海洋遥感复习知识点
- 格式:doc
- 大小:916.00 KB
- 文档页数:12
名词解释、填空1.海面亮温:低于实际物体的温度指物体的辐射功率等于某一黑体的辐射功率时,该黑体的绝对温度即为亮度温度。
2.发射率:观测物体的辐射能量与同观测物体具有一样热力学温度的黑体的辐射能量之比根据发射率,=1黑体,0~1灰体3.大气气溶胶:悬浮在空气中的来自地球外表的小的液体或固体颗粒。
气溶胶类型:海洋型、陆地型、火山爆发自然〔陆地海洋火山〕;人为〔汽车尾气、污染物〕4.瑞利散射:当微粒的直径比辐射波长小得多时,此时的散射称为瑞利散射。
散射率与波长的四次方成反比,因此,瑞利散射的强度随着波长变短而迅速增大。
对可见光的影响较大。
米散射:当微粒的直径与辐射波长差不多时的大气散射。
气溶胶引起的,对波长依赖性很小无选择散射:云,所有光都被散射回来5.大气层构造简答,根据温度分布,垂向划分:对流层、平流层、中间层、热成层、外大气层1)对流层:有各种天气现象,强烈对流/温湿分布不均匀/航空活动区,对遥感最重要2)平流层/同温层:天气现象少/空气稳定/水汽、沙尘少,温度随高度增加而增加3)中间层:温度随高度增加而减少,对遥感的辐射传递几乎没影响4)热成层:温度随高度增加而增加,高度电离状态,短波电磁波被电离层折返回地面6.一类水体:浮游植物及其共变的碎屑主导海水光谱特性;二类水体:除浮游植物外的其他物质在海水光谱特性中起主导作用海洋初级生产力:把无机碳变成有机碳的单位时间的速率,和叶绿素浓度、光照、光照时间、光穿透距离有关7.遥感反射比〔可见光、海色遥感〕:公式、向上辐亮度和向下辐照度之比,Rw和Ed之比归一化离水辐亮度:假设太阳在正上,把大气分子散射衰减消除的离水辐亮度8.黄色物质:有色可溶有机物,陆源〔植被,棕黄酸〕,海洋〔动物死亡分解〕9.生物光学算法:通过离水辐亮度去推导海水中的各主分浓度的算法。
由海水上面的离水辐亮度推导叶绿素浓度、泥沙浓度、k490衰减系数、透明度等。
10.大气校正:由传感器接收到的辐亮度计算出离水辐亮度的过程Lt是卫星接收的总辐射;第一项为哪一项离水辐亮度,接下来三项是大气路径辐射,分别是气溶胶的,分子的,两者都有的,Lwc是白冒,Lsr是太阳耀斑。
1. 狭义广义遥感狭义遥感:主要指从远距离、高空以至外层空间的平台上,利用可见光、红外、微波等探测器,通过摄影或扫描、信息感应、传输和处理,从而识别地面物质的性质和运动状态的现代化技术系统。
(利用电磁波进行遥感)广义遥感:利用仪器设备从远处获得被测物体的电磁波辐射特征(光,热),力场特征(重力、磁力)和机械波特征(声,地震),据此识别物体。
(除电磁波外,还包括对电磁场、力场、机械波等的探测)两者探测手段不一样2. 遥感技术系统信息源-信息获取-信息纪录和传输-信息处理信息应用3. 遥感的分类(1)按照探测电磁波的工作波段分类:可见光遥感、红外遥感、微波遥感等(2)按照传感器工作方式分类:主动遥感、被动遥感4. 遥感的应用内容上可概括:资源调查与应用、环境监测评价、区域分析规划、全球宏观研究5. 海洋遥感的意义(1)海洋气候环境监测的需要海洋占全球面积约71%,海洋是全球气候环境变化系统中不可分割的重要部分厄尔尼诺、拉尼娜、热带气旋、大洋涡流、上升流、海冰等现象都与海洋密切相关。
厄尔尼诺是热带大气和海洋相互作用的产物,它原是指赤道海面的一种异常增温,现在其定义为在全球范围内,海气相互作用下造成的气候异常。
(2)海洋资源调查的需要海洋是人类最大的资源宝库,是全球生命支持系统的基本组成部分,海洋资源的重要性促使人们采用各种手段对其进行调查研究海岸带是人类赖以生存和进行生产活动的重要场所,海岸带资源的相关调查对于沿海资源的合理开发与利用非常重要(3)海洋遥感在海洋研究中的重要性海洋遥感具有大范围、实时同步、全天时、全天候多波段成像技术的优势可以快速地探测海洋表面各物理量的时空变化规律。
