(二)溢流阀静态性能实验
- 格式:doc
- 大小:183.50 KB
- 文档页数:2
溢流阀特性实验报告溢流阀特性实验报告引言:溢流阀是一种常见的流体控制装置,用于控制流体的流量和压力。
在工业领域中,溢流阀广泛应用于液压系统、润滑系统和供水系统等。
本实验旨在通过对溢流阀的特性进行实验研究,探究其工作原理和性能特点。
实验目的:1. 了解溢流阀的工作原理和结构2. 研究溢流阀的流量特性和压力特性3. 探究溢流阀的调节性能和稳定性实验装置:1. 溢流阀2. 流量计3. 压力表4. 液压泵5. 液压油实验步骤:1. 将实验装置搭建好,确保连接无泄漏。
2. 打开液压泵,使液压油进入系统。
3. 调节溢流阀的开度,记录流量计和压力表的读数。
4. 改变液压泵的输出压力,重复步骤3。
5. 分析记录的数据,得出溢流阀的特性曲线。
实验结果与分析:通过实验记录的数据,我们得到了溢流阀的特性曲线。
在不同的开度下,溢流阀的流量和压力呈现出一定的关系。
随着开度的增大,溢流阀的流量也随之增大,但压力却相应下降。
这是因为溢流阀通过调节阀芯的开度来控制流体的流量,当阀芯开度增大时,流体通过阀口的面积也增大,从而导致流量增加。
而压力的下降则是由于流量增大,导致液压系统中的能量分散,使得压力降低。
此外,我们还观察到溢流阀的调节性能和稳定性。
在不同的压力下,溢流阀能够稳定地保持一定的流量,这说明溢流阀具有较好的调节性能。
而在相同的压力下,不同开度的溢流阀的流量存在一定的差异,这说明溢流阀的稳定性有一定的局限性。
因此,在实际应用中,我们需要根据具体的需求选择合适的溢流阀,以满足系统的要求。
结论:通过本次实验,我们深入了解了溢流阀的工作原理和性能特点。
溢流阀通过调节阀芯的开度来控制流体的流量和压力,具有较好的调节性能和稳定性。
在实际应用中,我们需要根据系统的要求选择合适的溢流阀,以确保系统的正常运行。
总结:溢流阀作为一种重要的流体控制装置,广泛应用于各个领域。
通过本次实验,我们对溢流阀的特性进行了研究,了解了其工作原理和性能特点。
(一)实验项目:∙液压泵的性能实验;∙溢流阀性能实验;∙节流调速性能实验;∙气动回路实验。
(二)实验设备和仪器:以上实验采用秦川机床厂生产的QCS003B型液压实验台进行。
图1为QCS003B型液压实验台的液压系统原理图,图2为其外形,图3为电器按钮箱的面板图。
QCS003B型液压实验台共分五部分。
1.动力部分:动力部分主要包括油箱、电动机、油泵和滤油器。
电动机型号为Y90L-4,额定功率1.5KW,满载转速1410rpm。
油泵为YB-6定量叶片泵(件号1,8),额定压力为63kgf/cm2,排量为6ml/r。
电动机和叶片泵装在油箱盖板上,油箱底部装有轮子,可以移动,它安放在实验台左后部。
2.控制部分:控制部分主要包括溢流阀、电磁换向阀、节流阀、调速阀等。
这些阀的额定压力为63 kgf/cm2,流量为10L/min,全部装在实验台的面板上。
3.执行部分:工作缸(件号17)和加载缸(件号18)。
缸径φ=16mm,行程L=250mm。
并排装在实验台的台面上。
4.电器部分:包括电器箱和电器按钮操作箱。
电器箱中主要有接触器、热继电器、变压器、熔断器等。
它位于实验台后部的右下角。
电器按钮操作箱主要包括各种控制按钮和旋钮以及红绿信号灯。
它位于实验台的右侧。
5.测量部分:主要包括压力表、功率表、流量计、温度计,它们安装在实验台面板上。
该实验台功率表(件号10)的型号为44L1-5W,测量范围3KW,精度等级2.5。
用它来测量电动机的输出功率(即液压泵的输入功率)。
将功率表接入电网与电动机定子线圈之间,功率表所指示的数值即为电动机的输入功率。
通过换算可求出电动机的输出功率。
该实验台采用LC-15椭圆齿轮流量计(件号20),它的进口直径为15mm,测量范围为3~30L/min,积累误差±0.5%,工作压力为16 kgf/cm2,压力损失≤0.2 kgf/cm2,工作温度为-10℃~+120℃。
它的结构主要由壳体、一对椭圆齿轮和计数机构组成。
