2011年武汉大学自动控制原理考研试卷
- 格式:pdf
- 大小:2.63 MB
- 文档页数:2
自控原理考研真题及答案自控原理是自动控制领域的基础课程,对于考研学生而言,掌握自控原理的知识非常重要。
为了帮助考生更好地备考自控原理,以下将介绍一道经典的自控原理考研真题,并给出详细的答案解析。
题目及答案如下:1.某控制系统的传递函数为G(s) = (s+2)/(s^2+6s+10),将其分解为部分分式后,若其阶数为n,则n等于多少?答案解析:根据题目给出的传递函数G(s),可以得到其分母的根为s^2+6s+10=0,通过求根公式可求得其根为s1=-3+j,s2=-3-j。
由于这两个根均为复根,所以传递函数为二阶系统。
因此,答案为n=2。
2.某开环系统的传递函数为G(s) = K/(s^3+4s^2+10s),若该系统为稳定系统,求参数K的范围。
答案解析:对于稳定系统来说,其特征多项式的所有根的实部都小于0。
根据题目给出的传递函数G(s),可以得到其特征多项式为s^3+4s^2+10s=0,通过求根公式可求得其根为s1=-1.33,s2=-0.67+j1.11,s3=-0.67-j1.11。
由于这三个根的实部均小于0,所以该系统为稳定系统。
由于K为传递函数的比例因子,不影响传递函数的特征根,所以参数K的范围可以取任意实数。
3.某系统的开环传递函数为G(s) = 10/(s+4),若该系统采用比例控制器,根据比例控制器的输出与输入的关系,求闭环传递函数。
答案解析:比例控制器的输出与输入的关系为C(s) = KpR(s),其中C(s)为比例控制器的输出,Kp为比例增益,R(s)为输入信号。
而闭环传递函数等于开环传递函数乘以比例控制器的传递函数,即T(s) = G(s)C(s)。
代入相应的数值,可得到T(s) = 10Kp/(s+4)。
4.某系统的开环传递函数为G(s) = 10/(s+5),若该系统采用积分控制器,根据积分控制器的输出与输入的关系,求闭环传递函数。
答案解析:积分控制器的输出与输入的关系为C(s) = KI/s,其中C(s)为积分控制器的输出,KI为积分增益,s为Laplace变换变量。
大学《自动控制原理》试题及答案一.判断题 (每题1分,共10分)1.在任意线性形式下L[af 1(t)+bf 2(t)]=aF 1(s)+bF 2(s)2.拉普拉斯变换的微分法则 )(])([222s F S dtt f d L = . 3. G 1s )和G 2(S )为并串联连接则等效后的结构为G 1s ± G 2(S ) 4.一阶系统在单位阶跃响应下T t s 3%)5(=5.二阶系统在单位阶跃信号作用下 当0=ζ时系统输出为等幅振荡 6. 劳斯判拒判断系统稳定的充分必要条件是特斯方程各项系数大于零 7.系统的特征方程为025103234=++++s s s s 则该系统稳定 8.单位负反馈系统中 )15.0)(1(2)(++=s s s s G 当221)(t t r =时0=ss e 9..典型比例环节相频特性00)(=w ϕ 10.141)(+=s s G 的转折频率为4二.仓库大门自动控制系统的工作原理如图所示,试说明自动控制大门开启和关闭的工作原理,并画出系统的原理方框图。
(10分)( ) ( ) ( )( ) ( ) ( )( )( ) ( ) ( )三.电路如图所示,u r (t)为输入量,u c (t)为输出量,试列写该电网络的动态方程并求传递函数 u c (s)/u r (s)。
(13分)四.控制系统如图所示,试确定系统的稳态误差。
(13分)五. 单位负反馈系统的结构图如图所示,试画出K>0时闭环系统的根轨迹图(要求按步骤作)。
(13分)六.已知系统的闭环传递函数为当输入r(t)=2sint 时,测得输出c s (t)=4sin(t-ο45),试确定系统的参数ζ,n ω。
(13分)七.系统结构如图所示,已知当K=10,T=0.1时,系统的截止频率ωc =5若要求ωc 不变,要求系统的相稳定裕度提高ο45,问应如何选择K ,T ?(15分)八.(13分)试求F(z)=)2)(1(10--z z z的Z 反变换。
《⾃动控制原理》试题(卷)与答案解析(A26套)⾃动控制原理试卷A(1)1.(9分)设单位负反馈系统开环零极点分布如图所⽰,试绘制其⼀般根轨迹图。
(其中-P 为开环极点,-Z ,试求系统的传递函数及单位脉冲响应。
