有机短波红外
- 格式:docx
- 大小:14.64 KB
- 文档页数:2
红外光谱(i nfra r ed spectroscopy 缩写为IR )由于分子吸收了红外线的能量并导致分子内振动能级的跃迁而产生的记录信号。
IR 谱主要提供分子中官能团的结构信息。
横坐标:波数(σ)400~4000cm -1;表示吸收峰的位臵。
纵坐标:透过率(T %),表示吸收强度。
T ↓,表明吸收的越好,故曲线低谷表示是一个好的吸收带。
%100%0⨯=I IT I :表示透过光的强度;I 0:表示入射光的强度。
红外光谱官能团区(4000-1500 cm -1)由分子的伸缩振动导致,用于鉴定各种不同官能团产生红外光谱的必要条件:1.红外辐射光的频率与分子振动的频率相当,才能满足分子振动能级跃迁所需的能量,而产生吸收光谱。
2.只有能引起分子偶极矩的变化的振动才能产生IR 光谱。
完全对称的分子H 2、O 2、N 2不会产生红外吸收光谱。
H―C≡C―H 、R―C ≡C―R ,其C≡C (三键)振动也不能引起红外吸收。
指纹区(1500-650 cm-1)分子弯曲及伸缩振动吸收峰,多用于鉴定基团的结合方式官能团区(高频区)1500-4000 cm-1Y -H 伸缩振动区2500~3700 cm-1,Y= O、N、C。
Y≡Z 三键和累积双键伸缩振动区2100~2400 cm-1,主要是:C≡C、C≡N 三键和C=C=C、C=N=O 等累积双键的伸缩振动吸收峰。
Y=Z双键伸缩振动区1600~1800 cm-1,主要是:C=O、C=N、C=C等双键。
指纹区(低频区)650-1500 cm-1主要是:C-C、C-N、C-O等单键和各种弯曲振动的吸收峰,其特点是谱带密集、难以辨认。
红外谱图各主要官能团红外光谱的特征吸收峰频率3600-3200NH, OH d, br, s3300C CHstrong3100-3010 =C-H middle2960-2850 -C-H strong2260-21002700-CHO doubleC Cvariable1850-1690 C=OAcids, esters Ketones Aldehydes very strong1680-1620 or 1600-1500 C=C variable 1470-1350 bend C-H1000-700 bend alkenes benzene substituted type4000cm-1650cm-11300-1030 bend C-O C-N几个明显的红外特征峰-OH(醇和酚):-OH吸收处于3200~3650cm-1,由于-OH可形成分子间或分子内氢键,而氢键所引起的缔合对红外吸收峰的位臵、形状和强度都有重要影响。
短波红外特点
短波红外(SWIR)是一种光谱范围在900至1700纳米的红外波段。
与长波红外(LWIR)和中波红外(MWIR)相比,SWIR 对某些应用具有特殊优势和特点。
首先,SWIR具有很好的透过性。
它的波长比LWIR和MWIR要短得多,因此相位受到的干扰较少、深度穿透能力强,且能准确传输到显像系统。
同时,SWIR的折射率要低于可见光,因此能够对非均匀性物质进行“透视”,并在耀斑等高能情况下得到高清晰度的成像。
其次,SWIR具有很好的分辨率。
在现代成像技术中,SWIR成像系统可以实现微米级的准确成像,比LWIR和MWIR更加精细。
这种敏锐性可以直接用于区分物体表面材质、判定化学品种类和检测隐藏的缺陷和弱点等应用。
此外,SWIR还可以较为精准地检测和研究微小结构和化学反应的表现和特性。
此外,SWIR具有很好的环境适应性。
由于LWIR和MWIR感应器不能穿透雾气、悬浮粒子、有机物质等干体杂质,而SWIR是一种对杂质敏感程度相对较低的光谱。
在大气自然环境中,SWIR能比其他红外段表现更加稳定,能够获取更为真实的图像和数据。
最后,SWIR还有其独特的光物理特性,例如热释电效应、光脱漂效应、光学失真等,这些特性对调制和控制流明和亮度等方面的更高精度要求起到了关键作用。
此外,SWIR还可以较好地识别具有锐度和剧烈反射性的物体,在成像和识别中提供了更高的安全性和准确性。