它是20 世纪后期海洋科学取得重大进展的关键学科之一。
重要性体现在:是海洋科学的一个新的分支学科;为海洋观测和研究提供了一个崭新的数据集,并开辟了新的考虑问题的视角;多传感器资料可推动海洋科学交叉学科研究的发展1. 海洋遥感的概念(重点)、研究内容海洋遥感:指以海洋及海岸带作为监测、研究对象,利用电磁波与大气和海洋的相互作用原理来观测和研究海洋的遥感技术。
海洋遥感知识点总结本文将从海洋遥感技术的基本原理、常用遥感技术和海洋遥感的应用领域等方面进行详细的介绍,并结合一些实际案例,希望可以为读者对海洋遥感技术有一个更全面的了解。
一、海洋遥感技术的基本原理海洋遥感技术是通过传感器对海洋进行观测和测量,然后将获取到的数据传输到地面处理系统进行分析,从而得到关于海洋的信息。
传感器可以是搭载在卫星上的遥感仪器,也可以是在飞机、船只等平台上安装的探测设备。
遥感技术主要依靠电磁波在大气和海洋中的传播和反射特性来获取海洋信息。
具体而言,通过用不同波段的电磁波对目标进行监测和探测,再利用电磁波与目标反射或散射作用时的特性来获取目标物体的信息。
遥感技术主要包括被动遥感和主动遥感两种方式。
被动遥感是指通过接收目标物体所发出的自然辐射或反射的电磁波,比较常用的是太阳辐射。
而主动遥感是指通过发送特定频率的电磁波到目标物体上,然后将目标物体发射的辐射或反射返回的信号进行分析。
被动遥感和主动遥感一般配合使用,可以获取更加全面的目标物体信息。
二、常用的海洋遥感技术1. 被动微波遥感被动微波遥感是通过接收海洋表面微波辐射来获取海洋信息的一种遥感技术。
微波辐射可以在大气中穿透,因此即使在云层遮挡的情况下,也可以对海洋进行探测。
被动微波遥感技术可以用来测量海洋表面温度、海洋表面风速、盐度等信息,对海洋动力学和大气海洋相互作用研究有着重要的意义。
2. 被动光学遥感被动光学遥感是通过接收海洋表面反射的太阳光来获取海洋信息的一种遥感技术。
光学遥感可以测量海洋表面的叶绿素浓度、海水透明度、沉积物含量等信息,可以用于海洋生态系统监测和海洋污染监测等方面。
3. 合成孔径雷达遥感合成孔径雷达(SAR)是一种主动遥感技术,通过发送微波信号到海洋表面,然后接收被海洋表面物体反射的信号,来获取海洋表面的信息。
SAR可以用来监测海洋表面风场、海洋表面粗糙度、海洋污染等信息,对海上风暴预警、海洋污染监测等具有重要的应用价值。
海洋科学中的海洋环境遥感随着时代的不断发展,科技不断进步,海洋遥感技术也得到了广泛的应用。
海洋遥感技术是指利用遥感技术对海洋环境进行实时监测、分析、预测等处理,可以有效探测海洋气候、海洋生态环境、海洋地理信息等方面的信息。
本文主要论述海洋科学中的海洋环境遥感技术及其应用。
一、海洋环境遥感技术的基础海洋环境遥感技术是基于遥感技术和地球物理技术的,它主要是利用卫星遥感和水下探测技术,通过捕捉、分析海洋表面和水下空间的图像、声波等多种信息,以获得海洋环境的多尺度、多维度、多参数的数据。
海洋环境遥感技术主要包括以下几个方面:1.卫星遥感技术卫星遥感技术是利用卫星上安装的遥感传感器监测地球表面的状况,其优点是可以迅速获取大面积的海洋环境信息,可以实现对全球海洋生态的大范围、精确的观测和监测。
2.水下探测技术水下探测技术是利用声波等物理技术探测水下环境,主要通过对船舶、海底地貌、海底岩石结构、地下水资源、地壳构造等进行探测,可以获得大量的水下信息,为研究海洋环境提供了强有力的数据支持。
3.综合应用综合应用是指整合不同的遥感技术和地球物理技术,对海洋环境进行综合分析。
综合应用海洋遥感技术不仅扩大了海洋环境遥感的覆盖范围,而且能够获得更加全面、准确的海洋环境信息。
二、海洋环境遥感技术的应用领域1.海洋生态环境研究海洋生态环境研究主要是对海洋生态系统的监测和预测,利用卫星遥感技术可以监测海洋浮游植物、浮游动物、海洋气候等环境信息,而水下探测技术则可以提供水下环境的地貌特征、流场结构以及水下物种分布等相关数据。