液压测试大作业题目:DN10直动形溢流阀静态特性测试学院:机械工程学院专业班级: 18级机电控制工程2班学生姓名:褚海洋201811010500李新磊 201811010496郭晨箫 201811010219刘畅 201811010449李熙正 170101010453 指导教师:姚静2021年5 月溢流阀是保证工程机械液压系统稳定工作的重要元件。
分析直动式溢流阀的结构和工作原理,了解其工作特点和相关参数,通过数学建模分析直动式溢流阀的静态特性、运用Amesim软件对所设计的直动式溢流阀进行仿真、分析影响溢流阀性能的参数,得出直动式溢流阀的相关变化参数对其静态特性的影响程度,并验证模型的正确性。
然后进行直动式溢流阀的测试实验,与仿真结果进行对比,为在不同场合应用溢流阀提供了设计借鉴。
关键词:直动式溢流阀动态特性数学建模 Amesim仿真一绪论 (1)1.1 实验目的与意义 (1)1.1.1实验目的 (1)1.1.2实验意义 (1)1.2 直动型溢流阀阀测试现状 (1)二直动型溢流阀静态特性测试 (1)2.1 直动型溢流阀机理分析 (1)2.2建立数学模型 (2)2.3实验原理 (3)2.4静态特性测试内容 (3)2.5测试回路图 (4)2.6试验结果预估 (5)三直动型溢流阀静态特性仿真实验 (5)3.1 AMEsim模型搭建 (6)3.2仿真结果及分析 (7)四实验结果 (7)4.1实验结果分析 (8)4.2结果对比分析 (8)五结论 (10)参考文献 (11)一绪论1.1 实验目的与意义1.1.1 实验目的首先,了解清楚溢流阀的工作原理。
通过实验,进一步理解溢流阀的静态特性及其性能,掌握溢流阀的静态特性的测试原理和测试方法,掌握静态特性指标的内容及意义。
通过实验,了解溢流阀静态特性中启闭特性的测试方法。
1.1.2 实验意义溢流阀作为液压系统中使用最频繁的压力控制阀,是构成液压回路不可或缺的阀。
溢流阀性能实验(实验类型:验证)XXX XXX XXX班级:第组共人姓名:1.实验目的:了解主溢流阀主要性能指标,学会测定溢流阀静态特性的基本方法,绘制溢流阀启闭特性曲线。
静态特性――指溢流阀在稳态情况下,其各参数之间的关系。
动态特性――指溢流阀被控参数在发生瞬态变化的情况下,其各参数之间的关系。
2.实验内容:测试静态特性(1)调压范围:溢流阀能正常工作的压力区间,指调压弹簧在规定的范围内调节时,系统压力能平稳的上升或下降,并且压力无突跳或迟滞现象。
(2)压力稳定性:溢流阀在某一定压力值下工作时,不应有尖叫和噪声,而且压力波动越小越好。
(3)启闭特性:包括开启特性和闭合特性曲线。
开启特性是指阀从关闭状态逐渐开启,流经阀的流量和对应的阀前压力之间的关系。
开启压力比――阀在开启过程中,当流经阀的流量为该阀全开启时实际流量的1℅时,所对应的阀前压力与调定压力之比值。
闭合特性是指阀从全开启状态逐渐关闭,流经阀的流量和对应的阀前压力之间的关系。
关闭压力比――阀在关闭过程中,当流经阀的流量为该阀全开启时实际流量的1℅时,所对应的阀前压力与调定压力之比值。
3.实验装置的液压系统原理(按标准符号、比例绘制系统图)原理关键词:逐级加压慢慢开启(或关闭)测定流量要点:围绕关键词,结合原理图进行说明。
4.使用仪器、元件明细表5.实验步骤(按实验过程自己写)实验数据记录表6.实验报告(1)报告分析部分只写文字,不要写计算过程(计算过程放在数据计算处理部分)。
(2)计算过程要写清除,并加适当文字说明。
(3)用坐标纸绘制溢流阀启闭特性曲线(横坐标为压力,纵坐标为流量),并分析实验结果。
(4)被试溢流阀的开启压力、关闭压力的大小与书上描述的有何不同,为什么。
(5)根据实验过程中出现的一些问题,提出意见和建议。
液压实验二溢流阀特性实验(静态和启闭)实验二溢流阀特性试验姓名:班级:学号:任课老师:1实验目的(1)了解先导式溢流阀的工作原理。
(2)掌握溢流阀静态特性实验方法。
(3)分析溢流阀的静态特性。
2实验装置(1)RCYCS-B液压综合测试实验台。
(2)秒表(3)流量计(4)压力表3实验内容通过对溢流阀开启、闭合过程的溢流量的测量,了解溢流阀开启和闭合过程的特性并确定开启和闭合压力,实验原理图如图1所示。
图1溢流阀测试原理图4实验原理溢流阀是压力阀的一种,其主要作用分别是定压溢流和安全保护。
