹,不写作法)(1)在图①中作线段BC的中点P;(2)在图②中,在OB,OC上分别取点M,N,使MN∥BC.【分析】(1)在图①中作线段BC的中点P即可;(2)在图②中,在OB,OC上分别取点M,N,使MN∥BC即可.【解答】解:(1)如解图①所示,点P即为所求;(2)如解图②所示,MN即为所求.【点评】本题考查了作图﹣复杂作图,解决本题的关键是综合运用全等三角形的判定与性质、线段垂直平分线的性质、等腰三角形的判定与性质准确画图.16.(6分)如图,过点A(2,0)的两条直线l1,l2分别交y轴于点B,C,其中点B在原点上方,点C在原点下方,已知AB=.(1)求点B的坐标;(2)若△ABC的面积为4,求直线l2的解析式.【分析】(1)先根据勾股定理求得BO的长,再写出点B的坐标;(2)先根据△ABC的面积为4,求得CO的长,再根据点A、C的坐标,运用待定系数法求得直线l2的解析式.【解答】解:(1)∵点A的坐标为(2,0),∴AO=2,在直角三角形OAB中,AO2+OB2=AB2,即22+OB2=(),∴OB=3,∴B(0,3);(2)∵△ABC的面积为4∴4=BC×OA,即4=BC×2,∴BC=4,∴OC=BC﹣OB=4﹣3=1,∴C(0,﹣1),设l2的解析式为y=kx+b,则,解得,直线L2所对应的函数关系式为y=x﹣1.【点评】本题主要考查了两条直线的交点问题和坐标与图形的性质、三角形的面积,属于基础题,解题的关键是掌握勾股定理以及待定系数法.17.(6分)深圳市政府计划投资1.4万亿元实施东进战略.为了解深圳市民对东进战略的关注情况.某校数学兴趣小组随机采访部分深圳市民,对采访情况制作了统计图表的一部分如下:关注情况频数频率A.高度关注m0.1B.一般关注1000.5C.不关注30nD.不知道500.25(1)根据上述统计图可得此次采访的人数为200人,m=20,n=0.15;(2)根据以上信息补全条形统计图;(3)根据上述采访结果,请估计在15000名深圳市民中,高度关注东进战略的深圳市民约有1500人.【分析】(1)根据频数÷频率,求得采访的人数,根据频率×总人数,求得m的值,根据30÷200,求得n的值;(2)根据m的值为20,进行画图;(3)根据0.1×15000进行计算即可.【解答】解:(1)此次采访的人数为100÷0.5=200(人),m=0.1×200=20,n=30÷200=0.15;(2)如图所示;(3)高度关注东进战略的深圳市民约有0.1×15000=1500(人).【点评】本题主要考查了条形统计图以及频数与频率,解决问题的关键是掌握:频率是指每个对象出现的次数与总次数的比值(或者百分比),即频率=.解题时注意,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.四、(本大题共3小题,每小题8分,共24分)18.(8分)某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)【分析】如图,作AD⊥BC,BH⊥水平线,根据题意确定出∠ABC与∠ACB的度数,利用锐角三角函数定义求出AD与BD的长,由CD+BD求出BC的长,即可求出BH的长.【解答】解:如图,作AD⊥BC,BH⊥水平线,由题意得:∠ACH=75°,∠BCH=30°,AB∥CH,∴∠ABC=30°,∠ACB=45°,∵AB=8×4=32(米),∴AD=CD=16(米),BD=AB•cos30°=16(米),∴BC=CD+BD=(16+16)米,则BH=BC•sin30°=(8+8)米.【点评】此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.19.(8分)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,请完成下列表格:事件A必然事件随机事件m的值42,3(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于,求m的值.【分析】(1)当袋子中全部为黑球时,摸出黑球才是必然事件,否则就是随机事件;(2)利用概率公式列出方程,求得m的值即可.【解答】解:(1)当袋子中全为黑球,即摸出4个红球时,摸到黑球是必然事件;当摸出2个或3个时,摸到黑球为随机事件,故答案为:4;2,3.(2)根据题意得:=,解得:m=2,所以m的值为2.【点评】本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.20.(8分)如图,等腰梯形ABCD放置在平面直角坐标系中,已知A(﹣2,0)、B(6,0)、D(0,3),反比例函数的图象经过点C.(1)求点C坐标和反比例函数的解析式;(2)将等腰梯形ABCD向上平移m个单位后,使点B恰好落在双曲线上,求m的值.