1有限元法简介
- 格式:doc
- 大小:1.01 MB
- 文档页数:18
有限元法的原理求解域概述及解释说明1. 引言1.1 概述有限元法是一种数值分析方法,用于求解物理问题的数学模型。
它在工程领域得到了广泛的应用,能够对复杂的结构和系统进行精确的建模和计算。
有限元法通过将连续域划分为许多小的离散单元,在每个单元上使用适当的近似函数来表示待求解的变量,然后利用这些离散单元之间相互连接关系建立代数方程组,并通过求解该方程组得到所需结果。
1.2 文章结构本文将围绕有限元法展开讨论,并按照以下结构组织内容:引言包含概述、文章结构和目的;有限元法的原理部分将涵盖离散化方法、强弱形式及变分问题以及单元划分和网格生成;求解域部分将介绍求解域的定义与划分、边界条件设定和处理以及网格节点和单元的挑选策略;概述及解释说明部分将探讨有限元法在工程领域中的应用、与其他数值方法之间的对比与优势以及未来发展趋势和挑战;最后,本文将总结主要观点,并展望有限元法在应用领域的发展前景。
1.3 目的本文旨在对有限元法进行全面而清晰的介绍和解释,包括其基本原理、求解域的定义与处理方法以及在工程领域中的应用。
通过深入理解有限元法的原理和应用,读者可以更好地了解该方法的优劣势,并掌握将其应用于实际问题求解的能力。
此外,本文还将通过探讨有限元法未来的发展趋势和挑战,为研究者提供对该方法进行进一步改进和扩展的思路。
2. 有限元法的原理2.1 离散化方法有限元法是一种使用离散化方法来对偏微分方程进行求解的数值方法。
它将求解域划分为许多小单元,每个小单元称为有限元。
在这些有限元内,我们假设待求解的场量是线性或非线性的,并通过适当选择合适的函数空间来进行近似。
2.2 强弱形式及变分问题在有限元法中,我们将偏微分方程转化为一个弱形式或者说变分问题。
这是通过将原始方程乘以一个测试函数并进行积分得到的。
这样可以减小方程中高阶导数项对近似解产生的影响,并提供了更好的数学性质以进行计算。
2.3 单元划分和网格生成为了进行离散化,求解域需要被划分成一系列小单元。
通俗地说,有限元法就是一种计算机模拟技术,使人们能够在计算机上用软件模拟一个工程问题的发生过程而无需把东西真的做出来。
这项技术带来的好处就是,在图纸设计阶段就能够让人们在计算机上观察到设计出的产品将来在使用中可能会出现什么问题,不用把样机做出来在实验中检验会出现什么问题,可以有效降低产品开发的成本,缩短产品设计的周期。
有限元法也叫有限单元法(finite element m ethod, FEM),是随着电子计算机的发展而迅速发展起来的一种弹性力学问题的数值求解方法。
五十年代初,它首先应用于连续体力学领域—飞机结构静、动态特性分析中,用以求得结构的变形、应力、固有频率以及振型。
由于这种方法的有效性,有限单元法的应用已从线性问题扩展到非线性问题,分析的对象从弹性材料扩展到塑性、粘弹性、粘塑性和复合材料,从连续体扩展到非连续体。
有限元法最初的思想是把一个大的结构划分为有限个称为单元的小区域,在每一个小区域里,假定结构的变形和应力都是简单的,小区域内的变形和应力都容易通过计算机求解出来,进而可以获得整个结构的变形和应力。
事实上,当划分的区域足够小,每个区域内的变形和应力总是趋于简单,计算的结果也就越接近真实情况。
理论上可以证明,当单元数目足够多时,有限单元解将收敛于问题的精确解,但是计算量相应增大。
为此,实际工作中总是要在计算量和计算精度之间找到一个平衡点。
有限元法中的相邻的小区域通过边界上的结点联接起来,可以用一个简单的插值函数描述每个小区域内的变形和应力,求解过程只需要计算出结点处的应力或者变形,非结点处的应力或者变形是通过函数插值获得的,换句话说,有限元法并不求解区域内任意一点的变形或者应力。
大多数有限元程序都是以结点位移作为基本变量,求出结点位移后再计算单元内的应力,这种方法称为位移法。
有限元法本质上是一种微分方程的数值求解方法,认识到这一点以后,从70年代开始,有限元法的应用领域逐渐从固体力学领域扩展到其它需要求解微分方程的领域,如流体力学、传热学、电磁学、声学等。
第一章有限元法概述第一节有限元法的发展及基本思想随着现代工业、生产技术的发展,不断要求设计高质量、高水平的大型、复杂和精密的机械及工程结构。