溢流阀的特征是阀与负载相关联,溢流口接回油箱,采用进口压力负反馈。
溢流阀静态特性是指阀在稳定工况下(即系统压力没有突变时),阀所控制的压力、流量特性。
(1)测试范围及压力稳定性a.压力调节范围:调压范围是指调压弹簧在规定的范围内调节时,系统压力平稳地上升或下降的最大和最小调定压力的差值,在该测定范围内,压力的上升或下降应平稳,不得有尖叫声。
b.压力振摆值:在整个调压范围内,通过额定流量q n时进口压力的振摆值,是表示调压稳定的主要指标,对于中压溢流阀应不超过+0.2MPa。
c.压力偏移值:在额定流量q n和额定压力p n下,溢流阀进口压力在一定时间(一般为3分钟)内的偏移值,对于中压溢流阀应不超过+0.2MPa。
(2)卸荷压力及压力损失。
a.卸荷压力:卸荷压力是当溢流阀用作卸荷阀时,在额定流量下,进出口的压力差称为卸荷压力。
当先导式溢流阀用作卸荷阀时,把它的远控口K与油箱连接,将主阀芯开到最大开度,此时阀的进、回油口的压力差。
卸荷压力越小,油液通过阀口时的能量损失就越小,发热也越少,说明阀的性能越好。
参照图1溢流阀测试液压原理图,将被测溢流阀Ⅱ的远控口通过电磁换向阀2Y A,与油箱连接,阀即处于卸荷状态,此时该阀的压力成为卸荷压力。
b.压力损失:先导式溢流阀调至手柄完全放松时,通过额定流量时产生的压力降,成为压力损失。
电液比例溢流阀静态性能实验分析:比例溢流阀控制器(放大器)的主要功能是将控制电压信号u转换为对应的电流信号I并进行功率放大。
比例溢流阀的电磁铁线圈获得控制电流,产生相应的电磁力,依靠阀心动作实现调节液压油压力的目的。
由图像可知控制器输入电压与进口压力成指数关系增长,而红色曲线代表的流量特性在输入电压较小时与实测数据产生偏差,分析原因可能是电压较小,产生的放大电流产生的电磁力不够大,容易受到温度,泄漏以及外界摩擦力等因素的影响;而输入电压在2V以后,摩擦力等因素对其的影响较小,两曲线基本重合。
电液比例溢流阀动态性能实验分析:升压时间、卸载时间及过度时间反映了电液比例溢流阀对信号的响应的快速性;稳态压力及卸载压力反映了比例溢流阀对应阶跃响应的稳定状态对的稳态压力,体现了稳定性;压力幅值则反映了电液比例溢流阀的工作范围;压力超调量则反映了电液比例溢流阀的调压的准确性与稳定性。
图示曲线可知比例溢流阀动态响应性能较好。
电液比例方向阀动态性能实验分析:由图像上可以看出给被试的比例方向阀的控制器施加一个升幅的阶跃信号和一个降幅的阶跃信号,电液比例方向阀对阶跃信号响应迅速,稳定。
流量响应曲线上可以看出超调量基本为0,上升时间和调整时间很短,系统响应速度较快,实时性较好。
有此可知该电液比例方向阀动态性能比较好。
电液比例调速阀流量特性实验分析:比例溢流阀控制器(放大器)的主要功能是将控制电压信号u转换为对应的电流信号I并进行功率放大。
比例溢流阀的电磁铁线圈获得控制电流,产生相应的电磁力,依靠阀心动作实现调节液压油压力的目的。
由图像可知电流-流量特性曲线,控制器输入电压与进口压力均成指数关系增长,而红色曲线代表的流量特性与实测数据基本重合。
电液比例调速阀动态性能实验分析:由图示电液比例调速阀流量阶跃响应曲线可以看出,升压时间、卸载时间均为2s左右,过度时间基本为0,对于阶跃信号的响应较为快速;稳态压力在3-11s基本处于21Mpa, 压力超调量基本为0,比较稳定;压力幅值为21Mpa,反映了电液比例溢流阀的工作范围。
(二)溢流阀静态性能实验一、实验目的通过实验,进一步理解溢流阀的静态特性及其性能,掌握溢流阀的静态特性的测试原理和测试方法,掌握静态特性指标的内容及意义。
二、实验器材QCS003B液压教学实验台。
1台溢流阀性能实验原理图三、实验装置液压系统原理图(见图二)向阀(常闭) 4泵站 5压力表 6压力表 7流量计图二溢流阀性能试验原理图四、实验内容及步骤1. 调压范围的测定溢流阀调定压力由弹簧的压紧力决定,改变弹簧压缩量就可以改变溢流阀的调定压力。
具体步骤:如图二所示,把溢流阀1完全打开,将被试阀2关闭。
启动油泵4,运行半分钟后,调节溢流阀1,使泵出口压力升至7MPa,然后将被试阀2完全打开,使油泵4的压力降至最低值。