3.(12分)当ω从0到+∞变化时的系统开环频率特性()()ωωj j H G 如题4图所⽰。
K 表⽰开环增益。
P 表⽰开环系统极点在右半平⾯上的数⽬。
v 表⽰系统含有的积分环节的个数。
试确定闭环系统稳定的K 值的范围。
4.(12分)已知系统结构图如下,试求系统的传递函数)(,)(s E s C,3==p v (a ),0==p v (b )2,0==p v (c )题4图题2图5.(15分)已知系统结构图如下,试绘制K 由0→+∞变化的根轨迹,并确定系统阶跃响应分别为衰减振荡、单调衰减时K 的取值范围。
6.(15分)某最⼩相位系统⽤串联校正,校正前后对数幅频特性渐近线分别如图中曲线(1)、(2)所⽰,试求校正前后和校正装置的传递函数)(),(),(21s G s G s G c ,并指出Gc (S )是什么类型的校正。
7.(15分)离散系统如下图所⽰,试求当采样周期分别为T=0.1秒和T=0.5秒输⼊)(1)23()(t t t r ?+=时的稳态误差。
8.(12分)⾮线性系统线性部分的开环频率特性曲线与⾮线性元件负倒数描述曲线如下图所⽰,试判断系统稳定性,并指出)(1x N -和G (j ω)的交点是否为⾃振点。
参考答案A(1)1、根轨迹略,2、传递函数)9)(4(36)(++=s s s G ;单位脉冲响应)0(2.72.7)(94≥-=--t e3、 21,21,21><≠K K K 4、6425316324215313211)()(G G G G G G G G G G G G G G G G G G s R s C ++++= 642531632421653111)()(G G G G G G G G G G G G G G G G G s R s E +++-= 5、根轨迹略。
一、填空(每空1分,共18分)1.自动控制系统的数学模型有 、 、 、共4种。
2.连续控制系统稳定的充分必要条件是 。
离散控制系统稳定的充分必要条件是 。
3.某统控制系统的微分方程为:dtt dc )(+0.5C(t)=2r(t)。
则该系统的闭环传递函数 Φ(s)= ;该系统超调σ%= ;调节时间t s (Δ=2%)= 。
4.某单位反馈系统G(s)=)402.0)(21.0()5(1002+++s s s s ,则该系统是 阶 型系统;其开环放大系数K= 。
5.已知自动控制系统L(ω)曲线为:则该系统开环传递函数G(s)= ;ωC = 。
6.相位滞后校正装置又称为 调节器,其校正作用是 。
7.采样器的作用是 ,某离散控制系统)()1()1()(10210TT e Z Z e Z G -----=(单位反馈T=0.1)当输入r(t)=t 时.该系统稳态误差为 。
二. 1.求图示控制系统的传递函数.求:)()(S R S C (10分)R(s)2.求图示系统输出C (Z )的表达式。
(4分)四.反馈校正系统如图所示(12分)求:(1)K f =0时,系统的ξ,ωn 和在单位斜坡输入下的稳态误差e ss . (2)若使系统ξ=0.707,k f 应取何值?单位斜坡输入下e ss .=?T五.已知某系统L(ω)曲线,(12分)(1)写出系统开环传递函数G(s)(2)求其相位裕度γ(3)欲使该系统成为三阶最佳系统.求其K=?,γmax=?六、已知控制系统开环频率特性曲线如图示。
P为开环右极点个数。
г为积分环节个数。
判别系统(1)(2)(3)七、已知控制系统的传递函数为)1005.0)(105.0(10)(0++=s s s G 将其教正为二阶最佳系统,求校正装置的传递函数G 0(S )。
(12分)一.填空题。
(10分)1.传递函数分母多项式的根,称为系统的2. 微分环节的传递函数为3.并联方框图的等效传递函数等于各并联传递函数之4.单位冲击函数信号的拉氏变换式5.系统开环传递函数中有一个积分环节则该系统为型系统。
《自动控制原理》试题及答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(《自动控制原理》试题及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为《自动控制原理》试题及答案(word版可编辑修改)的全部内容。
《自动控制原理》试题及答案1、若某串联校正装置的传递函数为(10s+1)/(100s+1),则该校正装置属于(B )。
