食饵-捕食者
- 格式:ppt
- 大小:404.00 KB
- 文档页数:15
捕食者-食饵系统中的功能性反应简介、引言生态学是研究有机体与其周围环境相互关系的科学。
随着人类社会的物质文明及科学技术发展到新的高峰, 同时, 人类活动对于地球和生物圈的负影响也上升到新的高度, 并已威胁到持续发展, 甚至于人类自身的生存。
生物多样性的丧失, 气候变暖, 生物入侵等都对整个地球生物圈产生了根本的影响。
因此, 人与自然必须协调发展的思想和发展经济必须保护自然环境和生物多样性同步的观点, 已经被人们广为接受。
而生物数学作为生态学重要组成部分, 引起了各国学者的广泛重视。
生物数学在很早就已经开始萌芽, 如著名的Malthus 和Logistic 人口增长模型:在这里,x(t)表示人口的数量,r和K分别代表人口的内禀增长率和最大环境容纳量。
1900 年, 意大利著名数学家V.Volterra 在罗马大学的一次题为“应用数学于生物和社会科学的成就”的演讲, 标志着生物数学发展到一个里程碑。
特别是在1926 年, Volterra 发表了解释Finme 港鱼群变化规律的著名论文, 使生物数学的发展一度达到高潮。
最近30 年, 生物数学呈现一派欣欣向荣的局面, 它所建立的模型和方法, 不仅直接推动着生态学的发展, 对自然科学的其他领域, 也产生着重要的影响。
我们主要介绍生态学及生物数学的一个重要组成部分――种间关系中捕食者- 食饵系统的功能性反应。
种群是在同一时期内占有一定空间的同种生物个体的集合。
长期以来, 种群之间的相互关系( 简称种间关系) 包括竞争, 捕食, 互利共生等, 是构成生物群落的基础, 并一直影响着种群的持续生存与灭绝。
其中, 捕食已经被证明是构成生物群落的一种主要的力量, 而功能性反应是各物种发生捕食作用的基石, 更是数学建模的主要手段。
因此对它进行详细的总结和论述具有及其重要的意义。
二、功能性反应及在捕食者- 食饵系统中的应用功能性反应定义为在单位时间内一个捕食者杀死食饵的数量, 描述了在不同营养等级之间的生物转移量。
食饵或捕食者具有疾病的食饵—捕食系统的分析的开题报告一、研究背景在生态系统中,食物链起着重要的作用。
生物通过食物链传递能量和物质,维持着生态环境的平衡。
与此同时,疾病也是生态系统中一个重要的因素,它会影响动植物的生存和繁衍。
然而,在食饵—捕食系统中,食饵携带疾病对捕食者的影响却鲜有研究。
二、研究意义疾病在生态系统中的作用已经被广泛研究,但对于食饵—捕食系统中的疾病影响却鲜有人研究。
此次研究旨在探讨食饵携带疾病对捕食者生存和繁殖的影响,有助于更好地理解生态系统中的相互作用和生态平衡。
三、研究内容本研究将以一个简单的模型为基础,模拟疾病在食饵和捕食者之间的传播过程,进一步研究疾病对捕食者的影响。
1. 建立模型本研究将建立一个传染疾病在食饵—捕食者系统中的传播模型,包括食饵种群和捕食者种群。
2. 模拟传染过程通过模拟传染过程,研究疾病在食饵和捕食者之间的传播特征,分析其对捕食者种群的影响。
同时,研究疾病在食饵和捕食者之间的不同传播途径和不同传染力的影响。
3. 分析结果分析模型仿真结果,研究疾病对捕食者种群数量、生长和繁殖的影响,分析食饵、捕食者和疾病三者之间的关联。
四、研究方法本研究采用基于差分方程的模型进行仿真,利用MATLAB软件进行大量仿真实验,通过计算机模拟得到食饵—捕食者系统的传染过程和疾病对捕食者的影响。
五、预期结果通过本研究我们将了解固定的捕食者数量和食饵的繁殖和死亡如何影响疾病在食饵和捕食者间的传播和不同疾病强度的影响。
预计该研究将有助于更好地理解生态系统中食饵—捕食者系统的结构和演化,对生态环境保护和农业生产管理等方面具有重要的应用价值。
具有三种群的食饵-捕食者模型的研究作者:杨开应孔令聪徐廷富吴忠诚徐政来源:《科技风》2019年第22期摘要:本文在考虑具有三种群(植物、哺乳动物和爬行动物)的Volterra模型基础上,分析生态食物链之间的捕食关系。
在指数增长模型和Logistic模型的基础上,通过建立微分方程来描述不同种群之间的数量变化规律,并运用数学软件MATLAB对微分方程组进行数值求解。
然后对植物、哺乳动物和爬行动物三种群生存在同一环境中的相互依存、相互制约的稳定性进行分析找到平衡稳定点。
最后对数值结果和图形的观察,以及对平衡点进行分析和验证,得出种群间稳定的条件。
关键词:食饵-捕食者系统;三种群;Volterra模型;logistic项;稳定性1 绪论20世纪20年代意大利著名数学家Volterra建立了一个简单的食饵-捕食者模型,这个数学模型解答了由意大利生物学家D’Ancona所提出的问题[1]。
即:如果食饵的繁殖力下降,会导致捕食者的数量减少,但是却会增强捕食者的掠取能力;捕食者的死亡率上升,会导致食饵数量的增多,食饵对捕食者的供养能力增强,则会导致食饵的数量减少。
此类问题的提出和解决,为后来生物学家和数学家建立食饵-捕食者模型系统打下基础[1]。