总之,SWIR的特点包括了高透过性、高分辨率、良好的环境适应性以及卓越的光物理特性等方面。
这使得它在激光红外成像、荧光成像、远程地面观测、卫星地球观测、医学体内检测等方面都有广泛应用。
红外线、紫外线的特点及应用红外线什么是红外线红外线是太阳光线中众多不可见光线中的一种,由英国科学家霍胥尔于1800年发现,又称为红外热辐射,他将太阳光用三棱镜分解开,在各种不同颜色的色带位置上放置了温度计,试图测量各种颜色的光的加热效应。
结果发现,位于红光外侧的那支温度计升温最快。
因此得到结论:太阳光谱中,红光的外侧必定存在看不见的光线,这就是红外线。
也可以当作传输之媒介。
太阳光谱上红外线的波长大于可见光线,波长为0.75~1000μm。
红外线可分为三部分,即近红外线,波长为(0.75-1)~(2.5-3)μm之间;中红外线,波长为(2.5-3)~(25-40)μm之间;远红外线,波长为(25-40)~l000μm 之间。
◆红外线的物理性质在光谱中波长自0.76至400微米的一段称为红外线,红外线是不可见光线。
所有高于绝对零度(-273℃)的物质都可以产生红外线。
现代物理学称之为热射线。
医用红外线可分为两类:近红外线与远红外线。
近红外线或称短波红外线,波长0.76~1.5微米,穿入人体组织较深,约5~10毫米;远红外线或称长波红外线,波长1.5~400微米,多被表层皮肤吸收,穿透组织深度小于2毫米。
◆红外线的物理特性(1)通过辐射传导热能;有极强的穿透能力,可使物体快速被加热;不被大气所吸收,因此不产生浪费;不受周边环境的影响(如潮湿、温度高低等);(2)热效率高:在加热的过程中没有化学损失和物理损失,在热传递过程中热能损失少利用率高,浪费少◆红外线的应用1..红外线开关红外线开关有主动式和被动式。
主动式红外线开关由红外发射管和接收管组成探头,当接收管接收到发射管发出的红外线时,灯关闭;人体通过挡住红外线时,灯开启。
被动式红外线开关是将人体作为红外线源(人体温度通常高于周围环境温度),红外线辐射被检测到时,开启照明灯。
还有常见的红外感应龙头也是用了这种原理。
2.医疗保健在红外线区域中,对人体最有益的是4 μm~ 14 μm波段,它有着孕育宇宙生命生长的神奇能量,所有动、植物的生存、繁殖,都是在红外线这个特定的波长下才得以进行,因此许多专家、学者称之为“生育光线”。
芯片探测器从1956年开始,以美国生产非制冷的硫化铅红外探测器(工作波段1~3µm)为导引的“响尾蛇”空空导弹为标志,红外探测器的军事应用进入了飞速发展阶段。
首先是对化铅探测器进行制冷,大大提高了探测灵敏度;相继又出现了锑化铟、碲镉汞等多种新材料、多响应元及不同排列方式(线列、面阵)等构成多品种的实用均红外探测器,冉加适当的光机电扫描获得红外图像信息,实现了全天时昼夜红外成像,于红外成像侦察、成像制导等贴片钽电容武器装备,可实时获取战场情报、对来袭目标告警,并大大提高武器打击精度,是带动现代战争模式变革的主要技术因素之一。
随着探测器像元规模的断扩大,需要的信号放大和处理电路(一般在非制冷环境)数量也越来越多,其引线数、体积、重量、耗电量、参数一敛性和可靠性等因素使得探测器像元不得不控制在一定的围内(一般在200元以下),严重制约了红外探测技术在武器装备的应用。
随着微电子集电路技术的发展,和红外探测器有机结合并不断完善,就诞生了红外焦平面探测器——红外探测阵列完成光电转换,再由和其良好电气耦合(且同处在低温环境)的集成电路完成信号传输、延时积分、存储、背景消除、自动增益控制等信号处理(统称为读出电路,ROIC),又称第二代红外焦平面探测器,技术先进国家20世纪90年代进入批量生产;而把原来的单元或多元器件称为一代红外探测器;目前正在研发的红外焦平面阵列规模更大(百万像素以上、像元面积更小、探测灵敏度更高、均匀性更好)、信号处理能力更强(智能化)、工作T491D336K010AT温度更高(120~180K)、双色(短波红外+中波红外、短波红外+长波红外、中波红外长波红外等)或多色(包括紫外和可见光)复合的新型器件称为第三代红外焦平面探测器。
