有限元法基础知识介绍
- 格式:ppt
- 大小:796.00 KB
- 文档页数:42
有限单元法的数学基础1、引言有限元方法归根结底是一种数值计算方法,它有严格的数学证明作为其近似的客观性和合理性的保证。
力学问题最终归结为一组微分方程的边值问题或者初值问题抑或是混合问题。
比如弹性静力学最终归结为L-N 方程的微分提法。
在很难或者根本不可能得到所得方程的理论解的情况下,究竟用什么样的方法才能得到方程的近似解(这种近似解已经能够满足实际工程的需要),在这种情况下,二十世纪五六十年代由结构力学家进而由数学家提出和证明了这种思想方法的合理性。
有限元方法产生于力学计算,但是,它本质上并不是力学的专利。
世间万物的变化过程很多都可以通过微分方程特别是偏微分方程来描述,也就是说,微分方程是很多现象和过程的数学结构,而大多数的微分方程是不能得到理论解的,这时候就可以使用有限元方法来求其近似解,因为有限元方法是求解微分方程(组)的数值计算方法。
它适用于力学的微分方程,也同样适用于其它领域的相应的微分方程的数值求解。
2、有限元方法数学根源对于一个给定的微分方程定解问题,为了求其近似解,我们可以使用Ritz 方法和Galerkin 方法。
下面分别阐述这两种方法,然后讨论有限元方法和他们的关系。
(1) Ritz 法Ritz 法源于最小势能原理,设H 是可分的Hilbert 空间,在H 中取有限维空间Sn ,它是由N 个线性无关向量12,,,N φφφ 张成,即:121,,(,,)NN n n i i N N i S C C C C R ωωφ=⎧⎫≡=∀∈⎨⎬⎩⎭∑用N S 代替H ,在N S 上求泛函J(w)的极值,即求N U ∈N S ,使得()N J U =min ()N N S N J ωω∈实际上寻求N U 只需通过解一个线性方程组1()(,)()02J D F ωωωω=-≥D--------双线性形式 F--------线性泛函1NN i i i C ωφ==∑111,111()(,)()21(,)()2N N NN i i i i i i i i i NN i j i j i ii j i J D C C F C D C C F C ωφφφφφφ====== =-∑∑∑∑∑-因此,()N J ω是一个以12,,,N C C C 为未知数(自变量)的二次多项式12(,,,)N j C C C ,如果二次项的系数矩阵,1,2,,[(,)]i j i j N D φφ= 是正定的,那么12(,,,)N j j C C C = 在N+1维空间是一个开口向上的椭球抛物面,它有且只有一个极(最)小值点,所谓在N S 上求()N J ω的极值,就是确定00012,,,N C C C ,使得:00012(,,,)N j C C C =1000,,12min (,,,)N C C R N j C C C ∈极值条件:ijC ∂∂|00012,,,N C C C =0 (1,,i N = ) 得:01()()ni ji i i D CF φφφ==∑ (1,,i N = )即:00012[,,,]T N C C C C = 适合方程组:KC=F11[(),,()]T F F F φφ=112111222212(,)(,)(,)(,)(,)(,)(,),(,),,(,)N N N N N N D D D D D D K D D D φφφφφφφφφφφφφφφφφφ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,,,,,, 。
有限元基础知识归纳有限元知识点归纳1.、有限元解的特点、原因?答:有限元解一般偏小,即位移解下限性原因:单元原是连续体的一部分,具有无限多个自由度。
在假定了单元的位移函数后,自由度限制为只有以节点位移表示的有限自由度,即位移函数对单元的变形进行了约束和限制,使单元的刚度较实际连续体加强了,因此,连续体的整体刚度随之增加,离散后的刚度较实际的刚度K为大,因此求得的位移近似解总体上将小于精确解。
2、形函数收敛准则(写出某种单元的形函数,并讨论收敛性)P49(1)在节点i处Ni=1,其它节点Ni=0;(2)在单元之间,必须使由其定义的未知量连续;(3)应包含完全一次多项式;(4)应满足∑Ni=1以上条件是使单元满足收敛条件所必须得。
可以推证,由满足以上条件的形函数所建单元是完备协调的单元,所以一定是收敛的。
4、等参元的概念、特点、用时注意什么?(王勖成P131)答:等参元—为了将局部坐标中几何形状规则的单元转换成总体(笛卡尔)坐标中的几何形状扭曲的单元,以满足对一般形状求解域进行离散化的需要,必须建立一个坐标变换。
即:为建立上述的变换,最方便的方法是将上式表示成插值函数的形式,即:其中m是用以进行坐标变换的单元节点数,xi,yi,zi是这些结点在总体(笛卡尔)坐标内的坐标值,Ni’称为形状函数,实际上它也是局部坐标表示的插值函数。
