06-一阶电路
- 格式:ppt
- 大小:1.09 MB
- 文档页数:57
dtdiL实验六一阶RL电路的过渡过程实验一、实验目的1、研究RL串联电路的过渡过程。
2、研究元件参数的改变对电路过渡过程的影响。
二、实验原理在电路中,在一定条件下有一定的稳定状态,当条件改变,就要过渡到新的稳定状态。
从一种稳定状态转到另一种新的稳定状态往往不能跃变,而是需要一定的过渡过程(时间)的,这个物理过程就称为电路的过渡过程。
电路的过渡过程往往为时短暂,所以电路在过渡过程中的工作状态成为暂态,因而过渡过程又称为暂态过程。
1、RL电路的零状态响应(电感L储存能量)图6-1 (a) 是RL串联电路。
在t = 0时将开关S合上,电路既与一恒定电压为U的电压接通。
根据克希荷夫电压定律,列出t≥0时电路的微分方程为i R + = U(a) (b) (c)图6-1RL电路的零状态响应电路及、、随时间变化曲线电路中的电流为电阻上电压为电感上的电压为其随时间的变化曲线如图6-1(b)、(c)所示。
2、RL电路的零输入响应(电感L释放能量)在图6-2(a) 所示RL串联电路,开关S是合在位置2上,电感元件中通有电流。
在t = 0时将开关从位置2合到位置1,使电路脱离电源,RL电路被短路。
此时电路为零输入响应。
(a) (b) (c)图6-2RL电路的零输入响应电路及、、随时间变化曲线根据克希荷夫电压定律,列出t≥0时电路的微分方程为电路中的电流为其随时间的变化曲线如图6-2 (b) 所示。
它的初始值为I 0,按指数规律衰减而趋于零。
式中τ叫做时间常数,它反映了电路过渡过程时间的长短。
电路中电阻上电压为电路中电感上电压为其随时间的变化曲线如图6-2(c)所示。
3、时间常数τ在RL串联电路中,τ为电路的时间常数。
在电路的电路零状态响应上升到稳态值的63.2%所需要时间为一个时间常数τ,或者是零输入响应减到初始值的36.8%所需要时间。
虽然真正电路到达稳定状态所需要的时间为无限大,但通常认为经过(3—5)τ的时间,过度过程就基本结束,电路进入稳态。
第六章一阶电路第一节电路中的过渡现象一、过渡现象及产生的原因:前面讲的稳态电路。
稳态电路的最大特点是当电路中的激励为恒定或作周期性变化时,电路中的响应也为恒定或作周期性变化。
在一定的条件下,电路有一种稳定状态,但当电路结构、电路参数或电源发生变化时,电路就会从一种稳态变化到另一种稳态。
在某些电路中,电压、电流的变化不会在一瞬间完成,要有一个变化的过程,称为过渡过程。
如图6-1-1(a)中电流的变化、(b)中电容的电压的变化。
过渡过程产生的原因:是由于惯性元件L、C的存在。
而电感中磁场能量的不能跃变,导致了电感中电流的连续变化;电容中电场能量的的不能跃变,导致了电容中电压的连续变化即过渡过程的产生。
二、一阶电路:由于L、C中电压、电流的约束关系是通过导数、或积分的关系来表示的,因此描述电路性状的方程将是以电压或电流为变量的微分方程或积分方程来表示的。
如果电路中只有一个储能元件,则微分方程是一阶的,相应的电路称为一阶电路。
如果有两个储能元件,则微分方程是二阶的,相应的电路称为二阶电路。
第二节换路定律及初始条件的确定一、关于换路:为了叙述方便,把引起过渡现象的电路参数、电路结构、电源的变化统称为换路。
二、换路定律解决的问题:求解微分方程必须知道初始条件,数学中的初始条件是给定的,而在电路理论中,是待定的。
必须通过换路前的电路状态得到换路后的初始时刻的电路状态,就要建立起换路前后的瞬间有关物理量之间的关系。
为了表达方便,把换路的瞬间记为t=0,换路前的终了时刻记为t=0_,换路后的初始时刻记为t=0+,因此换路定律解决的是换路前后的瞬间有关物理量之间的关系。
三、换路定律:有两条。
(1)对于线性电容:选择电容的端电压u(电荷q)、电流i之间满足关联参考方向,则:(2)对于线性电感:选择电感的电流i 与端电压u 之间满足关联参考方向或电流与磁链之间满足右螺旋关系,用同样的方法可以证明:结论:在换路的瞬间,如果电容的电流保持为有限值,则电容的电荷、电压保持换路前终了时刻的数值而不能跃变;如果电感的电压保持为有限值,则电感的磁链、电流保持换路前终了时刻的数值而不能跃变。