有限元分析简介
- 格式:ppt
- 大小:668.00 KB
- 文档页数:24
有限元分析方法有限元分析方法是一种在数字计算机上定量分析变形、弹性以及现代结构的受力情况的方法。
有限元分析方法的发展日趋完善,是加强建筑物结构抗震能力的有力工具。
一、有限元分析方法的概念有限元分析方法是一种基于有限元分析原理的数学方法,它是一种用于计算低维受力系统的通用数值方法,尤其是用于非线性力学系统的数值分析方法。
在有限元数值分析中,计算对象由许多有限个结构物构成,这些结构物称为有限元。
每个有限元都有一定的体积和形状,如线元、面元和体元。
有限元分析的基本思想就是将复杂的物理结构模型分解为若干较小的有限元模型,再将这些小的有限元模型组合成一个完整的物理模型,并对其进行连续性研究,从而精确地确定受力构件的变形、位移、应力、变形能量等物理参数。
二、有限元分析方法在工程中的应用有限元分析方法可以用于结构分析、计算机辅助设计和工程校核。
有限元分析方法可以用于预测结构的受力情况、拓扑设计和优化,这对于重要的结构失效的防护和抗震性能的提高有重要意义。
在计算机辅助设计领域,有限元分析方法可以用于几何形状优化,减轻材料重量并提高刚度,这是一种非常有效的技术。
在建筑工程中,有限元分析方法可以用于计算建筑物的受力情况,确定其最大荷载量,为建筑物的改造和重建提供参考。
三、有限元分析方法的发展趋势随着计算机技术的发展,有限元分析方法的发展也在不断推进。
近年来,以网格化数值计算为基础的有限元分析方法已经取得了巨大的进展,如实施大型网格化分析、更加准确和可靠的模型细分、更准确的网格分解技术、更有效的数值求解技术等。
这些技术将使有限元分析技术更容易、更有效地应用于计算机辅助设计、工程校核和抗震分析等领域。
总之,有限元分析方法是一种重要的力学分析方法,它在结构分析、计算机辅助设计以及建筑物抗震性能的研究中都起着重要作用。
随着计算机技术的发展,有限元分析方法的发展也在不断发展,为实现地震安全建筑的建设做出贡献。
有限元分析的原理及应用1. 引言有限元分析(Finite Element Analysis, FEA)是一种工程数值模拟方法,通过将大型、复杂的物理问题离散成多个小的有限元单元,并对每个单元进行数值计算,最终得到整体系统的解。
本文将介绍有限元分析的原理及其在工程领域的应用。
2. 有限元分析的原理有限元分析的原理可以概括为以下几个步骤:2.1. 建立几何模型首先,根据实际问题的几何形状,以及需要分析的部分,建立一个几何模型。
这个模型可以是二维的或三维的,可以通过计算机辅助设计(CAD)软件绘制,也可以通过测量现场物体的尺寸来获得。
2.2. 网格划分在建立好几何模型后,需要将其离散化为有限多个小的有限元单元。
常见的有限元单元有三角形、四边形和六面体等。
划分过程决定了数值计算的精度,越精细的划分可以得到更精确的结果,但同时也会增加计算量。
2.3. 建立数学模型和边界条件有限元分析需要建立一个数学模型来描述物理问题。
这个数学模型可以是线性的,也可以是非线性的,取决于具体的问题。
在建立数学模型时,还需要考虑边界条件,即模型的边界上可能存在的约束或加载。
2.4. 求解数学模型有了数学模型和边界条件后,需要对其进行求解。
求解过程可以采用迭代方法或直接求解方法,具体取决于问题的复杂程度和计算要求。
在这一步中,需要进行数值计算,得到对应的物理量,例如应力、位移、温度等。
2.5. 后处理在得到数学模型的解后,需要进行后处理,将数值结果转化为可视化或可以使用的形式。
后处理可以包括绘制位移云图、应力云图等,以及针对特定问题进行统计分析。
3. 有限元分析的应用有限元分析在工程领域有广泛的应用。
以下列举了一些常见的应用领域:3.1. 结构力学有限元分析在结构力学中的应用非常广泛。
通过有限元分析,可以对结构的强度、刚度、变形等进行分析和优化。
常见的应用包括建筑结构、桥梁、飞机、汽车、船舶等领域。
3.2. 热传导有限元分析可以用于模拟物体内部的温度分布和热传导过程。
第十一章 有限元分析方法概述1、基本概念有限元分析方法是随着电子计算机的发展而迅速发展起来的一种现代没计计算方法。
它是20世纪50年代首先在连续体力学领域—飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快就广泛地应用于求解热传导、电磁场、流体力学等连续性问题。