这些数据对于研究海洋生态系统的组成、结构和演化规律具有重要意义。
2.海洋气候预测海洋气候预测是指通过卫星遥感技术对海面温度、盐度、潮汐、流体运动等要素进行监测,以便预测海洋环境中存在的气象现象,例如风暴、海浪、海雾和海冰等。
卫星遥感的数据能够为气象预测、海上通信、沿海生产等提供实时提示和预警。
3.水下资源勘探水下资源勘探是指利用水下探测技术对海洋中的石油、天然气、金属矿物等资源进行探测、勘探和运输。
海洋遥感(OceanicRemoteSensing)第十一章海洋遥感(OceanicRemoteSensing)概述(Summary)一、海洋遥感及空间海洋观测历史背景(Backgroundofremotesensingandspatialoceanobservation):1.1957年苏联发射第一颗人造卫星(man-madesatellite)。
1960年NASA (NationalAeronauticsandSpaceAdministration,美国宇航局)发射了第一颗电视与红外(infrared)观测卫星。
1961年美国水星(Aqua)计划。
1973年Skylab证实了可见光(visiblelight)和近红外(nearinfrared)遥感对地球连续观测的能力。
1975年GEOS-3卫星高度计(SatelliteAltimeter)。
2.NOAA(NationalOceanicandAtmosphericAdministration,美国海洋大气局)1972-1976发射NOAA-1,2,3,4,5卫星,装载了红外扫描辐射计(infraredscatteringradiometer)和微波辐射计(microwaveradiometer),估计海表温度(seasurfacetemperature)、大气温度(atmospheretemperature)、湿度剖面(moistureprofile)。
1978NASA发射了三颗卫星,喷气动力实验室(JPL)研制的SeasatAGoddard空间飞行中心(GSFC)研制的TIROS-N和Nimbus-7卫星3.SeasatA海洋实验卫星装载了微波辐射计SMMR微波高度计(MicrowaveAltimeter)RA、微波散射计(MicrowaveScatterometer)SASS、合成孔径雷达(SyntheticApertureRadar)SAR、可见红外辐射计VIRR5种传感器,提供的海洋信息:SST、海面高度、海面风场、海浪(seawave)、海冰、海底地形、风暴潮(stormsurges)、水汽(vapour)和降雨(precipitation)等。
海洋遥感复习题1,绪论部分1, 遥感、海洋遥感遥感:高空或外层空间的各种平台上,运用各种传感器获取目标的电磁波信息,通过数据处理和分析,研究目标的属性与环境关系的一门现代应用技术科学。
利用物体反射或辐射电磁波的固有特性,通过观测电磁波信息达到识别物体及物体存在环境条件的技术。
海洋遥感:利用电磁波与大气和海洋的相互作用原理,从卫星或其他空间平台上观测和研究海洋。
2,海洋遥感发展的几个重要阶段、其标志;传统的海洋遥感:科学调查船20世纪中叶:航空技术推动海洋遥感卫星海洋遥感的三个阶段:探索阶段1970-1978,标志:载人飞船的搭载空间试验和利用陆地气象卫星探测海洋。
试验阶段1978-1985,标志:seasat-a,nimbus-7,tiros-n微波传感器、海色传感器和红外传感器为海洋卫星探测海洋奠定基础。
应用阶段1985-至今,标志:多颗海洋研究卫星发射,反演算法业务化,数据产品标准化。
