海洋平台基础知识
- 格式:pdf
- 大小:296.85 KB
- 文档页数:8
国内外风电网站大全重要摘自:/blog/static/129624222201002484220337/风电网站大全国内风电信息网中国新能源网/国家风能协会中国风电网/index.php中国风力发电网/中国新能源与可再生能源/新疆风能网/蓝天能源网/全国风力发电信息中心/中国资源综合利用协会可再生能源专业委员会国家发改委能源研究所/index.asp中国风电产业网/华夏风电网/中国风力材料设备网/国家风力发电工程技术研究中心/中国可再生能源网/中国新能源网/中国风力发电信息网/中国能源网/中国风电网中国风能信息中心/中国风电产业网中国风电中心世界风力发电网国内风力机制造商沈阳工业大学风能技术研究所/金风科技网/沈阳天阳风力发电机制造有限公司/杨中灵平风机制造有限公司/苏州市太湖风机制造有限公司/江苏泰隆风机制造有限公司/tl/index0.htm邯郸市东方风机制造有限公司/宁波方圆风机制造有限公司/index_c.htm国外风电信息网欧洲风能协会http://www.risoe.dk丹麦咨询公司http://www.btm.dk/美国风能协会/英国风能协会/风力特性数据库/美国能源部/巴黎国际能源总署(IEA)/风能月刊/美国国家投资分会(能源工程协会)/欧洲可再生能源理事会世界能源展望/美国国家可再生能源实验室/德国风能协会http://www.wind-energie.de/能源在线/加拿大风能协会http://www.canwea.ca/国际风力协调委员会/加利福尼亚能源委员会/风能/wind/国际能源代理http://www.afm.dtu.dk/wind/iea/RISO国家可再生能源实验室(丹麦)http://www.risoe.dk/世界能源议会/wec-geis/能源信息局(EIA)/全球能源概念(GEC)/澳大利亚风能协会.au/澳大利亚可再生能源研究中心.au/acre/ DEWI(德国)http://www.iwr.de/维多利亚风能地图集.au/renewable_energy/wind/atlas/index.asp Espace Eolien Developement (法国) http://www.espace-eolien.fr/La Compagnie du Vent (法国) http://perso.wanadoo.fr/cabinet.germa/南非风能协会www.icon.co.za/~sawea新西兰风能协会/风力实验室/爱尔兰风能协会芬兰风能协会www.tuulivoimayhdistys.fi风能前景/风力发展框架/Wind Power Pty Ltd .au/地中海和其他海域海上风电http://www.owemes.it/CORDIS数据库http://www.cordis.lu/en/home.html国际新能源网/世界新能源网/国外风力机制造商丹麦风力机制造协会/en/core.htmBergey Wind Turbines /Vestas Wind System A/S(丹麦)/uk/Home/index.aspEnercon GmbH(德国)http://www.enercon.de/en/_home.htmNEG Micon A/S(丹麦)/GE(美国)/Bonus Energy(丹麦)http://www.bonus.dkNordex AG(德国)/Repower Systems AG(德国)http://www.repower.de/Gamesa http://www.gamesa.es/home.htmLagerwey http://www.bettink.nl/DE Wind http://www.bettink.nl/Suzlon(印度)/关于海洋钻井平台(1)本文写给想从事海洋工程钻井设计和相关工作的朋友们。