红外焦平面阵列芯片有单片式和混合式。
PtSiCCD红外焦平面阵列是红外探测单元列阵集成在硅材料衬底片上的单片式芯片,红外探测单元为肖特基势垒结构,响应波段1~5µm,在3~5µm的量子效率不大于1%,峰值探测率D*在1010cmHz1/2/W量级。
短波红外波段的波长范围
短波红外波段的波长范围
短波红外波段是指介于近红外和中红外之间的一段波长范围,通常从1.2微米到2.5微米。
在这个波段内,物质的分子振动和转动引起特定的吸收谱线,因此短波红外辐射被广泛应用于化学、生物、医学、环境等领域的分析和检测。
1. 短波红外辐射的基本概念
短波红外辐射是指在4000-2500厘米^-1(即2.5-1.2微米)范围内的电磁辐射。
它是由振动和转动引起的分子谱线吸收所产生的,因此可以用来识别物质和检测其组成。
2. 短波红外辐射在化学分析中的应用
由于不同化合物具有不同的振动频率和光谱特征,在短波红外辐射下可以通过检测样品吸收光谱来确定其组成。
这种方法被广泛应用于化学品鉴定、质量控制、环境监测等领域。
3. 短波红外辐射在生物医学中的应用
生物分子如蛋白质、核酸、糖类等在短波红外辐射下也有特定的吸收谱线,因此可以用来检测生物分子的含量和结构。
这种方法被应用于肿瘤诊断、药物筛选、食品安全等领域。
4. 短波红外辐射在环境监测中的应用
短波红外辐射可以检测大气中的污染物和水体中的有机污染物,这种方法被广泛应用于环境监测和污染治理。
总结:
短波红外波段是介于近红外和中红外之间的一段波长范围,通常从1.2微米到2.5微米。
它被广泛应用于化学、生物、医学、环境等领域的分析和检测。
在化学分析中,可以通过检测样品吸收光谱来确定其组成;在生物医学中,可以用来检测生物分子的含量和结构;在环境监测中,可以检测大气中的污染物和水体中的有机污染物。
短波红外的波长范围
短波红外是指在红外光谱中,波长范围在1.4~3微米之间的区域。
下面将从以下几个方面进行详细介绍。
一、短波红外的概念
短波红外是指在红外光谱中,波长范围在1.4~3微米之间的区域。
它处于可见光和中波红外之间,是一种非常重要的光谱区域。
短波红外波长范围内的电磁辐射能够被许多物质吸收、散射和透过,因此在化学、生物、医学等领域有着广泛的应用。
二、短波红外的特性
1.吸收强度大:短波红外电磁辐射被物质吸收后,会引起分子振动和转动等运动,因此吸收强度很大。
2.分辨率高:由于吸收强度大,所以可以获得很高的信噪比和分辨率。
3.透过性好:虽然有些物质对短波单色光有很强的吸收作用,但是对于宽带光源来说,短波红外具有较好的透过性。
三、短波红外的应用
1.化学分析:短波红外可以用于分析化学物质的结构和成分,如聚合物、有机物、无机物等,因此在化学领域有着广泛的应用。
2.生物医学:短波红外可以用于检测生物组织中的脂肪、蛋白质等成分,也可以用于检测血液中的各种生化指标。
3.环境监测:短波红外可以用于监测大气污染、水质污染等环境问题,也可以用于检测食品中的添加剂和污染物。
4.材料表征:短波红外可以用于表征材料的结构和性质,如金属、陶瓷、玻璃等。
四、总结
总之,短波红外是一种非常重要的光谱区域,在许多领域都有着广泛
的应用。
它具有吸收强度大、分辨率高和透过性好等特点,在化学分析、生物医学、环境监测和材料表征等方面都有着重要的作用。
短波红外波段指波长在1400-3000纳米之间的波段,肉眼无法识别这些光谱。
矿物质、人造物质及其他一些地物具有特殊的成分,而短波红外能够“看见”这种特有成分,但肉眼和可见光近红外光波却“看不见”。
可见光近红外光谱和短波红外光谱图短波红外成像有一个其他技术无可比拟的主要优点,即它能够透过玻璃进行成像。
对于短波红外相机来说,特制的价格昂贵的透镜或者适应恶劣环境的外壳几乎是不必要的。
这就使得它们可以用于各种各样的应用和产业。
这种能力还允许短波红外相机安装在一个保护窗口内,当将相机系统固定在一种潜在平台上时,这将可以提供很大的灵活性。
所以,为何要使用短波红外呢?因为短波红外具有以下一些优点:●高灵敏度●高分辨率●能在夜空辉光下观测●昼夜成像●隐蔽照明●能看到隐蔽的激光器和信标●无需低温制冷●可采用常规的低成本可见光透镜●尺寸小●功率低成像效果图在夜里使用短波红外还有一个大的优点。