3,主要的海洋遥感卫星;海洋地形有关的卫星:Geosat,TOPEX/POSEIDON海洋动力环境卫星:ERS-1,2 Radarsat JERS-1 ALMAZ Quikscat Envisat海洋水色卫星:Seastar IRS-p3 ROCSAT-1 HY-1 EOS-Terra EOS-Aqua气象观测卫星:DMSP TRMM Fengyu-1,2,3陆地观测卫星:SPOT Landsat series 中巴CERS4,海洋遥感数据的特点、与常规观测不同;特点:大面积同步观测,搞空间分辨率;长期观测;实时或准实时;船舶浮标不易抵达海区;微波传感器数据全天时、全天候观测。
不同:海洋动态变化;比常规信息小2-3个量级。
5,主动传感器、被动传感器;主动传感器:微博高度计、微博散射计、合成孔径雷达、激光雷达被动传感器:海色传感器、可见红外辐射计、微波辐射计2,海洋遥感基础1,卫星轨道(太阳同步轨道、静地卫星轨道);静地卫星;极轨卫星;2,遥感数据产品类型(Level 0, 1, 2 etc.);Level 0 未经处理的由传感器直接输出的数据Level 1未经处理的数据在一片与附加文件格式Level 2地球物理数据产品如SST等等。
名词解释、填空1.海面亮温:低于实际物体的温度指物体的辐射功率等于某一黑体的辐射功率时,该黑体的绝对温度即为亮度温度。
2.发射率:观测物体的辐射能量与同观测物体具有相同热力学温度的黑体的辐射能量之比根据发射率,=1黑体,0~1灰体3.大气气溶胶:悬浮在空气中的来自地球表面的小的液体或固体颗粒。
气溶胶类型:海洋型、陆地型、火山爆发自然(陆地海洋火山);人为(汽车尾气、污染物)4.瑞利散射:当微粒的直径比辐射波长小得多时,此时的散射称为瑞利散射。
散射率与波长的四次方成反比,因此,瑞利散射的强度随着波长变短而迅速增大。
对可见光的影响较大。
米散射:当微粒的直径与辐射波长差不多时的大气散射。
气溶胶引起的,对波长依赖性很小无选择散射:云,所有光都被散射回来5.大气层结构简答,根据温度分布,垂向划分:对流层、平流层、中间层、热成层、外大气层1)对流层:有各种天气现象,强烈对流/温湿分布不均匀/航空活动区,对遥感最重要2)平流层/同温层:天气现象少/空气稳定/水汽、沙尘少,温度随高度增加而增加3)中间层:温度随高度增加而减少,对遥感的辐射传递几乎没影响4)热成层:温度随高度增加而增加,高度电离状态,短波电磁波被电离层折返回地面6.一类水体:浮游植物及其共变的碎屑主导海水光谱特性;二类水体:除浮游植物外的其他物质在海水光谱特性中起主导作用海洋初级生产力:把无机碳变成有机碳的单位时间的速率,和叶绿素浓度、光照、光照时间、光穿透距离有关7.遥感反射比(可见光、海色遥感):公式、向上辐亮度和向下辐照度之比,Rw和Ed之比归一化离水辐亮度:假设太阳在正上,把大气分子散射衰减消除的离水辐亮度8.黄色物质:有色可溶有机物,陆源(植被,棕黄酸),海洋(动物死亡分解)9.生物光学算法:通过离水辐亮度去推导海水中的各主分浓度的算法。
由海水上面的离水辐亮度推导叶绿素浓度、泥沙浓度、k490衰减系数、透明度等。
10.大气校正:由传感器接收到的辐亮度计算出离水辐亮度的过程Lt是卫星接收的总辐射;第一项是离水辐亮度,接下来三项是大气路径辐射,分别是气溶胶的,分子的,两者都有的,Lwc是白冒,Lsr是太阳耀斑。
11.归一化雷达散射截面:信号打在上面,考虑到雷达尺寸和距离的面积;,→维基百科的散射截面,归一化可以描述目标属性雷达散射截面:散射能量与入射能量之比,归一化雷达散射截面:除以面积后的雷达散射截面,。
12.布拉格散射条件:在弹性散射(elastic scattering)中: 入射光的能量没有损耗,但入射光的传播方向发生变化. 当入射光之波长(如X光)与物质晶格间距接近时,为所谓布拉格散射.共振条件:θsin2•=radarwaterkk或者:θλsin2•Λ=water,其中,k是波数,radarλ是雷达波长,Λ为海上波浪的波长,θ是入射角。