海洋平台工艺知识总结汇报海洋平台工艺知识总结汇报一、概述:海洋平台是指在海洋上建造的大型钢结构平台,用于进行海洋石油、天然气等资源的开发和生产。
海洋平台工艺是指在设计、建造和运营海洋平台过程中所涉及的技术和方法。
下面将对海洋平台工艺知识进行总结汇报。
二、海洋平台工艺的重要性:1. 提高工作效率:合理的工艺能够提高建造平台的效率,降低工期,使平台尽快投入生产,实现资源的开发利用。
2. 提高安全性:科学的工艺设计能够确保平台的结构稳定、船员的安全,减少事故的发生。
3. 降低成本:合理的工艺设计能够减少材料浪费,提高利用率,降低了平台建造的成本。
三、海洋平台建造的主要工艺:1. 设计:海洋平台的设计是整个建造过程的基础。
包括结构设计、强度计算、材料选取、预应力设计等内容。
2. 模块化建造:海洋平台采用模块化建造的方式可以提高施工效率。
每个模块都在陆地上制造完成后,通过船运方式将其运送到海洋平台建设地点进行安装。
3. 吊装:吊装是指将大型模块或设备从陆地上通过吊机等装置吊装安装到海洋平台上。
吊装作业需要考虑重量、平衡、高度等因素,保证安全顺利进行。
4. 焊接与拼装:海洋平台的构件多采用钢结构,需要进行焊接与拼装。
焊接工艺要求高,要保证焊接强度和质量。
5. 装备安装:包括设备、管道、阀门等的安装,需要保证正确连接、良好密封和可靠性。
6. 防腐保温:海洋平台需要考虑到海洋环境的腐蚀性和气候条件,进行合适的防腐保温处理,延长平台的使用寿命。
7. 海底管线铺设:海洋平台需要与陆地或其他设施进行管线连接,涉及到海底管线的铺设,需要考虑水深、地质条件、管道材料等问题。
四、海洋平台工艺的关键问题:1. 结构强度:海洋平台需要在恶劣的环境下承受海浪、风力等外力的作用,因此结构强度是一个关键问题,需要结构设计师进行精确计算。
2. 耐腐蚀性:海洋平台需要经受海水的腐蚀,因此需要合理选择材料和进行防腐保护措施,确保平台的使用寿命。
海洋平台基础知识6.有利于将来维修,大大节省费用当再次维修时,无需去除原有的锌加涂层,只需去除浮锈清洁干净后可涂装新的锌加涂层,新的锌加涂层会与旧的锌加涂层融合在一起形成一层,这就使得在任何时候业主都可以用最低的费用来进行维护修补。
三.海洋平台使用锌加的涂装配套方案1.海洋平台大气区道数涂层干膜厚度涂层结构2锌加60μm1环氧中间漆100μm2丙烯酸聚氨酯面漆60μm合计5220μm2.海洋平台飞溅区道数涂层干膜厚度涂层结构2锌加80μm2厚浆型环氧沥青涂料250μm合计4330μm3.海洋平台全浸区道数涂层干膜厚度涂层结构2锌加60μm2氯化橡胶防锈底漆100μm2防污漆200μm合计6360μm备注:此方案需要外加牺牲阳极保护四.锌加防腐寿命测算(锌加60mm)1.锌加阴极保护作用公式n=(G/g)×k其中n:耐用年数G:锌层总附着量,其中1mm锌层涂布量约为7.2g/m2g:年腐蚀量根据ISO12944标准,一般在海洋环境下钢结构锌层年腐蚀量为30g/m2;k:折减系数,一般锌加以0.8计7.2零,采用国产涂料10年保护期内维修次数为3次,采用进口涂料10年保护期内维修次数为2次。
根据经济效益比较表可以得出以下结论:1.采用锌加+面涂涂层系统与锌加镀锌涂层系统时表面处理要求较低,所以需要表面处理费用比采用有机涂料低14%左右。
2.采用锌加+面涂涂层系统的一次性投资额虽然略高于采用国产涂料和采用进口涂料的一次性投资额,但是其综合计价远远低于采用国产涂料和采用进口涂料的综合计价,在头十年使用期要降低6-15元/m2,10年后费用节省更多。
