高中数学1.8第23课时导数及应用复习小结(2)教案理新人教A版选修2_2
- 格式:doc
- 大小:951.50 KB
- 文档页数:8
教学设计第一章导数及其应用复习课本章知识网络知识点精析(一)求函数的导数1.导数的基本概念、变化率;2.记住基本初等函数的导数公式;3.记住导数的四则运算法则;4.理解复合函数的求导,即[f(φ(x))]′=f′(φ(x))φ′(x).(二)导数的应用1.求函数的单调区间与极值步骤:①求出函数的定义域,求导数;②求出导数为0的点或导数不存在点;③列表讨论;④总结.2.求函数的最大值与最小值①闭区间[a,b]上连续函数f(x)一定能取到最大值与最小值,且最大值点与最小值点一定包含在区间内部导数值为0的点或内部导数不存在点或端点之中.②实际应用问题的最大与最小值.设所求的量为y,设与y有关量为x,建立y=f(x),x∈D,求f(x)的最大值或最小值.注意:若f(x0)为唯一极值,若f(x0)为极大值,则f(x0)为最大值;若f(x0)为极小值,则f(x0)为最小值.3.关于证明题(1)证明方程根的存在性;(2)证明不等式.(三)定积分1.定积分的概念(四个步骤、本质)(求曲边梯形的面积、变速直线运动的路程).2.微积分基本定理:一般地,如果f(x)是区间[a,b]上的连续函数,并且F′(x)=f(x),b f(x)dx=F(b)-F(a).那么⎠⎛a这个结论叫做微积分基本定理,又叫做牛顿—莱布尼兹公式.3.应用定积分求面积的基本步骤和注意事项.整体设计教材分析导数是高中数学新教材中新增的知识之一,体现了现代数学思想,在研究函数的性质时,有独到之处.纵观近几年各地的新课程试卷,内容主要是与单调性、最值、切线这三方面有关.作为新教材的新增内容,复习中注重导数在解决科技、经济、社会中的某些实际问题中的应用.课时分配2课时.第1课时教学目标知识与技能目标1.复习巩固导数与积分的基础知识,理清知识网络.2.理解和掌握导数与积分及其有关概念,会求一些实际问题的最大值与最小值.过程与方法目标提高学生综合、灵活运用导数的知识解决有关函数问题的能力,注意数形结合、分类讨论、函数等思想的应用.情感、态度与价值观在解决问题的过程中,培养学生独立思考问题、解决问题的能力,增强其学习积极性和提高其数学交流能力.重点难点重点:掌握导数与积分及其有关概念,巩固导数与积分的基础知识. 难点:运用导数的知识解决有关函数问题.教学过程提出问题请同学们解答下列问题:1.函数f(x)的图象是折线段ABC ,其中A 、B 、C 的坐标分别为(0,4)、(2,0)、(6,4),则f(f(0))=________,0lim x ∆→f (1+Δx )-f (1)Δx=__________.2.函数f(x)=13x 3-x 2-3x +6的单调递增区间为__________单调递减区间为__________.3.函数y =x 4-4x +3在区间[-2,3]上的最小值为( ) A .72 B .36 C .12 D .0 答案:1.2 -2基础知识聚焦:函数在某一点处的导数的定义为f ′(x 0)=0lim x ∆→f (x 0+Δx )-f (x 0)Δx及其变形,特别注意函数值的增量与自变量的增量.f ′(x 0)的几何意义表示曲线在点(x 0,f(x 0))处的切线的斜率.2.(-∞,-1),(3,+∞) (-1,3)评析:函数的单调递增区间是两个区间(-∞,-1),(3,+∞),但是不能写成(-∞,-1)∪(3,+∞).有关函数单调区间的合并主要依据是函数f(x)在(a ,b)内单调递增,在(b ,c)内单调递增,又知函数在x =b 处连续,因此f(x)在(a ,c)内单调递增.3.D 解析:y ′=4x 3-4,令y ′=0,即4x 3-4=0,所以x =1. 当x<1时,y ′<0;当x>1时,y ′>0.所以y 极小值=y|x =1=0,而端点的函数值y|x =-2=27,y|x =3=72,因此y min =0. 基础知识聚焦:考查利用导数求最值.典型示例类型一 导数的概念例1(1)用导数的定义求函数f(x)=1x在x =1处的导数; (2)用导数的定义求函数f(x)=1x +2的导数.思路分析:用导数的定义求导数时,先求平均变化率,再求极限. 解:(1)Δy Δx =f (1+Δx )-f (1)Δx =11+Δx -1Δx=1-1+Δx Δx 1+Δx=1-(1+Δx )Δx 1+Δx (1+1+Δx )=-ΔxΔx (1+Δx +1+Δx )=-11+Δx +1+Δx,所以f ′(1)=0lim x ∆→ ΔyΔx =0lim x ∆→-11+Δx +1+Δx=-12.(2)Δy Δx =f (x +Δx )-f (x )Δx =1x +2+Δx -1x +2Δx =(x +2)-(x +2+Δx )Δx (x +2)(x +2+Δx ) =-1(x +2)(x +2+Δx ),所以f ′(x)=0lim x ∆→ Δy Δx =0lim x ∆→ -1(x +2)(x +2+Δx )=-1(x +2)2.点评:(1)用导数定义求函数的导数,必须把分式Δy Δx 中的分母Δx 这一因子约掉才能求出极限,所以目标就是分子中出现Δx ,从而对分子、分母约分.(2)第(1)小题中用到的技巧是“分子有理化”,“有理化”是处理根式问题常用的方法. (3)注意在某点处的导数与导数定义式的区别.变式练习:设函数f(x)在x 0处可导,则下列极限等于f ′(x 0)的是( ) A. 0lim x ∆→f (x 0-Δx )-f (x 0)Δx B. 0lim x ∆→ f (x 0+3Δx )-f (x 0)ΔxC. 0lim x ∆→f (x 0)-f (x 0+Δx )Δx D. 0lim x ∆→ f (x 0)-f (x 0-Δx )Δx答案:D类型二 导数的基本运算例2求导:(1)y =(x +1)(x 2+2x);(2)y =cos(2x 2+1);(3)y =sinxx. 思路分析:运用求导公式及导数运算法则求导.解:(1)y ′=3x 2+6x +2;(2)y ′=-4xsin(2x 2+1);(3)y ′=xcosx -sinxx 2. 点评:要熟记常见函数的求导公式及导数运算法则.在求复合函数的导数时,关键是分清函数的复合关系,逐步求导直到最后,把中间变量转变为自变量的函数.变式练习:求y =sin 2(3x +1)的导数.解:y ′=[sin 2(3x +1)]′=2sin(3x +1)[sin(3x +1)]′=2sin(3x +1)cos(3x +1)(3x +1)′=6sin(3x +1)cos(3x +1)=3sin(6x +2). 