如果在一个岛屿上生长着茂盛的植物,栖居着爬行动物和哺乳动物;哺乳动物依赖植物生存,爬行动物捕食哺乳动物,那么他们之间会有什么样的数量关系呢?运用数学模型描述、对食饵-捕食者系统的动态过程和稳定状态进行分析,不仅在生态学的研上具有重要意义,还会因与微分方程的定性理论有着密切联系,而引起大量的数学家的关注。
同时,了解种群间的增长规律有利于我们更好的进行农田管理以及对自然生态的宏观管理,使其健康持续发展。
2 具有三种群的食饵-捕食者模型我们把Volterra建立的这种只有两个种群的简单模型称作Volterra模型。
这种模型虽然能解释一些现象,但是Volterra模型存在描述的周期变化状态不是稳定结构等缺点。
楚雄师范学院数学系《数学建模》课程教学论文题目:具有自身阻滞作用的两种群食饵—捕食模型专业:信息与计算科学班级:08级3班学号:20081022152学生姓名:罗文枢完成日期:2011 年 6 月具有自身阻滞作用的两种群食饵—捕食模型摘要:在自然界中,更多的生物是杂居在一起的,各种生物根据其生理特点、食物来源分成了不同的层次,各层次之间及同一层次的生物种群之间有着各样的联系,尤其是相互之间影响非常大的生物种群,需要放在一起讨论,在这里,我们一两种群为例进行建模和讨论,具有自身阻滞作用的两种群食饵—捕食者模型。
捕食—食饵模型是数学生态学研究的重要内容,影响种群波动的因素很多,自身阻滞作用就是其中重要的一种因素。
因为资源环境是有限的,相互竞争是不可避免的,所以自身阻滞也是影响平衡位置的不稳定性和周期波动现象的主要因素。
时滞可以对生态系统的性质产生相当大的影响,理论生态学家们普遍认为在种群的相互作用中,自身阻滞作用是不可避免的。
本文主要通过对两类具有自身阻滞作用的典型的捕食-食饵模型的研究,通过分析发现时滞对模型的稳定性有非常重要的作用。
事实上只要在Volterra模型加入考虑自身阻滞作用的Logsitic项就可以得到这种现象了。
关键字:自身阻滞,稳定性分析,相轨线分析,平衡点分析,Logistic模型;一.问题重述:讨论具有自身阻滞作用的两种群食饵—捕食者模型,首先根据两种群的相互关系建立模型,解释参数的意义,然后进行稳定性分析,解释平衡点稳定的实际意义,对模型进行相轨线分析来验证理论分析的正确性。
二.问题分析:本论文主要是讨论具有自身阻滞作用的食饵—捕食者模型。
我们用Logistic模型来描述这个种群数量的演变过程,即食饵会受到自然界中的资源所限制,它不仅会无限的增大,而且捕食者也会受到食饵的数量的影响。
此种情况下会出现以下的3种现象:1.当捕食者灭绝时,食饵也不会无限的增长,即指数函数型增长,因为有自身的阻滞作用,它达到某个数量就不在会增长而趋于稳定了;2.当食饵受到自然资源的影响的灭绝时,捕食者也会因食物而灭绝;3.当两种群都不灭绝时,它们会趋于某个非零的有限值,从而达到稳定状态。
南京航空航天大学硕士学位论文两类具有Holling功能反应的食饵—捕食者模型的定性分析姓名:***申请学位级别:硕士专业:应用数学指导教师:***20070301南京航空航天大学硕士学位论文摘要近年来,捕食关系成为数学与生态学界研究的一个重要课题。
食饵—捕食者相互作用的研究具有非常重要的理论意义和应用价值,其中生物种群持续生存是捕食理论中的一个重要而又广泛的问题,它受到越来越多的学者的关注。
本文在已有的Lotka-Volterra模型的基础上,对两类具有Holling型功能反应函数的食饵—捕食者模型进行了讨论。
本文首先讨论了一类两种群具有密度制约的Holling III类功能反应模型。
利用定性分析的方法,讨论了模型在收获率条件下平衡点的稳定性,解的有界性,极限环的存在性问题。
然后本文讨论了一类具有两捕食者和一食饵三种群并有Holling型功能反应的周期系数的三维模型,利用Brouwer不动点定理,得到系统存在唯一、全局渐近稳定周期解的充分条件。
最后本文进一步考虑概周期情形,讨论了对应的概周期系统的一致持续生存性,得到了存在唯一、全局渐近稳定正概周期解的充分条件。
这些结果推广了已知的一些结论。
关键词:食饵—捕食者系统,Holling III功能反应,正周期解,正概周期解,全局渐近稳定性I两类具有Holling功能反应的食饵—捕食者模型的定性分析IIAbstractIn recent years, the predator-prey relation has become a very important part inmathematics and ecology. The predator-prey theory has a great importance in both theory and applications. One of the most important questions in population ecology is to find the permanence conditions for the