3.综上所述,采用采用锌加+面涂涂层系统进行防腐涂装的一次性投资额是可行的,同时可以给客户带来良好的综合经济效益。
4.此经济效益比较分析便于保守,采用锌加+面涂涂层系统与锌加镀锌涂层系统的一般保护年限可以达到30年以上。
5.海洋平台的稳性stabilityofoffshoreplatform海洋平台在拖航、下沉或使用过程中抗倾覆和抗滑移的能力。
海洋平台基础知识系列 0. 海洋工程是什么?(名词解释) Ocean engineering 海洋工程,从地理的角度来说,可分为海岸工程、近岸工程(又称离岸工程)和深海工程三大类。
一般来说,位于波浪破碎带一线的工程,为海岸工程;位于大陆架范围内的工程,为近岸工程;位于大陆架以外的工程,为深海工程,但是在通常情况下,这三者之间又有所重叠。
从结构角度来说,海洋工程又可分为固定式建筑物和系留式设施两大类。
固定式建筑物是用桩或者是靠自身重量固定在海底,或是直接坐落在海底;系留式设施是用锚和索链将浮式结构系留在海面上。
它们有的露出水面,有的半露在水中,有的置于海底,还有一种水面移动式结构装置或是大型平台,可以随着作业的需要在海面上自由移动。
海洋工程是指以开发、利用、保护、恢复海洋资源为目的,并且工程主体位于海岸线向海一侧的新建、改建、扩建工程。
具体包括:围填海、海上堤坝工程,人工岛、海上和海底物资储藏设施、跨海桥梁、海底隧道工程,海底管道、海底电(光)缆工程,海洋矿产资源勘探开发及其附属工程,海上潮汐电站、波浪电站、温差电站等海洋能源开发利用工程,大型海水养殖场、人工鱼礁工程,盐田、海水淡化等海水综合利用工程,海上娱乐及运动、景观开发工程,以及国家海洋主管部门会同国务院环境保护主管部门规定的其他海洋工程。
1: 海洋平台的类型: 海洋平台:(1)移动式平台: 坐底式平台 自升式平台 钻井船 半潜式平台 张力腿式平台 牵索塔式平台 (2)固定式平台:导管架式平台 重力式平台固定平台又可以分为桩式海上固定平台、重力式海上固定平台、自升式海上固定平台 导管架型平台:在软土地基上应用较多的一种桩基平台。
由上部结构(即平台甲板)和基础结构组成。
上部结构一般由上下层平台甲板和层间桁架或立柱构成。
甲板上布置成套钻采装置及辅助工具、动力装置、泥浆循环净化设备、人员的工作、生活设施和直升飞机升降台等。
平台甲板的尺寸由使用工艺确定。
海洋平台报告1,海洋平台:移动式平台:坐底式平台自升式平台钻井船半潜式平台张力腿式平台牵索塔式平台(2)固定式平台:导管架式平台重力式平台按其结构特性和工作状态可分为固定式、活动式和半固定式三大类。
固定式平台的下部由桩、扩大基脚或其他构造直接支承并固着于海底,按支承情况分为桩基式和重力式两种。
活动式平台浮于水中或支承于海底,能从一井位移至另一井位,接支承情况可分为着底式和浮动式两类。
近年来正在研究新颖的半固定式海洋平台,它既能固定在深水中,又具有可移性,张力腿式平台即属此类。
固定式平台桩基式平台①导管架型平台。
在软土地基上应用较多的一种桩基平台。
由上部结构(即平台甲板)和基础结构组成。
上部结构一般由上下层平台甲板和层间桁架或立柱构成。
甲板上布置成套钻采装置及辅助工具、动力装置、泥浆循环净化设备、人员的工作、生活设施和直升飞机升降台等。
平台甲板的尺寸由使用工艺确定。
对深海平台,还需进行结构动力分析。
结构应有足够的刚度以防止严重振动,保证安全操作。
导管架焊接管结点的设计是一个重要问题,管结点是一个空间结点,应力分布复杂;近年应用谱分析技术分析管结点的应力,取得较好的结果。
导管架由导管(即立柱)和导管间的水平杆和斜杆焊接组成,钢桩沿导管打入海底。
打桩完毕后,在两者的环形空隙内用水泥浆等胶结材料固结,使桩与导管架形成一个整体,以承受巨大的竖向和水平荷载。
