数字图像处理第6章 二值图像处理
- 格式:ppt
- 大小:890.50 KB
- 文档页数:58
⼆值图像的作⽤⼆值图像的作⽤:图像⼆值化( Image Binarization)就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的⿊⽩效果的过程。
在数字图像处理中,⼆值图像占有⾮常重要的地位,图像的⼆值化使图像中数据量⼤为减少,从⽽能凸显出⽬标的轮廓。
将256个亮度等级的灰度图像通过适当的阈值选取⽽获得仍然可以反映图像整体和局部特征的⼆值化图像。
在数字图像处理中,⼆值图像占有⾮常重要的地位,⾸先,图像的⼆值化有利于图像的进⼀步处理,使图像变得简单,⽽且数据量减⼩,能凸显出感兴趣的⽬标的轮廓。
其次,要进⾏⼆值图像的处理与分析,⾸先要把灰度图像⼆值化,得到⼆值化图像。
所有灰度⼤于或等于阈值的像素被判定为属于特定物体,其灰度值为255表⽰,否则这些像素点被排除在物体区域以外,灰度值为0,表⽰背景或者例外的物体区域。
图像⼆值化的作⽤是为了⽅便提取图像中的信息,⼆值图像在进⾏计算机识别时可以增加识别效率。
⽐如:需要计算⽔⾯悬浮物的数量,就可以将⼀定⾯积的⽔拍成图⽚后⼆值化。
⼆值图像是指每个像素不是⿊就是⽩,其灰度值没有中间过渡的图像。
⼆值图像⼀般⽤来描述⽂字或者图形,其优点是占⽤空间少,缺点是当表⽰⼈物、风景的图像时,⼆值图像只能描述其轮廓,不能描述细节。
这时候要⽤更⾼的灰度级。
⼆值图像是每个像素只有两个可能值的数字图像。
⼈们经常⽤单⾊图像表⽰⼆值图像,但是也可以⽤来表⽰每个像素只有⼀个采样值的任何图像,例如灰度图像等。
⼆值图像中所有的像素只能从0和1这两个值中取,因此在MATLAB中,⼆值图像⽤⼀个由0和1组成的⼆维矩阵表⽰。
这两个可取的值分别对应于关闭和打开,关闭表征该像素处于背景,⽽打开表征该像素处于前景。
以这种⽅式来操作图像可以更容易识别出图像的结构特征。
⼆值图像操作只返回与⼆值图像的形式或结构有关的信息,如果希望对其他类型的图像进⾏同样的操作,则⾸先要将其转换为⼆进制的图像格式,可以通过调⽤MATLAB提供的 im2bw()来实现。
数字图像处理中的二值化算法研究数字图像处理是一种将数字信号进行转换和处理的技术,其中二值化算法是数字图像处理中最基本的算法之一。
在数字图像处理中,二值化是将一张彩色或灰度图像转换成只包含黑白两种颜色的图像。
这篇文章将讨论数字图像处理中的二值化算法研究,重点探讨二值化算法的基本原理、常见的二值化算法以及它们的优缺点。
一、二值化算法的基本原理二值化算法是将一张彩色或灰度图像转换为只包含黑色和白色的图像。
这仅仅是将像素值分为两类,其中一个像素集合表示白色,另一个表示黑色。
二值化的原理是将灰度图像中亮度值相近的像素映射为同一种颜色,以达到压缩图像数据并提高图像处理速度的目的。
二、常见的二值化算法1、全局阈值法全局阈值法是通过计算整个图像的灰度平均值来确定二值化的阈值。
该算法简单易用,但它假定图像的背景和目标的亮度值之间存在一个确定的边界,这在实际应用中并不总是正确的。
2、自适应阈值法自适应阈值法是针对全局阈值法的不足,通过对每个像素周围的像素值的统计分布进行分析,自适应地确定像素的阈值。
该算法对于图像的光照变化和背景模糊有很好的鲁棒性。
3、Otsu算法Otsu算法是一种自适应的阈值算法,通过最小化类内方差和类间方差的和来确定阈值。
这个算法假设图像存在不同的颜色区域,旨在找到阈值,以最大化识别两个区域的差异。
三、二值化算法的优缺点1、全局阈值法的优点是简单易用,运算速度快,因此非常适合处理简单的图像。
但是,它不能很好地处理灰度变化较大的图像和背景复杂的图像。
2、自适应阈值法比全局阈值法更适用于处理复杂的图像,由于每个像素的阈值是基于周围像素的,具有更好的图像复杂性,然而,该算法对于图像的光照变化较大的情况也有一定的局限。
3、Otsu算法能够通过最小化类内方差和类间方差的和来确定阈值。