13.双尺度模型、组合模型(等价):组合是镜面和布拉格,双尺度是大尺度的海浪叠加小尺度滤波短无线电波。
即小的不规则的短波长叠加在较长、较大波浪上,双尺度模型既考虑了短波长毛细波的布拉格散射,又考虑了长重力波的影响;14.地球物理模式函数:描述微波海面归一化散射系数(归一化雷达散射截面)与风向、风速、入射角之间关系的函数的叫做地球物理模式函数。
散射计、sar用它来进行风速、风向反演;高度计进行风速反演。
σ高度计,反比~w0w SAR(单次测量,须知风向)\散射计(多次测量),正比25minϕσ\~15.高度计有关概念:大地水准面:接近地球表面的地球等势面海平面高度:大地水准面和海洋动力高度之和。
湾流、黑潮的地方比较大。
海面地形(动力高度):平均海面与大地水准面之差海平面:高潮时的海平面和低潮时海平面之间的中值海平面异常:海平面与平均海平面之差参考椭球:和地球表面最接近的椭球16.空间分辨率:空间分辨率是指像素所代表的的地面范围的大小,即扫描仪的瞬时视场,或地面物体能分辨的最小单元。
Hλ/D17.基尔霍夫定律:热平衡时,发射和吸收的相等18.海色卫星:生态、检测、动力19.卫星平台分类:1.简述海洋遥感极其主要研究内容利用电磁波与大气和海洋的相互作用原理,从卫星或其他空间平台上观测和研究海洋。
红外、微波、可见光研究海洋温度、水色、动力地形、风场、盐度、海洋现象的技术2.发展阶段78~85之前是探索阶段,航天技术,seasat,雨云号,泰勒斯85(geosat)-90 实验阶段实验设备,传感器上天90之后各种卫星成系列业务化运行,强调连续性、大量传感器3.主动传感器:高度ALT:Joson/Posedion,Topex,Geosat,HY-2/ALT散射SCAT:Quikscat, ERS/AMI(即可做scat又可做SAR),HY-2/SCAT,ADEOS/Seawinds,,NSCAT, Sea/SASS合成孔径雷达(SAR): ERS/AMI, Radarsat-1,2, HJ, JERS/SAR, CSAR(L波段),GF-3/SAR 被动传感器辐射计:1)红外:NOAA/AVHRR, ERS/ATSR, Terra Aqua/MODIS, Aqua,COCTS3.7μ,10μ,12μ2)可见(海色):OCTS, SeaFS, CZCS, MERIS, MODIS, COCTS, VPP/VIIR412,490,520,550,670,6853)微波: AMSR,SMMI,SMMR,SMOS5~10Hz SST1.4Hz 盐大于10 Hz风SSW22Hz 水汽微波辐射计:SSM,SMMR温度:AVHRR MODIS海色:merris,CZCS、MODISHy1:红外,cocts散射计、高度计、合成孔径雷达主动高度计被动风速、海面高度、温度、盐度、降雨4.与传统观测相比,简述卫星海洋遥感数据的主要特点。
作业有,大面积、大范围、长时间,经济,不能到达的地方(河口极地争议区),多传感器同时研究微波的话全天候,不受天气影响常规是接触性测量,有些地方无法到达,遥感是间接测量需要印证,数据都是反演出来的5.在可见光和近红外波段,大气最主要的散射作用是什么?6.最主要作用是散射可见光,散射,改变能量传播方向,包括瑞利、气溶胶红外(短波),水汽吸收和大气辐射微波:不考虑散射,水滴,电离层分波段说7.简述海洋遥感在海洋科学研究中的作用。
1)它是物理学、信息科学与海洋科学交叉学科,理论涉及电磁波与海洋大气的相互作用以及海洋/大气辐射传递;2)为海洋科学研究、海洋环境、气候变化预测与预报提供数据集;3)卫星海洋遥感的多传感器资料可促进海洋科学交叉学科发展;4)可以发现新的海洋现象,大尺度观测;如中尺度涡现象等8.按波长从大到小排列P,X,C,Ku,L,可见光,红外,并举例说明各个波段主要用在哪些卫星传感器P>L>S>C>X>KuL:盐sar一定穿透深度(军方)海洋不好用,不好散射、风很大才散射,主要微波辐射及测盐度。
