有限元法概述
- 格式:ppt
- 大小:1.15 MB
- 文档页数:31
有限元法的原理求解域概述及解释说明1. 引言1.1 概述有限元法是一种数值分析方法,用于求解物理问题的数学模型。
它在工程领域得到了广泛的应用,能够对复杂的结构和系统进行精确的建模和计算。
有限元法通过将连续域划分为许多小的离散单元,在每个单元上使用适当的近似函数来表示待求解的变量,然后利用这些离散单元之间相互连接关系建立代数方程组,并通过求解该方程组得到所需结果。
1.2 文章结构本文将围绕有限元法展开讨论,并按照以下结构组织内容:引言包含概述、文章结构和目的;有限元法的原理部分将涵盖离散化方法、强弱形式及变分问题以及单元划分和网格生成;求解域部分将介绍求解域的定义与划分、边界条件设定和处理以及网格节点和单元的挑选策略;概述及解释说明部分将探讨有限元法在工程领域中的应用、与其他数值方法之间的对比与优势以及未来发展趋势和挑战;最后,本文将总结主要观点,并展望有限元法在应用领域的发展前景。
1.3 目的本文旨在对有限元法进行全面而清晰的介绍和解释,包括其基本原理、求解域的定义与处理方法以及在工程领域中的应用。
通过深入理解有限元法的原理和应用,读者可以更好地了解该方法的优劣势,并掌握将其应用于实际问题求解的能力。
此外,本文还将通过探讨有限元法未来的发展趋势和挑战,为研究者提供对该方法进行进一步改进和扩展的思路。
2. 有限元法的原理2.1 离散化方法有限元法是一种使用离散化方法来对偏微分方程进行求解的数值方法。
它将求解域划分为许多小单元,每个小单元称为有限元。
在这些有限元内,我们假设待求解的场量是线性或非线性的,并通过适当选择合适的函数空间来进行近似。
2.2 强弱形式及变分问题在有限元法中,我们将偏微分方程转化为一个弱形式或者说变分问题。
这是通过将原始方程乘以一个测试函数并进行积分得到的。
这样可以减小方程中高阶导数项对近似解产生的影响,并提供了更好的数学性质以进行计算。
2.3 单元划分和网格生成为了进行离散化,求解域需要被划分成一系列小单元。
第一章有限元法概述第一节有限元法的发展及基本思想随着现代工业、生产技术的发展,不断要求设计高质量、高水平的大型、复杂和精密的机械及工程结构。
为此目的,人们必须预先通过有效的计算手段,确切地预测即将诞生的机械和工程结构,在未来工作时所发生的应力、应变和位移。
但是传统的一些方法往往难以完成对工程实际问题的有效分析。
弹性力学的经典理论,由于求解偏微分方程边值问题的困难,只能解决结构形状和承受载荷较简单的问题,对于几何形状复杂、不规则边界、有裂缝或厚度突变,以及几何非线性、材料非线性等问题往往遇到很多麻烦,试图按经典的弹性力学方法获得解析解是十分困难的,甚至是不可能的。
因此,需要寻求一种简单而又精确的数值分析方法。
有限元法正是适应这种要求而产生和发展起来的一种十分有效的数值计算方法。
这个方法起源于20世纪50年代中期航空工程中飞机结构的矩阵分析。
1960年美国的克劳夫(C l o u g h)采用此方法进行飞机结构分析时,首次将这种方法起名为“有限单元法”(finite element method),简称“有限元法”。
有限单元法的基本思想,是在力学模型上将一个原来连续的物体离散成为有限个具有一定大小的单元,这些单元仅在有限个节点上相连接,并在节点上引进等效力以代替实际作用于单元上的外力。
对于每个单元,根据分块近似的思想,选择一种简单的函数来表示单元内位移的分布规律,并按弹性理论中的能量原理(或用变分原理)建立单元节点力和节点位移之间的关系。
最后,把所有单元的这种关系式集合起来,就得到一组以节点位移为未知量的代数方程组,解这些方程组就可以求出物体上有限个离散节点上的位移。
图1.1是用有限元法对直齿圆柱齿轮的轮齿进行的变形和应力分析,其中图1.1(a)为有限元模型,图1.1(b)是最大切应力等应力线图。
在图1.1(a)中采用8节点四边形等参数单元把轮齿划分成网格,这些网格称为单元;网格间互相连接的点称为节点;网格与网格的交界线称为边界。