该算法对于事先未知的图像类型以及图像颜色区域的不均衡分布具有适应性和鲁棒性,是一种广泛应用于图像二值化中的方法。
四、二值化算法的应用二值化算法在字符识别、边缘检测等领域中有着广泛的应用。
图像处理中的图像二值化算法随着科技的发展,图像处理技术应用越来越广泛。
作为一项基础技术,图像二值化算法在图像处理中扮演着非常关键的角色,它可以将图像分割成黑白两种颜色,也就是将图像中的灰度值转化为0和1,简化了后续的处理流程。
本文将介绍图像二值化算法的基本原理和应用情况。
一、二值化算法的基本原理在图像中,每个像素都有一定的灰度值,在8位灰度图像中,灰度值的范围在0-255之间,其中0是代表黑色,255代表白色。
当我们需要处理一张图片时,如果直接对每一个灰度值进行处理,那么处理的过程就会非常繁琐,因此,我们需要将图像灰度值转化为0和1两种数字进行处理。
常见的二值化算法有全局阈值算法、局部阈值算法、自适应阈值算法、基于梯度算法等。
其中,全局阈值算法是最基本、最简单的一种算法。
它将整张图像分成黑白两个部分,通过将整个图像的像素点的灰度值与一个固定的阈值进行比较,如果像素点的灰度值大于阈值,就将该像素点的灰度值置为1,否则置为0。
使用全局二值化算法的步骤如下:1.将图像读入到内存中;2.将图像转化为灰度图像;3.计算整个图像的平均灰度值,该平均灰度值作为全局阈值;4.将图像中每个像素点的灰度值与该全局阈值进行比较,灰度值大于等于该全局阈值的像素点赋值为255(代表白色),小于该阈值的像素点赋值为0(代表黑色);5.输出处理后的图像。
当然,这种方法的缺点也非常明显,那就是无法适应不同场合下的图像处理需求,处理效果难以保证。
因此,我们需要更为灵活的算法和方法来进行二值化处理。
二、不同类型的二值化算法1.基于直方图的全局阈值法二值化算法中的全局阈值算法通常是将整个图像分成两类像素:一类像素比较暗,另一类像素比较亮。
在直方图中,该分割就是直方图上的两个峰。
我们可以通过直方图分析来确定这个阈值,并将灰度值低于阈值的像素变为黑色,将灰度值高于阈值的像素变为白色。
对于图像I(x,y),它的灰度直方图h(i)可以表示为:h(i) = N(i) / MN (i=0,1,…,L-1)其中N(i)是图像中所有像素灰度值为i的像素数量,MN是总的像素数量,L是灰度级别数量(在8位图像中,L等于256)然后我们需要确定一个阈值T,所有像素点的灰度值小于T的变为黑色,大于等于T的变为白色。
数字图像处理_武汉大学中国大学mooc课后章节答案期末考试题库2023年
1.二值图像中分支点的连接数为:()
参考答案:
3
2.采用模板[-1 1]主要检测()方向的边缘。
参考答案:
垂直
3.下列图像边缘检测算子中抗噪性能最好的是:( )
参考答案:
Prewitt算子
4.计算机模式识别可以分为以下()四类。
参考答案:
句法模式识别,结构模式识别,统计模式识别,模糊模式识别
5.下列属于灰度共生矩阵提取特征的有()
参考答案:
二阶矩_对比度_逆差距_相关
6.最常用的客观保证真度准则包括()
参考答案:
原图像和解码图像之间均方根误差_原图像和解码图像之间均方根信噪比7.对一幅100*100像元的图象,若每像元用8bit表示其灰度值,经霍夫曼编
码后压缩图象的数据量为40000bit,则图象的压缩比为:( )
参考答案:
2:1
ws纹理能量测量的基本思路为______
参考答案:
先进行微窗口滤波,能量变换,然后分量旋转,再分类
9.二值图像中,()是可删除点
参考答案:
端点
10.图像数字化包括()两个过程。
参考答案:
量化_采样
11.图像特征是图像分析的重要依据,可以分为自然特征和人工特征两类,下列
属于的自然特征的是()。
参考答案:
几何特征_光谱特征_时相特征
12.下列属于模板匹配算法的有()
参考答案:
高速模板匹配法_高精度定位的模板匹配_相关法。
