原子吸收光谱法的基本原理
- 格式:pdf
- 大小:1.81 MB
- 文档页数:13
原子吸收光谱法测定的特点及原理
原子吸收光谱法是一种常用的分析技术,用于测定物质中某些特定元素的浓度。
它的特点和原理如下:
特点:
1. 高灵敏度:原子吸收光谱法可以检测到很低浓度的元素,一般可以达到微克/升乃至纳克/升级别的灵敏度。
2. 高准确性和精密度:该方法具有较好的准确性和精密度,可以提供可靠的分析结果,并且可以进行定量分析。
3. 宽线性范围:该方法在一定范围内可以测定各种浓度的元素,线性范围较宽。
4. 选择性强:该方法可以针对不同元素进行分析,并且具有较强的选择性,可以排除干扰物质对测定结果的影响。
原理:
原子吸收光谱法的基本原理是通过将待测样品中的元素原子蒸发成原子态,并通过光源照射物质产生的能级跃迁吸收特定波长的光线。
测量吸光度可得到元素的浓度。
具体步骤如下:
1. 原子产生:使用合适的方法将样品中的元素原子转化为原子态,常用的方法包括火焰、电弧、电感耦合等离子体等。
2. 光源选择:选择适当的光源,通常为中空阴极灯或电极消融灯,以产生被测元素吸收的特定波长的光线。
3. 光线传递与衰减:光线经过透镜或光纤传递至样品,样品吸收特定波长的光线,光强度衰减。
4. 光强检测:使用光电二极管或光电倍增管等光学探测器,测
量透射光的光强。
5. 分析结果计算:将测得的透射光光强与空白试剂的透射光光强进行比较,计算出样品中元素的浓度。
通过以上步骤,原子吸收光谱法可以测定物质中特定元素的浓度。
原子吸收光谱法原理
原子吸收光谱法是一种常用的分析技术,用于确定物质中的元素含量。
该方法基于原子在特定波长的光照射下发生能级跃迁的现象,利用元素特征波长的吸收峰的强度来测量样品中元素的浓度。
以下是原子吸收光谱法的原理。
1. 原子的能级结构:原子由电子围绕着原子核的轨道运动组成。
电子在这些轨道上具有不同的能量,称为电子能级。
当原子受到外部的能量激发时,电子会从低能级跳跃到高能级,形成激发态。
2. 能级跃迁:原子的电子在吸收能量后,会跃迁到高能级。
当电子从高能级返回到低能级时,必须释放出能量。
这个能量的差别可以以光子形式释放出来,其波长与能级差相关。
3. 吸收光谱:在原子吸收光谱实验中,使用的是特定波长的光源,通常为中性或离子化的金属蒸汽灯。
这些光源会发出特定波长的光,射入样品中。
4. 样品吸收:样品中的元素原子会吸收与其能级差相匹配的波长的光。
当光通过样品时,部分光会被吸收,其吸收强度与元素的浓度成比例。
5. 检测:通过测量样品吸收光的强度,可以确定元素的浓度。
一般使用光电器件来测量吸收光的强度。
可以采用单光束或双光束系统进行测量。
6. 标准曲线:为了确定未知样品中元素的浓度,常常使用标准曲线进行定量分析。
通过测量一系列已知浓度的标准溶液的吸收峰强度,可以绘制出吸收峰强度与浓度之间的关系曲线。
利用这个曲线,可以根据样品的吸光度值来确定其浓度。
总之,原子吸收光谱法利用原子能级跃迁的现象,通过测量样品对特定波长光的吸收来测量元素的浓度。
该技术广泛应用于元素分析和环境监测等领域。
原子吸收光谱法和原子吸收分光光度法原子吸收光谱法和原子吸收分光光度法是分析化学中常用的技术手段,用于测定物质中金属元素的含量。
本文将介绍这两种方法的原理、应用以及比较。
一、原子吸收光谱法原子吸收光谱法是一种基于物质对特定波长的吸收能力进行分析的方法。
它利用原子在吸收特定波长的光线时会发生能量跃迁的特性,通过测量样品对特定波长的光线吸收的强度来确定其中金属元素的含量。
原子吸收光谱法的原理是基于原子的量子力学原理,当金属元素处于基态时,外层电子具有特定的能级跃迁能量,吸收特定波长的光线。
通过测量光线透过样品之前和之后的强度差,可以计算得到金属元素的浓度。
原子吸收光谱法的应用广泛,尤其在环境监测、食品安全、药物分析等领域具有重要意义。
例如,通过原子吸收光谱法可以测定水中重金属元素的含量,用于评估水质的安全性;还可以用于监测土壤中的污染物含量,从而保护农作物的品质。
二、原子吸收分光光度法原子吸收分光光度法是一种基于原子吸收光谱技术的定量分析方法。