3分2、在对控制系统稳态精度无明确要求时,为提高系统的稳定性,最方便的是(A)3分3、在系统中串联PD调节器,以下那一种说法是错误的(D) 3分A是一种相位超前校正装置B能影响系统开环幅频特性的高频段C使系统的稳定性能得到改善D使系统的稳态精度得到改善4、用超前校正装置改善系统时,主要是利用超前校正装置的(A )3分5、I型系统开环对数幅频特性的低频段斜率为(B )9分6、设微分环节的频率特性为G(jω),当频率ω从0变化至∞时,其极坐标平面上的奈氏曲线是() 9分7、关于线性系统稳定性的判定,下列观点正确的是 ( )。
9分8、若两个系统的根轨迹相同,则有相同的( ) 9分9、关于系统零极点位置对系统性能的影响,下列观点中正确的是() 7分10、高阶系统的主导闭环极点越靠近虚轴,则系统的( ) 2分11、若某最小相位系统的相角裕度γ〉0,则下列说法正确的是( )。
2分12、某环节的传递函数是G(s)=5s+3+2/s,则该环节可看成由(D )环节组成。
2分13、主导极点的特点是(A )2分14、设积分环节的传递函数为G(s)=K/s,则其频率特性幅值A(ω)=()2分15、某环节的传递函数为K/(Ts+1),它的对数幅频率特性随K值增加而()2分16、某系统的传递函数是G(s)=1/(2s+1),则该可看成由(C )环节串联而成2分17、若系统的开环传递函数在s右半平面上没有零点和极点,则该系统称作(B)2分18、某校正环节传递函数G(s)=(100s+1)/(10s+1),则其频率特性的奈氏图终点坐标为( D)2分19、一般为使系统有较好的稳定性,希望相位裕量为( C)2分20、最小相位系统的开环增益越大,其()2分21、一阶微分环节G(s)=1+Ts,当频率ω=1/T时,则相频特性∠G(jω)为( )2分22、ω从0变化到+∞时,延迟环节频率特性极坐标图为( )2分23、开环传递函数为G(s)H(s)=(s+3)/(s+2)(s+5),则实轴上的根轨迹为(B)2分24、开环传递函数为G(s)H(s)=K/(s*s*s(s+4)),则实轴上的根轨迹为( )2分25、某单位反馈系统的开环传递函数为:G(s)=K/(s(s+1)(s+5)),当k=(C )时,闭环系统临界稳定.2分26、若系统增加合适的开环零点,则下列说法不正确的是(B ) 2分27、当二阶系统的根分布在根平面的虚轴上时,系统的阻尼比为(B)3分28、控制系统的稳态误差ess反映了系统的(A)2分29、当二阶系统特征方程的根为具有负实部的复数根时,系统的阻尼比为(C)3分30、二阶系统当0<ζ〈1时,如果增加ζ,则输出响应的最大超调量将(B )3分。
课程名称: 自动控制理论 (A/B 卷 闭卷)试卷A一、填空题(每空 1 分,共15分)1、反馈控制又称偏差控制,其控制作用是通过 与反馈量的差值进行的。
2、复合控制有两种基本形式:即按 的前馈复合控制和按 的前馈复合控制。
3、两个传递函数分别为G 1(s)与G 2(s)的环节,以并联方式连接,其等效传递函数为()G s ,则G(s)为 (用G 1(s)与G 2(s) 表示)。
4、典型二阶系统极点分布如图1所示,则无阻尼自然频率=n ω ,阻尼比=ξ ,该系统的特征方程为 ,该系统的单位阶跃响应曲线为 。
5、若某系统的单位脉冲响应为0.20.5()105t t g t e e --=+,则该系统的传递函数G(s)为 。
6、根轨迹起始于 ,终止于 。
7、设某最小相位系统的相频特性为101()()90()tg tg T ϕωτωω--=--,则该系统的开环传递函数为 。
8、PI 控制器的输入-输出关系的时域表达式是 , 其相应的传递函数为 ,由于积分环节的引入,可以改善系统的 性能。
二、选择题(每题 2 分,共20分)1、采用负反馈形式连接后,则 ( )A 、一定能使闭环系统稳定;B 、系统动态性能一定会提高;C 、一定能使干扰引起的误差逐渐减小,最后完全消除;D 、需要调整系统的结构参数,才能改善系统性能。
2、下列哪种措施对提高系统的稳定性没有效果 ( )。
A 、增加开环极点;B 、在积分环节外加单位负反馈;C 、增加开环零点;D 、引入串联超前校正装置。
3、系统特征方程为 0632)(23=+++=s s s s D ,则系统 ( )A 、稳定;B 、单位阶跃响应曲线为单调指数上升;C 、临界稳定;D 、右半平面闭环极点数2=Z 。