类型三 导数的几何意义例3若曲线y =x 4的一条切线l 与直线x +4y -8=0垂直,则l 的方程为…( ) A .4x -y -3=0 B .x +4y -5=0 C .4x -y +3=0 D .x +4y +3=0 思路分析:导数值对应函数在该点处的切线斜率.解析:设与直线x +4y -8=0垂直的直线l 为4x -y +m =0,即y =x 4在某一点的导数为4,而y ′=4x 3,所以y =x 4在(1,1)处的导数为4,此点的切线方程为4x -y -3=0,故选A.答案:A点评:有关导数几何意义的题目一般有两类:一类是求曲线的切线方程,这类题目要注意审好题,看到底是“在某点处的切线”还是“过某点的切线”;第二类是已知曲线的切线求字母参数.变式练习:过点(-1,0)作抛物线y =x 2+x +1的切线,则其中一条切线为( ) A .2x +y +2=0 B .3x -y +3=0 C .x +y +1=0 D .x -y +1=0解析:y ′=2x +1,设切点坐标为(x 0,y 0),则切线的斜率为2x 0+1,且y 0=x 20+x 0+1,于是切线方程为y -x 20-x 0-1=(2x 0+1)(x -x 0).因为点(-1,0)在切线上,可解得x 0=0或x 0=-2,代入可验证知D 正确,选D.答案:D类型四 定积分的计算 例4计算下列定积分的值.(1)∫3-1(4x -x 2)dx ;(2)∫21(x -1)5dx ;(3)∫π20(x +sinx)dx. 解:(1)∫3-1(4x -x 2)dx =(2x 2-x 33)|3-1=(2×32-333)-[2×(-1)2-(-1)33]=203;(2)因为[16(x -1)6]′=(x -1)5,所以∫21(x -1)5dx =16(x -1)6|21=16; (3)∫π20(x +sinx)dx =(x 22-cosx)|π20=[(π2)22-cos π2]-(0-1)=π28+1.变式练习:求∫π2-π2cos 2xdx 的值.解:∫π2-π2cos 2xdx =∫π2-π21+cos2x 2dx =x 2|π2-π2+14sin2x|π2-π2=π2.类型五 求函数的极值与最值例5f(x)=x 3-3x 2+2在区间[-1,1]上的最大值是( ) A .-2 B .0 C .2 D .4思路分析:本题考查求函数最值,可用导数法先求其极值,再与端点值进行比较. 解析:f ′(x)=3x 2-6x =3x(x -2),令f ′(x)=0,可得x =0或x =2(x =2舍去).当-1≤x<0时,f ′(x)>0;当0<x ≤1时,f ′(x)<0,所以当x =0时,f(x)取得极大值为2.又f(-1)=-2,f(1)=0,所以f(x)在[-1,1]上的最大值为2.选C. 答案:C点评:此题较为基础,求完极值点,要注意与题目已知区间结合起来综合考虑问题. 变式练习:a 为何值时,函数f(x)=asinx +13sin3x 在x =π3处具有极值?是极大值还是极小值?试求此极值.解:a =2,极大值为f(π3)= 3.类型六 求函数的单调区间例6设函数f(x)=-13x 3+2ax 2-3a 2x +b,0<a<1.求函数f(x)的单调区间.思路分析:本题考查用导数法求单调区间,需注意参数a ,有时候需要对其进行讨论. 解:f ′(x)=-x 2+4ax -3a 2=-(x -3a)(x -a), 令f ′(x)=0,得x 1=a ,x 2=3a.列表如下:∴f(x)在(a,3a)上单调递增,在(-∞,a)、(3a ,+∞)上单调递减.点评:本题考查内容为利用导数求单调区间.但涉及到参数问题,参数讨论是难点.本题在0<a<1这个条件下降低了难度,若去掉此条件,难度会加大.变式练习:已知函数f(x)=x 2+alnx.(1)当a =-2时,求函数f(x)的单调区间和极值;(2)若函数g(x)=f(x)+2x在[1,+∞)上是增函数,求实数a 的取值范围.解:(1)函数f(x)的定义域为(0,+∞),当a =-2时,f ′(x)=2x -2x =2(x +1)(x -1)x .当x 变化时,f ′(x),f(x)的变化情况如下:由上表可知,函数f(x)的单调递减区间是(0,1);单调递增区间是(1,+∞); 极小值是f(1)=1.(2)由g(x)=x 2+alnx +2x ,得g ′(x)=2x +a x -2x 2.又函数g(x)=x 2+alnx +2x 在[1,+∞)上是单调增函数,则g ′(x)≥0在[1,+∞)上恒成立,即不等式2x -2x 2+ax ≥0在[1,+∞)上恒成立,也即a ≥2x -2x 2在[1,+∞)上恒成立,又φ(x)=2x -2x 2在[1,+∞)上为减函数,所以[φ(x)]max =φ(1)=0,因此a ≥0.拓展实例:设函数f(x)=2x 3-3(a -1)x 2+1,其中a ≥1. (1)求f(x)的单调区间; (2)讨论f(x)的极值.思路分析:f(x)的单调性取决于f ′(x)的正负,而函数的极值取决于导数值为零的点的两侧的点对应的导数值的符号,即导数值为零的点两侧函数的单调性.解:由已知,得f ′(x)=6x[x -(a -1)],令f ′(x)=0,解得x 1=0,x 2=a -1. (1)当a =1时,f ′(x)=6x 2,f(x)在(-∞,+∞)上单调递增;当a>1时,f ′(x)=6x[x -(a -1)],f ′(x),f(x)随x 的变化情况如下表:从上表可知,函数f(x)在(-∞,0)上单调递增;在(0,a -1)上单调递减;在(a -1,+∞)上单调递增.(2)由(1)知,当a =1时,函数f(x)没有极值;当a>1时,函数f(x)在x =0处取得极大值1;在x =a -1处取得极小值1-(a -1)3. 点评:本小题主要考查利用导数研究函数的极值的基础知识,以及运用数学知识解决问题的能力.变练演编已知f(x)=23x 3-2ax 2-3x(a ∈R ),(1)若f(x)在区间(-1,1)上为减函数,求实数a 的范围; (2)试讨论y =f(x)在区间(-1,1)内极值点的个数.思路分析:(1)已知函数在(-1,1)上单调递减,一般转化为f ′(x)≤0在(-1,1)上恒成立.(2)讨论y =f(x)在区间(-1,1)内极值点的个数,即讨论f ′(x)=0在(-1,1)内变号零点的个数.解:(1)f ′(x)=2x 2-4ax -3,因为f(x)在区间(-1,1)上为减函数,所以f ′(x)≤0在(-1,1)上恒成立,即f ′(x)的最大值小于等于零.