在工程分析和科学研究中,常常会遇到大量的由常微分方程、偏微分方程及相应的边界条件描述的场问题,如位移场、应力场和温度场等问题。
求解这类场问题的方法主要有两种:用解析法求得精确解;用数值解法求其近似解。
应该指出,能用解析法求出精确解的只是方程性质比较简单且几何边界相当规则的少数问题。
而对于绝大多数问题,则很少能得出解析解。
这就需要研究它的数值解法,以求出近似解。
目前工程中实用的数值解法主要有三种:有限差分法、有限元法和边界元法。
其中,以有限元法通用性最好,解题效率高,目前在工程中的应用最为广泛。
下面通过一个具体例子,分别采用解析法和数值解法进行求解,从而体会一下有限元分析方法的含义及其相关的一些基本概念。
如下图所示为一变横截面杆,杆的一端固定,另一端承受负荷P ,试求杆沿长度方向任一截面的变形大小。
其中,杆的上边宽度为1w ,下边宽度为2w ,厚度为t ,长度为L ,杆的材料弹性模量为E 。
已知P =4450N ,1w =50mm ,2w =25mm ,t =3mm ,L =250mm ,E =72GPa 。
① 采用解析法精确求解假设杆任一横截面面积为)(y A ,其上平均应力为σ,应变为ε。
根据静力平衡条件有:0)(=-y A P σ根据虎克定律有:εσE =而任一横截面面积为:t y L w w w y A )()(121-+= 任一横截面产生的应变为:dydu=ε将上述方程代入静力平衡条件,进行变换后有:dy y EA Pdu )(=沿杆的长度方向对上式两边进行积分,可得:⎰⎰⎰-+==y yudy y Lw w w Et P dy y EA P du 01210)()(将)(y A 表达式代入上式,并对两边进行积分,得杆沿长度方向任一横截面的变形量:]ln )[ln()()(112112w y Lw w w w w Et PL y u --+-=当y 分别取0、62.5、125、187.5、250值时,变截面杆相应横截面处的沿杆长方向的变形量分别为:m u m u m u m u m u 6564636211080.142 ;1083.96 ;1027.59 ;1051.27 ;0----⨯=⨯=⨯=⨯==② 采用数值解法近似求解将变横截面杆沿长度方向分成独立的4小段,每一小段采用等截面直杆近似,等截面直杆的横截面面积为相应的变截面杆横截面面积的平均面积表示,每一小段称为一个单元,小段之间通过节点连接起来。
第二章有限元分析基本理论有限元分析是一种数值计算方法,广泛应用于结构分析、流体力学、热传导等工程领域。
它通过将连续的物理问题离散化为有限个简单的子问题,再通过数值方法求解这些子问题,最终得到原始问题的近似解。
有限元分析的基本理论包括三个方面:离散化、加权残差和求解方法。
首先是离散化。
离散化是指将原始的连续问题转化为离散的子问题。
有限元分析中常用的离散化方法是将求解区域分割成有限的子域,称为单元。
每个单元内部的场量(如位移、温度等)可以用其中一种函数近似表示。
离散化的关键是选择适当的单元形状和适量的节点,使得子问题的离散解能够较好地近似原问题的解。
接下来是加权残差方法。
加权残差方法是有限元分析的核心思想,用于构造子问题的弱型方程。
弱型方程是原始问题的一种积分形式,由应力平衡和边界条件推导而来。
在加权残差方法中,我们引入加权函数,将弱型方程乘以权函数,再对整个求解区域进行积分,从而将连续问题转化为离散问题。
通过选择合适的权函数,可以使得该离散问题具有良好的数学特性,比如对称、正定等。
最后是求解方法。
有限元分析的求解方法主要包括直接法和迭代法。
直接法适用于小型问题,通过对离散问题的系数矩阵进行直接求解,得到场量的离散解。
而迭代法适用于大型问题,通过迭代求解线性代数方程组,得到场量的近似解。
迭代法的常用算法有雅可比法、高斯-赛德尔法、共轭梯度法等。
在求解中还需要注意计算误差的控制和收敛性的判定。
除了这三个基本理论,有限元分析还有一些相关的概念和技术。
例如,网格生成用于生成离散化的单元网格;后处理用于对离散解进行可视化和数据分析;材料模型用于描述材料的本构关系。
这些概念和技术在具体的有限元分析应用中,有着重要的作用。
综上所述,有限元分析的基本理论包括离散化、加权残差和求解方法。
离散化将连续问题转化为离散子问题,加权残差方法用于构造子问题的弱型方程,求解方法用于求解离散问题。
掌握这些基本理论,对于理解和应用有限元分析方法具有重要意义。