它利用物质对特定波长的光线吸收的强度与其浓度呈线性关系的特点,通过测量样品对特定波长光线吸收的强度来确定其中金属元素的含量。
原子吸收分光光度法与原子吸收光谱法相比,其最大的区别在于前者是定量分析方法。
通过建立标准曲线,测定样品吸光度与浓度的线性关系,可以准确计算得到金属元素的含量。
原子吸收分光光度法具有高灵敏度、准确度高以及分析速度快的优点,广泛应用于食品、化妆品、医药等行业中。
例如,原子吸收分光光度法可以用于检测食品中的微量元素,如铜、锌等,帮助评估食品的质量和安全性。
三、原子吸收光谱法与原子吸收分光光度法的比较原子吸收光谱法和原子吸收分光光度法在金属元素的定量分析方面都有重要的应用,但在一些方面存在差异。
1. 灵敏度:原子吸收光谱法的灵敏度更高,可以检测到更低浓度的金属元素,而原子吸收分光光度法的灵敏度相对较低。
2. 准确度:原子吸收分光光度法的准确度更高,可以通过建立标准曲线进行定量分析,而原子吸收光谱法的准确度相对较低。
原子吸收光谱仪的原理、构成、操作及应用领域详解一、原子吸收光谱仪原理原子吸收光谱仪的原理是根据物质基态原子蒸汽对特征辐射吸收的作用来进行金属元素分析。
1、原子吸收光谱的产生任何元素的原子都是由原子核和核外电子组成。
原子核是原子的中心体,核正电,电子荷负电,总的负电荷与原子核的正电荷数相等。
电子沿核外的圆形或椭圆形轨道围绕着原子核运动,同时又有自旋运动。
电子的运动状态由波函数0描述。
求解描述电子运动状态的薛定愕方程,可以得到表征原子内电子运动状态的量子数n、L、m,分别称为主量子数、角量子数和磁量子数。
原子核外的电子按其能量的高低分层分布而形成不同的能级,因此一个原子核可以具有多种能级状态。
能量最低的能级状态称为基态能级(Eo),其余能级称为激发态能级,而能量最低的激发态则称为第一激发态。
一般情况下,原子处于基态,核外电子在各自能量最低的轨道上运动。
如果将一定外界能量如光能提供给该基态原子,当外界光能量恰好等于该基态原子中基态和某一较高能级之间的能级差△E时,该原子将吸收这一特征波长的光,外层电子由基态跃迁到相应的激发态而产生原子吸收光谱。
2、原子吸收光谱仪基本原理仪器从光源辐射出具有待测元素特征谱线的光,通过试样蒸气时被蒸气中待测元素基态原子所吸收,由辐射特征谱线光被减弱的程度来测定试样中待测元素的含量。
3、原子吸收光谱仪方法原理原子吸收是指呈气态的原子对由同类原子辐射出的特征谱线所具有的吸收现象。
当辐射投射到原子蒸气上时,如果辐射波长相应的能量等于原原子吸收光谱仪子由基态跃迁到激发态所需要的能量时,则会引起原子对辐射的吸收,产生吸收光谱。
基态原子吸收了能量,最外层的电子产生跃迁,从低能态跃迁到激发态。
原子吸收光谱根据郎伯-比尔定律来确定样品中化合物的含量。
已知所需样品元素的吸收光谱和摩尔吸光度,以及每种元素都将优先吸收特定波长的光,因为每种元素需要消耗一定的能量使其从基态变成激发态。
检测过程中,基态原子吸收特征辐射,通过测定基态原子对特征辐射的吸收程度,从而测量待测元素含量。
原子吸收光谱法原理简述
原子吸收光谱法是一种用于分析物质中金属元素含量的方法。
它的原理简述如下:
当金属原子处于基态时,它们会吸收特定波长的光。
原子吸收光谱法利用这一特性来测量样品中金属元素的含量。
首先,样品被转化成气态原子或原子的气态化合物,然后通过光源发出的特定波长的光照射样品。
如果样品中含有被检测的金属元素,这些原子会吸收光,使得光源透过样品时的光强度减弱。
测量光源透过样品前后的光强度差异,就可以确定金属元素的含量。
原子吸收光谱法的原理基于不同金属元素吸收光的特性。
每种金属元素都有特定的吸收光谱线,这些谱线对应着特定波长的光。
因此,通过测量样品对不同波长光的吸收情况,可以确定样品中不同金属元素的含量。
此外,原子吸收光谱法还遵循比尔-朗伯定律,即吸收光强度与浓度成正比。
因此,可以通过测量吸收光强度的变化来确定金属元素的浓度。
总的来说,原子吸收光谱法利用金属原子对特定波长光的吸收特性,通过测量样品对光的吸收来确定其中金属元素的含量。