被称为夜间天空辐亮度的大气现象所发出的光照度比星光强5至7倍,这种光照几乎都处在短波红外波长区。
所以,有了短波红外相机,再加上这种常常被称为夜气辉的夜间光照度,我们便能够在无月光的夜间很清楚地“看到”目标,并通过网络共享这种图像,因为其他成像器件没法做到这一点。
在近红外、短波红外以及可见光范围可确保提供完美的日间/夜间相机解决方案。
具有高分辨率、无光晕以及高灵敏度等优点。
使用者可以在无光源的环境下捕获大气中的“夜间光”来获得清晰可视的图像.普通数码相机,不能够提供足够的信息以对某一场景进行全天候、全面、准确、可靠的描述,易造成目标的丢失和误判,所有的成像效果都无法与S W I R镜头技术媲美。
以下是对比图广泛应用小编非常辛苦的收罗了短波红外的各种应用,希望大家能了解到他的价值。
S W I R短波镜头的精湛之处在于直接在生产读取电路晶圆上生长出锗探测单元,产生数百计数的对短波红外可见的成像芯片,可靠性高,波长响应范围更宽,不仅能够延伸到红外波段而且可以检测可见光和近红外光。
V o l.41 吉林大学学报(理学版) N o.2 2002年4月 JOU RNAL O F J I L I N UN I V ER S IT Y(SC IEN CE ED IT I ON)245~247 研究简报短波近红外光谱法分析酒中乙醇含量逯家辉,滕利荣,蒋富明,任玉林(吉林大学化学学院,长春130023)邱芳萍王友兵(长春工业大学生物工程学院,长春130012)(白城医学院,白城137000)提要:使用短波近红外光谱和多变量校正技术快速准确地测定酒中乙醇含量.研究了纯水、乙醇以及乙醇和水混合体系的光谱特征.用多元线性回归(M L R)和主成分回归(PCR)分析了二阶导数差谱数据.该法分析酒样具有方便、快速的优点.关键词:短波近红外光谱;多变量校正;乙醇测定中图分类号:O657.33 文献标识码:A 文章编号:167125489(2003)022*******测定白酒中酒精度的国家标准需将酒样先蒸馏,定容,再用比重瓶法或酒精计法测定[1].方法费时、费力,且测定结果只能保留一位小数.传统的仪器分析方法,如气相色谱法,分析酒中乙醇含量[2]一般操作复杂,且仪器昂贵.短波近红外光谱位于850~1075nm光谱区域,目前一般的紫外可见分光光度计的波长范围大都扩展到该光谱区域,因此开发、利用此光谱区域具有一定意义.有机化合物在短波近红外光谱区都有吸收,但组分间的谱带相互重叠,用其进行定量分析需采用一些化学计量学光谱数据处理技术,才能获得准确可靠的结果[3].本文将短波近红外光谱法同化学计量学技术相结合,对酒中乙醇含量进行快速非破坏定量分析.研究了一系列乙醇溶液的短波近红外吸收光谱、导数光谱和差谱的光谱特征.比较了多元线性回归(M L R)和主成分回归(PCR)等化学计量学技术处理光谱数据进行乙醇含量预测的准确性.此法无需对样品进行复杂预处理,而且具有方便、快捷等优点. 1 实验部分1.1 仪器与试剂 日本岛津U V23100型紫外可见近红外分光光度计.长城G W386 330微机通过R S2232C通讯端口与备有接口板的主机连接,实现数据的自动采集和光谱数据的传输.使用I RM A T Pen tium98微机进行光谱数据处理和运算,所用试剂均为分析纯.1.2 样品的制备 准确配制1%~25%(体积比)乙醇水溶液标准样品15份,购买2种酒样.1.3 测量条件及数据处理 1c m石英吸收池,波长扫描范围850~1075nm,光谱带宽2nm,每个样品扫描2次,取平均值.采用自编的多元线性回归和主成分回归等化学计量学光谱数据处理软件进行光谱数据处理[4]. 2 结果与讨论2.1 红外光谱 以空气为参比,测定纯水和无水乙醇的短波近红外吸收光谱.水的最大吸收在960nm左右.无水乙醇在905nm处出现甲基的C_H伸缩振动3倍频吸收带,在935nm处的肩峰是亚甲基的C—H伸缩振动3倍频吸收带,在960nm左右出现乙醇中O_H的3倍频吸收带[5].2.2 乙醇溶液光谱研究 以空气为参比,分别测定5%,10%,15%,20%和25%(体积比)乙醇收稿日期:2002209212.