只需要满足⎩⎪⎨⎪⎧ f ′(-1)≤0,f ′(1)≤0,即⎩⎪⎨⎪⎧4a -1≤0,-4a -1≤0,所以-14≤a ≤14.(2)方法一:(数形结合法)要讨论y =f(x)在区间(-1,1)内极值点的个数,即讨论f ′(x)=0在(-1,1)内变号零点的个数.f ′(x)=2x 2-4ax -3.若⎩⎪⎨⎪⎧f ′(-1)≤0,f ′(1)≤0时,即-14≤a ≤14时,f(x)在区间(-1,1)上为减函数,无极值点.若⎩⎪⎨⎪⎧f ′(-1)>0,f ′(1)>0时,即⎩⎨⎧a>14,a<-14,此时不成立.若f ′(-1)f ′(1)<0,即(4a -1)(-4a -1)<0,a<-14或a>14时,函数有一个极值点.综上:当a<-14或a>14时,函数有一个极值点;当-14≤a ≤14时,函数无极值点.方法二:(分离参数法)f ′(x)=2x 2-4ax -3,令f ′(x)=0,所以4ax =2x 2-3.因为x =0不可能为方程的根,所以a =2x 2-34x =12x -34x .设g(x)=12x -34x ,则g ′(x)=12+34x 2>0恒成立,所以g(x)在(-1,0)和(0,1)上均为增函数.所以g(x)的值域为(-∞,-14)∪(14,+∞).故当a ∈(-∞,-14)∪(14,+∞)时,函数有一个极值点;当a ∈[-14,14]时,函数无极值点.点评:1.第(1)问中,f ′(x)<0和f ′(x)≤0都不是函数y =f(x)在(-1,1)上为减函数的充要条件,但只要函数不是常数函数,则f ′(x)≤0就是充要条件,故用f ′(x)≤0.2.第(2)问中,求极值点的个数转化为求方程解的个数,研究根的分布问题时,“数形结合法”与“分离参数法”是常用的两种方法.变式练习:上题的第(1)问中,若将区间(-1,1)改为[-1,1]呢?再将其改为(1,3)呢? 解:函数y =f(x)在(-1,1)上为减函数和[-1,1]上为减函数没有区别,故-14≤a ≤14.若将(-1,1)改为(1,3)时,还可以用分离参数法.解法如下:令f ′(x)≤0,所以4ax ≥2x 2-3.因为x ∈(1,3),所以a ≥2x 2-34x =12x -34x .由(2)知函数g(x)=12x -34x 在(1,3)上为增函数,故只需a ≥g(3),所以a ≥54.点评:解决不等式恒成立问题可以用“数形结合法”和“分离参数法”,对这两种方法的选择应按照先“分离参数法”后“数形结合法”的原则.如果“分离参数”时不好分离,可用“数形结合法”.如原题中区间为(-1,1)时,“数形结合法”要分三种情况讨论,不如用“分离参数法”简洁.达标检测1.曲线y =e x 在点(2,e 2)处的切线与坐标轴所围三角形的面积为( ) A.94e 2 B .2e 2 C .e 2D.e 222.设函数f(x)=ax 2+c(a ≠0),若∫10f(x)dx =f(x 0),0≤x 0≤1,则x 0的值为__________. 答案:1.D 解析:y ′=e x ,曲线在点(2,e 2)处的切线斜率为e 2,因此切线方程为y -e 2=e 2(x -2),则切线与坐标轴交点为A(1,0),B(0,-e 2).所以S △AOB =12×1×e 2=e 22.2.33 解析:∫10f(x)dx =∫10(ax 2+c)dx =(13ax 3+cx)|10=a 3+c.而f(x 0)=ax 20+c ,所以ax 20+c =a 3+c.又0≤x 0≤1,所以x 0=33. 课堂小结1.知识收获:导数作为工具研究函数的相关问题的方法,以及定积分的简单运算. 2.方法收获:数形结合、分类讨论的方法.3.思维收获:数形结合思想、分类讨论思想以及将代数式子视为函数的意识和转化化归的思想.让学生自己小结,这是一个多维整合的过程,是一个高层次的自我认识过程.设计意图布置作业课本本章复习参考题A 组第6、7、16题.补充练习1.函数f(x)=ax 3-x 在(-∞,+∞)内是减函数,则( ) A .a<1 B .a<13C .a<0D .a ≤02.已知f(x)为偶函数,且∫60f(x)dx =8,则∫6-6f(x)dx 等于( )A .0B .4C .8D .163.函数y =lnx -x 在x ∈(0,e]上的最大值为__________. 答案:1.D 2.D 3.-1 拓展练习4.已知函数f(x)=ax 3+bx 2-3x 在x =±1处取得极值. (1)求函数f(x)的解析式;(2)求证:对于区间[-1,1]上任意两个自变量的值x 1,x 2,都有f(x 1)-f(x 2)≤4; (3)若过点A(1,m)(m ≠-2)可作曲线y =f(x)的三条切线,求实数m 的取值范围. 思路分析:本小题主要考查应用导数研究函数的极值,利用导数为工具解决函数与不等式的有关综合问题,运用导数的几何意义来解决函数与解析几何的综合问题,这是高考的热点问题.解:(1)f ′(x)=3ax 2+2bx -3,依题意,得f ′(1)=f ′(-1)=0,即⎩⎪⎨⎪⎧3a +2b -3=0,3a -2b -3=0,解得a =1,b =0.∴f(x)=x 3-3x. (2)证明:∵f(x)=x 3-3x ,∴f ′(x)=3x 2-3=3(x +1)(x -1).当-1<x<1时,f ′(x)<0,故f(x)在区间[-1,1]上为减函数,f(x)max =f(-1)=2,f(x) min=f(1)=-2.∵对于区间[-1,1]上任意两个自变量的值x 1,x 2,都有|f(x 1)-f(x 2)|≤|f(x)max -f(x)min |,∴|f(x 1)-f(x 2)|≤|f(x)max -f(x)min |≤2-(-2)=4.(3)f ′(x)=3x 2-3=3(x +1)(x -1),∵曲线方程为y =x 3-3x ,m ≠-2,∴点A(1,m)不在曲线上.设切点为M(x 0,y 0),则点M 的坐标满足y 0=x 30-3x 0.∵f ′(x 0)=3(x 20-1),故切线的斜率为3(x 20-1)=x 30-3x 0-m x 0-1, 整理得2x 30-3x 20+m +3=0. ∵过点A(1,m)可作曲线的三条切线,∴关于x 0的方程2x 30-3x 20+m +3=0有三个实根.设g(x 0)=2x 30-3x 20+m +3,则g ′(x 0)=6x 20-6x 0,由g ′(x 0)=0,得x 0=0或x 0=1.∴函数g(x 0)=2x 30-3x 20+m +3的极值点为x 0=0,x 0=1.∴关于x 0的方程2x 30-3x 20+m +3=0有三个实根的充要条件是g(1)g(0)<0,即(m +3)(m +2)<0,解得-3<m<-2.