【分析】(1)过点C作CE⊥AB于点E,根据HL证Rt△AOD≌Rt△BEC,求出OA=BE =2,即可求出C的坐标,代入反比例函数的解析式求出k即可;(2)得出B′的坐标是(6,m),代入反比例函数的解析式,即可求出答案.【解答】解:(1)过点C作CE⊥AB于点E,∵四边形ABCD是等腰梯形,∴AD=BC,DO=CE,∵∠DOA=∠CEO=90°,在Rt△AOD和Rt△BEC中∵,∴Rt△AOD≌Rt△BEC(HL),∴AO=BE=2,∵BO=6,∴DC=OE=4,∴C(4,3),∵设反比例函数的解析式y=,根据题意得:3=,解得k=12,∴反比例函数的解析式;答:点C坐标是(4,3),反比例函数的解析式是y=.(2)将等腰梯形ABCD向上平移m个单位后得到梯形A′B′C′D′,∴点B′(6,m),∵点B′(6,m)恰好落在双曲线y=上,∴当x=6时,y==2,即m=2.【点评】本题考查了用待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特征,全等三角形的性质和判定,等腰梯形的性质的应用,通过做此题培养学生运用性质进行计算的能力,题型较好,难度也适中.五、(本大题共2小题,每小题9分,共18分)21.(9分)如图,已知⊙O的半径为2,AB为直径,CD为弦.AB与CD交于点M,将沿CD翻折后,点A与圆心O重合,延长OA至P,使AP=OA,连接PC(1)求CD的长;(2)求证:PC是⊙O的切线;(3)点G为的中点,在PC延长线上有一动点Q,连接QG交AB于点E.交于点F(F与B、C不重合).问GE•GF是否为定值?如果是,求出该定值;如果不是,请说明理由.【分析】(1)连接OC,根据翻折的性质求出OM,CD⊥OA,再利用勾股定理列式求解即可;(2)利用勾股定理列式求出PC,然后利用勾股定理逆定理求出∠PCO=90°,再根据圆的切线的定义证明即可;(3)连接GA、AF、GB,根据等弧所对的圆周角相等可得∠BAG=∠AFG,然后根据两组角对应相等两三角相似求出△AGE和△FGA相似,根据相似三角形对应边成比例可得=,从而得到GE•GF=AG2,再根据等腰直角三角形的性质求解即可.【解答】(1)解:如图,连接OC,∵沿CD翻折后,点A与圆心O重合,∴OM=OA=×2=1,CD⊥OA,∵OC=2,∴CD=2CM=2=2=2;(2)证明:∵PA=OA=2,AM=OM=1,CM=CD=,∠CMP=∠OMC=90°,∴PC===2,∵OC=2,PO=2+2=4,∴PC2+OC2=(2)2+22=16=PO2,∴∠PCO=90°,∴PC是⊙O的切线;(3)解:GE•GF是定值,证明如下,连接GO并延长,交⊙O于点H,连接HF∵点G为的中点∴∠GOE=90°,∵∠HFG=90°,且∠OGE=∠FGH∴△OGE∽△FGH∴=∴GE•GF=OG•GH=2×4=8.【点评】本题是圆的综合题型,主要利用了翻折变换的性质,垂径定理,勾股定理,勾股定理逆定理,圆的切线的定义,相似三角形的判定与性质,难点在于(3)作辅助线构造出相似三角形.22.(9分)若抛物线L:y=ax2+bx+c(a,b,c是常数,abc≠0)与直线l都经过y轴上的一点P,且抛物线L的顶点Q在直线l上,则称此直线l与该抛物线L具有“一带一路”关系.此时,直线l叫做抛物线L的“带线”,抛物线L叫做直线l的“路线”.(1)若直线y=mx+1与抛物线y=x2﹣2x+n具有“一带一路”关系,求m,n的值;(2)若某“路线”L的顶点在反比例函数y=的图象上,它的“带线”l的解析式为y =2x﹣4,求此“路线”L的解析式;(3)当常数k满足≤k≤2时,求抛物线L:y=ax2+(3k2﹣2k+1)x+k的“带线”l与x轴,y轴所围成的三角形面积的取值范围.【分析】(1)找出直线y=mx+1与y轴的交点坐标,将其代入抛物线解析式中即可求出n的值;再根据抛物线的解析式找出顶点坐标,将其代入直线解析式中即可得出结论;(2)找出直线与反比例函数图象的交点坐标,由此设出抛物线的解析式,再由直线的解析式找出直线与x轴的交点坐标,将其代入抛物线解析式中即可得出结论;(3)由抛物线解析式找出抛物线与y轴的交点坐标,再根据抛物线的解析式找出其顶点坐标,由两点坐标结合待定系数法即可得出与该抛物线对应的“带线”l的解析式,找出该直线与x、y轴的交点坐标,结合三角形的面积找出面积S关于k的关系上,由二次函数的性质即可得出结论.【解答】解:(1)令直线y=mx+1中x=0,则y=1,即直线与y轴的交点为(0,1);将(0,1)代入抛物线y=x2﹣2x+n中,得n=1.∵抛物线的解析式为y=x2﹣2x+1=(x﹣1)2,∴抛物线的顶点坐标为(1,0).将点(1,0)代入到直线y=mx+1中,得:0=m+1,解得:m=﹣1.答:m的值为﹣1,n的值为1.