单元一原子吸收光谱法基本原理与定量分析的方法共53页文档
- 格式:ppt
- 大小:3.67 MB
- 文档页数:53
化学分析中的原子吸收光谱法化学分析是对物质成分的定性和定量分析,其应用范围非常广泛。
目前,化学分析的方法包括物理方法、化学方法、光谱学方法等多种方法。
其中,原子吸收光谱法是一种常用的物理方法。
本文将重点介绍原子吸收光谱法及其应用。
一、原子吸收光谱法的原理原子吸收光谱法是一种用于进行微量元素分析的物理方法。
其原理是在一个高温的火焰或火花中,将待测样品原子的某一种能级的电子激发至高能级。
当这些激发态的原子回到基态时,会发射出特定波长的光线,这些光线称为特征谱线。
根据不同元素的特征谱线,可以确定待测样品中各元素的含量。
二、原子吸收光谱法的仪器原子吸收光谱法的仪器一般由光源、样品入口、燃烧室、光谱仪等组成。
其中,最核心的部件是光谱仪。
光谱仪主要分为两种类型:分光光度计和原子吸收分光光度计。
分光光度计一般用于分析有机化合物和大分子化合物等样品,而原子吸收分光光度计则用于空气、土壤、水等环境样品、药物、农产品、生物样品以及自来水的氯、铜、铅等微量元素的测定。
三、原子吸收光谱法的应用原子吸收光谱法可以用于研究各种物质的元素含量,包括土壤样品、水样、大气样品、工业废气等。
常见的应用领域主要有以下几个方面:1.环境监测原子吸收光谱法可以用于对环境污染进行监测。
比如空气污染物的元素含量测定,对于各种工业废气中的有害物质的排放控制和室内空气污染的检测等。
2.农产品检测农作物的生长与土壤中的营养成分密切相关。
原子吸收光谱法可以检测土壤及农产品中的微量元素,对于精准施肥、增加作物产量以及防止污染等方面都有重要意义。
3.生物样品检测原子吸收光谱法可以用于对人体或动物体内的元素含量进行分析。
比如对于铅、汞等有毒元素的检测和盐基元素的相关研究。
总的来说,原子吸收光谱法在各个领域都有着广泛的应用。
这种能够实现微量元素分析的方法已经成为现代化学分析的重要方法之一,它能够准确地反映物质的元素组成和数量,有助于我们更全面、准确地理解物质的性质和特性。
仪器分析《仪器分析》课程组第六章原子吸收光谱法第六章原子吸收光谱法➢6.1 原子吸收光谱法的基本原理➢6.2 原子吸收的测量➢6.3 原子吸收分光光度计➢6.4 干扰及其消除➢6.5 操作条件选择➢6.6 原子吸收光谱法的定量分析及应用6.6 原子吸收光谱法的定量分析及应用◆6.6.1 定量分析方法◆6.6.2 原子吸收分析应用•定量依据:AAS法定量分析依据是比尔定律:A=K'C式中,C为待测元素的浓度,K,在一定实验条件下是一个常数。
它表示,在一定实验条件下,吸光度与浓度成正比。
所以,通过测定吸光度就可以求出待测元素的含量。
•定量分析方法:(1)工作曲线法:配制加有试剂空白的一组含有不同浓度被测元素的系列标准溶液,在与试样测定条件完全相同的情况下,按浓度由低到高的顺序测定其吸光度值;绘制吸光度对浓度的校准曲线;依据测定试样的吸光度,在校准曲线上用内插法即可求出被测元素的含量。
应当注意的问题:注意适宜的浓度范围;标样与试样尽量具有基本相似的化学组成;同批测定时要尽量控制测定条件相同且时时进行浓度校正。
(2)标准加入法:配置含有等量试样溶液的系列浓度的标准加入溶液,测量系列浓度的标准加入溶液的吸光度,绘制标准曲线图,并外推到吸光度为零时与浓度轴的交点,交点至坐标原点的距离即为被测元素的浓度。
对于基体效应影响较大或无法确证时,可以采用标准加入法。
应当注意的问题:实际应用中标准曲线至少安排四个点,且各点均在线性范围内;标准加入后形成的工作曲线应有适当的斜率,接近1最好,斜率太小会导致较大误差。
图标准加入法测定示意图•AAS 的优点:灵敏度高:火焰法,可达10-6g,有时达ng级;石墨炉法可达10-9~ 10-14g。
准确度高:RSD 可达1~3%。
选择性极好:干扰小。
测定范围广:可测70种元素。
原子吸收测定元素一览表•AAS分析应用:应用广泛的微量金属元素的首选测定方法。
(1) 头发中微量元素测定—微量元素与健康关系;(2) 水中微量元素测定—环境中重金属污染分布规律;(3) 水果、蔬菜中微量元素的测定—营养健康与食品安全;(4) 矿物、合金及各种材料中微量元素的测定;(5) 各种生物试样中微量元素的测定。
原子吸收光谱法原子吸收光谱(Atomic Absorption Spectroscopy,AAS),又称原子分光光度法,是基于待测元素的基态原子蒸汽对其特征谱线的吸收,由特征谱线的特征性和谱线被减弱的程度对待测元素进行定性定量分析的一种仪器分析的方法。
中文名原子吸收光谱法外文名Atomic Absorption Spectroscopy光线范围紫外光和可见光出现时间上世纪50年代简称AAS测定方法标准曲线法、标准加入法别名原子吸收分光光度法基本原理原子吸收光谱法(AAS)是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。