有限元法的概述有限元方法(Finite Element Method)是力学,数学物理学,计算方法,计算机技术等多种学科综合发展和结合的产物。
在人类研究自然界的三大科学研究方法(理论分析,科学试验,科学计算)中,对于大多数新型领域,由于科学理论和科学实践的局限性,科学计算成为一种最重要的研究手段。
在大多数工程研究领域,有限元方法是进行科学计算的重要方法之一;利用有限元方法几乎可以对任意复杂的工程结构进行分析,获取结构的各种机械性能信息,对工程结构进行评判,对工程事故进行分析。
有限元法在设计过程中有极为关键的作用。
人们对各种力学问题进行分析求解,其方法归结起来可以分为解析法(Analytical Method)和数值法(Numeric Method).如果给定一个问题,通过一定的推导可以用具体的表达式来获得问题的解答,这样的求解方法就称为解析法。
但是由于实际结构物的复杂性,除了少数极其简单的问题外,绝大多数科学研究和工程计算问题用解析法求解式极其困难的。
因此,数值法求解便成为了一种不可替代的广泛应用的方法,并取得了不断的发展,如有限元法,有限差分法,边界元方法等都是属于数值求解方法。
其中有限元法式 20 世纪中期伴随着计算机技术的发展而迅速发展起来的一种数值分析方法,它的数学逻辑严谨,物理概念清晰,应用非常广泛,能活灵活现处理和求解各种复杂的问题。
有限元方法采用矩阵式来表达基本公式,便于计算机编程,这些优点赋予了它强大的生命力。
有限元方法的实质是将复杂的连续体划分成为有限多个简单的单元体,化无限自由度问题为优先自由度问题,将连续场函数的(偏)微分方程的求解问题转化为有限个参数的代数方程组的求解问题。
用有限元方法分析工程结构的问题时,将一个理想体离散化后,如何保证其数值的收敛性和稳定性是有限元理论讨论的主要内容之一,而数值解的收敛性与单元的划分及单元形状有关。
在求解过程中,通常以位移为基本变量,使用虚位移原理或最小是能原理来求解。
有限元方法编程摘要:1.有限元方法概述2.有限元方法编程的基本步骤3.有限元方法编程的实例4.有限元方法编程的注意事项5.结论正文:1.有限元方法概述有限元方法是一种数值分析方法,主要用于求解偏微分方程问题。
它通过将连续的求解区域离散化为有限个小的子区域(有限元),并将这些子区域的边界上的函数值用有限个节点上的函数值来表示,从而将偏微分方程转化为求解有限元系统的线性或非线性代数方程组。
这种方法可以大大简化问题的求解过程,提高计算效率,并可以方便地用于计算机编程。
2.有限元方法编程的基本步骤有限元方法编程的基本步骤如下:(1)建立有限元模型:根据问题的实际需求,选择合适的有限元类型(如四面体、六面体等),并根据几何形状将求解区域划分为有限个小的子区域。
(2)编写有限元方程:根据有限元模型,编写有限元方程,将偏微分方程转化为求解有限元系统的线性或非线性代数方程组。
(3)选择合适的数值方法:根据问题的特点,选择合适的数值方法(如有限差分法、有限体积法等)对有限元方程进行求解。
(4)编写求解程序:根据所选数值方法,编写求解程序,实现有限元方程的求解。
(5)结果分析与后处理:对求解结果进行分析,并进行必要的后处理(如绘制等值线图、计算梯度等)。
3.有限元方法编程的实例以求解一个简单的二维热传导问题为例,我们可以按照以下步骤进行有限元方法编程:(1)建立有限元模型:将求解区域划分为多个矩形单元,并在每个单元的边界上设置节点。
(2)编写有限元方程:根据热传导方程,编写有限元方程。
(3)选择合适的数值方法:选择有限差分法对有限元方程进行求解。
(4)编写求解程序:根据有限差分法,编写求解程序,实现有限元方程的求解。
(5)结果分析与后处理:对求解结果进行分析,并绘制温度分布的等值线图。
4.有限元方法编程的注意事项在进行有限元方法编程时,应注意以下几点:(1)选择合适的有限元类型和网格划分:合适的有限元类型和网格划分可以降低求解的复杂度,提高计算效率。