(2)将y=2x﹣4代入到y=中有,2x﹣4=,即2x2﹣4x﹣6=0,解得:x1=﹣1,x2=3.∴该“路线”L的顶点坐标为(﹣1,﹣6)或(3,2).令“带线”l:y=2x﹣4中x=0,则y=﹣4,∴“路线”L的图象过点(0,﹣4).设该“路线”L的解析式为y=m(x+1)2﹣6或y=n(x﹣3)2+2,由题意得:﹣4=m(0+1)2﹣6或﹣4=n(0﹣3)2+2,解得:m=2,n=﹣.∴此“路线”L的解析式为y=2(x+1)2﹣6或y=﹣(x﹣3)2+2.(3)令抛物线L:y=ax2+(3k2﹣2k+1)x+k中x=0,则y=k,即该抛物线与y轴的交点为(0,k).抛物线L:y=ax2+(3k2﹣2k+1)x+k的顶点坐标为(﹣,),设“带线”l的解析式为y=px+k,∵点(﹣,)在y=px+k上,∴=﹣p+k,解得:p=.∴“带线”l的解析式为y=x+k.令“带线”l:y=x+k中y=0,则0=x+k,解得:x=﹣.即“带线”l与x轴的交点为(﹣,0),与y轴的交点为(0,k).∴“带线”l与x轴,y轴所围成的三角形面积S=|﹣|×|k|,∵≤k≤2,∴≤≤2,∴S===,当=1时,S有最大值,最大值为;当=2时,S有最小值,最小值为.故抛物线L:y=ax2+(3k2﹣2k+1)x+k的“带线”l与x轴,y轴所围成的三角形面积的取值范围为≤S≤.【点评】本题考查了反比例函数与一次函数的交点问题已经二次函数的应用,解题的关键是:(1)根据“一带一路”关系找出两函数的交点坐标;(2)根据直线与反比例函数的交点设出抛物线的解析式;(3)找出“带线”l与x轴、y轴的交点坐标.本题属于中档题,(1)(2)难度不大;(3)数据稍显繁琐,解决该问时,借用三角形的面积公式找出面积S与k之间的关系式,再利用二次函数的性质找出S的取值范围.六、(本大题共12分)23.(12分)课题:两个重叠的正多边形,其中的一个绕某一顶点旋转所形成的有关问题.实验与论证:设旋转角∠A1A0B1=α(α<∠A1A0A2),θ3、θ4、θ5、θ6所表示的角如图所示.(1)用含α的式子表示角的度数:θ3=60°﹣α,θ4=α,θ5=36°﹣α;(2)图1﹣图4中,连接A0H时,在不添加其他辅助线的情况下,是否存在与直线A0H 垂直且被它平分的线段?若存在,请选择其中的一个图给出证明;若不存在,请说明理由;归纳与猜想:设正n边形A0A1A2…A n﹣1与正n边形A0B1B2…B n﹣1重合(其中,A1与B1重合),现将正多边形A0B1B2…B n﹣1绕顶点A0逆时针旋转α(0°<α<°);(3)设θn与上述“θ3、θ4、…”的意义一样,请直接写出θn的度数;(4)试猜想在正n边形的情形下,是否存在与直线A0H垂直且被它平分的线段?若存在,请将这条线段用相应的顶点字母表示出来(不要求证明);若不存在,请说明理由.【分析】(1)由正三角形的性质得α+θ3=60°,再由正方形的性质得θ4=45°﹣(45°﹣α)=α,最后由正五边形的性质得θ5=108°﹣36°﹣36°﹣α=36°﹣α;(2)存在,如在图1中直线A0H垂直且平分的线段A2B1,△A0A1A2≌△A0B1B2,推得A2H=B1H,则点H在线段A2B1的垂直平分线上;由A0A2=A0B1,则点A0在线段A2B1的垂直平分线上,从而得出直线A0H垂直且平分的线段A2B1。
中学数学模拟试卷一、选择题,每小题3分共30分1.﹣的倒数是( )A .﹣3B .3C .﹣D .2.若代数式在实数范围内有意义,则x 的取值范围是( )A .x ≥﹣2B .x >﹣2C .x ≥2D .x ≤23.由六个小正方体搭成的几何体如图所示,则它的俯视图是( )A .B .C .D .4.如图,BD ∥AC ,AD 与BC 交于点E ,如果∠BCA=50°,∠D=30°,那么∠DEC 等于( )A .75°B .80°C .100°D .120°5.下列等式成立的是( )A . +=B . =C . =D . =﹣6.下列做法错误的是( )A .小丽近6个月的手机话费(单位:元)分别为:18,24,37,28,24,26,这组数据的中位数是25B .服装店老板最关心的是卖出服装的众数C .要了解全市初中毕业班近4万名学生2015年中考数学成绩情况,适宜采用全面调查D .条形统计图能够显示每组中的具体数据,易于比较数据之间的差别7.如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,则tanA=( )A .B .C .D .8.下列说法中①一个角的两边分别垂直于另一角的两边,则这两个角相等或互补②若点A 在y=2x ﹣3上,且点A 到两坐标轴的距离相等,则点A 在第一象限③半径为5的圆中,弦AB=8,则圆周上到直线AB 的距离为2的共有四个④如果AD 是△ABC 的高,∠CAD=∠B ,那么△ABC 是直角三角形正确命题有( )A .0个B .1个C .2个D .3个9.