这一方法在分析化学和环境监测等领域有着广泛的应用。
原子吸收光谱工作原理原子吸收光谱法的原理:蒸汽中待测元素的气态基态原子会吸收从光源发出的被测元素的特征辐射线,具有一定选择性,由辐射减弱的程度求得样品中被测元素的含量。
当辐射通过原子蒸汽,且辐射频率等于原子中电子由基态跃迁到较高能态所需要的能量的频率时,原子从入射辐射中吸收能量,产生共振吸收。
原子吸收光谱是由于电子在原子基态和第一激发态之间跃迁产生的。
每一种原子的能级结构均是独特的,故原子有选择性的吸收辐射频率。
因此,在所有情况下,均可产生反映该种原子结构特征的原子吸收光谱。
原子吸收光谱检测方法:1、氢化物发生法氢化物发生法适用于容易产生阴离子的元素,如Se、Sn、Sb、As、Pb、Hg、Ge、Bi等。
这些元素一般不采取火焰原子化法检测,而是用硼氢化钠处理,因为硼氢化钠具有还原性,可以将这些元素还原成为阴离子,与硼氢化钠中电离产生的氢离子结合成气态氢化物。
如土壤监测中运用流动注射氢化物原子吸收检测河流中所含的沉积物汞和砷,经过试验后,检出砷限为2ng/L,精密度为1.35%至5.07%,准确度在93.5%至106.0%;检出汞限为2ng/L,精密度为0.96%至5.52%,精准度在93.1%至109.5%。
这种方法不仅快速、简便,且准确度和精密度非常高,能更好的测试和分析环境样品。
2、石墨炉原子吸收光谱法石墨炉原子吸收光谱法是一种用电流加热原子化的分析方法。
横向加热石墨炉解决了温度分布不均匀的问题。
石墨炉原子化的出现非常之重要,对于火焰原子化有着较为明显的优越性,与火焰原子化技术对比,灵敏度提高到3到4个数量线,达到了10-12至10-14g的灵敏度,但是石墨炉原子吸收光谱法还是存在一定的局限性:重现性还没有火焰法高,当待测样品比较复杂时,产生的结果会有很大的误差。
3、火焰原子吸收光谱法目前,火焰原子吸收光谱法还是应用最为广泛的方法。
因为其对大多数的元素都适用,而且具有速度快,成本低,操作简单,结果误差不大的优势。
原子吸收光谱法模块1 原子吸收光谱法基本原理仪器结构:光源;检测系统;分光系统;原子化系统一、 原子吸收法定义原子吸收法是一种利用元素的基态原子对特征辐射线的吸收程度进行定量的分析方法。
测定对象:金属元素及少数非金属元素。
二、原子吸收光谱的产生当有光辐射通过自由原子蒸气,且入射光辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都是第一激发态)所需要的能量频率时,原子就要从辐射场中吸收能量,产生吸收,电子由基态跃迁到激发态,同时伴随着原子吸收光谱的产生。
原子吸收光谱是原子由基态向激发态跃迁产生的原子线状光谱。
分光法:分子或离子的吸收为带状吸收。
原子法:基态原子为线状吸收。
三、原子吸收光谱几个重要概念共振吸收线:当电子吸收一定能量从基态跃迁到第一激发态时所产生的吸收谱线,称为共振吸收线,简称共振线。
共振发射线:当电子从第一激发态跃回基态时,则发射出同样频率的光辐射,其对应的谱线称为共振发射线,也简称共振线。
分析线:用于原子吸收分析的特征波长的辐射称为分析线,由于共振线的分析灵敏度高,光强大常作分析线使用。
(亦称为特征谱线)四、原子吸收线的形状(光谱的轮廊 )原子对光的吸收是一系列不连续的线,即原子吸收光谱。
原子吸收光谱线并不是严格几何意义上的线,而是具有一定的宽度。
νI ν0I 频率为ν0的入射光和透过光的强度νK 原子蒸气对频率ν0的入射光的吸收系数 L 原子蒸气的宽度吸收线轮廓——描绘吸收率随频率或波长变化的曲线。
发射线轮廓——描绘发射辐射强度随频率或波长变化的曲线。
原子吸收光谱的轮廓以原子吸收谱线的中心频率和半宽度来表征。
中心频率:曲线极大值对应的频率υ0 峰值吸收系数:中心频率所对应的吸收系数吸收线的半宽度:指在中心频率处,最大吸收系数一半处,吸收光谱线轮廓上A 、B 两点之间的频率差。
吸收曲线的半宽度△υ的数量级约为0.001~0.01nm五、影响原子吸收谱线变宽的原因(1)自然变宽ΔνN不同谱线有不同的自然宽度,在多数情况下,自然宽度约相当于10-5nm 数量级。