第6章 一阶电路总结
- 格式:doc
- 大小:356.00 KB
- 文档页数:23
第六章 一阶电路◆ 重点:1. 电路微分方程的建立 2. 三要素法 3.阶跃响应◆ 难点:1. 冲激函数与冲激响应的求取 2.有跃变时的动态电路分析 含有动态元件(电容或电感等储能元件)的电路称为动态电路。
回忆储能元件的伏安关系为导数(积分)关系,因此根据克希霍夫定律列写出的电路方程为微积分方程。
所谓“一阶”、“二阶”电路是指电路方程为一阶或二阶微分方程的电路。
本章只讨论一阶电路,其中涉及一些基本概念,为进一步学习第十五章打下基础。
6.1 求解动态电路的方法6.1.1 求解动态电路的基本步骤在介绍本章其他具体内容之前,我们首先给出求解动态电路的基本步骤。
1.分析电路情况,得出待求电量的初始值; 2.根据克希霍夫定律列写电路方程; 3.解微分方程,得出待求量。
由上述步骤可见,无论电路的阶数如何,初始值的求取、电路方程的列写和微分方程的求解是解决动态电路的关键。
6.2.1 一阶微分方程的求解一、一阶微分方程的解的分析初始条件为)()0()()(t f t t f δ=δ的非齐次线性微分方程Bw Ax dt dx=-的解)(t x 由两部分组成:)()()(t x t x t x p h +=。
其中)(t x h 为原方程对应的齐次方程的通解,)(t x p 为非齐次方程的一个特解。
二、)(t x h 的求解由齐次方程的特征方程,求出特征根p ,直接写出齐次方程的解pth Ke t x =)(,根据初始值解得其中的待定系数K ,即可得出其通解。
三、)(t x p 的求解根据输入函数的形式假定特解的形式,不同的输入函数特解形式如下表。
由这些形式的特解代入原微分方程使用待定系数法,确定出方程中的常数Q 等。
四、一阶微分方程的解的求取)()()()(t x Ke t x t x t x p pt p h +=+=将初始条件00)(X t x =代入该式:000)()(0X t x Ke t x p pt =+=由此可以确定常数K ,从而得出非齐次方程的解。
6.2 电路的初始条件从以上有关的高等数学知识的复习我们知道,求解微分方程时,n 阶常系数线性微分方程的通解中含有n 个待定的积分常数,它们需要由微分方程的初始条件来确定。
而描述动态电路的初始条件,是指方程中输出变量的初始值及其1~n 阶导数的初始值(对于一阶电路,仅指输出变量的初始值)。
6.2.1 几个概念1.换路(Switching )——在电路分析中,我们把电路与电源的接通、切断,电路参数的突然改变,电路联接方式的突然改变等等,统称为换路。
2.过渡过程——电路在换路时将可能改变原来的工作状态,而这种转变需要一个过程,工程上称为过渡过程(暂态过程)。
如果电路在0t t =时换路,则将换路前趋近于换路时的瞬间记为-=0t t ,而将换路后的初始瞬间记为+=0t t 。
一般来说,为方便计算与分析,往往将电路换路的瞬间定为计时起点0=t ,那么+=0t 和-=0t 表示换路前和换路后的瞬间。
6.2.2 换路计算的规律根据电容电感元件的伏安关系可知,在有限电容电流(有限电感电压)的条件下,电容的电压(电感的电流)不能跃变,也就是说在有限电容电流(有限电感电压)的条件下,电容的电压与电感的电流这两个电量在电路换路瞬间保持不变,这是我们计算分析电路的初始值的重要前提。
实际上,从能量的观点来看,电容电压与电感电流不能跃变,是受电场能量(25.0C e Cu W =)和电磁能量(25.0L m Li W =)不能跃变的约束,如果能量由跃变的情况,则跃变瞬间,电源对电路供给无穷大的功率,在实际系统中,这是不可能的。
(理论的讨论请同学们自己研究)在实际计算电路的过渡过程时,我们首先分析计算电路换路前的情况,得出电容的电压(电感的电流),由前述规律可得换路后的电容电压(电感电流)——即其后所需的初始条件,它与换路前的值相等——然后根据换路后的电路及已知的电容电压(电感电流)计算换路后的其他待求量。
总之,在动态电路中在-=0t 到+=0t 瞬间,不能跳变的变量如下⎩⎨⎧==-+-+)0()0()0()0(C C u u q q ⎩⎨⎧=ψ=ψ-+-+)0()0()0()0(L L i i6.2.3 例题1.例题1已知:电路如图7-1,开关闭合之前,电路已经工作了很长时间。
其中V U S 12=,Ω=k R 41,Ω=k R 22。
U 图7-1(a) 例题1电路求:开关闭合后的电容电压初始值即各个支路的电流初始值。
解:首先应该求出-=0t 时电容的电压)0(-C u 。
R 1 U 图7-1(b) 0-时的电路i 1(0+) R 1 i 2(0+ ) U 图7-1(c) 0+ 时的电路开关闭合前电路已经处于稳态,因而换路前(-0时)的电路为直流电路,如图7-1(b),直流电路中电容相当于开路,这样电阻R 2上的电压为零。
可以计算出V u C 12)0(=-。
而电容电压在有限电流情况下不会跃变,因此V u u C C 12)0()0(==-+画出电路换路后一瞬间(+0时)的电路如图7-1(c)所示。
其中根据替代定理,已知电压的电容已经用大小相等,极性相同的电压源来代替,由此可以计算出:41212)0()0(11=-=-=++R u U i C S )(6212)0()0(22mA R u i C ===++)(6)0()0()0(21mA i i i C -=-=+++ 2.例题2已知:电路如图7-2,开关闭合之前,电路已经工作了很长时间。