如图所示,已知△ABC 中,BC=8,BC 上的高h=4,D 为BC 上一点,EF ∥BC ,交AB 于点E ,交AC 于点F (EF 不过A 、B ),设E 到BC 的距离为x .则△DEF 的面积y 关于x 的函数的图象大致为( )A .B .C .D . 10.如图,四边形ABCD 与四边形OEFG 都是正方形,O 是正方形ABCD 的中心,OE 交BC 于点M ,OG 交CD 于点N ,下列结论:①△ODG ≌△OCE ;②GD=CE ;③OG ⊥CE ;④若正方形ABCD 的边长为2,则四边形OMCN 的面积等于1,其中正确的结论序号是( )A .①B .①②C .①②④D .①②③④二、填空题,本大题共8小题,11-14小题,每小题3分,15-18题每小题3分,共28分 11.2015年东营市造林绿化以生态林场建设、沿黄沿海生态林建设工程、路域绿化提升工程建设为中点,以点带面,辐射全局,带动了全市林业生态建设工作整体水平不断提高,全市共完成造林54301亩,完成森林抚育任务12万亩,54301亩用科学记数法表示是 亩.12.已知≠0,则的值为 .13.当x=时,代数式÷(1﹣)的值等于.14.已知圆锥的底面半径是3,高是4,则这个圆锥的全面积是.15.已知一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为,则a等于.16.平面直角坐标系中,点A(m,5m﹣6)一定不在第象限.17.如图,从一个建筑物的A处测得对面楼BC的顶部B的仰角为32°,底部C的俯角为45°,观测点与楼的水平距离AD为31m,则楼BC的高度约为m(结果取整数).(参考数据:sin32°≈0.5,cos32°≈0.8,tan32°≈0.6)18.如图放置的四边形A1B1C1D1,A2D1C2D2,A3D2C3D3,A4D3C4D4,…都是边长为1的正方形,点B1的坐标为(1,0),点O,A1,A2,A3…都在直线l上,则点C2016的坐标是.三、解答题,共62分19.(1)计算:﹣0﹣4cos45°+(﹣3)2(2)解方程组:.20.某校八年级(1)班语文杨老师为了了解学生汉字听写能力情况,对班上一个组学生的汉字听写成绩按A,B,C,D四个等级进行了统计,并绘制了如下两幅不完整的统计图:(1)求D等级所对扇形的圆心角,并将条形统计图补充完整;(2)该组达到A等级的同学中只有1位男同学,杨老师打算从该组达到A等级的同学中随机选出2位同学在全班介绍经验,请用列表法或画树状图的方法,求出所选两位同学恰好是1位男同学和1位女同学的概率.21.如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=2,BE=3,求AC的长.22.如图,正比例函数y1=mx(m>0)的图象与反比例函数y2=(k≠0)的图象交于点A(n,4)和点B,AC⊥y轴,垂足为M,△ACB的面积为8.(1)求点A和点B的坐标;(2)求正比例函数与反比例函数的解析式;(3)当y1>y2时,求实数x的取值范围.23.某广场将于2016年5月1号投入使用,计划在广场内种植A、B两种花木共660棵,若A花木数量是B花木数量的2倍少60棵.(1)A、B两种花木的数量分别是多少棵;(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?24.数学活动课上,老师出示了一个问题:如图1,△ABC≌△DEF(点A、B分别与点D、E对应),AB=AC,现将△ABC与△DEF 按如图所示的方式叠放在一起,现将△ABC保持不动,△DEF运动,且满足点E在边BC 边从B向C移动(不与B、C重合),DE始终经过点A,EF与AC交于M点.求证:△ABE∽△ECM.(1)请解答老师提出的问题.(2)受此问题的启发,小明将△DEF绕点E按逆时针旋转,使DE、EF分别交AB、AC边于点N、M,连接MN,如图2,当EB=EC时,小明猜想△NEM与△ECM相似,小明的猜想正确吗?请你作出判断并说明理由;(3)在(2)的条件下,以E为圆心,作⊙E,使得AB与⊙E相切,请在图3中画出⊙E,并判断直线MN与⊙E的位置关系,说明理由.25.在平面直角坐标系xOy中,抛物线y=x2﹣4x﹣5与x轴交于A,B两点(点A在点B 的左侧),与y轴交于点C.(1)求点A,点B,点C的坐标;(2)P是抛物线对称轴上一点,当AP⊥CP时,求点P的坐标;(3)设E(x,y)是抛物线对称轴右侧一动点,且位于第四象限,四边形OEBF是以OB 为对角线的平行四边形,求▱OEBF的面积S与x之间的函数关系式及自变量x的取值范围:当▱OEBF的面积为时,判断并说明▱OEBF是否为菱形?中考数学模拟试卷参考答案与试题解析一、选择题,每小题3分共30分1.