数字信号处理6离散系统的系统函数系统的频率响应
- 格式:pptx
- 大小:271.09 KB
- 文档页数:23
系统函数系统频率响应系统单位冲激响应三者之间的关系
系统函数、系统频率响应和系统单位冲激响应是数字信号处理中描述离散系统的重要概念。
三者之间的关系如下:
1. 系统函数(Transfer Function):系统函数是描述离散系统
的一个复数函数,通常表示为H(z)或H(e^(jω))。
它将输入信
号的频谱与输出信号的频谱之间的关系联系起来。
系统函数是系统频率响应和系统单位冲激响应的拉普拉斯或Z变换。
2. 系统频率响应(Frequency Response):系统频率响应是系
统函数H(z)在复平面上的取值。
它描述了系统对不同频率的
输入信号的响应情况。
系统频率响应可以通过将系统函数H(z)的变量变为单位复指数来得到,即H(e^(jω))。
3. 系统单位冲激响应(Unit Impulse Response):系统单位冲
激响应是指当输入信号为单位冲激函数(单位脉冲函数)时,系统的输出响应。
它是系统函数H(z)在z=1处的取值,通常
表示为h[n]。
系统单位冲激响应是系统函数的离散时间反变换。
综上所述,系统函数H(z)是系统频率响应H(e^(jω))和系统单
位冲激响应h[n]]之间的关系。
系统频率响应描述了系统对不
同频率的输入信号的响应情况,而系统单位冲激响应描述了系统对单位冲激函数的响应情况。
系统函数则将这两者联系起来,通过对系统频率响应进行频域拉普拉斯变换或Z变换得到系
统函数,并通过对系统函数进行逆变换得到系统单位冲激响应。
离散系统的频率响应分析实验课程:数字信号处理实验内容:实验4离散系统的频率响应分析和零、极点分布院(系则):计算机学院专业:通信工程班级:111班2021年6月7日一、实验目的:增进对离散系统的频率响应分析和零、极点原产的概念认知。
二、实验原理:离散系统的时域方程为y(n-k)=∑pkx(n-k)其变换域分析方法如下:时频域变换y[n]=x[n]*h[n]=系统的频率响应为jωjωjωx[m]h[n-m]⇔y(e)=x(e)h(e)∑p(ejω)p0+p1e-jω+...+pme-jmωh(e)==jωd(e)d0+d1e-jω+...+dne-jnω时域z域变换y[n]=x[n]*h[n]=系统的转移函数为∑x[m]h[n-m]⇔y(z)=x(z)h(z)p(z)p0+p1z-1+...+pmz-mh(z)==d(z)d0+d1z-1+...+dnz-nh(z)=∑pkz∑dkz(1-ξz)∏i-1(1-λz)∏ii=1i=1nξλi上式中的和i称为零、极点。
在matlab中,可以用函数[z,p,k]=tf2zp(num,den)求出有理分式形式的系统迁移函数的零、极点,用函数zplane(z,p)绘制零、极点分布图;也可以用函数zplane (num,den)轻易绘制有理分式形式的系统迁移函数的零、极点分布图。
另外,在matlab中,可以用函数[r,p,k]=residuez(num,den)完成部分分式展开计算;可以用函数sos=zp2sos(z,p,k)完成将高阶系统分解为2阶系统的级联。
三、实验内容及步骤:实验内容:求系统0.0528+0.0797z-1+0.1295z-2+0.1295z-3+0.797z-4+0.0528z-5h(z)=1-1.8107z-1+2.4947z-2-1.8801z-3+0.9537z-4-0.2336z-5的零、极点和幅度频率响应。
程序代码:num=[0.05280.07970.12950.12950.7970.0528];den=[1-1.87072.4947-1.88010.9537-0.2336];freqz(num,den);%0~π中抽样,抽样点缺省(512点)ζnum=[0.05280.07970.12950.12950.7970.0528];den=[1-1.87072.4947-1.88010.9537-0.2336];w=[0pi/8pi/4pi*3/8pi/2pi*5/8pi*3/4];%自己定8个点θh=freqz(num,den,w);subplot(2,2,1);stem(w/pi,abs(h));title('幅度五音')xlabel('数字频率');ylabel('振幅');[h,w]=freqz(num,den,8);%系统在0~π之间均分8份,与“θ”处效果一样wsubplot(2,2,2);stem(w/pi,abs(h));title('幅度五音')xlabel('数字频率');ylabel('振幅');h=freqz(num,den);%系统在0~π之间均分512份,与“ζ”处效果一样subplot(2,2,3);z=10*log(abs(h))plot(z);%与“ζ”处幅度五音效果一样title('分贝幅度五音')xlabel('数字频率');ylabel('振幅');num=[0.05280.07970.12950.12950.7970.0528];den=[1-1.87072.4947-1.88010.9537-0.2336];[z,p,k]=tf2zp(num,den);%谋零极点z%零点p%极点subplot(2,2,4);zplane(z,p);%zplane(num,den)也可以[sos,g]=zp2sos(z,p,k);%二阶系统分解sosg [r,p,k]=residuez(num,den);%部分分式进行rp四、实验总结与分析:本次实验晓得了函数zplane()、freqz()、angle()的用法,原来就是绘制零极点图形和排序数字滤波器h(z)的频率响应以及谋复数的相角。
《数字信号处理》考试大纲适用专业名称:081002信号与信息处理考试大纲一、考试目的与要求《数字信号处理》作为全日制信号与信息系统专业硕士研究生入学考试复试科目,其目的是考察考生是否具备进行信号与信息系统专业工学硕士学习所要求的数字信号处理方面的知识,考察学生对数字信号处理的基本理论、基本分析方法、基本算法和基本实现方法的掌握程度。
二、试卷结构(满分50分)内容比例:数字信号处理约50分题型比例:解答题100%三、考试内容与要求(一)离散信号与系统分析考试内容离散时间信号序列;线性移不变系统;常系数线性差分方程;连续时间系统的抽样。
考试要求1.掌握序列的运算、几种常用序列及序列的周期性的判断方法。
2.理解线性移不变系统的定义、性质,掌握其判断方法。
3.理解因果稳定系统的定义,掌握对其进行判断的充要条件。
4.了解差分方程的定义,掌握线性常系数差分方程的求解方法。
5.理解连续时间系统的抽样过程。
(二) Z变换考试内容Z变换的定义及收敛域; Z反变换; Z变换的基本性质和定理; Z变换与连续信号的拉普拉斯变换、傅里叶变换的关系及序列的傅里叶变换;序列的傅立叶变换及对称性质;离散系统的系统函数,系统的频率响应。
考试要求1.理解Z变换的定义及收敛域的确定。
2.掌握Z反变换的常用方法:留数法、部分分式法、长除法。
3.理解Z变换的基本性质和定理,掌握其应用。
4.理解Z变换与连续信号的拉普拉斯变换、傅里叶变换的关系。
5.理解序列的傅立叶变换的定义,掌握对称性质的应用。
6.理解离散系统的系统函数的定义及系统频率响应的涵义。
7.掌握因果稳定系统的判断方法。
8.理解系统函数和差分方程之间的关系。
9.理解系统的频率响应的意义。
10.了解IIR系统与FIR系统。
(三)离散傅立叶变换考试内容傅里叶变换的形式及周期序列的离散傅里叶级数;离散傅里叶变换及其性质、应用考试要求。
1.了解傅里叶变换的几种形式,掌握离散傅里叶级数其性质。
1.、2. 用冲激响应不变法将以下 )(s H a变换为变换为 )(z H ,抽样周期为T 。
为任意正整数 ,)()( )2()()()1(022n s s As H b a s as s H na a -=+++=分析:①冲激响应不变法满足)()()(nT h t h n h a nTt a===,T 为抽样间隔。
这种变换法必须)(s H a 先用部分分式展开。
②第(②第(22)小题要复习拉普拉斯变换公式1!][+=n n S n t L ,na n t s a S S As H t u n t Ae t h )()()()!1()(010-=⇔-=-,可求出可求出 )()()(kT Th t Th k h a kTt a===,|又 dz z dX z k kx )()(-⇔,则可递推求解。
解: (1)22111()()2a s a H s s a b s a jb s a jb ⎡⎤+==+⎢⎥+++++-⎣⎦[])( 21)()()(t u e e t h tjb a t jb a a --+-+= 由冲激响应不变法可得:由冲激响应不变法可得:由冲激响应不变法可得:[]()()()() ()2a jb nT a jb nT a T h n Th nT e e u n -+--==+ 11011() () 211naT jbT aT jbT n T H z h n z e e z e e z ∞------=⎡⎤==+⎢⎥--⎣⎦∑ 2211cos 21cos 1 ------+--⋅=z e bT z e bT z e T aT aT aT(2) 先引用拉氏变换的结论[]1!