称前者为母单元,后者为子单元。
还可以看到坐标变换关系式和函数插值表示式:在形式上是相同的。
如果坐标变换和函数插值采用相同的结点,并且采用相同的插值函数,即m=n,Ni’=Ni,则称这种变换为等参变换。
5、单元离散?P42答:离散化既是将连续体用假想的线或面分割成有限个部分,各部分之间用有限个点相连。
每个部分称为一个单元,连接点称为结点。
对于平面问题,最简单、最常用的离散方式是将其分解成有限个三角形单元,单元之间在三角形顶点上相连。
这种单元称为常应变三角形单元。
常用的单元离散有三节点三角形单元、六节点三角形单元、四节点四边形单元、八节点四边形单元以及等参元。
有限元法的力学基础有限元法是一种数值分析方法,利用数学和计算机技术解决实际工程问题。
其力学基础主要包括材料力学、结构力学和数值分析。
一、材料力学有限元法的首要任务是分析工程结构的受力情况,而这涉及到材料的应力和应变等基本力学问题。
材料力学是有限元法的基础,它研究材料在外力作用下变形和破坏的规律及其数学描述。
在计算中,材料本构方程是将应力和应变联系起来的核心方程式,通过解析材料的物理特性,可以建立精确的应力-应变关系。
应力是物体受力过程中单位面积所受的力。
在研究材料力学问题时,应力通常分为三个方向:轴向应力、切向应力和法向应力。
材料因内部力的作用而使形状改变的现象称之为应变。
应变分为线性应变和非线性应变两种类型。
材料的本构方程则是将应力和应变通过数学公式联系起来,其中最重要的参数是杨氏模量、泊松比、屈服强度等材料力学性质指标。
二、结构力学有限元法主要应用于结构力学中,因为任何实际的结构都受到力的作用,这些力包括静载、动载、温度变化等。
结构力学是研究结构受力和变形状态的学科,它的核心是研究结构刚度和强度等性质。
结构刚度是指结构抵抗外界力的能力,强度则是指结构承受载荷发生破坏前的最大强度。
在有限元法中,将结构划分成有限个小单元,然后使用材料力学原理及结构力学原理计算每个小单元的应力和应变及整个结构的位移。
通过建立坐标系,可以把每个小单元在局部坐标系下的变形通过旋转变换到全局坐标系下。
将各个小单元的变形叠加起来,就可以求得整个结构的位移和变形。
三、数值分析有限元法是一种数值分析方法,因此数值分析对于有限元法的运用也是相当重要的。
数值分析是研究利用数值方法解决科学和工程问题的一门学科。
有限元法可以通过数学公式和计算机程序来模拟物理现象,从而得出求解问题的解。
数值分析中最重要的就是数值计算误差和截断误差的控制,只有通过合理的参数设置和计算方法,才能得到高精度的结果。
总体来看,有限元法的力学基础涉及材料力学、结构力学和数值分析三个方面。
张年梅有限元方法讲义全文共四篇示例,供读者参考第一篇示例:张年梅有限元方法讲义有限元方法是一种非常重要的数值计算方法,广泛应用于力学、电磁学、声学、地球物理学等领域。
张年梅是中国工程院院士、有限元方法的权威专家,他在有限元方法的研究和应用方面取得了很多成果。
他的有限元方法讲义成为了很多工程学子和研究人员学习的重要参考资料。
有限元方法是一种用数值方法解决复杂工程问题的工具。
它将实际工程问题抽象为有限个简单形状的单元,并通过适当的数学方法和计算机程序求解得到问题的近似解。
有限元方法的基本思想是将一个复杂的结构或领域分割成有限个简单的子结构或子域,然后在每一个子结构或子域上建立合适的数学模型,最后通过组合所有子结构或子域的模型获得整体结果。
张年梅有限元方法讲义详细介绍了有限元方法的基本原理、数学模型的建立和求解方法。
讲义先介绍了有限元方法的起源和发展历程,然后对基本概念和术语进行了解释,包括有限元模型、单元、节点、网格等。
接着讲义详细介绍了有限元方法的基本原理,包括离散化、变分原理、加权残差法、Galerkin法等。
有限元方法的数学模型的建立是有限元分析的关键步骤。
张年梅有限元方法讲义介绍了常见的结构、固体、流体、电磁等问题的有限元建模方法,包括线性弹性分析、非线性分析、热传导分析、流体动力学分析等。
在建立数学模型之后,有限元方法的求解方法也是十分重要的。
张年梅有限元方法讲义介绍了有限元方法的常用数值解法,包括直接法、迭代法、有限元展开法等。
有限元方法在实际工程问题中有着广泛的应用。
张年梅有限元方法讲义通过大量的案例和实例展示了有限元方法在结构分析、热力分析、电磁分析等领域的应用。
讲义还介绍了有限元方法在工程设计和优化中的应用,包括拓扑优化、材料优化、结构优化等。
张年梅有限元方法讲义是一部权威的、全面的有限元方法教材,受到了广大工程学子和研究者的欢迎和好评。
通过学习这本讲义,读者可以系统地了解有限元方法的基本原理和求解方法,掌握有限元方法在工程问题中的应用技能,为解决工程问题提供强有力的工具支持。