4、系统在2)(t t r =作用下的稳态误差∞=ss e ,说明 ( )A 、 型别2<v ;B 、系统不稳定;C 、 输入幅值过大;D 、闭环传递函数中有一个积分环节。
一、填空(每空1分,共18分)1.自动控制系统的数学模型有 、 、 、共4种。
2.连续控制系统稳定的充分必要条件是 。
离散控制系统稳定的充分必要条件是 。
3.某统控制系统的微分方程为:dtt dc )(+0.5C(t)=2r(t)。
则该系统的闭环传递函数 Φ(s)= ;该系统超调σ%= ;调节时间t s (Δ=2%)= 。
4.某单位反馈系统G(s)=)402.0)(21.0()5(1002+++s s s s ,则该系统是 阶 型系统;其开环放大系数K= 。
5.已知自动控制系统L(ω)曲线为:则该系统开环传递函数G(s)= ;ωC = 。
6.相位滞后校正装置又称为 调节器,其校正作用是 。
7.采样器的作用是 ,某离散控制系统)()1()1()(10210T T e Z Z e Z G -----=(单位反馈T=0.1)当输入r(t)=t 时.该系统稳态误差为 。
二. 1.求图示控制系统的传递函数.求:)()(S R S C (10分)R(s)2.求图示系统输出C(Z)的表达式。
(4分)四.反馈校正系统如图所示(12分)求:(1)K f=0时,系统的ξ,ωn和在单位斜坡输入下的稳态误差e ss.(2)若使系统ξ=0.707,k f应取何值?单位斜坡输入下e ss.=?五.已知某系统L(ω)曲线,(12分)(1)写出系统开环传递函数G(s)(1) (2) (3)(2)求其相位裕度γ(3)欲使该系统成为三阶最佳系统.求其K=?,γmax =?六、已知控制系统开环频率特性曲线如图示。
P 为开环右极点个数。
г为积分环节个数。
判别系统闭环后的稳定性。
(要求简单写出判别依据)(12分)七、已知控制系统的传递函数为)1005.0)(105.0(10)(0++=s s s G 将其教正为二阶最佳系统,求校正装置的传递函数G0(S)。
(12分)一.填空题。
(10分)1.传递函数分母多项式的根,称为系统的2. 微分环节的传递函数为3.并联方框图的等效传递函数等于各并联传递函数之4.单位冲击函数信号的拉氏变换式5.系统开环传递函数中有一个积分环节则该系统为型系统。
自动控制原理试卷1答案一.填空 1. 微分方程、传递函数、频率特性、结构图。
2. 闭环极点都位于S 平面左侧;系统的特性方程的根都在Z 平面上以原点为圆心的单位圆内.3. 5.02+S ;0;8。
4. 4,Ⅱ;62.5.5. 110100+S ;10。
6. P-I;利用G(s )的负斜率使ωC 减小,改善静态性能。
7. 将连续信号变为离散信号;0。
二.(14分) 解:(1)(2)C (Z)=)()(1)()(1232321Z H Z H G G Z G G Z RG •+•三.(20分)解:(1)F (s)=[]T s st f 111)(+-=(2)F (s )=525125151)5(122++-=+s s ss s(3)G 1(s )=s s s s s s s s s s 321030)2(10)2(3101)2(102+=++=+⨯++G 2(s )=ss s a s )32(10)(2+⨯+sa s s a s s s s a s a s s R s C 1010321010)32(10)(10)()()(232++++=++⨯+⨯+=∴ a s s s s A 101032)(23+++=∴ 要使系统稳定,则必须满足{{032010101032><>>⨯⇒a a a a320<<∴a (两内项系数乘积>两外项系数乘积)521634432125152125143321521251243213211352126346321251132122111)1()()(1001)()(G G G G G G G G G G G G G G G G G G G G G G G G s R s C G G G G G G G G P G G G P L G G G L G G G G G G G G G G L L L L P P s R s C +-+++++++=∴+++=∆==∆==∑=∑+---=∑∑-∑+∑-=∆∆∆+∆= t e t s F 5125125151)]([f(t)--+-== (1分) (1分) (1分) (1分) (1分) (1分) (1分) (1分) (1分)(1分)(4分) (4分)(3分) (3分)(3分)(1分)(2分) (1分)(1分) (2分)(每空1分。