②塔架型平台。
另一种适于软土地基的桩基平台。
由腿柱(通常直径达6米)、水平杆和斜杆及大梁(圆形或箱形)组成。
为减小挡水面积,桩均设置在腿柱内,排成圆形,桩顶与腿柱焊接,空隙内灌入水泥浆,以防止薄壁腿柱发生局部压屈,并使桩固定在腿柱下端。
施工时将塔架侧放并拖运就位,注入压舱水,使塔架直立,然后打桩,最后安装平台甲板。
在自然条件恶劣的深水区,目前多采用导管架和塔架的组合方式。
重力式平台①钢筋混凝土重力式平台。
依靠自身重量维持稳定的固定式海洋平台。
主要由上部结构、腿柱和基础三部分组成。
海洋平台基础知识系列 0. 海洋工程是什么?(名词解释) Ocean engineering 海洋工程,从地理的角度来说,可分为海岸工程、近岸工程(又称离岸工程)和深海工程三大类。
一般来说,位于波浪破碎带一线的工程,为海岸工程;位于大陆架范围内的工程,为近岸工程;位于大陆架以外的工程,为深海工程,但是在通常情况下,这三者之间又有所重叠。
从结构角度来说,海洋工程又可分为固定式建筑物和系留式设施两大类。
固定式建筑物是用桩或者是靠自身重量固定在海底,或是直接坐落在海底;系留式设施是用锚和索链将浮式结构系留在海面上。
它们有的露出水面,有的半露在水中,有的置于海底,还有一种水面移动式结构装置或是大型平台,可以随着作业的需要在海面上自由移动。
海洋工程是指以开发、利用、保护、恢复海洋资源为目的,并且工程主体位于海岸线向海一侧的新建、改建、扩建工程。
具体包括:围填海、海上堤坝工程,人工岛、海上和海底物资储藏设施、跨海桥梁、海底隧道工程,海底管道、海底电(光)缆工程,海洋矿产资源勘探开发及其附属工程,海上潮汐电站、波浪电站、温差电站等海洋能源开发利用工程,大型海水养殖场、人工鱼礁工程,盐田、海水淡化等海水综合利用工程,海上娱乐及运动、景观开发工程,以及国家海洋主管部门会同国务院环境保护主管部门规定的其他海洋工程。
1: 海洋平台的类型: 海洋平台:(1)移动式平台: 坐底式平台 自升式平台 钻井船 半潜式平台 张力腿式平台 牵索塔式平台 (2)固定式平台:导管架式平台 重力式平台固定平台又可以分为桩式海上固定平台、重力式海上固定平台、自升式海上固定平台 导管架型平台:在软土地基上应用较多的一种桩基平台。
由上部结构(即平台甲板)和基础结构组成。
上部结构一般由上下层平台甲板和层间桁架或立柱构成。
甲板上布置成套钻采装置及辅助工具、动力装置、泥浆循环净化设备、人员的工作、生活设施和直升飞机升降台等。
平台甲板的尺寸由使用工艺确定。
基础结构(即下部结构)包括导管架和桩。
桩支承全部荷载并固定平台位置。
桩数、长度和桩径由海底地质条件及荷载决定。
导管架立柱的直径取决于桩径,其水平支撑的层数根据立柱长细比的要求而定。
在冰块飘流的海区,应尽量在水线区域(潮差段)减少或不设支撑,以免冰块堆积。
对深海平台,还需进行结构动力分析。
结构应有足够的刚度以防止严重振动,保证安全操作。
并应考虑防腐蚀及防海生物附着等问题。
导管架焊接管结点的设计是一个重要问题,有些平台的失事,常由于管结点的破坏而引起。
管结点是一个空间结点,应力分布复杂;近年应用谱分析技术分析管结点的应力,取得较好的结果。
混凝土重力式平台的底部通常是一个巨大的混凝土基础(沉箱),用三个或四个空心的混凝土立柱支撑着甲板结构,在平台底部的巨大基础中被分隔为许多圆筒型的贮油舱和压载舱,这种平台的重量可达数十万吨,正是依靠自身的巨大重量,平台直接置于海底。
现在已有大约20座混凝土重力式平台用于北海 钻井船是浮船式钻井平台,它通常是在机动船或驳船上布置钻井设备。
平台是靠锚泊或动力定位系统定位。
按其推进能力,分为自航式、非自航式;按船型分,有端部钻井、舷侧钻井、船中钻井和双体船钻井;按定位分,有一般锚泊式、中央转盘锚泊式和动力定位式。