作者简介:逯家辉(1965~),男,工程师,从事生物化学研究.联系人:任玉林(1945~),男,教授,博士生导师,从事化学计量学研究,E2m ail:cgl93728@.基金项目:吉林省科技发展基金(批准号:2002050322).水溶液的短波近红外吸收光谱.水在960nm 左右仍有一强吸收带,在905nm 左右处还有一个弱吸收带.随着乙醇含量的增加,在960nm 处的吸收带逐渐减弱.5%,10%,15%,20%和25%(体积比)乙醇水溶液的二阶导数光谱如图1所示.从图1同样可以看出,随着乙醇含量的增加,在960nm 处的二阶导数光谱吸收带的强度也相应改变.为进一步突出主要官能团的光谱特征,用纯水的吸收光谱减去乙醇水溶液的吸收光谱,然后做二阶导数光谱,得到如图2所示不同浓度的乙醇水溶液的二阶导数差谱.图2最大的优点是乙醇在905nm 左右的吸收带和935nm 左右的吸收带明显分开.F ig .1 Second der iva tive spectra ofwa ter ethanol m ixtures (V V )a .5%;b .10%;c .15%;d .20%;e .25%.F ig .2 Second der iva tive d ifference spectra of wa ter ethanol m ixtures (V V )a .2%;b .4%;c .6%;d .8%;e .10%;f .12%;g .14%;h .16%;i.18%;j .20%;k .22%;l.24%.从图1和图2不难看出,二阶导数差谱具有两个特点:一是相同浓度下,其光谱强度增大,这意味着其灵敏度提高.二是重叠的峰分得更好,表明干扰减少.因此,我们从差谱来研究乙醇含量测定的数学校正模型.2.3 定量数学校正模型 分别测15份1%~25%(体积比)浓度的乙醇水溶液标准样品的二阶导数差谱,将905nm ,935nm 和960nm 处的差谱数据(A )同其对应的标准样品的浓度值Y (体积百分比)进行二阶导数差谱的多元线性回归(M L R ),得回归方程列于表1.Table 1 Regression equa tion of ethanol con ten t pred icted by ML R and PCRR egressi on m ethods R egressi on equati on Co rrelati on coefficien t M L R Y =1.620-1184A 935-4012A 905+423.8A 9600.9979 PCR (n =3) Y =13.4-0.9419S 1+0.06981S 2+0.08309S 30.9989 对15份1%~25%(体积比)浓度的乙醇水溶液标准样品的二阶导数差谱数据进行主成分分析,得到各标准样品的得分(S ),将前10个主成分对应的各样品的得分(S )和相应的浓度Y (体积百分比)进行主成分回归,建立主成分回归的数学校正模型.以主成分数为横坐标,所建模型预报乙醇含量的相对误差为纵坐标,绘制关系曲线.曲线表明当主成分数为3时,预报误差最小.主成分数n =3时的二阶导数差谱的主成分回归(PCR )方程也列入表1.2.4 数学校正模型可靠性评价 所建数学校正模型基于乙醇2水二元体系,与实际白酒样品的基体可能有差异,因此需用国家标准方法测定实际样品的乙醇含量[1],并做标准加入回收实验,以考核所建模型的可靠性.用酒精计法分别测红星二锅头(样品1)和榆树王(样品2)的乙醇含量(为参考值),再用二阶导数差谱多元线性回归和主成分回归方法预报乙醇含量(为预报值),其结果列于表2.分别从红星二锅头和榆树王的实际白酒样品中,准确移取25.00mL 放入100mL 容量瓶中.再准确加入5.00mL 无水乙醇,分别用蒸馏水定容至刻度,测其二阶导数差谱数据.用多元线性回归和主成分回归方法计算出乙醇含量,根据分析结果中被测组份含量的增大值,计算回收率.其结果列于表3.