﹣的倒数是()A.﹣3 B.3 C.﹣D.【考点】倒数.【分析】据倒数的意义,乘积是1的两个数互为倒数.求一个数的倒数就是用1除以这个数,0没有倒数.由此解答.【解答】解:1÷(﹣)=﹣3.故选:A.2.若代数式在实数范围内有意义,则x的取值范围是()A.x≥﹣2 B.x>﹣2 C.x≥2 D.x≤2【考点】二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于等于0,就可以求解.【解答】解:根据题意得:x﹣2≥0,解得x≥2.故选:C.3.由六个小正方体搭成的几何体如图所示,则它的俯视图是()A.B.C.D.【考点】简单几何体的三视图.【分析】俯视图是从物体上面看,所得到的图形.【解答】解:所给图形的俯视图是两排正方形,第一排3个,第二排2个.故选A.4.如图,BD∥AC,AD与BC交于点E,如果∠BCA=50°,∠D=30°,那么∠DEC等于()A.75°B.80°C.100°D.120°【考点】平行线的性质.【分析】先根据平行线的性质得∠DAC=∠D=30°,然后根据三角形外角性质求解.【解答】解:∵BD∥AC,∴∠DAC=∠D=30°,∴∠DEC=∠EAC+∠C=30°+50°=80°.故选C.5.下列等式成立的是()A. +=B.=C.=D.=﹣【考点】分式的混合运算.【分析】原式各项计算得到结果,即可做出判断.【解答】解:A、原式=,错误;B、原式不能约分,错误;C、原式==,正确;D、原式==﹣,错误,故选C6.下列做法错误的是()A.小丽近6个月的手机话费(单位:元)分别为:18,24,37,28,24,26,这组数据的中位数是25B.服装店老板最关心的是卖出服装的众数C.要了解全市初中毕业班近4万名学生2015年中考数学成绩情况,适宜采用全面调查D.条形统计图能够显示每组中的具体数据,易于比较数据之间的差别【考点】统计图的选择;全面调查与抽样调查;统计量的选择.【分析】根据中位数、众数、调查的方法进行选择即可.【解答】解:A、小丽近6个月的手机话费(单位:元)分别为:18,24,37,28,24,26,这组数据的中位数是25,故正确;B、服装店老板最关心的是卖出服装的众数,故正确;C、要了解全市初中毕业班近4万名学生2015年中考数学成绩情况,适宜采用抽样调查,故错误;D、条形统计图能够显示每组中的具体数据,易于比较数据之间的差别,故正确;故选C.7.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tanA=()A.B.C.D.【考点】锐角三角函数的定义.【分析】在直角△ABC中利用正切的定义即可求解.【解答】解:在直角△ABC中,∵∠ABC=90°,∴tanA==.故选:D.8.下列说法中①一个角的两边分别垂直于另一角的两边,则这两个角相等或互补②若点A在y=2x﹣3上,且点A到两坐标轴的距离相等,则点A在第一象限③半径为5的圆中,弦AB=8,则圆周上到直线AB的距离为2的共有四个④如果AD是△ABC的高,∠CAD=∠B,那么△ABC是直角三角形正确命题有()A.0个B.1个C.2个D.3个【考点】命题与定理.【分析】①根据四边形的内角和可知,此命题是假的;②点A也可以在第二象限,此命题是假的;③根据圆的对称性可知此命题是假命题;④根据三角形的内角和可知此命题是真命题.【解答】解:①这两个角应该是互补,不一定相等,此命题是假的;②点A也可以在第四象限,此命题是假的;③根据圆的对称性可知应该有3个,是假命题,;④如果AD是△ABC的高,∠CAD=∠B,那么△ABC是直角三角形,是真命题.故选B.9.如图所示,已知△ABC中,BC=8,BC上的高h=4,D为BC上一点,EF∥BC,交AB 于点E,交AC于点F(EF不过A、B),设E到BC的距离为x.则△DEF的面积y关于x 的函数的图象大致为()A.B.C.D.【考点】函数的图象;相似三角形的判定与性质.【分析】可过点A向BC作AH⊥BC于点H,所以根据相似三角形的性质可求出EF,进而求出函数关系式,由此即可求出答案.【解答】解:过点A向BC作AH⊥BC于点H,所以根据相似比可知:,即EF=2(4﹣x)所以y=×2(4﹣x)x=﹣x2+4x.故选D.10.如图,四边形ABCD与四边形OEFG都是正方形,O是正方形ABCD的中心,OE交BC于点M,OG交CD于点N,下列结论:①△ODG≌△OCE;②GD=CE;③OG⊥CE;④若正方形ABCD的边长为2,则四边形OMCN的面积等于1,其中正确的结论序号是()A.①B.①②C.①②④ D.①②③④【考点】四边形综合题.【分析】先由正方形的性质得出OD=OC,AC⊥BD,∠ODN=∠OCM=45°,进而判断出∠DOG=∠COE,即可得出△DOG≌△COE,得出①②正确,利用过一点有且只有一条直线和已知直线垂直即可判断③错误,再判断出△DON≌△COM,得出S△COD=S正方形ABCD 即可求出四边形OMCN的面积,即可判断出④错误.