+=n n s n t L 可得:可得: n a s s As H )()(0-=))()!1()(10t u n t Ae t h n t s a -=-则 )()!1()()()(10k u n kT Ae T Tk Th k h n kT s a -⋅==- dzz dX zk kx az k u a ZZk )()( , 11)( 1-−→←-−→←-且按)11()()!1( )()!1( )()(111111000--∞=---∞=----=-==∑∑ze dz d z n AT e z k n T TA z k h z H T s n n kkT s n n k k可得⎪⎪⎩⎪⎪⎨⎧=-=-=•••---,3,2)1(1,1)(111000n z e z e AT n z e ATz H n T s T S n T s ,可以递推求得:2. 已知模拟二阶巴特沃思低通滤波器的归一化系统函数为:2'4142136.111)(s s s H a ++=而而3dB 截止频率为50Hz 的模拟滤波器,需将归一化的)('s H a 中的s 变量用502⨯πs 来代替424'108696044.928830.444108696044.9)100()(⨯++⨯==s s s H s H a a π:设系统抽样频率为设系统抽样频率为Hz f s 500=,要求从这一低通模拟滤波器设计一个低通数字滤波器,采用阶跃响应不变法。
电子科技大学22春“电子信息工程”《数字信号处理》期末考试高频考点版(带答案)一.综合考核(共50题)1.对5点有限长序列[1 3 0 5 2]进行向左2点圆周移位后得到序列()。
A.[1 3 0 5 2]B.[5 2 1 3 0]C.[0 5 2 1 3]D.[0 0 1 3 0]参考答案:C2.用窗函数法设计FIR低通滤波器时,可以通过增加截取长度N来任意减小阻带衰减。
()A.正确B.错误参考答案:B3.下列关于因果稳定系统说法错误的是()。
A.极点可以在单位圆外B.系统函数的z变换收敛区间包括单位圆C.因果稳定系统的单位抽样响应为因果序列D.系统函数的z变换收敛区间包括z=∞参考答案:A4.要处理一个连续时间信号,对其进行采样的频率为3kHz,要不失真的恢复该连续信号,则该连续信号的最高频率可能是为()。
A.6kHzB.1.5kHzC.3kHzD.2kHz5.数字信号的特征是()。
A.时间连续、幅值量化B.时间离散、幅值量化C.时间离散、幅值连续D.时间连续、幅值连续参考答案:B6.双线性变换法是非线性变换,所以用它设计IIR滤波器不能克服频率混叠效应。
()A.正确B.错误参考答案:B7.序列x(n)=u(n)的能量为()。
A.1B.9C.11D.∞参考答案:D8.两有限长序列的长度分别是M和N,要利用DFT计算两者的线性卷积,则DFT的点数至少应取()。
A.MB.NC.M+ND.MN参考答案:C9.B.1/4C.1D.4参考答案:C10.计算256点的按时间抽取基-2 FFT,在每一级的蝶形个数是()。
A.256B.1024C.128D.64参考答案:C11.无限长单位冲激响应滤波器在结构上是递归型的。
()A.正确B.错误参考答案:A12.下列哪一个单位抽样响应所表示的系统不是因果系统?()A.h(n)=δ(n)B.h(n)=u(n)C.h(n)=u(n)-u(n-1)D.h(n)=u(n)-u(n+1)参考答案:D13.若对一带限模拟信号的抽样满足奈奎斯特条件,则只要将抽样信号通过()即可完全无失真恢复原模拟信号。
离散积分器频率响应
离散积分器是数字信号处理中常用的一种滤波器,它在信号处理和控制系统中具有重要的作用。
离散积分器的频率响应是描述其在频域中的性能的重要指标之一。
首先,我们来了解一下离散积分器的原理。
离散积分器的作用是对输入信号进行离散积分运算,即对输入信号进行累加处理。
在时域中,离散积分器的输出可以表示为输出序列y(n)与输入序列x(n)之间的关系:
y(n) = y(n-1) + x(n)。
其中,y(n)表示离散积分器的输出,x(n)表示输入信号,n表示时间步长。
离散积分器的频率响应描述了在不同频率下输入信号的幅度变化经过滤波器后的变化情况。
离散积分器的频率响应通常通过频率响应函数来描述,可以用离散时间复频率变量z来表示。
离散积分器的频率响应函数H(z)可以表示为:
H(z) = 1 / (1 z^(-1))。
其中,z为复频率变量。
通过对频率响应函数H(z)进行频域分析,可以得到离散积分器在不同频率下的幅度响应和相位响应。