表3中数据为三次平行实验的平均值.642 吉林大学学报(理学版)V o l .41 Table 2 Co m par ison of ethanol con ten t pred icted by ML R and PCR with standard m ethod R egressi onm ethods Samp le N o .1R eferenceP redicted R elative erro r (%,V V )(%,V V )(%)Samp le N o .2R eference P redicted R elative erro r (%,V V )(%,V V )(%) M L R 55.455.860.8341.741.38-0.77 PCR (n =3)55.455.670.4941.741.860.39Table 3 Results of recovery testsR egressi onm ethods Samp le N o .1A dded mLIncreased mL R ecovery (%)Samp le N o .2A dded mL Increased mL R ecovery (%) M L R 5.005.06101.205.004.9599.00 PCR (n =3)5.005.02100.405.005.01100.20 综上所述,短波近红外光谱法同化学计量学光谱数据处理技术相结合,可以方便快速地分析白酒中乙醇的含量,适用于现场、实时地进行乙醇质量监控,此法的原理可推广应用到其它酒类.参考文献[1] D u Zhong (杜 钟),T ian X i 2jing (田栖静),W u Q i (吴 琪),et a l .T he T est M ethod of A lcoho licity in D istilledSp irit (白酒中酒精度的试验方法)[M ].Beijing (北京):M in istry of L igh t Indu stry of Ch ina (中华人民共和国轻工业部),1989.[2] T ian jin L igh t Indu stry Co llege (天津轻工业学院).Ferm en t A nalysis in Indu stry (工业发酵分析)[M ].Beijing(北京):Beijing L igh t Indu stry P ress (北京轻工业出版社),1989.339.[3] Guo Ye (郭 晔),Gou Yu 2hu i (苟玉慧),R en Yu 2lin (任玉林),et a l .N ondestructive Q uan titative A nalysis ofSu ltam ethoxazo le (粉末药品磺胺甲基异 唑的非破坏定量分析)[J ].A cta S cien tia rum N a tu ra lium U n iversita tisJ ilinensis (吉林大学自然科学学报),2001,(2):103~105.[4] L u W an 2zhen (陆婉珍),Yuan Hong 2fu (袁洪福),Xu Guang 2tong (徐广通),et a l .M odern N ear InfraredSpectro scopy A nalysis T echn ique (现代近红外光谱分析技术)[M ].Beijing (北京):Ch inese P ress of Petro leumChem ical Indu stry (中国石油化工出版社),2001.138~141.