故所求实数a 的取值范围是(-3,-2).点评:总的说来,对于这部分知识的复习,要认识到新课程中增加了导数内容,增添了一部分的变量数学,在复习中要明确导数作为一种工具在研究函数的变化率,解决函数的单调性、极值等问题的作用.要全面复习,抓住导数基础知识.注意考题的难度逐年增大,要有意识地与解析几何(特别是切线,最值)、函数的单调性、函数的极值、最值、二次函数、方程、不等式、代数式的证明等知识进行交汇、综合训练,特别是精选一些以导数为工具分析和解决一些函数问题、切线问题进行训练.设计说明本节在设计过程中,注重了两点:一是体现学生的主体地位,注重引导学生思考,让学生学会学习;二是构建知识体系,形成知识网络,总结解题规律、方法,使学生能够见题想法,见题有法,能够做到一题多解,触类旁通.备课资料设a ∈R ,若函数f(x)=e ax +3x ,x ∈R 有大于零的极值点,则( )A .a>-3B .a<-3C .a>-13D .a<-13解析:f ′(x)=3+ae ax ,若函数在x ∈R 上有大于零的极值点,即f ′(x)=3+ae ax =0有正根.当有f ′(x)=3+ae ax =0成立时,显然有a<0,此时x =1a ln(-3a).由x>0,我们就能得到参数a 的范围为a<-3.答案:B点评:本题考查导数、函数、方程的有关知识,考查等价转化、分类讨论的数学思想以及分析问题、解决问题的能力,是试卷中一道以能力考查为主的试题.解决本题的关键是用a表示出x,通过x>0建立关于参数a的不等式,这也是解决参数取值范围问题的一个通用方法,值得仔细体会.(设计者:李锋)第2课时教学目标知识与技能目标1.在复习巩固导数基础知识的基础上,进一步理解利用导数解决函数单调性、极值、最值等问题的处理方法.2.提高学生转化化归意识,体会导数在解决实际问题中的作用.过程与方法目标掌握利用导数解决问题的方法、规律,深化学生对导数知识的理解及把握.情感、态度与价值观培养学生的观察、分析问题的能力,以及转化、化归的数学思想,让学生学会用数学方法认识世界、改造世界.重点难点重点:巩固常见导数题型,并培养学生解决实际问题的能力.难点:运用导数知识解决有关问题的方法.教学过程典型示例类型一求函数的导数例1函数y=x3lnx+2x+cos2x-3e+sinπ的导数为________.思路分析:本题考查函数求导公式及导数运算法则,且搞清变量是x,一般在不做任何说明的情况下,将x视为变量.答案:y′=3x2lnx+x2+2x ln2-2sin2x点评:本题一方面考查了导数求导公式及导数运算法则,另一方面学生容易出现诸如“(sinπ)′=cosπ”的错误,因此本题有助于帮助学生克服思维定势.变式练习1.函数y=e x+x2cosx+lnx的导数为__________.2.下列函数求导运算正确的是()A .(x +1x )′=1+1x 2B .(log 2x)′=1xln2C .(3x )′=3x log 3eD .(x 2sinx)′=2xcosx答案:1.y ′=e x +2xcosx -x 2sinx +1x2.B 类型二 用导数研究函数的性质(单调性、极值和最值)例2设函数f(x)=ln(2x +3)+x 2,(1)讨论f(x)的单调性;(2)求f(x)在区间[-34,14]上的最大值和最小值. 思路分析:f(x)的单调性取决于f ′(x)的正负,而函数的最值取决于函数的极值以及端点函数值的大小.解:f(x)的定义域为(-32,+∞). (1)f ′(x)=22x +3+2x =4x 2+6x +22x +3=2(2x +1)(x +1)2x +3. 当-32<x<-1时,f ′(x)>0;当-1<x<-12时,f ′(x)<0;当x>-12时,f ′(x)>0. 从而,f(x)在区间(-32,-1),(-12,+∞)上单调递增,在区间(-1,-12)上单调递减. (2)由(1)知f(x)在区间[-34,14]上的最小值为f(-12)=ln2+14. 又f(-34)-f(14)=ln 32+916-ln 72-116=ln 37+12=12(1-ln 499)<0. 所以f(x)在区间[-34,14]上的最大值为f(14)=116+ln 72. 点评:(1)对数形式的函数求导一定要注意定义域;(2)注意求闭区间上函数最值的基本方法.变式练习:设函数f(x)=x 3-3ax +b(a ≠0).(1)若曲线y =f(x)在点(2,f(x))处与直线y =8相切,求a ,b 的值;(2)求函数f(x)的单调区间与极值点.思路分析:本题主要考查利用导数研究函数的单调性和极值、解不等式等基础知识,考查综合分析和解决问题的能力.解:(1)f ′(x)=3x 2-3a ,∵曲线y =f(x)在点(2,f(x))处与直线y =8相切,∴⎩⎪⎨⎪⎧ f ′(2)=0,f (2)=8,即⎩⎪⎨⎪⎧3(4-a )=0,8-6a +b =8.∴a =4,b =24.(2)∵f ′(x)=3(x 2-a)(a ≠0),当a<0时,f ′(x)>0,函数f(x)在(-∞,+∞)上单调递增,此时函数f(x)没有极值点; 当a>0时,由f ′(x)=0,得x =±a.当x ∈(-∞,-a)时,f ′(x)>0,函数f(x)单调递增,当x ∈(-a ,a)时,f ′(x)<0,函数f(x)单调递减,当x ∈(a ,+∞)时,f ′(x)>0,函数f(x)单调递增.∴此时x =-a 是函数f(x)的极大值点,x =a 是函数f(x)的极小值点.类型三 不等式证明例3当x>0时,证明不等式e x >1+x +12x 2成立. 思路分析:在高中数学学习过程中,我们常遇到一些不等式的证明,看似简单,但却无从下手,很难找到切入点,几种常用的证法都一一尝试,却很难奏效.这时我们不妨变换一下思维角度,从所证不等式的结构和特点出发,结合自己已有知识,构造一个新的函数,再借助导数确定函数的单调性,利用单调性实现问题的转化,从而使不等式得到证明.用导数方法证明不等式,其步骤一般是:构造可导函数——研究单调性或最值——得出不等关系——整理得出结论.证明:设f(x)=e x -1-x -12x 2,则f ′(x)=e x -1-x. 令g(x)=e x -1-x ,则g ′(x)=e x -1.当x>0时,g ′(x)=e x -1>0.∴g(x)在(0,+∞)上单调递增,而g(0)=0.∴g(x)>g(0)=0.∴g(x)>0在(0,+∞)上恒成立,即f ′(x)>0在(0,+∞)上恒成立.∴f(x)在(0,+∞)上单调递增.