species, which has received a great deal of attention of many mathematicians and biologists. Based on the Lotka-V olterra population models, this thesis studies two classes of predator-prey systems with Holling functional responses. Firstly, this thesis studies the predator-prey system with Holling’s type III functional response under density restriction and linear harvesting rate. Using qualitative analysis methods, the paper studies the boundedness of solutions and the existence of limit cycles. Secondly, two-predator and one-prey systems of three species with Holling’s type III functional response and periodic coefficients are studied. With the help of differential inequality and Liapunov functions, some sufficient conditions are obtained for the existence and global stability of positive periodic solutions and positive almost periodic solutions. These results generalize some existing results.KEY WORDS: prey-predator system, Holling’s type III functional response, positive periodic solution, positive almost periodic solution, global asymptotic stability承诺书本人郑重声明:所呈交的学位论文,是本人在导师指导下,独立进行研究工作所取得的成果。
具有干扰因素的食饵-捕食者模型分析目录目录摘要…………………………………………………………………第一部分前言………………………………………………………1.1 生态数学的的研究背景及发展…………………………………1.2 基础知识…………………………………………………………第二部分 Lotka-Volterra模型的改进及其稳定性的研究…………2.1Lotka-Volterra模型………………………………………………2.2模型的研究对象及改进…………………………………………2.3 模型的稳定性的研究……………………………………………第三部分数值模拟3.1利用matlab对模型进行了数值模拟……………………………3.2模型缺陷…………………………………………………………第四部分总结………………………………………………………致谢…………………………………………………………………参考文献………………………………………………………………第一部分 前言1.1 生态数学的的研究背景及发展生态系统具有稳定性、可测性和可控性三大属性,是多层次的、多因子的、多变量的系统,只用常规的定性描述和一般的数理统计,搞不清楚它的内在规律,运用数学模型对生态系统实行管理、预测和调控,使其持续稳定发展是现代生态学研究的重要领域。
种群动力学是生态学的一个重要分支.它广泛地利用数学思想加积分方程、差分方程、泛函微分方程、偏微分方程、算子理论等数学学科中的理论和方法,通过数学建模研究生物种群的生存条件、生物种群与环境之间相互作用的过程、生物种群的演变和发展趋势.揭示生物种群的变化规律,合理利用资源,促进生态平衡这是迄今为止数学在生态学中应用深入,发展最为系统和成熟的分支,种群 动 力 学的研究有着悠久的历史.早在1798年,Malthus 在研究人类的增长时,他引入数学方法,建立了最早的连续确定模型一一Malth 。