离散积分器的频率响应在信号处理和控制系统中具有广泛的应用。
在数字滤波器设计中,离散积分器可以用于实现低通滤波器和积分控制器等功能。
在控制系统中,离散积分器可以用于实现对系统误差的积分控制,提高系统的稳定性和精度。
总之,离散积分器的频率响应是描述其在频域中性能的重要指标,对于理解离散积分器的工作原理和应用具有重要意义。
在实际应用中,我们需要根据具体的需求和系统特性来选择合适的离散积分器,并对其频率响应进行分析和设计,以实现对信号和系统的有效处理和控制。
四、计算题(每小题10分,共40分)1.已知11257()252z X z zz----=-+,求出对应X(z)的各种可能的序列表达式。
解: X (z )有两个极点:z 1=0.5,z 2=2, 因为收敛域总是以极点为界,因此收敛域有三种情况: |z |<0.5,0.5<|z |<2,2<|z |。
对应三种不同的原序列。
-----------3分0.521()R e s[(),0.5]R es[(),2](57)(57)(0.5)(2)2(0.5)(2)2(0.5)(2)1[3()2](1)2nnz z n nx n F z F z z zz zz z z z z z u n ==+=----=--------=-⋅+-- ------------3分11()3()()2(1)2n nx n u n u n +=⋅--- ------------------------2分11 ()32()2n nx n u n +⎡⎤⎛⎫=⋅+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦------------------------2分2.用Z 变换法解下列差分方程:y (n )-0.9y (n -1)=0.05u (n ),n < 0时y (n )=0。
解:11111()0.9()0.0510.05()(10.9)(1)Y z Y z z zY z z z -----=-=-- ------------------------4分()110.050.05()R e s[(),0.9]R e s[(),1](0.9)0.10.1 0.50.90.5n n y n F z F z ++=+=+-=-⋅+ ------------------------3分n <0时, y (n )=0最后得到 y (n )=[-0.5 · (0.9)n +1+0.5]u (n ) ------------------------3分3.设计一个巴特沃斯低通滤波器, 要求其通带截止频率f p=12 kHz ,阻带截止频率f s=24 kHz ,f p 处最大衰减为3dB ,阻带最小衰减a s=15dB 。
一、单项选择题1. 序列x(n)=Re(e jn π/12)+I m (e jn π/18),周期为( )。
A. 18πB. 72C. 18πD. 362. 设C 为Z 变换X(z)收敛域内的一条包围原点的闭曲线,F(z)=X(z)z n-1,用留数法求X(z)的反变换时( )。
A. 只能用F(z)在C 内的全部极点B. 只能用F(z)在C 外的全部极点C. 必须用收敛域内的全部极点D. 用F(z)在C 内的全部极点或C 外的全部极点3. 有限长序列h(n)(0≤n ≤N-1)关于τ=21-N 偶对称的条件是( )。
A. h(n)=h(N-n) B. h(n)=h(N-n-1)C. h(n)=h(-n)D. h(n)=h(N+n-1)4. 对于x(n)= n)21(u(n)的Z 变换,( )。
A. 零点为z=21,极点为z=0 B. 零点为z=0,极点为z=21 C. 零点为z=21,极点为z=1 D. 零点为z=21,极点为z=2 5、)()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N 满足 。
A.16>NB.16=NC.16<ND.16≠N6. 设系统的单位抽样响应为h(n)=δ(n)+2δ(n-1)+5δ(n-2),其频率响应为( )。
A. H(e j ω)=e j ω+e j2ω+e j5ωB. H(e j ω)=1+2e -j ω+5e -j2ωC. H(e j ω)=e -j ω+e -j2ω+e -j5ωD. H(e j ω)=1+21e -j ω+51e -j2ω 7. 设序列x(n)=2δ(n+1)+δ(n)-δ(n-1),则X(e j ω)|ω=0的值为( )。
A. 1B. 2C. 4D. 1/28. 设有限长序列为x(n),N 1≤n ≤N 2,当N 1<0,N 2>0,Z 变换的收敛域为( )。