又f(0)=0,∴e x -1-x -12x 2>0,即x>0时,e x >1+x +12x 2成立. 点评:利用导数知识证明不等式是导数应用的一个重要方面,也成为命题的一个新热点,其关键是构造合适的函数,通过构造函数转化为研究这个函数的单调性和区间端点值或最值问题,其实质就是利用求导的方法研究函数的单调性,通过单调性证明不等式.变式练习:利用导数证明不等式lnx +1≤x 恒成立.解:设函数f(x)=lnx +1-x(x>0),则f ′(x)=1x-1,则0<x<1时,f ′(x)>0;当x>1时,f ′(x)<0,故f(x)在(0,1)上为增函数,在(1,+∞)上为减函数,故f(x)≤f(1)=0,即lnx +1-x ≤0,即lnx +1≤x.点评:一般地,证明f(x)<g(x),x ∈(a ,b),可以构造函数F(x)=f(x)-g(x),如果F ′(x)<0,则F(x)在(a ,b)上是减函数,同时若F(a)≤0,由减函数的定义可知,x ∈(a ,b)时,有F(x)<0,即证明了f(x)<g(x).类型四 微积分基本定理及其应用例4(1)求∫21(1x+x +e x +cosx)dx 的值;(2)求∫2-24-x 2dx. 思路分析:(1)本题考查微积分基本定理,需结合导数公式记忆该定理.(2)本题若用微积分基本定理,不易求解,可考虑几何意义,即半径为2的半圆面积.解:(1)∫21(1x +x +e x +cosx)dx =(lnx +x 22+e x +sinx)|21=ln2+32+e 2-e +sin2-sin1. 点评:求导问题和求微积分问题可以看做互逆的两个过程,因此须牢记求导公式.(2)∫2-24-x 2dx =2π. 点评:对于某些比较难求的积分,可考虑其几何意义,数形结合.变式练习:1.求∫a -aa 2-x 2dx 的值,其中a>0. 2.求由y =1x,y =1,y =2,x =0所围成的图形的面积. 3.物体A 以速度v =6t +1在一直线上运动,同时物体B 在A 的正前方2米处以v =6t 的速度运动,两物体速度方向相同,两物体何时相遇?相遇处与物体A 的出发地距离是多少?答案:1.∫a -a a 2-x 2dx 几何意义为半径为a 的半圆的面积,故其值为πa 22. 2.本题以y 为变量较好,故面积S =∫211ydy =lny|21=ln2-ln1=ln2. 3.解:设在时刻t 0时相遇,则由题意,知∫t 00(6t +1)dt =2+∫t 006tdt ,∴(3t 2+t)|t 00=2+3t 2|t 00.∴3t 2+t =2+3t 2.∴t =2.相遇处与物体A 的出发地距离是s =∫20(6t +1)dt =(3t 2+t)|20=14(米).类型五 导数在实际问题中的应用例5某工厂生产某种产品,已知该产品的月生产量x(吨)与每吨产品的价格p(元/吨)之间的关系式为p =24 200-15x 2,且生产x 吨的成本为R =50 000+200x(元).问该厂每月生产多少吨产品才能使利润达到最大?最大利润是多少?(利润=收入—成本)思路分析:建立利润函数,利用导数求其最值.解:每月生产x 吨时的利润为f(x)=(24 200-15x 2)x -(50 000+200x) =-15x 3+24 000x -50 000(x ≥0). 由f ′(x)=-35x 2+24 000=0,解得x 1=200,x 2=-200(舍去). 因为f(x)在[0,+∞)内只有一个点x =200使f ′(x)=0,故它就是最大值点,且最大值为f(200)=-15×(200)3+24 000×200-50 000=3 150 000(元). 答:每月生产200吨产品时利润达到最大,最大利润为315万元.点评:此题考查导数的实际应用,注意建立数学模型,将实际问题化为数学问题,最后一定要还原为实际问题来作答.变式练习:某厂生产某种产品的固定成本(固定投入)为2 500元.已知每生产x 件这样的产品需要再增加可变成本C(x)=200x +136x 3(元),若生产出的产品都能以每件500元售出,要使利润最大,该厂应生产多少件这样的产品?最大利润是多少?解:设生产x 件产品的利润为L(x)元,则L(x)=500x -2 500-C(x)=300x -136x 3-2 500(x 为正整数). ∴L ′(x)=300-112x 2. 令L ′(x)=0,得到x =60(x =-60舍去).当0≤x<60时,L ′(x)>0;当x>60时,L ′(x)<0.∴x =60是L(x)的唯一极大值点.故[L(x)]max =L(60)=9 500.因此,要使利润最大,该厂应生产60件这种产品,最大利润为9 500元.拓展实例1.已知函数f(x)=sin2x -acos2x 的图象关于直线x =π8对称,则a 的值为…( ) A .1 B .0C .-1D .1或-1思路分析:此题方法较多,可以利用定义f(π8+x)=f(π8-x)求解,也可以利用特殊值求解.例如用f(0)=f(π4)求解,若能抓住此类三角函数在对称轴处取到极值,则可利用该点处导数值为零解决.解析:f ′(x)=2cos2x +2asin2x ,因为函数图象关于直线x =π8对称,故f ′(π8)=0,代入得cos π4+asin π4=0,所以a =-1. 答案:C2.已知函数f(x)=sin(2x +π6),求函数的单调递增区间. 解:∵f(x)=sin(2x +π6),∴f ′(x)=2cos(2x +π6). 令f ′(x)>0,得2kπ-π2<2x +π6<2kπ+π2,k ∈Z . 解得kπ-π3<x<kπ+π6,k ∈Z ,∴函数的单调递增区间为[kπ-π3,kπ+π6],k ∈Z . 变练演编1.已知f(x)=xlnx +e x ,则下列关系正确的是( )A .f ′(x)=1+e xB .f ′(1)=1+eC .f(1)>f(2)D .f ′(1)>f ′(2)2.对R 上可导的任意函数f(x),若满足(x -1)f ′(x)≥0,则必有( )A .f(0)+f(2)<2f(1)B .f(0)+f(2)≤2f(1)C .f(0)+f(2)≥2f(1)D .f(0)+f(2)>2f(1)3.已知函数f(x)=f ′(π4)cosx +sinx ,则f(π4)的值为__________. 4.求∫20(4-x 2+|x -1|)dx 的值.5.某单位用2 160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2 000平方米的楼房.