为此目的,人们必须预先通过有效的计算手段,确切地预测即将诞生的机械和工程结构,在未来工作时所发生的应力、应变和位移。
但是传统的一些方法往往难以完成对工程实际问题的有效分析。
弹性力学的经典理论,由于求解偏微分方程边值问题的困难,只能解决结构形状和承受载荷较简单的问题,对于几何形状复杂、不规则边界、有裂缝或厚度突变,以及几何非线性、材料非线性等问题往往遇到很多麻烦,试图按经典的弹性力学方法获得解析解是十分困难的,甚至是不可能的。
因此,需要寻求一种简单而又精确的数值分析方法。
有限元法正是适应这种要求而产生和发展起来的一种十分有效的数值计算方法。
这个方法起源于20世纪50年代中期航空工程中飞机结构的矩阵分析。
1960年美国的克劳夫(C l o u g h)采用此方法进行飞机结构分析时,首次将这种方法起名为“有限单元法”(finite element method),简称“有限元法”。
有限单元法的基本思想,是在力学模型上将一个原来连续的物体离散成为有限个具有一定大小的单元,这些单元仅在有限个节点上相连接,并在节点上引进等效力以代替实际作用于单元上的外力。
对于每个单元,根据分块近似的思想,选择一种简单的函数来表示单元内位移的分布规律,并按弹性理论中的能量原理(或用变分原理)建立单元节点力和节点位移之间的关系。
最后,把所有单元的这种关系式集合起来,就得到一组以节点位移为未知量的代数方程组,解这些方程组就可以求出物体上有限个离散节点上的位移。
图1.1是用有限元法对直齿圆柱齿轮的轮齿进行的变形和应力分析,其中图1.1(a)为有限元模型,图1.1(b)是最大切应力等应力线图。
在图1.1(a)中采用8节点四边形等参数单元把轮齿划分成网格,这些网格称为单元;网格间互相连接的点称为节点;网格与网格的交界线称为边界。
有限元法的变分原理及其在土石坝设计中的应用有限元法是采用直接法计算变分问题的重要方法,在土木工程计算领域的分析软件如ANSYS、Workbench、Autobank等均以变分法为理论基础。
本文将就有限元法的变分原理作一简单梳理,并采用Autobank软件建模分析某土石坝的渗流场及应力变形,计算结果表明大坝应力变形符合工程实际,计算分析对大坝设计工作起到了指导作用。
标签:有限元;变分法;Autobank;土石坝设计;应力变形分析引言随着坝工技术的发展,土石坝建设高度越来越高,其应力和变形计算越来越关系到大坝安全。
因此,结构计算分析将会在土石坝的设计和科学研究中发挥越来越重要的作用。
有限元法的理论基础为变分法,变分法历史悠久,是近代发展起来的一门重要数学分支,在工程技术及科学研究中有着广泛的应用。
变分法起源于泛函的极值问题,其关键定理是欧拉-拉格朗日方程。
Autobank软件应力变形分析模块是以变分法为理论基础开发的一款有限元分析软件,提供线弹性模型、非线性模型(如邓肯E-B、E-μ模型)等,在水利工程设计中有着广泛的应用。
1、有限元法简介目前在水利工程结构分析领域常用的数值计算方法有:有限差分法FDM、有限元法FEM、边界元法BEM、离散元法DEM等,其中有限元法是应用最广泛的方法。
有限元法是以变分原理为基础发展起来的,是一种高效的数值计算方法。
工程计算和科学研究领域,常常需要求解各类常微分方程(组)、偏微分方程(组),而许多微分方程(组)的解析解很难得到,甚至无法求出。
使用有限元法将微分方程离散化后,编制计算机程序辅助求解,是一种可行且高效的方法。
2、有限元法的变分原理2.1 泛函及其极值设有泛函的极值问题:研究泛函在某函数类中的极值问题即变分问题,例如最小曲面问题、悬链线问题、边坡稳定最小安全系数的滑弧问题、重力坝的最优断面问题等。
研究泛函极值的方法即变分法。
直接法是求解泛函极值的近似方法,对于无法求解解析解的变分问题及工程计算,有着及其重要的作用。
有限元法介绍周宇 2012330300302 12机制(1)班理论研究、科学实验以及计算分析是人们进行科学研究和解决实际工程问题的重要手段,随着计算机技术及数值分析方法的发展,以有限元方法为代表的数值计算技术得到越来越广泛的应用。
有限元法是一种高效能、常用的数值计算方法。
科学计算领域,常常需要求解各类微分方程,而许多微分方程的解析解一般很难得到,使用有限元法将微分方程离散化后,可以编制程序,使用计算机辅助求解。