模型)(/)(t rN dt t dN =这是一个单种群模型.它反应了人类数量的变化,在t 不很长时是比较符合实际的,但当+∞→t 时种群规模将无限增长是不合实际的,究其原因在于它没有考虑到有限的资源对种群增长的制约作用.针对这个模型,后人不断分析各种因素的影响,完善和改进这一模型,使之能较好地反应人口(单种群)的变化规律,如P. F.Verhulst(1938年)建立的Logistic 模型)/)(1)((/)(k t N t rN dt t dN -=E.M .W right(1945年)建立的有确定时滞的Logistic 模型)/)(1)((/)(k r t N t rN dt t dN --=P. M. Nisbet 和W. S. C. Gurney(1984年)建立的具有生理阶段结构(stagestructure) 模型以及H. 1. Freedman 研究的具有斑块迁移的单种群模型等,无一不是对Malthus 模型的完善和扩展,极大地推动了种群动力学的发展现 实 世 界中种群不可能单独存在,它必与相关种群相互作用,相互依存.Lotka-Volterra 模型是种群动力学中最为经典和重要的两种群相互作用的动力学模型,该模型分别由意大利数学家Volterra(1923年)解释鱼群变化规律和美国种群学家Lotka(1921年)在研究化学反应时提出。
一类食饵-捕食模型的稳定性和Hopf分岔引言:食物链是自然界中生物互相作用的重要方面之一,而食饵-捕食模型是描述这种互相作用的数学模型之一。
在这类模型中,食饵是指养分来源,捕食者则以食饵为食。
在这篇文章中,我们将探究现象。
一、模型的建立假设食饵种群的增长率与其种群大小成正比,而捕食者种群的增长率与食饵种群大小和捕食者种群大小成正比。
以t表示时间,x(t)和y(t)分别表示食饵种群和捕食者种群的大小,则该模型的数学表达式如下:dx/dt = ax - bxydy/dt = cxy - dy其中,a、b、c和d为常数,分别表示食饵种群的增长率、食饵种群遭到捕食者捕食的速率、食饵被捕食后被转化为捕食者的速率和捕食者种群的死亡率。
二、平衡点的分析平衡点是指在一段时间内,系统中各个种群的大小保持不变的状态。
在我们的模型中,稳定的平衡点应该满足以下条件: dx/dt = 0 => ax - bxy = 0dy/dt = 0 => cxy - dy = 0由以上两个方程可以解得平衡点为:(x*, y*) = (d/c,a/b)。
当系统处于平衡点时,食饵和捕食者种群的大小不再发生变化。
三、线性稳定性分析为了探究平衡点的稳定性,我们需要对系统进行线性稳定性分析。
假设系统在平衡点周边有微小的扰动,即令(x, y) = (x* + ε, y* + δ),其中ε和δ为很小的变量。
将这个微小扰动代入模型的微分方程中,可以得到以下近似方程:dε/dt = (a - b(y* + δ))εdδ/dt = (c(x* + ε)y* - d)δ通过对近似方程进行线性化,可以得到雅可比矩阵:J = | a - by* -bx* || cy* cx* - d|其中,x*和y*为平衡点的坐标。
依据线性稳定性理论,平衡点(x*, y*)是稳定的当且仅当雅可比矩阵的全部特征值具有负实部。
四、Hopf分岔的分析除了探究系统的稳定性外,我们还关注系统是否存在Hopf分岔现象。
两类食饵—捕食者模型的稳定性分析两类食饵—捕食者模型的稳定性分析引言生态系统中食物链是一种基本的生态关系,其中包括食饵和捕食者之间的相互作用。
食饵-捕食者模型是用来描述食饵和捕食者之间相互作用关系的数学模型。
在自然界中存在不同类型的食饵-捕食者模型,其中一种常见的模型是“两类食饵—捕食者模型”。
本文将对该模型的稳定性进行分析。
一、模型描述这个模型中包括两类食饵和一个捕食者。
我们用 V1, V2 分别表示两类食饵的个体数量,用 P 表示捕食者的个体数量。
模型可以由以下方程组描述:(1)dV1/dt = r1V1(1 - V1/K1) - a1V1P(2)dV2/dt = r2V2(1 - V2/K2) - a2V2P(3)dP/dt = b1a1V1P - m1P + b2a2V2P - m2P其中,r1和r2分别表示两类食饵的增长率,K1和K2表示它们的环境容量;a1和a2是食饵和捕食者之间的捕食率;b1和b2分别是捕食者每次捕食时所消耗的食饵个体数量;m1和m2分别表示捕食者的自然死亡率。
二、平衡点的求解平衡点是指系统中各个物种个体数量不发生变化的状态。
我们令方程组(1)-(3)中各个方程等于零,解得平衡点:V1* = 0;V2* = 0;P* = 0这是一个零平衡点,表示所有个体数量均为零。
三、稳定性的分析我们需要分析模型中平衡点的稳定性,以了解该模型的动态行为。
1. 线性稳定性分析为了方便分析,我们将模型(1)-(3)化为线性形式:(4)dV1/dt = (r1 - a1P)V1(5)dV2/dt = (r2 - a2P)V2(6)dP/dt = (b1a1V1 + b2a2V2 - m1 - m2)P对于线性系统(4)-(6),可以利用特征值的方法进行分析。
计算特征值后得到系统的特征方程:λ^3 + (m1 + m2 - b1a1V1* - b2a2V2*)λ^2 + (a1a2P* - (r1 + r2 + m1 + m2))λ + a1a2P*(r1 + r2) = 0通过分析特征方程的根的实部和虚部,可以判断平衡点的稳定性。