浮船式钻井装置船身浮于海面,易受波浪影口向,但是它可以用现有的船只进行改装,因而能以最快的速度投入使用。
适用于深海钻井的主要是两种浮式钻井装置——半潜式钻井平台和钻井船。
牵索塔式钻井平台得名于它支撑平台的结构如一桁架式的塔,该塔用对称布置的缆索将塔保持正浮状态。
在平台上可进行通常的钻井与生产作业。
原油一般是通过管线运输,在深水中可用近海装油设施进行输送。
埃克逊技术公司曾为欧洲北海350m水深的环境设计牵索塔,该塔具有面积为36.5m2的四方形剖面的塔式结构,整个长度的剖面都一样,其一端承载平台设备,另一端停放在称为桩腿筒的竖向承载基础上,有16根桩腿,另有10.8cm的钢缆24根作为导引索系统,每根钢缆通过旋转接头直到海底,分别与165t重的水泥块和1.4m长的桩连接拉紧。
桩的分布半径约有1000m,油井导管穿过桩腿筒,整个系统可容纳30个油井导管。
塔是顺应式的,能随波浪力的响应稍微移动,其系泊系统能对塔提供足够的复原力,使它始终保持垂直状态。
设计时允许塔的倾斜度在2度以内。
张力腿式钻井平台也是采用锚泊定位的,但与——般半潜式平台不同。
其所用锚索绷紧成直线,不是悬垂曲线,钢索的下端与水底不是相切的,而是几乎垂直的。
用的是桩锚(即打入水底的桩为锚)或重力式锚(重块)等,不是一般容易起放的抓锚。
张力腿式平台的重力小于浮力,所相差的力量可依靠锚索向下的拉力来补偿,而且此拉力应大于由波浪产生的力,使锚索上经常有向下的拉力,起着绷紧平台的作用。
张力腿式平台自1954年提出设想以来,迄今已有40年的历史。
Spar平台主要由四个系统组成[2]:顶部模块、壳体、系泊系统和立管(生产、钻探、输油等)。
顶部模块是一个多层桁架结构,它可以用来进行钻探、油井维修、产品处理或其它组合作业。
用来支撑钻探设备和生产设备的生产钻探甲板及中间甲板与固定平台的甲板很接近,井口布置在中部。
传统Spar的主体是一个大直径、大吃水的具有规则外形的浮式柱状结构。
水线以下部分为密封空心体,以提供浮力,称为浮力舱,舱底部一般装压载水或用以储油(柱内可储油也成为Spar的显著优点),中部由锚链呈悬链线状锚泊于海底。
2: 海洋平台的焊接: 大型海洋石油钢结构的重量、结构和体积随着海洋石油开发的水深不断加大,海洋结构不断加重,结构物体积和使用的钢板厚度也不断加大。
而随着钢材价格的上升和海洋结构、海上安装能力的要求,高强度钢的应用也在大面积采用,这样一来就可以减少用钢量。
小型海洋结构采用的材料多为355MPa甚至强度级别更低的材料,大型海洋平台结构420MPa钢材的采用比例正在不断增加。
另外,随着钢板厚度的增加,带来了大量焊后热处理的工作量。
例如,海洋平台导管架的一道95mm、φ3750mm的环焊缝,采用双面坡口(内坡口深度1/3,外坡口深度2/3),焊缝金属重量近271kg,所以采用高效的焊接技术、设备、工艺和高性能的焊接材料(免除焊后退火处理)是必然的趋势。
解决上述问题,可以从两个方面入手:一是采用高效的埋弧焊,即波形控制技术的双丝埋弧焊系统(美国林肯的产品);另一方面采用高强度、高韧性的焊接材料,通过CTOD 试验评价焊缝的韧性,取消焊后退火,从而缩短海洋结构的建造周期。
3: 海洋平台的腐蚀规律 海洋平台是海上采油的重要设施。
海洋平台造价昂贵,日常维护困难,为保证平台的安全可采用金属镀层、有机涂层和电化学方法。
由于海洋环境的影响,平台用钢具有特定的腐蚀规律和适宜的防腐蚀保护措施lj]。
海洋平台的腐蚀规律:海洋平台的使用环境极其苛刻,日照、海风、波浪冲击、复杂的海水体系、昼夜和季节温度变化及海生物侵蚀等使海洋平台腐蚀速率较快,因此对防腐蚀保护体系的要求也高。