有限元法可应用于以任何微分方程所描述的各类物理场中,而不再要求这类物理场和泛函的极值问题有所联系。
一、基本思想有限元方法是一种求解复杂对象方程的方法,基本思想来源于“化整为零”、“化弧为直”的直观思路,将实体的对象分割成不同大小、种类、小区域称为有限元。
根据不同领域的需求推导出每一个元素的作用力方程,组合整个系统的元素并构成系统方程组,最后将方程组求解。
由有限元的发展,该法具有下列的特色:1、整个系统散为有限个元素;2、利用能量最低原理与泛函数值定理(见附录)转换成一组线性联立方程;3、处理过程简明;4、整个区域左离散处理,需庞大的资料输出空间与计算机内存,解题耗时;5、线性、非线性均适用;6、无限区域的问题较难仿真。
二、基本概念1、有限元法是把分析的连续体假想地分割成有限个单元所组合成的组合体;2、这些单元仅在顶角处相互联接,这些联接点称为结点。
离散化的组合体和真实的弹性体的区别在于:组合体中单元与单元之间的联接除了结点之外再无任何关联。
但是这种联接要满足变形协调条件,即不能出现裂缝,也不允许发生重叠——单元之间只能通过结点来传递内力。
通过结点来传递的内力称为结点力,作用在结点上的载荷称为结点载荷。
当连续体受到外力作用发生变形时,组成它的各个单元也将发生变形,因而各个结点要产生不同程度的位移,称为结点位移。
在有限元中,常以结点位移作为基本未知量。
并对每个单元根据分块近似的思想,假设一个简单的函数近似地表示单元内位移的分布规律,再利用力学理论中的变分原理(见附录)或其他方法,建立结点里与位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程,从而求解结点的位移分量。
1有限元法简介1.1有限单法的形成在工程技术领域内,经常会遇到两类典型的问题。
其中的第一类问题,可以归结为有限个已知单元体的组合。
例如,材料力学中的连续梁、建筑结构框架和桁架结构。
我们把这类问题,称为离散系统。
如图1-1所示平面桁架结构,是由6个承受轴向力的“杆单元”组成。
尽管离散系统是可解的,但是求解图1-2所示这类复杂的离散系统,要依靠计算机技术。
图1-1 平面桁架系统图1-2 大型编钟“中华和钟”的振动分析及优化设计(曾攀教授)第二类问题,通常可以建立它们应遵循的基本方程,即微分方程和相应的边界条件。
例如弹性力学问题,热传导问题,电磁场问题等。
由于建立基本方程所研究的对象通常是无限小的单元,这类问题称为连续系统。
图1-3 V6引擎的局部下面是热传导问题的控制方程与换热边界条件:t Tc Q z T z y T y x T x ∂∂=+⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂ρλλλ (1- 1)初始温度场也可以是不均匀的,但各点温度值是已知的:() 00x,y,z T Tt ==(1- 2)通常的热边界有三种,第三类边界条件如下形式:()f T-T h nTλ=∂∂-(1- 3)尽管我们已经建立了连续系统的基本方程,由于边界条件的限制,通常只能得到少数简单问题的精确解答。
对于许多实际的工程问题,还无法给出精确的解答,例如,图1-3所示V6引擎在工作中的温度分布。
这为解决这个困难,工程师们和数学家们提出了许多近似方法。
在寻找连续系统求解方法的过程中,工程师和数学家从两个不同的路线得到了相同的结果,即有限元法。
有限元法的形成可以回顾到二十世纪50年代,来源于固体力学中矩阵结构法的发展和工程师对结构相似性的直觉判断。
从固体力学的角度来看,桁架结构等标准离散系统与人为地分割成有限个分区后的连续系统在结构上存在相似性。
1956年M..J.Turner, R.W.Clough, H.C.Martin, L.J.Topp 在纽约举行的航空学会年会上介绍了一种新的计算方法,将矩阵位移法推广到求解平面应力问题。
他们把结构划分成一个个三角形和矩形的“单元”,利用单元中近似位移函数,求得单元节点力与节点位移关系的单元刚度矩阵。
1954-1955年,J.H.Argyris在航空工程杂志上发表了一组能量原理和结构分析论文。
1960年,Clough在他的名为“The finite element in plane stress analysis”的论文中首次提出了有限元(finite element)这一术语。