随后调节被试阀2的手柄,从全开至全闭,再从全闭至全开,观察压力表5、6的变化是否平稳,并观察调节所得的稳定压力的变化范围(即最高调定压力和最低调定压力差值)是否符合规定的调节范围。
2.溢流阀的启闭特性测定溢流阀的启闭特性是指溢流阀控制的压力和溢流流量之间的变化特性,包括开启特性和闭合特性两个特性。
所测试的被试溢流阀包括直动式溢流阀和先导式溢流阀两种。
①先导式溢流阀的启闭特性开启过程:关闭溢流阀1,将被试阀2调定在所需压力值(如5MPa),打开溢流阀1,使通过被试阀2的流量为零。
调整直动式溢流阀1使被试先导式溢流阀2入口压力升高。
当流量计7稍有流量显示时,开始针对被试阀2每一个调节增大的入口压力值,观察通过流量计7对应的流量,开启实验完成后,再调整直动式溢流阀1,使其压力逐级降低,针对被试阀2每一个调节减小的入口压力值观察通过流量计7的流量。
②直动式溢流阀的启闭特形把元件1与元件2位置互换,按①的步骤和方法再进行直动式溢流阀的启闭特性实验。
绘制直动式、先导式溢流阀的启闭特性曲线。
③实验完成后,打开溢流阀,将电机关闭,待回路中压力为零后拆卸元件,清理好元件并归类放入规定抽屉内。
五、思考题当压力表6上的压力增大时,对溢流阀(被试阀)的调节压力有什么影响?为什么?。
(五) 实验四变量叶片泵静、动态特性实验一、概述液压泵为液压系统的动力元件,使电机产生的机械能转换为油泵的压力能,输出压力-流量。
限压式变量叶片泵,当系统压力达到限定压力后,便自动减少液压泵的输出流量。
该类液压泵的q—p(流量—压力)特性曲线如图5-1所示,调节液压泵的限压弹簧的压缩量,可调节液压泵拐点的压力Pb的大小,就可改变液压泵的最大供油压力,调节液压泵的限位块位置螺钉,可改变液压泵的最大输出流量。
二、实验目的1、测量限压式变量叶片泵的静态特性:(1)流量—压力特性曲线(如图5-1)(2)液压泵拐点压力90%前的容积效率及液压泵的总效率;2、测量叶片泵的动态特性:记录液压泵突然升压和卸荷时的压力变化情况(如图5-2),从而确定压力超调量P,升压时间t1及卸荷时间t2。
三、实验装置参阅图1-1,选择液压模块A、C、D组成叶片泵实验台液压系统。
节流阀A3调外负载大小,输出流量由流量计10测试。
四、实验步骤1、静态试验:关闭节流阀A3,将溢流阀1调至6.3 MPa作安全阀,在节流阀A3加载和卸荷下逐点记录压力p、流量q,输出功率P以及泵的外泄漏量qx,作出q—p特性曲线,记录并计算各不同压力点的功率,总功率,液压泵的拐点处90%压力前的各点容积效率。
2、将实验数据输入计算机相应表格中,由计算机显示及打印流量—压力,功率—压力,液压泵效率—压力特性曲线或将实验数据填入下表通过计算绘制相应的曲线。
3、压力动态响应试验:(1) 将节流阀A3调节到一定的开度与压力;(2) 按电磁铁AD1的得电按钮,使系统突然加载;系统的压力波形由压力传感器5和功率放大等单元转换成电压波形,由计算机记录与绘制动态压力上升响应曲线。
(3) 按AD1复位按钮,使系统突然卸荷,系统的压力波形由压力传感器5和功率放大等单元转换成电压波形,由计算机记录与绘制动态压力卸荷响应曲线。
五、数据测试1、压力P :用压力表P1和压力传感器5测量;2、流量q :采用安置在实验台面板上的椭圆齿轮流量计10和秒表测量(流量计指针每转一圈为10升)或流量数显表读出;3、外泄漏量qx :用秒表测tx 时间内小量杯11的容积(AD3得电);4、输入功率P :用功率表测量电机输入功率P1(安置在实验台面板上)。
溢流阀的特性实验报告
《溢流阀的特性实验报告》
溢流阀是一种常见的液压元件,用于控制液压系统中的流量和压力。
为了更好
地了解溢流阀的特性,我们进行了一系列的实验,并撰写了本报告,以便更好
地理解溢流阀的工作原理和性能表现。
实验一:溢流阀的流量特性
我们首先对溢流阀进行了流量特性的实验。
通过改变溢流阀的开启度和液压系
统的工作压力,我们测量了不同工况下的流量变化。
实验结果表明,溢流阀的
流量特性呈现出与开启度和压力成正比的关系,这表明溢流阀可以通过调节开
启度和工作压力来实现对流量的控制。
实验二:溢流阀的压力特性
接着,我们对溢流阀进行了压力特性的实验。