平台按照腐蚀规律可大致分为大气区、潮差飞溅区、水下全浸区、海泥区。
根据不同的腐蚀规律和防腐要求采取不同的防腐蚀方案。
1.1 大气区平台结构在海面飞溅带以上的部分结构较复杂,受日光、风雨、冰雪和高浓度盐雾等作用,腐蚀速率较快,一般阴面比阳面腐蚀更严重,距海水近的下部比上部腐蚀严重。
若海洋大气中含有SO ,腐蚀速率会进一步增加。
如渤海海上平台在海洋大气区的实测腐蚀速率超过0.1mm/a,对平台结构安全造成威胁。
故平台在海洋大气区采用有机涂层保护,要求涂层具有优异的耐大气老化和盐沉积性能,应用于甲板、直升机平台等部位应具有良好的耐冲击、耐磨及防滑性能。
1.2 潮差飞溅区海洋平台处于涨潮和落潮及海水飞溅达到的部分是海洋平台腐蚀最严重的部分。
受到阳光照射、浪花飞溅和冲击、涨潮和落潮时干湿交替、海面漂浮物的撞击和侵蚀、海水电解质腐蚀以及石油化学品污染等环境影响。
如渤海海上平台,在飞溅区的实测腐蚀速率为0.45mm/a,并有很多深度2mm以上的蚀坑,这种较大的损失量必将对平台力学性能产生巨大影响。
由于平台在潮差飞溅区的环境特点,一般采用有机涂层和电化学保护相结合的方法进行保护。
所选防腐蚀涂料,要求具有耐候性、耐磨损、耐冲击、耐化学腐蚀、耐干湿交替等性能,并需要厚涂。
1.3 水下全浸区海洋平台处于低潮水位下的部分。
水下全浸区处于复杂的海水电解质环境中,表层海水的水温高、氧气近于饱和、生物活性强、有石油泄漏污染,是水下区腐蚀最强的部分。
表层以下部分氧气含量较少,植物性和动物性污染较少,但水温低,压力大,腐蚀相对较轻,腐蚀一般由海水电解质的腐蚀造成。
平台在海水全浸区的腐蚀速率一般为0.1~O.2mm/a,而且容易发生严重的局部腐蚀和疲劳腐蚀。
对于半潜式平台,对负重有一定要求,最好使用涂层和电化学保护相结合的方法,能够在正常使用情况下减轻牺牲阳极的重量。
要求涂层具有良好的耐海水性和耐电位性能。
1.4 海泥区固定式海洋平台,在海泥区中,粘土和细粉沙软泥会含有厌氧硫酸菌而加速腐蚀;而海砂中微生物含量较少,钢材腐蚀速率相对低。
对于浅海区域,由于陆地污染物的排人,使腐蚀变得复杂,一般会加速腐蚀。
对于浅海中埋在海底部分的桩腿和海管,由于氧浓差电池作用,将加快腐蚀埋在海泥中的钢结构;而位于深海区,钢由于氧气供应不足而易极化,腐蚀速率较低。
海泥区一般采用电化学防腐保护。
4. 海洋平台的防腐涂装方案 锌加应用在海洋钻井平台防腐涂装方案 一. 海洋钻井平台采用的有机涂料防腐方法海上钻井平台涂料,在品种与长效船舶涂料有很多类似之处,海洋平台涂料保护的具体要求是:涂料与钢材表面及各道涂料之间有良好附着力,老化性能好,耐盐雾性能好,耐海水性能好,能形成适当弹性的涂层,满意的表面处理、油漆涂装和固化条件,以及能与阴极保护配套使用等。
又海洋平台涂装面积大,一般海洋钻井平台在100000平方米以上,而且从维修的观点,要求涂料使用周期越长越好。
涂装配套根据腐蚀部位海洋钻井平台可分三个部位:大气区、飞溅区和全浸区。
1. 海洋平台大气区的涂料保护大气区是平台腐蚀较轻微的部位,比其他部位维修方便些,但比船舶与岸边的结构还是困难得多。
所选用的涂料品种亦采用高性能的。
一般的涂装配套是: 道数 涂层 干膜厚度涂层结构 1 无机锌底漆 75μm 2 冷固化环氧中间漆 200μm 2 丙烯酸聚氨酯面漆 60μm 合计 5 335μm 2. 海洋平台飞溅区的涂料保护飞溅区是海洋平台结构腐蚀最严重的区域,它经受海洋大气与海水浸渍的交替作用,海浪与冰块的冲击,锚链和水面飘浮物体的磨损,以及其它工作辅助船停靠的碰撞与摩擦。
而且飞溅区在维修时表面处理进行喷砂与涂装非常困难,因此平台飞溅区的涂装设计必须考虑今后维修与涂装的方便,并适当地对钢材厚度增放一定的腐蚀余量,必须采用高性能涂料。