数学家们则发展了微分方程的近似解法,包括有限差分方法,变分原理和加权余量法。
在1963年前后,经过J.F.Besseling, R.J.Melosh, R.E.Jones, R.H.Gallaher, T.H.H.Pian(卞学磺)等许多人的工作,认识到有限元法就是变分原理中Ritz近似法的一种变形,发展了用各种不同变分原理导出的有限元计算公式。
1965年O.C.Zienkiewicz和Y.K.Cheung(张佑启)发现只要能写成变分形式的所有场问题,都可以用与固体力学有限元法的相同步骤求解。
1969年B.A.Szabo和G.C.Lee指出可以用加权余量法特别是Galerkin法,导出标准的有限元过程来求解非结构问题。
我国的力学工作者为有限元方法的初期发展做出了许多贡献,其中比较著名的有:陈伯屏(结构矩阵方法),钱令希(余能原理),钱伟长(广义变分原理),胡海昌(广义变分原理),冯康(有限单元法理论)。
遗憾的是,从1966年开始的近十年期间,我国的研究工作受到阻碍。
1.2 有限元法的基本思路有限元法的基本思路可以归结为:将连续系统分割成有限个分区或单元,对每个单元提出一个近似解,再将所有单元按标准方法组合成一个与原有系统近似的系统。
下面用在自重作用下的等截面直杆来说明有限元法的思路。
等截面直杆在自重作用下的材料力学解答图1-4 受自重作用的等截面直杆 图1-5 离散后的直杆受自重作用的等截面直杆如图所示,杆的长度为L ,截面积为A ,弹性模量为E ,单位长度的重量为q ,杆的内力为N 。
试求:杆的位移分布,杆的应变和应力。
)()(x L q x N -= EAdxx L q EA dx x N x dL )()()(-==⎰-==x x Lx EA q EA dx x N x u 02)2()()((1- 4))(x L EAq dx du x -==ε )(x L AqE x x -==εσ等截面直杆在自重作用下的有限元法解答1)离散化如图1-5所示,将直杆划分成n 个有限段,有限段之间通过一个铰接点连接。
称两段之间的连接点为结点,称每个有限段为单元。
第i 个单元的长度为L i ,包含第i ,i+1个结点。
2)用单元节点位移表示单元内部位移第i 个单元中的位移用所包含的结点位移来表示,)()(1i iii i x x L u u u x u --+=+ (1- 5)其中i u 为第i 结点的位移,i x 为第i 结点的坐标。
第i 个单元的应变为i ε,应力为i σ,内力为i N :iii i L u u dx du -==+1ε (1- 6)ii i i i L u u E E )(1-==+εσ(1- 7)ii i i i L u u EA A N )(1-==+σ(1- 8)3)把外载荷集中到节点上把第i 单元和第i+1单元重量的一半2)(1++i i L L q ,集中到第i+1结点上。
图1-6 集中单元重量4)建立结点的力平衡方程对于第i+1结点,由力的平衡方程可得:2)(11+++=-i i i i L L q N N(1- 9)令1+=i ii L L λ,并将(1- 8)代入得:221)11(2)1(i ii i i i i L EA q u u u λλλ+=-++-++(1-10)根据约束条件,01=u 。
对于第n+1个结点,2nn qL N =EAqL u u n n n 221=+-+ (1-11)建立所有结点的力平衡方程,可以得到由n+1个方程构成的方程组,可解出n+1个未知的接点位移。
1.3 有限元法的计算步骤有限元法的计算步骤归纳为以下三个基本步骤:网格划分,单元分析,整体分析。
1.3.1网格划分有限元法的基础是用有限个单元体的集合来代替原有的连续体。
因此首先要对弹性体进行必要的简化,再将弹性体划分为有限个单元组成的离散体。
单元之间通过单元节点相连接。
由单元、结点、结点连线构成的集合称为网格。
通常把三维实体划分成4面体或6面体单元的网格,平面问题划分成三角形或四边形单元的网格。
图1-7四面体四节点单元图1-8 六面体8节点单元图1-9 三维实体的四面体单元划分图1-10 三维实体的六面体单元划分图1-11 三角形3节点单元图1-12 四边形4节点单元图1-13 平面问题的三角形单元划分图1-14 平面问题的四边形单元划分1.3.2单元分析对于弹性力学问题,单元分析,就是建立各个单元的节点位移和节点力之间的关系式。