我们通过改变液压系统的工作压
力和溢流阀的开启度,测量了不同工况下的溢流阀压力变化。
实验结果表明,
溢流阀的压力特性呈现出与开启度和流量成正比的关系,这表明溢流阀可以通
过调节开启度和流量来实现对压力的控制。
实验三:溢流阀的稳定性
最后,我们对溢流阀进行了稳定性的实验。
我们通过长时间的连续工作和频繁
的开启调节,观察了溢流阀在不同工况下的稳定性表现。
实验结果表明,溢流
阀在不同工况下都能够保持稳定的工作状态,具有良好的稳定性和可靠性。
通过以上一系列的实验,我们对溢流阀的特性有了更深入的了解。
溢流阀具有
良好的流量特性、压力特性和稳定性,能够在液压系统中起到重要的控制作用。
我们相信,通过进一步的研究和实践,溢流阀的性能和应用将会得到进一步的
提升和完善。
2. 溢流阀静态性能实验2.1 实验目的一了解溢流阀静态特性测试装置;二掌握溢流阀调压范围、压力振摆、压力偏移等主要静态特性物理意义和测试方法;三掌握溢流阀启闭特性曲线测试原理和方法并能正确分析测试结果2.2 测试装置及实验原理5.2.1 测试装置液压原理图1.变量泵驱动电机,2.变量叶片泵,3. 变量叶片泵安全阀,4.定量泵驱动电机,5.定量叶片泵,6.功率隔离器、测速传感器,7. 定量叶片泵安全阀组,8.压力传感器,9.流量传感器,10.变量叶片泵吸油滤油器,11.定量叶片泵吸油滤油器,12.量筒。
2.2.2 实验原理一调压范围测量将被试溢流阀置于实验油路中,通过节流阀J1 的调整通过被试阀的试验流量(如阀的额定流量),调节被试阀的调压手柄从全紧至全松,测量记录这两种工况下被试阀进口压力p1(MPa),计算其差值。
反复实验不小于3 次。
二压力振摆测量将被试溢流阀置于实验油路中,通过节流阀J1 的调整通过被试阀的试验流量(如阀的额定流量),调节被试阀的调压手柄至调压范围的最高值,测量这种工况下被试阀进口压力p1(MPa)的压力振摆范围的大小。
ZHYCS-C 型液压多功能测试台46三压力偏移测量将被试溢流阀置于实验油路中,通过节流阀J1 的调整通过被试阀的试验流量(如阀的额定流量),调节被试阀的调压手柄至调压范围的最高值,测量这种工况下被试阀进口压力p1(MPa)3 分钟的压力偏移值。
四压力损失测量将被试溢流阀置于实验油路中,通过节流阀J1 的调整通过被试阀的试验流量(如阀的额定流量),调节被试阀的调压手柄至全松,测量这种工况下被试阀进口压力p1(MPa)和出口压力p2(MPa)的差值。
五卸荷压力测量将被试溢流阀置于实验油路中,通过节流阀J1 的调整通过被试阀的试验流量(如阀的额定流量),电磁阀2YA 通电使被试阀卸荷,测量这种工况下被试阀进口压力p1(MPa) 和出口压力p2(MPa)的差值。
实验二溢流阀静态性能实验一、实验目的1.深入理解溢流阀稳定工作时的静态特性,并着重测试静态特性中的调压范围、及压力稳定性;压力损失;进而能对被测阀的静态特性作适当的分析。
2.通过实验,学会溢流阀静态特性的实验方法,学会本实验所用的仪表和设备。
二、实验内容、方案及实验要求1.调压范围:被试阀全开位置至全闭位置所测得的两个极值为调压范围。
应能达到规定的调节范围(0.5~6.3MPa),并且压力上升与下降应平稳,不得有尖叫声。
2.至调压范围最高值时的压力振摆(在稳定状态下调定压力的波动值):是表示调压稳定的主要指标,此时压力表不准装阻尼,压力振摆应不超过规定值(±0.2MPa)。
3.压力损失:被试阀的调压手轮至全开位置,被试阀进出油口的压力差即为压力损失。
其值应不超过规定值(0.4 MPa)。
4.卸荷压力:被试阀的远程控制孔接口(通油箱时),阀的进、出口的压力差值。
5.启闭特性:启闭特性曲线中有两特殊点:开启压力及闭压力。
三、实验用液压系统图四、实验步骤<一>1、全松溢流阀5,关闭节流阀6,确定阀8在常断位置,阀10(二位三通电磁换向阀)的常开出口与流量计11相通。
2、启动电机I,将泵的出口压力p1调到被试阀的额定压力值的100%上(7Mpa)。
3、全开节流阀6,确定阀8处于接通位置,调节被试阀13的进口压力为较低。
4、关闭节流阀6,用被试阀13调定p2值为额定压力值(6.3 Mpa),观察压力表p2的指针振摆值(其指针的摆动量的极值差为压力振摆),并记录。