由于各种原子中电子的能级不同,将有选择性地共振吸收一定波长的辐射光,这个共振吸收波长恰好等于该原子受激发后发射光谱的波长。
当光源发射的某一特征波长的光通过原子蒸气时,即入射辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都是第一激发态)所需要的能量频率时,原子中的外层电子将选择性地吸收其同种元素所发射的特征谱线,使入射光减弱。
特征谱线因吸收而减弱的程度称吸光度A,在线性范围内与被测元素的含量成正比:A=KC1 / 8式中K为常数;C为试样浓度;K包含了所有的常数。
此式就是原子吸收光谱法进行定量分析的理论基础由于原子能级是量子化的,因此,在所有的情况下,原子对辐射的吸收都是有选择性的。
由于各元素的原子结构和外层电子的排布不同,元素从基态跃迁至第一激发态时吸收的能量不同,因而各元素的共振吸收线具有不同的特征。
由此可作为元素定性的依据,而吸收辐射的强度可作为定量的依据。
AAS现已成为无机元素定量分析应用最广泛的一种分析方法。
该法主要适用样品中微量及痕量组分分析。
原子吸收光谱法谱线轮廓原子吸收光谱线并不是严格几何意义上的线,而是占据着有限的相当窄的频率或波长范围,中心波原子吸收光谱的轮廓以原子吸收谱线的中心波长和半宽度来表征。
即有一定的宽度。
原子吸收光谱的基本原理
原子吸收光谱是由单个原子吸收紫外光进行谱线分析计量测定所采用的一种光谱技术。
它的基本原理是原子吸收既定量的紫外光,在激发几何条件下,利用光谱仪测量紫外光,可判断物质中元素的含量。
吸收光谱分析定量的原理是物质会吸收一定波长的外界光,吸收程度与物质中原子含量成比例,将原子含量与原子峰位置或峰高度联系起来,从而实现定量分析。
原子的激发原理是基于电子前进理论的结果。
电子前进理论认为,电磁波通过空气或其它物质时,在特定波长处会激发原子的电子,使其从低能级的原子态升至高能级的离子态,且所用的电磁波的波长和原子每次跃迁所需的能量相一致,于是就出现了原子吸收谱线,即原子吸收光谱。
由原子激发衍生出来的原子吸收光谱可以用来定量和定性分析.在样品中,原子被激发为高能状态,之后电子崩溃跃迁以较低的能级,而这些外部紫外光可在具体波长处激发这些原子,当激发发生时,原子将失去其能级并吸收一定的能量。
因此,根据激发进步理论和原子结构理论,原子将排列一系列的激发电子态,每一级的激发态和原子中的电子能级有关,只有特定的电磁波可以激发电子,消耗的能量作为原子的半宽或原子的谱线能量。
原子吸收光谱分析也受到单色外界激发而引发的同源谱线干扰的影响。
在实际应用中,应尽量减少激发强度,提高谱线能量信号和测定精度,从而避免此类可能的干扰现象。
总之,原子吸收光谱是一种基于电子前进理论的光谱技术,可以通过原子吸收的紫外光进行谱线的分析计量测定,从而实现物质中元素定量的测定。
原子吸收光谱法模块1 原子吸收光谱法基本原理仪器结构:光源;检测系统;分光系统;原子化系统一、 原子吸收法定义原子吸收法是一种利用元素的基态原子对特征辐射线的吸收程度进行定量的分析方法。
测定对象:金属元素及少数非金属元素。
二、原子吸收光谱的产生当有光辐射通过自由原子蒸气,且入射光辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都是第一激发态)所需要的能量频率时,原子就要从辐射场中吸收能量,产生吸收,电子由基态跃迁到激发态,同时伴随着原子吸收光谱的产生。
原子吸收光谱是原子由基态向激发态跃迁产生的原子线状光谱。
分光法:分子或离子的吸收为带状吸收。
原子法:基态原子为线状吸收。
三、原子吸收光谱几个重要概念共振吸收线:当电子吸收一定能量从基态跃迁到第一激发态时所产生的吸收谱线,称为共振吸收线,简称共振线。
共振发射线:当电子从第一激发态跃回基态时,则发射出同样频率的光辐射,其对应的谱线称为共振发射线,也简称共振线。
分析线:用于原子吸收分析的特征波长的辐射称为分析线,由于共振线的分析灵敏度高,光强大常作分析线使用。
(亦称为特征谱线)四、原子吸收线的形状(光谱的轮廊 )原子对光的吸收是一系列不连续的线,即原子吸收光谱。
原子吸收光谱线并不是严格几何意义上的线,而是具有一定的宽度。
νI ν0I 频率为ν0的入射光和透过光的强度νK 原子蒸气对频率ν0的入射光的吸收系数 L 原子蒸气的宽度吸收线轮廓——描绘吸收率随频率或波长变化的曲线。
发射线轮廓——描绘发射辐射强度随频率或波长变化的曲线。
原子吸收光谱的轮廓以原子吸收谱线的中心频率和半宽度来表征。
中心频率:曲线极大值对应的频率υ0 峰值吸收系数:中心频率所对应的吸收系数吸收线的半宽度:指在中心频率处,最大吸收系数一半处,吸收光谱线轮廓上A 、B 两点之间的频率差。
吸收曲线的半宽度△υ的数量级约为0.001~0.01nm五、影响原子吸收谱线变宽的原因(1)自然变宽ΔνN不同谱线有不同的自然宽度,在多数情况下,自然宽度约相当于10-5nm 数量级。