[5] Phelan M K ,Barlow C H ,Callis J B .M easu rem en t of Cau sitic B rine So lu ti on s by Spectro scop ic D etecti on ofthe H ydrox ide I on in the N ear 2infrared R egi on ,700~1150nm .A na l Che m [J ],1989,61:1419~1424.Rap id D eterm i nation of Ethanol i n W i ne by Short -wavelengthNear -i nfrared SpectroscopyLU J ia 2hu i ,T EN G L i 2rong ,J I AN G Fu 2m ing ,R EN Yu 2lin(Colleg e of Che m istry ,J ilin U n iversity ,Chang chun 130023,Ch ina )Q I U Fang 2p ing(Collog e of B ioeng ineering ,Chang chun Ind ustria l U n iversity ,Chang chun 130012,Ch ina )W AN G You 2b ing(B acheng M ed ica l Colleg e ,B a icheng 137000,Ch ina )Abs tra c t :T he sho rt 2w avelength near 2infrared sp ectro scop y and m u ltivariate calib rati on w ere u sed fo r the rap id and accu rate determ inati on of etchano l in w ines .Pu re ethano l w ater and ethano l w ater m ix tu res w ere studied to estab ilsh the sp ectral featu res .T he analysis of the second 2derivative difference sp ectrum data w as accom p lished w ith m u ltilinear regressi on (M L R )and p rinci p al com ponen t regressi on (PCR ).T h is m ethod has the advan tage of rap id analysis .Ke yw o rds :sho rt 2w avelength near 2infrared sp ectro scop y ;m u ltivariatecalib rati on ;ethano l determ inati on(责任编辑:李桂英)742 N o .2 逯家辉等:短波近红外光谱法分析酒中乙醇含量。
第二章遥感物理基础复习题:1 由于太阳辐射能量的分布情况、各电磁波谱段的稳定性以及大气传输过程中发生的作用(导致大气窗口的存在)等几方面的原因,目前遥感技术使用的电磁波集中在紫外线、可见光、红外线和微波等光谱段,这几个谱段主要特性如何?紫外线的主要特性紫外线:波长范围0.01-0.38(或0.4)µm。
太阳辐射含有紫外线,通过大气层时,波长小于0.3µm的紫外线几乎都被吸收,只有0.3-0.4µm波长的紫外线部分能穿透大气层到达地面,且能量很少,并能使溴化银底片感光;但因散射严重,故大多数地物在该波段反差小。
紫外线在遥感中的主要用途:(1) 探测碳酸盐分布(因碳酸盐在0.4µm以下短波区域对紫外线的反射比其它类型的岩石强)(2) 水面油污染监测(因水面漂浮的油膜比周围水面反射的紫外线要强烈)(3) 石油普查与勘探(除石油外,荧石与周围其它地物的反差也较大)紫外遥感的使用条件:由于大气层中臭氧对紫外线的强烈吸收与散射作用,紫外遥感通常在2000米高度以下范围进行,高空遥感不宜采用。
可见光波长范围大约为0.38~0.76 µm ,可见光谱中的各种颜色成分大致属于如下的波长区间:红:0.62~0.76µm橙:0.59~0.62µm黄:0.56~0.59µm绿:0.50~0.56µm青:0.47~0.50µm蓝:0.43~0.47µm紫:0.38~0.43µm(或0.40~0.43µm )可见光的主要特性可见光波长范围:0.38(0.4)~ 0.76主要来源:太阳辐射可见光是遥感中最常用波段之一,原因:(1)人眼不但可直接感受可见光的全色光,且对不同波段的单色光也具有这种能力;(2)此波段大部分地物具有良好的亮度反差特性;尽管大气对它有一定的吸收和散射作用,但此波段大部分地物具有良好的亮度反差特性,不同图像易于区分,故此,可见光是鉴别物质特征的主要波段。