5、全松被试阀的调压手柄,观察压力表p2的指针(此时所测得的最低压力值为压力损失)并记录6、用被试阀13,将压力p2调到额定压力值后,通电阀16,使被试溢流阀处于卸荷状态,观察p2,并记录。
<二>启闭特性的测试1、关闭节流阀6,确认阀8、16不通,阀10与流量计相连。
2、接通阀8,用阀13将P2的值调至被试阀的额定压力值,此压力下的流量为实验流量。
实验报告专业班级指导教师姓名同组人实验室K1-206实验名称实验三溢流阀的静态特性测试时间一、实验目的:1、深入理解溢流阀稳定工作时的静态特性,测试启闭特性调压范围,压力稳定性,卸荷压力及压力损失。
重点为启闭特性的测试。
对被测试阀的静态特性作适当的分析。
2、通过实验掌握溢流阀的测试方法。
二、实验设备:本实验在RCYCS-C型智能液压综合实验台上进行,实验部分液压系统原理图如下图三、实验内容:(一)调压范围测量(二)压力振摆测量(三)压力偏移测量(四)压力损失测量(五)卸荷压力测量(六)启闭特性测量注:实验中,被试阀的额定流量由被试阀全溢流时的实测流量所代替。
四、实验步骤:(一)调压范围:1.在[测试项目选择]中,选择[测量调压范围],设置DO通道为10,按[项目运行]键;2.根据对话框提示,调节被试溢流阀手柄至全紧,关闭对话框,按[测试1]键;3.根据对话框提示,调节被试溢流阀手柄至全松, 关闭对话框, 按[测试2]键;4.调压范围值自动显示在[调压范围(MPa)]编辑框内。
(二)压力振摆:1.在[测试项目选择]中,选择[测量压力振摆],按[项目运行]键;2.调节被试溢流阀手柄,使p1的显示压力为其额定压力(7MPa), 根据对话框提示进行操作;3.压力振摆值自动显示在[压力振摆(MPa)]编辑框内。
(三)压力偏移:1.在[测试项目选择]中,选择[测量压力偏移],按[项目运行]键;2.调节被试溢流阀手柄,使p1的显示压力为其额定压力, 根据对话框提示进行操作;3.经过3分钟的自动测试,压力损失值自动显示在[压力偏移(MPa)]编辑框内。
(四)压力损失:1.在[测试项目选择]中,选择[测量压力损失],按[项目运行]键;2.调节被试溢流阀手柄至全松,使通过阀的流量为其额定流量, 根据对话框提示进行操作;3.压力损失值自动显示在[压力损失(MPa)]编辑框内。
(五)卸荷压力:1.在[测试项目选择]中,选择[测量卸荷压力],改变DO通道设置为11,按[项目运行]键;2.使通过阀的流量为其额定流量, 根据对话框提示进行操作;3.卸荷压力值自动显示在[卸荷压力(MPa)]编辑框内。
溢流阀的静态特性测试-力士乐溢流阀的静态特性测试一、实验目的深入了解溢流阀稳定工作时的静态特性。
学会溢流阀静态特性中的调压范围、启闭特性的测试方法。
并能对被试溢流阀的静态特性作适当的分析。
二、实验原理通过对溢流阀开启、闭合过程的溢流量的测量,了解溢流阀开启和闭合过程的特性并确定开启和闭合压力。
原理见图3-1。
三、实验仪器力士乐液压教学实验台、秒表四、实验内容1.调压范围及压力稳定性1)调压范围:应能达到规定的调压范围(0.5--6.3MPa),压力上升与下降时应平稳,不得有尖叫声。
2)调压范围最高值时压力振摆:压力振摆应不超过规定值( 0.2MPa)。
3)调压范围最高值时压力偏离值:三分钟后应不超过规定值(0.2MPa)。
2.启闭特性1)开启压力:调节系统压力逐渐升高,当通过被试阀的溢流量为额定流量1%时的系统压力值称为被试阀的开启压力。
2)闭合压力:调节系统压力逐渐逐渐降低,当通过被试阀的溢流量为额定流量1%时的系统压力值称为被试阀的闭合压力。
图3-2为启闭特性曲线五、实验步骤松开溢流阀11,关闭节流阀10,换向阀13失电。
1.启闭特性调节溢流阀11,使系统压力达到4.5MPa。
二位二通电磁换向阀13得电。
调节被试阀14的实验压力为3.5MPa,用秒表配合量筒测量在试验压力下的全流量。
闭合过程:慢慢逐渐松节流阀10手柄,观察压力表P12-2,使被试阀14的进口压力分别为3.5、3.4、3.3、3.2、3.1…MPa每一压力对应测一流量值,直到被试阀无流量(全流量的1%)溢出为止。