由于将单元的节点位移作为基本变量,进行单元分析首先要为单元内部的位移确定一个近似表达式,然后计算单元的应变、应力,再建立单元中节点力与节点位移的关系式。
以平面问题的三角形3结点单元为例。
如图1-15所示,单元有三个结点I、J、M,每个结点有两个位移u、v和两个结点力U、V。
图1-15 三角形3结点单元单元的所有结点位移、结点力,可以表示为结点位移向量(vector ):结点位移{}⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=m m j j i i ev u v u v u δ结点力{}⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=m m j j i i eV U V U V U F 单元的结点位移和结点力之间的关系用张量(tensor )来表示,{}[]{}e e e K F δ=(1-12)1.3.3整体分析对由各个单元组成的整体进行分析,建立节点外载荷与结点位移的关系,以解出结点位移,这个过程为整体分析。
再以弹性力学的平面问题为例,如图1-16所示,在边界结点i 上受到集中力iy ix P P ,作用。
结点i 是三个单元的结合点,因此要把这三个单元在同一结点上的结点力汇集在一起建立平衡方程。
图1-16 整体分析i 结点的结点力: ∑=++ee i i i i U U U U )()3()2()1(∑=++ee i i i i V V V V )()3()2()1(i 结点的平衡方程:⎪⎭⎪⎬⎫=∑∑=i y ee ie i x e iP V P U )()( (1-13)1.4有限元法的进展与应用有限元法不仅能应用于结构分析,还能解决归结为场问题的工程问题,从二十世纪六十年代中期以来,有限元法得到了巨大的发展,为工程设计和优化提供了有力的工具。
1.4.1算法与有限元软件从二十世纪60年代中期以来,进行了大量的理论研究,不但拓展了有限元法的应用领域,还开发了许多通用或专用的有限元分析软件。
理论研究的一个重要领域是计算方法的研究,主要有: 大型线性方程组的解法, 非线性问题的解法,动力问题计算方法。
目前应用较多的通用有限元软件如下表所列:另外还有许多针对某类问题的专用有限元软件,例如金属成形分析软件Deform、Autoform,焊接与热处理分析软件SysWeld等。
1.4.2应用实例有限元法已经成功地应用在以下一些领域:固体力学,包括强度、稳定性、震动和瞬态问题的分析;传热学;电磁场;流体力学。
转向机构支架的强度分析(刘道勇,东风汽车工程研究院动,用MSC/Nastran 完成)图1-17 转向机构支架的强度分析金属成形过程的分析(用Deform软件完成)分析金属成形过程中的各种缺陷。
图1-18 型材挤压成形的分析。
型材在挤压成形的初期,容易产生形状扭曲。
图1-19 螺旋齿轮成形过程的分析图1-20 T形锻件的成形分析焊接残余应力分析(用Sysweld完成)图1-21 结构与焊缝布置图1-22 焊接过程的温度分布与轴向残余应力热处理过程的分析BMW曲轴的感应淬火(Induction quenching of crankshafts at BMW,用SysWeld软件完成)在曲轴表面获得压应力,可以提高曲轴的疲劳寿命。
曲轴的有限元模型有限元模型的局部沿网格线52的残余应力分布,红线为预测的轴向应力与径向应力之差,黑点为实测值。
复杂形状工件的组织转变预测(石伟,用NSHT3D完成)预测工件的组织分布和机械性能二分之一工件的有限元模型淬火3.06 min 时的温度分布淬火3.06 min 时的马氏体分布参考文献S. I. Oh, W. T. Wu, K. Arimoto. Recent developments in process simulation for bulk forming processes. Journal of Materials Processing Technology III (2001) 2-9郭和德编. 有限单元法概论,清华大学,1998思考题:1)什么是有限元法?2)简述有限元法的基本思路。