红外光谱在有机化合物的结构鉴定中,红外光谱法是一种重要得手段。
用它可以确定两个化合物是否相同,若两个化合物的红外光谱完全相同,则一般他们为同一化合物(旋光对映体除外)。
也可以确定一个新化合物中某些特殊键或官能团是否存在。
、红外光谱图的表示方法红外光谱以波长(或波数)为横坐标,以表示吸收带的位置。
以透射百分率(Transmittanee %,符号T%为纵坐标,表示吸收强度,吸收带为向下的谷二红外光谱的产生,与有机化合物分子结构的关系1. 分子振动的分类:⑴伸缩振动(V):原子沿着建轴伸长和缩短,振动时键长有变化,键角不变。
a对称伸缩〔%) b.不对称伸縮L岭合)⑵弯曲振动(S):组成化学键的原子离开键轴而上下左右的弯曲。
弯曲振动时, 键长不变,但键角有变化。
b平面揺摆②:面外弯曲b.扭曲振动2. 红外光谱的产生当分子吸收红外光子,从低的振动能级向高的振动能级跃迁时,而产生红外吸收光谱。
振动能:&ib=( V + 1/2) h vV=0,1,2,3…称为振动量子数。
v =振动频率h= 普朗克常数(6.36 x 10-34焦耳.秒)v«0在分子中发生振动能级跃迁所需要的能量大于转动能级跃迁所需要的能量,所以发生振动能级跃迁的同时,必然伴随转动能级的跃迁。
因此,红外光谱也成为振转光谱。
只有偶极矩大小或方向有一定改变的振动才能吸收红外光,发生振动能级跃迁,产生红外光谱。
不引起偶极变化的振动,无红外光谱吸收带。
R—C=C—R无红外光借吸收带3. 原理对于分子的振动,为了便于理解可以用经典力学来说明用不同质量的小球代表原子,用不同硬度的弹簧代表各种化学键。
根据胡克(Hooke )定律,两个原子的伸展振动视为一种简谐振动, 其频率可依下 公式近似估计:V = 1/2 n (k/ 卩)-1/2m i 和m 分别为二个振动质点的质量。
1r- n 和c 为常数,吸收频率随键的强度的增加而增加,随键连原子的质量增加 而减少。
有机短波红外
摘要:
1.有机短波红外的基本概念
2.有机短波红外的发展历程
3.有机短波红外的主要应用领域
4.我国在有机短波红外领域的进展
5.有机短波红外的前景展望
正文:
有机短波红外,顾名思义,是一种具有短波长和红外辐射特性的有机材料。
在过去的几十年里,有机短波红外技术在我国得到了广泛关注和发展。
本文将从有机短波红外的基本概念、发展历程、主要应用领域、我国在相关领域的进展以及未来前景等方面进行详细介绍。
一、有机短波红外的基本概念
有机短波红外是指一类具有红外辐射特性的有机分子或聚合物。
与传统的无机红外材料相比,有机短波红外材料具有质量轻、柔性好、制备成本低等优点,因此在许多领域具有广泛的应用前景。
二、有机短波红外的发展历程
自20世纪60年代以来,有机短波红外技术得到了迅速发展。
从最初的简单有机分子的红外光谱研究,到高分子的红外光谱和器件应用,再到近年来的人工智能、生物医学等领域的应用,有机短波红外技术不断取得突破。
三、有机短波红外的主要应用领域
有机短波红外技术在许多领域都有广泛的应用,如遥感、生物医学、光电子器件、人工智能等。
其中,在生物医学领域的应用具有重要意义。
例如,有机短波红外探测器可用于对人体进行无创检测,实现早期疾病诊断;在光电子器件领域,有机短波红外材料可作为红外探测器、调制器、激光器等关键器件。
四、我国在有机短波红外领域的进展
我国在有机短波红外领域的研究取得了显著成果。
相关企业和科研机构在材料合成、器件制备、应用研究等方面取得了国际领先水平的成绩,为我国有机短波红外技术的产业化奠定了基础。
五、有机短波红外的前景展望
随着科技的不断发展,有机短波红外技术在各个领域的应用将越来越广泛。
在未来,有机短波红外材料有望在遥感、生物医学、光电子器件、人工智能等领域发挥更大的作用,为我国经济和社会发展作出更大贡献。
总之,有机短波红外技术作为一种具有广泛应用前景的高新技术,在我国得到了广泛关注和发展。