开启过程:调节节流阀10,使系统逐渐升压,当被试阀有流量溢出时开始测量压力与流量,逐渐升压,直到被试阀14流量到全流量为止。
松开溢流阀11,14手柄,停泵。
注意事项1).调节被试阀进口压力时,开启过程,压力应一直逐渐上升,不允许上升后又下降再向上调;闭合过程,压力应一直逐渐下降,不允许下降后又上升再下降,否则,压力时高时低,实验数据无法反映启闭特性。
实验二溢流阀性能实验实验目的深入理解溢流阀稳定工作时的静态特性。
着重测试静态特性中的调压范围及压力的稳定性,卸荷压力损失和启闭特性三项,从而对被试阀的静态特性作适当的分析。
了解瞬态下的动态特性,即溢流量突然变化时,溢流阀控制的压力随时间变化的过渡过程品质。
通过实验,学会溢流阀静态和动态性能的实验方法,学会使用本实验所用的仪器和设备。
实验内容、方案及实验要求实验用Y1—10B先导试溢流阀作为被试阀。
1.调压范围及压力稳定性2.调压范围:应能达到规定的调节范围(63E5Pa),并且压力上升与下降应平稳,不有尖叫声。
3.至调压范围最高值时的压力振摆(在稳定状态下调定压力的波动值):是表示调压稳定的主要指标,此时压力表不准装阻尼,压力振摆应不超过规定值(±2E5Pa)。
4.至调压范围最高值时压力偏移值:一分钟内应不超过规定值(±2E5Pa)。
本项内容只需调节被试阀14的调压手轮,同时观测压力表(p8)(见图2—3)。
二、卸荷压力及压力损失1、卸荷压力:被试阀的远程控制口与油箱直通,阀处在卸荷状态,此时通过实验流量下的压力损失称为卸荷压力。
卸荷压力应不超过规定值(2E5Pa)。
实验中可用二位二通电磁阀(15),使被试阀处于卸荷状态,由压力表(p8)测出卸荷压力。
2、压力损失:被试阀的调压手轮至全开位置,在实验流量下被试阀进出油口的压力差即为压力损失,其值应不超过规定值(4E5Pa)。
由压力表(p8)测出压力损失。
三、启闭特性1、开启压力:被试阀调至调压范围最高值,且系统供油量为实验流量时,调至系统压力逐渐升压,当通过被试阀的溢流量为实验流量1%时的系统压力值称为被试阀的开启压力。
压力级为63 E5Pa的溢流阀,规定开启压力里不得小于53 E5Pa。
2、闭合压力:被试阀调至调压范围最高值,且系统供油量为实验流量时,调节系统压力逐渐降压,当通过被试阀的溢流量为实验流量1%时的系统压力值称为被试阀的闭合压力。
第1篇一、实验背景溢流阀是液压系统中重要的控制元件,其主要功能是防止系统过载、保护液压系统安全运行。
通过本实验,我们旨在了解溢流阀的工作原理、结构特点及其在液压系统中的应用。
二、实验目的1. 理解溢流阀的工作原理和结构特点。
2. 掌握溢流阀在液压系统中的作用和功能。
3. 分析溢流阀在不同工况下的性能表现。
4. 培养实际操作能力和分析问题的能力。
三、实验原理溢流阀是利用阀芯和阀座之间的压力差来控制阀口开度的液压控制阀。
当系统压力超过设定值时,溢流阀开启,使多余的压力油流回油箱,从而保持系统压力稳定。
本实验所使用的溢流阀为直动式溢流阀,其工作原理如下:1. 当系统压力低于设定值时,阀芯在弹簧力的作用下关闭,系统压力油通过阀芯中心孔流回油箱。
2. 当系统压力超过设定值时,阀芯在压力差的作用下克服弹簧力,开启阀口,使多余的压力油流回油箱。
四、实验步骤1. 准备实验设备:液压系统、溢流阀、压力表、油箱等。
2. 按照原理图连接实验回路,确保连接正确。
3. 启动液压系统,调节溢流阀的设定压力。
4. 观察压力表读数,记录系统压力变化。
5. 改变系统负载,观察溢流阀的开启和关闭情况。
6. 分析溢流阀在不同工况下的性能表现。
五、实验数据1. 当系统压力低于设定值时,溢流阀关闭,压力表读数为设定值。
2. 当系统压力超过设定值时,溢流阀开启,压力表读数下降。
3. 随着系统负载的增加,溢流阀开启时间延长,压力下降幅度增大。
六、结果分析1. 溢流阀在液压系统中起着调压和保护的作用,能够有效防止系统过载。
2. 溢流阀的开启和关闭时间与系统负载和设定压力有关。
3. 溢流阀的性能受阀芯、阀座、弹簧等因素的影响。
七、结论1. 溢流阀是液压系统中重要的控制元件,具有调压和保护的作用。
2. 通过本实验,我们掌握了溢流阀的工作原理、结构特点和性能表现。