经测算,如果将楼房建为x(x ≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用建筑总面积) 6.设函数f(x)=ax 3+bx 2-3a 2x +1(a ,b ∈R )在x =x 1,x =x 2处取得极值,且|x 1-x 2|=2.(1)若a =1,求b 的值,并求f(x)的单调区间;(2)若a>0,求b 的取值范围.答案:1.B 2.C 3.1 4.π+1.5.解:设楼房每平方米的平均综合费用为f(x)元,则f(x)=(560+48x)+2 160×10 0002 000x =560+48x +10 800x(x ≥10,x ∈Z *). f ′(x)=48-10 800x 2,令f ′(x)=0,得x =15. 当x>15时,f ′(x)>0;当0<x<15时,f ′(x)<0.因此,当x =15时,f(x)取最小值f(15)=2 000.答:为了楼房每平方米的平均综合费用最少,该楼房应建为15层.6.解:f ′(x)=3ax 2+2bx -3a 2.①(1)当a =1时,f ′(x)=3x 2+2bx -3.由题意知x 1,x 2为方程3x 2+2bx -3=0的两根,所以|x 1-x 2|=4b 2+363. 由|x 1-x 2|=2,得b =0.从而f(x)=x 3-3x +1,f ′(x)=3x 2-3=3(x +1)(x -1).当x ∈(-1,1)时,f ′(x)<0;当x ∈(-∞,-1)∪(1,+∞)时,f ′(x)>0.故f(x)在(-1,1)上单调递减,在(-∞,-1),(1,+∞)上单调递增.(2)由①式及题意知x 1,x 2为方程3ax 2+2bx -3a 2=0的两根,所以|x 1-x 2|=4b 2+36a 33a. 从而|x 1-x 2|=2=9a 2(1-a),由上式及题设知0<a ≤1.考虑g(a)=9a 2-9a 3,g ′(a)=18a -27a 2=-27a(a -23). 故g(a)在(0,23)内单调递增,在(23,1)内单调递减,从而g(a)在(0,1]上的极大值为g(23)=43. 又g(a)在(0,1]上只有一个极值,所以g(23)=43为g(a)在(0,1]上的最大值,且最小值为g(1)=0.所以b 2∈[0,43],即b 的取值范围为[-233,233]. 达标检测1.函数y =x 3+x 的递增区间是( )A .(0,+∞)B .(-∞,1)C .(-∞,+∞)D .(1,+∞)2.f(x)=ax 3+3x 2+2,若f ′(-1)=4,则a 的值等于( )A.193B.163C.133D.1033.当x ≠0时,有不等式( )A .e x <1+xB .当x>0时,e x <1+x ;当x<0时,e x >1+xC .e x >1+xD .当x<0时,e x <1+x ;当x>0时,e x >1+x4.已知f(x)=x 3+ax 2+(a +6)x +1有极大值和极小值,则a 的取值范围为…( )A .-1<a<2B .-3<a<6C .a<-1或a>2D .a<-3或a>65.函数y =x 3+x 2-5x -5的单调递增区间是__________.6.若函数y =-43x 3+bx 有三个单调区间,则b 的取值范围是__________. 7.已知函数f(x)=13x 3+a 2x 2+ax +b ,当x =-1时,函数f(x)的极值为-712,则f(2)=__________.答案:1.C 2.D 3.C 4.D 5.(-∞,-53),(1,+∞) 6.(0,+∞) 7.53课堂小结1.知识收获:导数在解决函数极值与最值、不等式证明以及在解决实际问题中的应用.2.方法收获:转化化归的思想方法.3.思维收获:分类讨论思想以及转化化归的思想.设计意图注重基础,由学生总结导数常见题型,培养学生的总结能力以及对知识的梳理能力,这样可以帮助学生尽快建立完整的知识体系.布置作业1.已知函数f(x)=x 3+mx 2+nx -2的图象过点(-1,-6),且函数g(x)=f ′(x)+6x 的图象关于y 轴对称.(1)求m ,n 的值及函数y =f(x)的单调区间;(2)若a>0,求函数y =f(x)在区间(a -1,a +1)内的极值.2.设函数f(x)=x 3+ax 2+bx 在点x =1处有极值-2,(1)求常数a ,b 的值;(2)求曲线f(x)与x 轴所围成图形的面积.答案:1.解:(1)由函数f(x)的图象过点(-1,-6),得m -n =-3.①由f(x)=x 3+ mx 2+nx -2,得f ′(x)=3x 2+2mx +n ,则g(x)=f ′(x)+6x =3x 2+(2m +6)x +n.而g(x)图象关于y 轴对称,所以-2m +62×3=0.所以m =-3.代入①得n =0, 于是f ′(x)=3x 2-6x =3x(x -2).由f ′(x)>0,得x>2或x<0.故f(x)的单调递增区间是(-∞,0),(2,+∞);由f ′(x)<0,得0<x<2,故f(x)的单调递减区间是(0,2).(2)由(1)得f ′(x)=3x(x -2).令f ′(x)=0,得x =0或x =2.当x 变化时,f ′(x),f(x)的变化情况如下表:由此可得:当0<a<1时,f(x)在(a -1,a +1)内有极大值f(0)=-2,无极小值;当a =1时,f(x)在(a -1,a +1)内无极值;当1<a<3时,f(x)在(a -1,a +1)内有极小值f(2)=-6,无极大值;当a ≥3时,f(x)在(a -1,a +1)内无极值.综上得:当0<a<1时,f(x)有极大值-2,无极小值;当1<a<3时,f(x)有极小值-6.2.解:(1)a =0,b =-3.(2)92. 补充练习1.已知f(x)=2x 3-6x 2+a(a 是常数)在[-2,2]上有最大值3,那么在[-2,2]上f(x)的最小值是( )A .-5B .-11C .-37D .-292.设函数f(x)=x 3+bx 2+cx(x ∈R ),已知g(x)=f(x)-f ′(x)是奇函数,(1)求b 、c 的值;(2)求f(x)在点x 0=1处的切线方程;(3)求g(x)的单调区间与极值.3.若1 N 的力能使弹簧伸长2 cm ,要使弹簧伸长10 cm ,需作多少功?答案:1.C 2.(1)b =3,c =0;(2)y =9x -5;(3)单调增区间(-∞,-2),(0,+∞),单调减区间(-2,0);极大值f(-2)=42,极小值f(2)=-4 2.3.0.25 J.拓展练习4.以长为10的线段为直径作半圆,求它的内接矩形面积的最大值.解:如图所示,设AB =2x ,∴BC =52-x 2=25-x 2.