有限元法及其应用概述及解释说明1. 引言1.1 概述有限元法是一种数值计算方法,广泛应用于工程领域中各种结构、流体和热传导问题的分析与求解。
该方法将实际问题转化为数学模型,并通过离散化方法将复杂的连续域分割成许多简单的子域,然后建立局部方程并组合求解得出整个系统的行为。
1.2 文章结构本文主要分为五个部分来阐述有限元法及其应用。
首先是引言部分,在这部分中我们对有限元法进行综述和概括性介绍。
接下来是有限元法基础,包括定义与原理、离散化方法以及数学模型和方程组等内容。
第三部分是有限元法的应用领域,具体涵盖了结构力学分析、流体力学模拟以及热传导分析等方面。
紧接着是有限元法的优势与局限性的讨论,其中包含了优势点和局限性两个方面。
最后在结论与展望部分对目前取得的成果进行总结,并展望未来该领域发展的方向。
1.3 目的本文旨在全面介绍有限元法及其应用,使读者对该方法有一个全面的了解。
通过分析有限元法的原理和数学基础,以及讨论其在结构力学、流体力学和热传导等不同领域中的应用,读者可以更好地理解该方法在实际工程问题中的作用和意义。
同时,通过对有限元法的优势和局限性进行深入讨论,读者也可以对该方法的适用范围和限制条件有一个清晰的认识。
最后,在总结现有成果并展望未来发展方向的部分,本文希望促进该领域进一步的研究和应用,并为相关领域从业人员提供参考与借鉴。
2. 有限元法基础:2.1 定义与原理:有限元法(Finite Element Method,简称FEM)是一种工程数值分析方法,通过将复杂的连续体问题转化为离散的有限元模型,并通过求解一系列代数方程组来获得数值近似解。
它基于强大的计算能力和离散化技术,广泛应用于各个领域的工程问题求解。
有限元法原理包括两个基本步骤:离散化和解。
在离散化过程中,需要将复杂的连续体划分为多个单元,每个单元具有简单的几何形状(如线段、三角形或四边形)。
这些单元可以通过节点进行连接,并构成整个结构或区域。
电磁计算的有限元方法及其数值求解电磁计算作为重要的科学技术方法之一,其精度和效率对于科技领域的发展具有至关重要的作用。
而有限元方法作为一种重要的数值计算方法,在电磁计算中应用广泛。
本文将介绍有限元方法在电磁计算中的应用和数值求解。
一、有限元方法的概述有限元方法是一种求解偏微分方程数值解的常用方法。
其核心思想是将一个复杂的区域分割成若干个小区域,通过对小区域内的物理变量进行逼近,最终得到整体的物理变量分布。
在电磁计算中,有限元方法是一种经典的数值计算方法,具有良好的适用性和精度。
有限元方法的求解过程分为建立数学模型、离散化、求解和后处理四个主要步骤。
其中建立数学模型是有限元方法的关键,正确的数学模型可以保证计算结果的精度。
二、电磁计算中有限元方法的应用在电磁计算中,有限元方法常用于求解电学、磁学和电磁学问题。
例如电感、电容、电阻等电学问题,磁感线分布、磁通量等磁学问题,以及电磁场分布、电磁波传播等电磁学问题。
对于电学问题,有限元方法常用于求解电场的分布和电容、电感等参数的计算。
例如,铁芯电感器等电学元件可以通过有限元方法求解电感值,从而进行电磁场分析和设计。
对于磁学问题,有限元方法常用于求解磁场分布和电感、磁通量等参数的计算。
例如,变压器、电机等磁学元件可以通过有限元方法求解磁感线分布和磁通量,从而进行磁场分析和设计。
对于电磁学问题,有限元方法常用于求解电磁场分布和电磁波传播等问题。
例如,天线、波导等电磁学元件可以通过有限元方法求解电磁场分布和传播特性,从而进行电磁波分析和设计。
三、电磁计算中有限元方法的数值求解有限元方法的数值求解过程包括矩阵的组装和求解两个主要步骤。
在电磁计算中,有限元方法的数值求解主要涉及到矩阵的组装。
矩阵的组装是指将离散化得到的局部矩阵组合成全局矩阵,并考虑边界条件和耦合矩阵的影响。
在组装全局矩阵的过程中,通常采用稀疏矩阵的存储方式,以节省存储空间和提高计算效率。
在全局矩阵组装完成后,可以采用直接法或迭代法对矩阵进行求解。