【解答】解:∵O是正方形ABCD的中心,∴OD=OC,AC⊥BD,∠ODN=∠OCM=45°,∴∠DOC=90°,∵四边形OEFG是正方形,∴OG=OE,∠EOG=90°,∴∠DOG=∠COE,在△DOG 和△COE 中,, ∴△DOG ≌△COE ,∴DG=CE ,所以①②正确,∵∠EOG=90°,∴OE ⊥OG ,过点E 有且只有一条直线和OG 垂直,∴OG 不垂直CE ,所以③错误;在△DON 和△COM 中,,∴△DON ≌△COM ,∴S △DON =S △COM ,∴S 四边形OMCN =S △COD ,∵正方形ABCD 的边长为2,∴S △COD =S 正方形ABCD =,∴S 四边形OMCN =S △COD =;所以④错误,即:正确的有①②,故选B .二、填空题,本大题共8小题,11-14小题,每小题3分,15-18题每小题3分,共28分 11.2015年东营市造林绿化以生态林场建设、沿黄沿海生态林建设工程、路域绿化提升工程建设为中点,以点带面,辐射全局,带动了全市林业生态建设工作整体水平不断提高,全市共完成造林54301亩,完成森林抚育任务12万亩,54301亩用科学记数法表示是 5.4301×104 亩.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【解答】解:54301亩用科学记数法表示是 5.4301×104亩,故答案为:5.4301×104.12.已知≠0,则的值为.【考点】比例的性质.【分析】根据比例的性质,可用a表示b、c,根据分式的性质,可得答案.【解答】解:由比例的性质,得c=a,b=a.===.故答案为:.13.当x=时,代数式÷(1﹣)的值等于﹣.【考点】分式的化简求值.【分析】根据通分、约分法则把原式化简,把x的值代入化简后的式子,根据二次根式的混合运算法则计算即可.【解答】解:原式=×=,当x=时,原式==﹣,故答案为:﹣.14.已知圆锥的底面半径是3,高是4,则这个圆锥的全面积是24π.【考点】圆锥的计算.【分析】先利用勾股定理计算出母线长,再利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式计算出侧面积,然后加上底面积即可得到全面积.【解答】解:圆锥的母线长==5,所以圆锥的侧面积=•2π•3•5=15π,所以这个圆锥的全面积=π•32+15π=24π.故答案为24π.15.已知一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为,则a等于1.【考点】概率公式.【分析】设袋中有a个黄球,再根据概率公式求出a的值即可.【解答】解:设袋中有a个黄球,∵袋中有红球2个,白球3个,从中任意摸出一个球是红球的概率为,∴=,解得:a=1.故答案为:1.16.平面直角坐标系中,点A(m,5m﹣6)一定不在第二象限.【考点】点的坐标.【分析】m<0时求出纵坐标是负数,再根据各象限内点的坐标特征解答.【解答】解:m<0时,5m﹣6<0,此时,点A在第三象限.所以,点A(m,5m﹣6)一定不在第二象限.故答案为:二.17.如图,从一个建筑物的A处测得对面楼BC的顶部B的仰角为32°,底部C的俯角为45°,观测点与楼的水平距离AD为31m,则楼BC的高度约为50m(结果取整数).(参考数据:sin32°≈0.5,cos32°≈0.8,tan32°≈0.6)【考点】解直角三角形的应用-仰角俯角问题.【分析】在R t△ABD中,根据正切函数求得BD=AD•tan32°=31×0.6=18.6,在R t△ACD中,求得BC=BD+CD=18.6+31=49.6m.结论可求.【解答】解:在R t△ABD中,∵AD=31,∠BAD=32°,∴BD=AD•tan32°=31×0.6=18.6,在R t△ACD中,∵∠DAC=45°,∴CD=AD=31,∴BC=BD+CD=18.6+31≈50m.故答案为:50.18.如图放置的四边形A1B1C1D1,A2D1C2D2,A3D2C3D3,A4D3C4D4,…都是边长为1的正方形,点B1的坐标为(1,0),点O,A1,A2,A3…都在直线l上,则点C2016的坐标是.【考点】规律型:点的坐标.【分析】根据已知条件可求得点B1和点C1的坐标,根据题意确定直线l为y=x,进而求得C1、C2…所在的直线,得出规律,即可求得点B2016的坐标.【解答】解:∵四边形A1B1C1D1,A2D1C2D2,A3D2C3D3,A4D3C4D4,…都是边长为1的正方形,点B1的坐标为(1,0),∴A1(1,1),C1(2,0),设直线l的解析式为y=kx,代入A1点坐标可知直线l的解析式为y=x,由题意可知点C1、C2在与直线l平行的直线上,∵C1(2,0),∴与直线l平行的直线的解析式为y=x﹣2,∴C2的坐标为(3,1),C3(4,2),…∴C2016.