Ku:散射计,低风速就能散射,敏感。
S、P、X、C、L:合成孔径雷达;Ku、C、X:散射计上,散射计主要是C;L:盐度,辐射计;可见光:海色传感器;红外:测温的传感器;9.微波为什么有极强的穿透云层的作用因为微波的高频的部分有散射,其他部分不考虑云因为对微波来说,微波1mm-1m波长比粒子直径大得多,则又属于瑞利散射的类型,散射强度与波长四次方成反比,波长越长散射强度越小,所以微波才有可能有最小散射,最大透射,而被称为具有穿云透雾的能力。
衍射10.简述影响海面发射率的主要因素,并分析说明海洋遥感反演的哪些海洋环境参数与海面发射率有关观测条件:频率、波长,极化,入射角、盐度、风、温度、海面粗糙度都有关系盐度(小于1.4Hz L波段)、风、温度和发射率有关‘1.4GHZ:和SSS有关;6~10GHz:和SST有关;1>10GHZ :和SSW 有关;22GHz :测水汽。
是水汽吸收的通道。
11. 简述影响海色遥感反演的主要问题1)解决大气矫正问题,分子、气溶胶散射,尤其是气溶胶的影响怎么消除,其影响是不固定的很多是人为影响,大气的辐射量占卫星接收到的辐射量的90到95,由卫星测量的幅亮度,计算到海面的2)生物光学算法:一二类水体的问题,对二类水体组分是变化的,甚至溢出的12. 简述卫星高度计测量海浪有效波高和风速的原理前沿的斜率是海面波高标准差的函数(此函数可以通过拟合得到)。
有效波高是指再一次给定的观测中所测得的占波浪总个数三分之一的大波波高的平均值。
有效波高是海面波高标准差的4倍,即波高均方根的4倍。
kh H 431=测风速:由于卫星高度计是天底视主动式传感器,海面平静时回波信号最强。
海面在风的作用下能够产生厘米尺度的波浪,从而引起海面粗糙度(海面均方斜率)的变化。
海面起伏随风增大时,把信号反射回传感器的镜面面积越来越少,回波也就越来越弱。
雷达散射计对于大于或等于其工作波长(2cm )的海面粗糙度变化有敏感反应。
风越大,越矮,风和σ成反比13. 写出海面散射的布拉格散射条件并解释各个参数的物理含义。
简述散射计测量海面风场的物理机制以及产生风向多解的原因和解决办法共振条件:θsin 2•=radar water k k 或者:θλsin 2•Λ=radar ,其中,k 是波数,radar λ是雷达波长,Λ为海上波浪的波长,θ是入射角。
物理机制:布拉格共振。
原因:因为风向和归一化雷达后向散射系数的关系是余弦,不是单值函数,一个后向散射系数最多可以对应四个风向解。
解决办法:一般测4次,比如:41(2)、49(2),如果还消不掉,通过场的方法:求散度、旋度;(粗)预报风场:雷达的风向、散射计的风向,取和预报风向最接近的那个;中值滤波。
14.简述合成孔径雷达对海浪成像的主要机制。
倾斜机制:海浪波浪通常比较长,小尺度重力波在大尺度浪叠加,长波改变小尺度重力波入射角,雷达波和小尺度重力波相互作用流体动力学:小尺度波均匀分布在平面上,大浪的流体速度和小尺度作用,使得小尺度波分布不均匀,这个过程叫做流体动力学机制15.简述合成孔径雷达的主要海洋应用并简要说明其物理机制可用于观测波浪、涡流、风暴潮、内波扰动的海面、海面风及海冰。
现象产生幅聚、幅散,使得短尺度重力波分布改变,短尺度重力波和电磁波布拉格共振。
16.下图是有关大气衰减、黑体辐射随波长的关系,据此分析海色、海温和微波遥感的波段选择依据可见光白天3.7会受太阳影响厉害10.11.12测温用这个区,微波一般用厘米以上,波长越长,大气就没影响17.结合上图简要分析微波辐射计测量海面盐度的波段选择。
18.测盐度频率越小越好,用L波段,大于5的就不能用了因为变化不受盐度影响19.简述多通道微波辐射计测量海面风速的原理。