安徽大学20 10 —20 11 学年第 一 学期《 自动控制理论 》(A 卷)考试试题参考答案及评分标准一、 选择题(每小题2分,共10分)1、D2、D3、A4、B5、A二、填空题(每空1分,共10分)1、10,0.7072、s 左半平面3、5,104、主导极点1p =1L =1∆=∆=()()C s R s1、()t 时,则ssr e =()1()n t t =时,212lim ()()1ssn en s e sN s s k k →=Φ=-+(4分)故21211ss ssr ssn k e e e k k -=+=+(2分)2、解:(10分)(1)系统有三个开环极点,2p ,1p ,0p 321-=-==没有开环零点,根轨迹起于,2p ,1p ,0p 321-=-==点,终止于无穷远处,共有三条根轨迹。
(1分) (2)由法则4可知道,实轴上的根轨迹区间为:]0,1[],2,[---∞。
(1分)(3)根轨迹渐进线与正实轴的夹角:(1分)1,0,3)12(±=+=k k a πϕ 有︒︒±=180,60a ϕ(4)根轨迹渐进线与正实轴的交点(1分)1321331-=--==∑=iiapσ(5)分离点(1分)21111=++++ddd解得58.1,42.021-=-=dd,根据实轴上的根轨迹区间可以知道,2d并不在根轨迹上,故舍去,42.01-=d是分离点。
实轴上的分离点的分离角为︒±90。
(6)根轨迹与虚轴的交点令jws=带入特征方程,并令实部虚部为0,有:⎪⎩⎪⎨⎧=+-=+-253223Kwww解得:⎩⎨⎧=±===6,414.1w)(0,03,21KKw舍去(1分)根据以上条件,绘制根轨迹如下图:(4分)当60<<k时,系统稳定。
3、(15分)解:系统的开环频率特性为:1()(1)10jG jjjωωωω+=-(2分)(0),(0);2()0,(0);2A j jA j jπϕπϕ+++→∞→∞→→-(4分)其Nyquist曲线如图所示。
⾃动控制原理试卷、习题及答案2套⾃动控制 (A )试卷⼀、系统结构如图所⽰,u1为输⼊, u2为输出,试求 1.求⽹络的传递函数G(s)=U1(s)/U2(s)2.讨论元件R1,R2,C1,C2参数的选择对系统的稳定性是否有影响。
(15分)2⼆、图⽰系统,试求,(1)当输⼊r(t)=0,n(t)=1(t)时,系统的稳态误差e ss;(2)当输⼊r(t)=1(t),n(t)=1(t)时,系统的稳态误差e ss; (3)若要减⼩稳态误差,则应如何调整K 1,K 2?(15分)三.已知单位负反馈系统的开环传递函数为.)())(()(1Ts s 1s 12s K s G 2+++=试确定当闭环系统稳定时,T ,K 应满⾜的条件。
(15分)四、已知系统的结构图如图所⽰,(1)画出当∞→0:K 变化时,系统的根轨迹图;(2)⽤根轨迹法确定,使系统具有阻尼⽐50.=ζ时,K 的取值及闭环极点(共轭复根)。
(15分)五、已知最⼩相位系统的对数幅频特性渐近特性曲线,1.试求系统的开环传递函数G (s );2.求出系统的相⾓裕量γ;3.判断闭环系统的稳定性。
(15分)六、设单位反馈系统的开环传递函数如下,2s158s -+=)()(s H s G 1. 试画出系统的乃奎斯特曲线;2. ⽤乃⽒判据判断系统的稳定性(15分)七、已知单位反馈系统的开环传递函数为1)s(2s 4G +=)(s使设计⼀串联滞后校正装置,使系统的相⾓裕量040≥γ,幅值裕量10db K g≥,并保持原有的开环增益值。
(10分)⾃动控制理论B⼀.试求图⽰系统的输出z 变换C(z).(20分)(b)(a)⼆.闭环离散系统如图所⽰,其中采样周期T =1s ,(20分)1.试求系统的开环脉冲传递函数G(z); 2.求系统的闭环脉冲传递函数)z (Φ; 3.确定闭环系统稳定时K 的取值范围。
(注:()T 22e z z )s 1(Z ,1z Tz )s 1(Z ,1z z )s1(Z αα--=+-=-=)三. 设单位反馈线性离散系统如图所⽰,其中T =1秒,试求取在等速度输⼊信号r (t )=1作⽤下,能使给定系统成为最少拍系统的数字控制器的脉冲传递函数D (z )。