DSP技术及应用课程设计报告课题名称:数字图像处理——二值化学院:电气信息工程学院专业:通信工程班级:姓名:学号:指导教师:董胜成绩:日期:2014.6.9-2014.6.20目录一、设计目的及要求 (2)二、设计所需的软件介绍 (2)三、设计原理 (3)四、程序流程图 (6)五、设计程序 (7)六、处理后的效果展示 (11)七、课程设计心得 (15)八、参考文献 (16)一、设计目的及要求:目的:1、掌握CCStudio3.3的安装和配置;2、掌握数字图像处理的原理、基本算法和各种图像处理技术;3、掌握图像的灰度化、二值化和灰度直方图的原理及编程思路;4、掌握图像滤波(图像锐化、中值滤波、边缘检测、特征识别等)的基本原理及编程方法及编程思路;要求:1、能够根据设计题目要求查阅检索有关的文献资料,结合题目选学有关参考书。
查询相关资料,初步制定设计方案。
2、用CCS软件进行C语言设计相关算法,实现对图像的采集及处理。
3、编写相应的C语言程序实现各种图像处理。
二、设计所需的软件介绍:英文全称:Code Composer Studio 中文译名:代码调试器,代码设计套件。
CCS的全称是Code Composer Studio,它是美国德州仪器公司(Texas Instrument,TI)出品的代码开发和调试套件。
TI公司的产品线中有一大块业务是数字信号处理器(DSP)和微处理器(MCU),CCS便是供用户开发和调试DSP和MCU程序的集成开发软件。
Code Composer Studio v3.3 (CCStudio v3.3) 是用于 TI DSP、微处理器和应用处理器的集成开发环境。
Code Composer Studio 包含一整套用于开发和调试嵌入式应用的工具。
它包含适用于每个 TI 器件系列的编译器、源码编辑器、项目构建环境、调试器、描述器、仿真器以及多种其它功能。
Code Composer Studio IDE 提供了单个用户界面,可帮助您完成应用开发流程的每个步骤。
图片的黑白处理(二值化)原始圖片黑白處理后圖片原始圖片:黑白處理后圖片:部分处理代码: code……Dim ts2 As IThresholder = New GlobalMeanThreshold(inbmp)Dim tsBMP As New Bitmap(PictureBox1.Width, PictureBox1.Height) ts2.RenderToBitmap(tsBMP)PictureBox6.Image = tsBMPPictureBox6.Height = PictureBox1.HeightPictureBox6.Width = PictureBox1.WidthPictureBox6.Left = 0PictureBox6.Top = 0……理论知识:灰度图像的二值化处理就是讲图像上的点的灰度置为0或255,也就是讲整个图像呈现出明显的黑白效果。
即将256个亮度等级的灰度图像通过适当的阀值选取而获得仍然可以反映图像整体和局部特征的二值化图像。
在数字图像处理中,二值图像占有非常重要的地位,特别是在实用的图像处理中,以二值图像处理实现而构成的系统是很多的,要进行二值图像的处理与分析,首先要把灰度图像二值化,得到二值化图像,这样子有利于再对图像做进一步处理时,图像的集合性质只与像素值为0或255的点的位置有关,不再涉及像素的多级值,使处理变得简单,而且数据的处理和压缩量小。
为了得到理想的二值图像,一般采用封闭、连通的边界定义不交叠的区域。
所有灰度大于或等于阀值的像素被判定为属于特定物体,其灰度值为255表示,否则这些像素点被排除在物体区域以外,灰度值为0,表示背景或者例外的物体区域。
如果某特定物体在内部有均匀一致的灰度值,并且其处在一个具有其他等级灰度值的均匀背景下,使用阀值法就可以得到比较的分割效果。
如果物体同背景的差别表现不在灰度值上(比如纹理不同),可以将这个差别特征转换为灰度的差别,然后利用阀值选取技术来分割该图像。