有限单元法知识点总结1. 有限元法概述有限单元法(Finite Element Method ,简称FEM)是一种数值分析方法,适用于求解工程结构、热传导、流体力学等领域中的强耦合、非线性、三维等问题,是一种求解偏微分方程的数值方法。
有限元法将连续的物理问题抽象为由有限数量的简单几何单元(例如三角形、四边形、四面体、六面体等)组成的离散模型,通过对单元进行适当的数学处理,得到整体问题的近似解。
有限元法广泛应用于工程、材料、地球科学等领域。
2. 有限元法基本原理有限元法的基本原理包括离散化、加权残差法和形函数法。
离散化是将连续问题离散化为由有限数量的简单单元组成的问题,建立有限元模型。
加权残差法是选取适当的残差形式,并通过对残差进行加权平均,得到弱形式。
形函数法是利用一组适当的形函数来表示单元内部的位移场,通过形函数的线性组合来逼近整体位移场。
3. 有限元法的步骤有限元法的求解步骤包括建立有限元模型、建立刚度矩阵和载荷向量、施加边界条件、求解代数方程组和后处理结果。
建立有限元模型是将连续问题离散化为由简单单元组成的问题,并确定单元的连接关系。
建立刚度矩阵和载荷向量是通过单元的应变能量和内力作用,得到整体刚度矩阵和载荷向量。
施加边界条件是通过给定位移或力的边界条件,限制未知自由度的取值范围。
求解代数方程组是将有限元模型的刚度方程和载荷方程组成一个大型代数方程组,通过数值方法求解。
后处理结果是对数值结果进行处理和分析,得到工程应用的有用信息。
4. 有限元法的元素类型有限元法的元素类型包括结构单元、板壳单元、梁单元、壳单元、体单元等。
结构单元包括一维梁单元、二维三角形、四边形单元、三维四面体、六面体单元。
板壳单元包括各种压力单元、弹性单元、混合单元等。
梁单元包括梁单元、横梁单元、大变形梁单元等。
壳单元包括薄壳单元、厚壳单元、折叠单元等。
体单元包括六面体单元、锥体单元、八面体单元等。
5. 有限元法的数学基础有限元法的数学基础包括变分法、能量方法、有限元插值等。
有限元法在机械设计中的应用1. 引言1.1 有限元法概述有限元法是一种数值模拟方法,被广泛应用于工程领域中各种复杂问题的分析和求解。
其基本思想是利用数学分析的方法将连续的物理问题离散化,将问题转化为有限个简单的子问题,通过计算机对这些子问题进行求解,最终得到整体问题的解。
有限元法通过求解大量的线性或非线性代数方程组来模拟实际工程中的各种物理现象,如结构强度、热传导、流体力学等。
有限元法的应用范围非常广泛,涵盖了各种工程领域,如航空航天、汽车、船舶、建筑等。
在机械设计中,有限元法可以帮助工程师分析和优化产品的结构,预测产品在不同工况下的性能,减少实验测试的成本和时间,提高产品的设计效率和质量。
有限元法不仅可以帮助工程师了解产品的内部应力分布和变形情况,还可以帮助优化产品的结构设计,提高产品的可靠性和安全性。
有限元法在机械设计中的应用具有非常重要的意义,可以有效地帮助工程师解决复杂的工程问题,提高产品的设计水平和竞争力。
掌握和应用有限元法成为现代机械设计工程师的基本技能之一。
1.2 机械设计中的应用意义1. 提高设计效率:有限元法可以在数字化模型上进行快速、准确的分析,能够更好地理解和评估结构的工作性能,帮助设计人员快速找到问题,提高设计效率。
2. 降低设计成本:通过有限元法进行仿真分析,可以及早发现设计缺陷和问题,避免在实际制造过程中出现不必要的成本支出,从而降低设计成本。
3. 提高产品质量:有限元法可以帮助设计人员优化结构设计,提高产品的稳定性和可靠性,避免产品在使用中出现故障,提高产品质量。
4. 支持创新设计:有限元法能够帮助设计人员进行复杂结构的分析和优化,促进产品创新设计,推动技术的进步和发展。
有限元法在机械设计中的应用意义是不可替代的。
它不仅可以帮助设计人员更好地理解和评估结构性能,提高设计效率和质量,还能够支持创新设计,推动行业技术的发展和进步。
掌握有限元法在机械设计中的应用是设计人员必备的技能之一。