其中V U S 10=,Ω=61R ,Ω=42R 。
i 1( t ) R 1 R 2 i L ( t )U 图7-2(a) 例题2电路求:开关闭合后的电容电压初始值即各个支路的电流初始值。
解:方法和步骤与例题1相同。
R 1 R 2U 图7-2(b) 0- 时的电路i 1(0+) R 1 R 2 i L (0+ )U图7-2(c) 0+ 时的电路A i i L L 1)0()0(==-+VR U i S 67.1610)0(11===+V i i i L 67.0167.1)0()0()0(12=-=-=+++ V i R u L L 414)0()0(2-=⨯-=-=++3.例题3已知:电路如图7-3,其中Ω=5R ,H L 1=,F C 61=,电压源电压V e t u ts -=)(,开关S 在0=t 时。
0)0(=-L i ,V u C 6)0(=-。
图7-3(a) 例题3电路求:以)(t i 为输出变量的输入输出方程及初始条件。
解: 1) 电路的输入输出方程换路后电路的KVL 方程为:S C L R u u u u =++,根据元件的伏安关系,该式可变为:tte d i u dtt di t i -+=ττ⨯++⨯+⎰+])(6)0([)(1)(50即:t e t i dt t di dt t i d --=++)(6)(5)(222) 初始值由电路的输入输出方程,令+=0t :1)0()0(5)0('=+++++c u i i而0)0()0()0(===-++L L i i i ,V u u c c 6)0()0(==-+,所以s A i /5601)0('-=--=+。
本电路方程(为一个二阶微分方程)的初始条件为:0)0(=+is A i /5)0('-=+6.3 一阶电路的响应6.3.1 几个概念1.零状态——又称为“零原始状态”,是指在-=0t 时各个电容电压与电感电流均为零,称这种电路状态为“零状态”。
2.零状态响应——电路在零状态情况下,仅由电路的输入激励产生的响应。
3.零输入响应——电路在无输入激励情况下,仅由原始状态产生的响应。
4.全响应——当一个非零原始状态的电路在输入激励的情况下产生的响应。
6.3.2 一阶电路的零输入响应(ZERO INPUT RESPONSE )电路中的储能元件将其存储的能量以热能等形式通过耗能元件释放时的响应。
由于电路为一阶电路,因此总可以将电路简化为仅含激励、电阻与储能元件(电容或电感)的形式,在分析电路的零输入响应时,电路则仅含电阻与储能元件(电容或电感)。
下面我们就以电容电路为例,来分析一阶电路的暂态过程中的零输入响应(含电感的一阶电路的情况可以对偶地讨论)。
所谓“零输入响应”,即为电路在无激励的情况下,由储能元件本身释放能量的一个放电过程。
一、电路方程电路如图7-4所示。
+ u R 图7-4 RC 电路零输入响应已知其中电容元件的初始值为000U u u ==-+。
由电路可得:dt duRC R dt du CiR u u C C C R -=-===所以电路方程为:0=+dt du RCu CC二、方程的求解由高等数学中的知识可知,该一阶常系数线性微分方程的特征方程为0)1(=+RCp 其特征根即为RC p 1-=则电路方程的通解形式为:pt C Ae u =而由电路条件代入该通解式子中,就可得积分常数0)0(U u A C ==+。
所以满足初始条件的电路方程的解为τ--==t t RCC e U eU u 0 10其中,RC =τ, 为电路的时间常数,单位为秒。
实际上,零输入响应的暂态过程即为电路储能元件的放电过程,由该式可知,当时间∞→t 时,电容电压趋近于零,放电过程结束,电路处于另一个稳态。
而在工程中,常常认为电路经过3τ~5τ时间后放电结束。
三、一阶电路的零输入响应曲线0.368 图7-5 一阶电路的零输入响应曲线初始值、稳态值和时间常数便确定了一阶电路的零输入响应曲线。
其中,初始值由换路前的电路确定,稳态值由换路后的电路确定,而τ由电路中的电容和电容两端的戴维南等效电阻确定。
在曲线中,τ为过点(0,U 0)曲线的切线在时间轴上的截距(有关的证明请同学们自行完成)。
四、时间常数τ1.时间常数是体现一阶电路电惯性特性的参数,它只与电路的结构与参数有关,而与激励无关。
2.对于含电容的一阶电路,RC =τ;对于含电感的一阶电路,R L =τ3.τ越大,电惯性越大,相同初始值情况下,放电时间越长。
0.368U 图7-6 时间常数的意义4.一阶电路方程的特征根为时间常数的相反数,它具有频率的量纲,称为“固有频率”(natural frequency )6.3.3 一阶电路的零状态响应(ZERO STATE RESPONSE )所谓“零状态响应”,即为电路的储能元件的初始储能为零。
由外部电源为储能元件输入能量的充电过程。
一、电路方程电路如图7-7所示。
c 图7-7 RC 电路零状态响应已知其中电容元件的初始值为零。
由电路可得:S CC u dt du RCu =+二、方程的求解由高等数学中的知识可知,该一阶常系数线性微分方程的解由齐次方程的通解C u '与非齐次方程的特解C u ''两部分组成。