∴面积S(x)=2x 25-x 2(0<x<5).S ′(x)=225-x 2-2x 225-x 2=2(25-2x 2)25-x 2, 令S ′(x)=0,解得x =522(x =-522舍去). 当x ∈(0,522)时,S ′(x)>0;当x ∈(522,5)时,S ′(x)<0, ∴在x =522时,S(x)取得极大值,也是最大值S(522)=25. 因此当x =522时,它的内接矩形面积最大,最大值为25. 设计说明导数是高等数学最为基础的内容,是中学必选的重要知识之一.由于导数应用的广泛性,可为解决所学过的函数问题提供更有效的工具或更一般性的方法,导数方法与初等方法相比,对技巧性的要求有所降低,因此运用导数方法可以简捷地解决相关问题.可以说导数的加入使函数这部分内容更加充实,也显得更加重要.但本部分也是难点,因此设计时尽可能地以小见大,从基础题入手,使学生循序渐近地掌握好本章内容.备课资料已知m ,n 是正整数,且1<m<n ,证明(1+m)n >(1+n)m .分析:要证(1+m)n >(1+n)m 成立,只要证ln(1+m)n >ln(1+n)m ,即要证1m ln(1+m)>1nln(1+n)成立.因为m<n ,所以,设函数f(x)=1xln(1+x),只要证f(x)在[2,+∞)上是减函数即可.证明:设函数f(x)=1x ln(1+x),则f ′(x)=-1x 2ln(1+x)+1x ·11+x, 即f ′(x)=1x 2[x 1+x -ln(1+x)],因为x ≥2,0<x 1+x<1,ln(1+x)≥ln3>1, 所以f ′(x)<0.所以f(x)在[2,+∞)内是减函数,而m<n ,所以f(m)>f(n),即1m ln(1+m)>1nln(1+n),从而有(1+m)n >(1+n)m . 评注:这类非明显一元函数式的不等式证明问题,首先变换成某一个一元函数式分别在两个不同点处的函数值的大小比较问题,只要将这个函数式找到了,通过设函数,求导判断它的单调性,就可以解决不等式证明问题.难点在于找这个一元函数式,这就是“构造函数法”.通过这类数学方法的练习,对提高学生分析问题、解决问题的能力是有很大好处的,这也是进一步学习高等数学所需要的.(设计者:李宾)。
复习课(一) 导数及其应用导数的概念及几何意义的应用(1)近几年的高考中,导数的几何意义和切线问题是常考内容,各种题型均有可能出现.(2)利用导数的几何意义求切线方程时关键是搞清所给的点是不是切点.[考点精要];)0x ′(f =k ,即求该点处的导数值:k 求斜率))0x (f ,0x (A 已知切点(1) ;k =)1x ′(f ,即解方程))1x (f ,1x (A ,求切点k 已知斜率(2) ,0x (A 时,常需设出切点k 的切线斜率为)不是切点))(1x (f ,1x (M 已知过某点(3)求解.f(x1)-f(x0)x1-x0=k ,利用))0x (f =y ,则曲线x -1-x -e=)x (f 时,≤0x 为偶函数,当)x (f 已知Ⅱ)全国卷( ]典例[f (x )在点(1,2)处的切线方程是________..x +1-x e=)x -(f ,0<x ,则-0>x 设 ]解析[ ∵f (x )为偶函数,∴f (-x )=f (x ),.x +1-x e=)x (f ∴ ,1+1-x e =)x ′(f 时,0>x 当∵ 2.=1+1=1+1-1e=′(1)f ∴ ∴曲线y =f (x )在点(1,2)处的切线方程为y -2=2(x -1),即2x -y =0.[答案] 2x -y =0[类题通法](1)利用导数的几何意义解决切线问题的两种情况①若已知点是切点,则在该点处的切线斜率就是该点处的导数.②如果已知点不是切点,则应先出切点,再借助两点连线的斜率公式进行求解. =y 与l 处的切线(1,1)在3x =y 曲线与直线相切并不一定只有一个公共点,例如,(2).8),-2-(的图象还有一个交点3x [题组训练])(处的切线方程为1),-1-(在点xx +2=y .曲线1 A .y =2x +1B .y =2x -1C .y =-2x -3D .y =-2x -2,2(x +2)2=x′(x +2)-x(x +2)′(x +2)2=′y ∵ A 解析:选 ,2=2(-1+2)2=1=-x ′|y =k ∴ ∴切线方程为:y +1=2(x +1),即y =2x +1.=a 相切,则1+x 2)+a (+2ax =y 处的切线与曲线(1,1)在点x ln +x =y .已知曲线2________.,1x+1=′y ∴,x ln +x =y ∵解析: 2.=|x =1′y ∴曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1.相切,1+x 2)+a (+2ax =y 与曲线1-x 2=y ∵法一: ∴a ≠0(当a =0时曲线变为y =2x +1与已知直线平行).⎩⎪⎨⎪⎧y =2x -1,y =ax2+(a +2)x +1,由 0.=2+ax +2ax ,得y 消去 8.=a ,解得0=a 8-2a =Δ由 .1)+0x 2)+a (+20ax ,0x (相切于点1+x 2)+a (+2ax =y 与曲线1-x 2=y 法二:设 ∵y ′=2ax +(a +2),.2)+a (+0ax 2=|x =x0′y ∴ ⎩⎪⎨⎪⎧x0=-12,a =8.解得⎩⎪⎨⎪⎧2ax0+(a +2)=2,ax20+(a +2)x0+1=2x0-1,由 答案:8导数与函数的单调性(1)题型既有选择题、填空题也有解答题,若以选择题、填空题的形式出现,则难度以中、低档为主,若以解答题形式出现,难度则以中等偏上为主,主要考查求函数的单调区间、证明或判断函数的单调性等问题。
人教A版选修2《导数的几何意义》教案及教学反思一、教师教学设计1.1 教学目标1.理解导数的定义及几何意义;2.掌握导数的概念、符号和实质;3.能够利用导数求一元函数的单调性和极值;4.能够应用导数求解相关最值问题。
1.2 教学内容导数的概念及几何意义1.3 教学重点1.导数的概念的理解;2.导数的几何意义的掌握。
1.4 教学难点1.导数的符号的理解;2.导数的实质的理解。
1.5 教学方法1.讲授法:讲解导数的定义及几何意义,并通过实例演示导数的计算方法;2.案例法:通过一些简单的案例,帮助学生理解导数的概念;3.组织讨论法:通过讨论和合作,帮助学生更好地掌握导数的概念和几何意义。
1.6 教学过程第一步:导入导数的概念1.在黑板上写出导数的定义;2.带领学生探讨“速度”和“斜率”之间的关系。
第二步:导数的符号及实质1.介绍导数的符号及意义;2.帮助学生理解导数的实质。