故答案为:.三、解答题,共62分19.(1)计算:﹣0﹣4cos45°+(﹣3)2(2)解方程组:.【考点】解二元一次方程组;实数的运算;零指数幂;特殊角的三角函数值.【分析】(1)原式利用二次根式性质,零指数幂法则,特殊角的三角函数值,以及乘方的意义计算即可得到结果;(2)将两个方程相减得:x﹣y=0,则x=y,代入方程①或②求出解即可.【解答】解:(1)原式=2﹣1﹣2+9=8;(2),②﹣①得:97x﹣97y=0,x=y,把x=y代入①中得:217x+314x=177,531x=177,x=,∴方程组的解为:.20.某校八年级(1)班语文杨老师为了了解学生汉字听写能力情况,对班上一个组学生的汉字听写成绩按A,B,C,D四个等级进行了统计,并绘制了如下两幅不完整的统计图:(1)求D等级所对扇形的圆心角,并将条形统计图补充完整;(2)该组达到A等级的同学中只有1位男同学,杨老师打算从该组达到A等级的同学中随机选出2位同学在全班介绍经验,请用列表法或画树状图的方法,求出所选两位同学恰好是1位男同学和1位女同学的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)根据C等级的人数及所占的比例即可得出总人数,进而可得出D级学生的人数占全班总人数的百分数及扇形统计图中D级所在的扇形的圆心角;根据A、B等级的人数=总数×所占的百分比可补全图形.(2)画出树状图,然后根据概率公式列式计算即可得解.【解答】解:(1)总人数=5÷25%=20,∴D级学生的人数占全班总人数的百分数为:×100%=15%,扇形统计图中D级所在的扇形的圆心角为15%×360°=54°.由题意得:B等级的人数=20×40%=8(人),A等级的人数=20×20%=4.(2)根据题意画出树状图如下:一共有12种情况,恰好是1位男同学和1位女同学有6种情况,所以,P(恰好是1位男同学和1位女同学)==.21.如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=2,BE=3,求AC的长.【考点】相似三角形的判定与性质;等腰三角形的性质;圆周角定理.【分析】(1)连结AE,如图,根据圆周角定理,由AC为⊙O的直径得到∠AEC=90°,然后利用等腰三角形的性质即可得到BE=CE;(2)连结DE,如图,证明△BED∽△BAC,然后利用相似比可计算出AB的长,从而得到AC的长.【解答】(1)证明:连结AE,如图,∵AC为⊙O的直径,∴∠AEC=90°,∴AE⊥BC,而AB=AC,∴BE=CE;(2)连结DE,如图,∵BE=CE=3,∴BC=6,∵∠BED=∠BAC,而∠DBE=∠CBA,∴△BED∽△BAC,∴=,即=,∴BA=9,∴AC=BA=9.22.如图,正比例函数y1=mx(m>0)的图象与反比例函数y2=(k≠0)的图象交于点A(n,4)和点B,AC⊥y轴,垂足为M,△ACB的面积为8.(1)求点A和点B的坐标;(2)求正比例函数与反比例函数的解析式;(3)当y1>y2时,求实数x的取值范围.【考点】反比例函数与一次函数的交点问题.【分析】(1)首先根据反比例函数与正比例函数的图象特征,可知A、B两点关于原点对称,则O为线段AB的中点,故△BOC的面积等于△AOC的面积,都等于2,然后由反比例函数的比例系数k的几何意义,可知△AOC的面积等于|k|,从而求出k的值,即得到这个反比例函数的解析式,于是得到结论;(2)正比例函数和反比例函数图象上点的坐标特征即可得到结论;(3)由图象即可得到结论.【解答】解:∵反比例函数与正比例函数的图象相交于A、B两点,∴A、B两点关于原点对称,∴OA=OB,∴△BOC的面积=△AOC的面积=8÷2=4,又∵A是反比例函数y2=图象上的点,且AC⊥y轴于点C,∴△AOC的面积=|k|,∴|k|=4,∵k>0,∴k=8,故这个反比例函数的解析式为y=,∵A(n,4),∴A(2,4),∵A、B两点关于原点对称,∴B(﹣2,﹣4);(2)∵正比例函数y1=mx(m>0)的图象与反比例函数y2=(k≠0)的图象交于点A(2,4),∴m=2,∴正比例函数的解析式是y=2x,反比例函数的解析式为y=;(3)由图象知当y1>y2时,x的取值范围是﹣2<x<0或x>2.23.某广场将于2016年5月1号投入使用,计划在广场内种植A、B两种花木共660棵,若A花木数量是B花木数量的2倍少60棵.(1)A、B两种花木的数量分别是多少棵;(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?【考点】二元一次方程组的应用.