3. 在实际应用中,应根据系统需求和工况选择合适的溢流阀。
八、建议1. 在实验过程中,注意观察溢流阀的开启和关闭情况,分析其原因。
溢流阀的动、静态特性实验一、实验目的通过本实验,深入理解溢流阀稳定工作时的静态特性。
着重测试溢流阀静态特性中的调压范围,调压偏差,压力损失和关闭泄漏量等有关性能指标,从而对溢流阀的静态特性适当的分析。
对溢流阀的瞬态下的动态特性有感性认识,了解溢流量突然变化时溢流阀所控制的压力随时间变化的过渡过程品质,对压力超调量和压力振摆有进一步的认识。
通过实验,掌握有关溢流阀动、静态特性的实验方法,学会使用有关的仪器和实验设备,增强实验能力。
二、实验装置QCS003B型液压试验台三、实验内容1、溢流阀的调压偏差和调压范围(如图2-2所示)溢流阀在某一调定压力下,通过流量为额定流量时的压力与在此调定压力下的开启压力之差为调压偏差。
溢流阀的最大调定压力与最小调定压力之差称为调压范围。
图2-2 溢流阀的调压偏差和调压范围2、压力超调量和压力振摆(如图2-3所示)压力超调量是溢流阀动态特性一项很重要的指标,溢流阀开始工作时,在阀门将要打开的瞬间出现液压系统压力高于调定压力的现象,高于调定压力的部分称为压力超调量。
造成压力超调量的原因是溢流阀工作时动作迟缓造成的,因此这项指标反应了溢流阀动作灵敏度的高低,一般溢流阀的超调量为其公称压力的10-30%。
压力振摆是由于液压泵供油的脉动、外界负载的变化,溢流阀所控制压力并不能绝对不变,而是随着外界干扰在调定压力附近作相应的压力波动,这种压力波动反应在压力表表针的摆动上称为压力振摆。
它主要反应了溢流阀压力稳定性能的好坏,一般限制其压力振摆小于1~2X105Pa。
图2-3 溢流阀的压力超调量和压力振摆3、压力损失和关闭泄漏量溢流阀的压力损失有两种,即调零压力损失和卸荷压力损失。
调零压力损失是指溢流阀旋钮完全放松,溢流阀通过额定流量时所产生的压力降。
卸荷压力损失是指溢流阀的远程控制口接油箱,溢流阀通过额定流量时所产生的压力降。
溢流阀的关闭泄漏量是指溢流阀旋钮完全拧紧,溢流阀在额定压力下通过阀口缝隙处的泄漏量。
(二)溢流阀静态性能实验
一、实验目的
通过实验,进一步理解溢流阀的静态特性及其性能,掌握溢流阀的静态特性的测试原理和测试方法,掌握静态特性指标的内容及意义。
二、实验器材
QCS003B液压教学实验台。
1台
溢流阀性能实验原理图
三、实验装置液压系统原理图(见图二)
向阀(常闭) 4泵站 5压力表 6压力表 7流量计
图二溢流阀性能试验原理图
四、实验内容及步骤
1. 调压范围的测定
溢流阀调定压力由弹簧的压紧力决定,改变弹簧压缩量就可以改变溢流阀的调定压力。
具体步骤:如图二所示,把溢流阀1完全打开,将被试阀2关闭。
启动油泵4,运行半分钟后,调节溢流阀1,使泵出口压力升至7MPa,然后将被试阀2完全打开,使油泵4的压力降至最低值。
随后调节被试阀2的手柄,从全开至全闭,再从全闭至全开,观察压力表5、6的变化是否平稳,并观察调节所得的稳定压力的变化范围(即最高调定压力和最低调定压力差值)是否符合规定的调节范围。
2.溢流阀的启闭特性测定
溢流阀的启闭特性是指溢流阀控制的压力和溢流流量之间的变化特性,包括开启特性和闭合特性两个特性。
所测试的被试溢流阀包括直动式溢流阀和先导式溢流阀两种。
①先导式溢流阀的启闭特性
开启过程:关闭溢流阀1,将被试阀2调定在所需压力值(如5MPa),打开溢流阀1,使通过被试阀2的流量为零。
调整直动式溢流阀1使被试先导式溢流阀2入口压力升高。
当流量计7稍有流量显示时,开始针对被试阀2每一个调节增大的入口压力值,观察通过流量计7对应的流量,开启实验完成后,再调整直动式溢流阀1,使其压力逐级降低,针对被试阀2每一个调节减小的入口压力值观察通过流量计7的流量。
②直动式溢流阀的启闭特形
把元件1与元件2位置互换,按①的步骤和方法再进行直动式溢流阀的启闭特性实验。
绘制直动式、先导式溢流阀的启闭特性曲线。
③实验完成后,打开溢流阀,将电机关闭,待回路中压力为零后拆卸元件,清理好元件并归类放入规定抽屉内。
五、思考题
当压力表6上的压力增大时,对溢流阀(被试阀)的调节压力有什么影响?为什么?。