数值分析在有限元法中的应用数值分析在有限元法中的应用数值分析是一种利用数值方法解决数学问题的学科,它的应用广泛涵盖了许多领域。
在工程学领域中,有限元法是一种常用的数值分析方法,用于解决结构力学问题。
本文将探讨数值分析在有限元法中的应用,并介绍其在工程领域中的重要性。
一、有限元法概述有限元法是一种通过将复杂的问题分解为有限数量的简化元素来近似求解的数值方法。
它将一个复杂的结构划分为有限个小的子区域,称为有限元。
通过求解每个有限元的方程,并将它们组合起来,可以得到整个结构的近似解。
有限元法主要包括两个关键步骤:离散化和解算。
离散化是将结构分割为有限元,并建立每个有限元的数学模型。
通常,有限元是由简单形状的单元组成,如线段、三角形或四边形。
每个有限元都有一组控制节点,位于其边界上。
通过在节点上建立适当的形函数,可以对有限元内的解进行近似。
解算是通过构建全局刚度矩阵和载荷矢量,并求解线性方程组来计算结构的响应。
全局刚度矩阵可以通过将每个有限元的局部刚度矩阵组装起来得到。
载荷矢量是根据结构的边界条件和施加的外部载荷计算得到的。
最终,通过解线性方程组可以得到结构的位移、应力等重要结果。
二、数值分析在离散化中的应用数值分析在离散化过程中起着重要的作用。
它通过适当选择有限元类型和节点布局来获得更好的近似结果。
一般来说,有限元类型的选择取决于结构的几何形状和物理性质。
例如,三角形元素适用于解决较为复杂的问题,如非线性力学问题。
而矩形元素则适用于解决较简单的问题,如弹性力学问题。
另外,数值分析还可以用来优化节点布局。
节点的位置对于有限元模型的精确度和稳定性起着决定性的作用。
通过使用数值分析技术,可以确定合适的节点位置,使得解的近似值更接近于精确解。
三、数值分析在解算中的应用数值分析在解算过程中也扮演着重要的角色。
它可以通过选择合适的解算方法和求解器来提高计算效率和精度。
常用的解算方法包括直接法和迭代法。
直接法是指通过求解线性方程组的精确解来获得结构的响应。
有限元方法编程【实用版1篇】目录(篇1)1.有限元方法概述2.有限元方法的编程步骤3.有限元方法的应用实例4.总结正文(篇1)一、有限元方法概述有限元方法是一种数值分析方法,广泛应用于固体力学、流体力学、热传导等领域。
它的基本思想是将待求解的连续体划分为有限个小的、简单的子区域,即单元,然后用有限个简单的方程组来代替原来的连续方程,通过求解这些方程组得到近似解。
这种方法既能降低问题的复杂度,又能保证解的精度,因此在工程界有着广泛的应用。
二、有限元方法的编程步骤1.几何建模:根据实际问题,创建待求解的几何模型。
这通常包括划分单元、计算节点坐标等步骤。
2.选择单元类型:根据问题类型和求解需求,选择合适的单元类型,如有限元、无限元、矩形单元、六面体单元等。
3.编写有限元方程:根据单元类型和几何模型,编写有限元方程。
这包括计算单元的刚度矩阵、质量矩阵、载荷矩阵等。
4.组装总方程:将所有单元的有限元方程组装成总方程,通常是一个大型的线性或非线性方程组。
5.求解方程组:使用数值方法(如有限元法、直接解法、迭代法等)求解总方程组,得到近似解。
6.后处理:对求解结果进行分析和处理,如计算应力、应变、位移等。
三、有限元方法的应用实例以一个简单的二维拉伸问题为例,假设有一个长方形板,在左右两端施加均匀拉力,求解板上各个点的应力和应变。
1.几何建模:将长方形板划分为矩形单元,计算节点坐标。
2.选择单元类型:此处采用矩形单元。
3.编写有限元方程:计算单元的刚度矩阵、质量矩阵、载荷矩阵,组装总方程。
4.求解方程组:使用有限元法求解总方程组,得到应力和应变。
5.后处理:分析应力和应变分布,验证解的正确性。
四、总结有限元方法作为一种数值分析方法,通过将连续体划分为有限个小的、简单的子区域,然后用有限个方程组来代替原来的连续方程,降低了问题的复杂度,同时保证了解的精度。
在实际应用中,有限元方法需要经历几何建模、单元选择、编写有限元方程、组装总方程、求解方程组和后处理等步骤。