【分析】(1)根据在广场内种植A,B两种花木共660棵,若A花木数量是B花木数量的2倍少60 棵可以列出相应的二元一次方程组,从而可以解答本题;(2)根据安排26时种植这两种花木,每人每天能种植A花木60棵或B花木40 棵,可以列出相应的二元一次方程组,从而可以解答本题.【解答】解:(1)设A,B两种花木的数量分别是x棵、y棵,,解得,,即A,B两种花木的数量分别是420棵、240棵;(2)设安排种植A花木的m人,种植B花木的n人,,解得,,答:安排种植A花木的14种植B花木的12,可以确保同时完成各自的任务.24.数学活动课上,老师出示了一个问题:如图1,△ABC≌△DEF(点A、B分别与点D、E对应),AB=AC,现将△ABC与△DEF 按如图所示的方式叠放在一起,现将△ABC保持不动,△DEF运动,且满足点E在边BC 边从B向C移动(不与B、C重合),DE始终经过点A,EF与AC交于M点.求证:△ABE∽△ECM.(1)请解答老师提出的问题.(2)受此问题的启发,小明将△DEF绕点E按逆时针旋转,使DE、EF分别交AB、AC边于点N、M,连接MN,如图2,当EB=EC时,小明猜想△NEM与△ECM相似,小明的猜想正确吗?请你作出判断并说明理由;(3)在(2)的条件下,以E为圆心,作⊙E,使得AB与⊙E相切,请在图3中画出⊙E,并判断直线MN与⊙E的位置关系,说明理由.【考点】圆的综合题.【分析】(1)欲证明△ABE∽△ECM,只要证明∠B=∠ECM,∠BAE=∠CEM.(2)结论正确.先证明△BNE∽△CEM,得=,因为BE=EC,所以=,即=,因为∠NEM=∠C,即可证明△NEM∽△ECM.(3)结论:直线MN与⊙E相切.如图3中,设⊙E与AB相切于点G,作EH⊥NM于H.首先证明∠ENB=∠ENM,再根据角平分线的性质定理即可证明.【解答】(1)证明:如图1中,∵△ABC≌△DEF,∴∠B=∠DEF,∵AB=AC,∴∠B=∠ECM,∵∠AEC=∠B+∠BAE=∠DEF+∠CEM,∴∠CEM=∠BAE,∴△ABE∽△ECM.(2)结论正确.理由:如图2中,∵∠NEC=∠B+∠ENB=∠NEF+∠CEM,∠NEF=∠B,∴∠ENB=∠CEM,∵∠B=∠ECM,∴△BNE∽△CEM,∴=,∵BE=EC,∴=,∴=,∵∠NEM=∠C,∴△NEM∽△ECM.(3)结论:直线MN与⊙E相切.理由:如图3中,设⊙E与AB相切于点G,作EH⊥NM于H.由(2)可知△BNE∽△CEM,△NEM∽△ECM.∴∠BNE=∠CEN=∠ENM,∵AB是⊙E的切线,∴EG⊥NB,∵EH⊥NM,∴EG=EH,∴NM是⊙E的切线.25.在平面直角坐标系xOy中,抛物线y=x2﹣4x﹣5与x轴交于A,B两点(点A在点B 的左侧),与y轴交于点C.(1)求点A,点B,点C的坐标;(2)P是抛物线对称轴上一点,当AP⊥CP时,求点P的坐标;(3)设E(x,y)是抛物线对称轴右侧一动点,且位于第四象限,四边形OEBF是以OB 为对角线的平行四边形,求▱OEBF的面积S与x之间的函数关系式及自变量x的取值范围:当▱OEBF的面积为时,判断并说明▱OEBF是否为菱形?【考点】二次函数综合题.【分析】(1)令y=0求出x值,结合点A在点B的左侧即可得出点A、B的坐标,再令x=0求出y值,即可得出点C的坐标;(2)利用配方法找出抛物线的对称轴,设点P的坐标为(2,m),结合点A、C的坐标利用两点间的距离公式即可找出线段AC、AP、CP的长度,再根据勾股定理即可找出关于m 的一元二次方程,解方程求出m值,由此即可得出点P的坐标;(3)根据平行四边形的面积公式结合点O、B、E点的坐标即可得出S关于x的函数关系式,代入S=求出x的值,根据点O、B的坐标即可得出点E在线段OB的垂直平分线上,此时▱OEBF是菱形.【解答】解:(1)当y=0时,有x2﹣4x﹣5=0,解得:x1=﹣1,x2=5,∵点A在点B的左侧,∴A(﹣1,0),B(5,0).当x=0时,y=﹣5,∴C(0,﹣5).(2)∵y=x2﹣4x﹣5=(x﹣2)2﹣9,∴抛物线的对称轴为x=2.设点P的坐标为(2,m),∵A(﹣1,0),C(0,﹣5),∴AC==,AP=,CP=.∵AP⊥CP,∴AC2=AP2+CP2,即m2+5m+6=0,解得:m1=﹣3,m2=﹣2.∴点P的坐标为(2,﹣3)或(2,﹣2).(3)依照题意画出图形,如图所示.∵E(x,y)是抛物线对称轴右侧一动点,且位于第四象限,∴E(x,x2﹣4x﹣5)(2<x<5),∴S=OB•|y E|=﹣5x2+20x+25(2<x<5).当S=时,有﹣5x2+20x+25=,解得:x1=(舍去),x2=.第 21 页 共 21 页 ∵O (0,0),B (5,0),∴当x=时,点E 在线段OB 的垂直平分线上, ∴OE=BE ,∴此时▱OEBF 为菱形.∴当▱OEBF 的面积为时,▱OEBF 为菱形.。