第三步:导数的几何意义1.通过实际图形,帮助学生理解导数的几何意义;2.分组讨论,让学生自己发现导数的几何意义。
第四步:导数的应用1.通过实例演示如何应用导数求解单调性和极值问题;2.让学生结合实际应用场景,自己解决相关最值问题。
1.7 教学评价1.通过讨论和合作,学生能够更好地掌握导数的概念和几何意义;2.学生能够熟练地运用导数,求解一元函数的单调性和极值;3.学生能够应用导数求解相关最值问题。
二、教学反思本节课使用了讲授法、案例法和组织讨论法,让学生更好地理解了导数的概念和几何意义。
在实践中,我发现不同的学生适合不同的教学方法。
一些学生更适合案例法,因为这可以让他们通过具体案例更深入地理解导数的概念。
另一些学生更适合组织讨论法,因为他们更喜欢合作学习,并通过讨论和交流来理解概念。
此外,通过案例和实例分析的模式,学生的学习兴趣得到了增强。
在处理实际问题时,学生能够更快地反应和解决问题。
另外,导数的公式计算也是学生较难掌握的部分。
为了更好地帮助学生掌握计算步骤,我在教学过程中设计了许多具体例子,并兼顾训练学生的能力,即教师既要根据学生的实际情况进行启发式讲解,也要有目的地培养学生的计算能力。
§1.2.2基本初等函数的导数公式及导数的运算法则教学目标:1.熟练掌握基本初等函数的导数公式; 2.掌握导数的四则运算法则;3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。
教学重点:基本初等函数的导数公式、导数的四则运算法则教学难点: 基本初等函数的导数公式和导数的四则运算法则的应用 教学过程: 一.创设情景四种常见函数y c =、y x =、2y x =、1y x=的导数公式及应用二.新课讲授(一)基本初等函数的导数公式表)(2)推论:[]''()()cf x cf x =(常数与函数的积的导数,等于常数乘函数的导数)三.典例分析例1.假设某国家在20年期间的年均通货膨胀率为5%,物价p (单位:元)与时间t (单位:年)有如下函数关系0()(15%)t p t p =+,其中0p 为0t =时的物价.假定某种商品的01p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)? 解:根据基本初等函数导数公式表,有'() 1.05ln1.05t p t =所以'10(10) 1.05ln1.050.08p =≈(元/年) 因此,在第10个年头,这种商品的价格约为0.08元/年的速度上涨. 例2.根据基本初等函数的导数公式和导数运算法则,求下列函数的导数. (1)323y x x =-+(2)y =xx --+1111; (3)y =x · sin x · ln x ;(4)y =xx 4; (5)y =xxln 1ln 1+-.(6)y =(2 x 2-5 x +1)e x(7) y =xx x xx x sin cos cos sin +-【点评】① 求导数是在定义域内实行的.② 求较复杂的函数积、商的导数,必须细心、耐心.例3日常生活中的饮水通常是经过净化的.随着水纯净度的提高,所需净化费用不断增加.已知将1吨水净化到纯净度为%x 时所需费用(单位:元)为5284()(80100)100c x x x=<<-求净化到下列纯净度时,所需净化费用的瞬时变化率:(1)90% (2)98% 解:净化费用的瞬时变化率就是净化费用函数的导数.''''252845284(100)5284(100)()()100(100)x x c x x x ⨯--⨯-==-- 20(100)5284(1)(100)x x ⨯--⨯-=-25284(100)x =- (1)因为'25284(90)52.84(10090)c ==-,所以,纯净度为90%时,费用的瞬时变化率是52.84元/吨.(2)因为'25284(98)1321(10090)c ==-,所以,纯净度为98%时,费用的瞬时变化率是1321元/吨.函数()f x 在某点处导数的大小表示函数在此点附近变化的快慢.由上述计算可知,''(98)25(90)c c =.它表示纯净度为98%左右时净化费用的瞬时变化率,大约是纯净度为90%左右时净化费用的瞬时变化率的25倍.这说明,水的纯净度越高,需要的净化费用就越多,而且净化费用增加的速度也越快.四.课堂练习 1.课本P 92练习2.已知曲线C :y =3 x 4-2 x 3-9 x 2+4,求曲线C 上横坐标为1的点的切线方程;(y =-12 x +8)五.回顾总结(1)基本初等函数的导数公式表 (2)导数的运算法则六.布置作业§1.1.2 导数的概念学习目标1.掌握用极限给瞬时速度下的精确的定义;2.会运用瞬时速度的定义,求物体在某一时刻的瞬时速度. 一、预习与反馈(预习教材P 4~ P 6,找出疑惑之处)探究任务一:瞬时速度问题1:在高台跳水运动中,运动员有不同时刻的速度是 新知:1. 瞬时速度定义:物体在某一时刻(某一位置)的速度,叫做瞬时速度.探究任务二:导数问题2: 瞬时速度是平均速度ts∆∆当t ∆趋近于0时的 导数的定义:函数()y f x =在0x x =处的瞬时变化率是0000()()lim limx x f x x f x fx x∆→∆→+∆-∆=∆∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或 即000()()()limx f x x f x f x x∆→+∆-'=∆注意:(1)。
§1.3.1函数的单调性与导数学习目标1.正确理解利用导数判断函数的单调性的原理;2.掌握利用导数判断函数单调性的方法一、预习与反馈(预习教材P 22~ P 26,找出疑惑之处)复习1:以前,我们用定义来判断函数的单调性.对于任意的两个数x 1,x 2∈I ,且当x 1<x 2时,都有 ,那么函数f (x )就是区间I 上的 函数.复习2: 'C = ;()'n x = ;(sin )'x = ;(cos )'x = ;(ln )'x = ;(log )'a x = ;()'x e = ;()'x a = ;新课探究函数的导数与函数的单调性的关系:问题:我们知道,曲线()y f x =的切线的斜率就是函数()y f x = 的导数.从函数342+-=x x y 的图像来观察其关系:在区间(2,∞+)内,切线的斜率为 ,函数()y f x =的值随着x 的增大而 ,即0y '>时,函数()y f x =在区间(2,∞+)内为 函数;在区间(∞-,2)内,切线的斜率为 ,函数()y f x =的值随着x 的增大而 ,即/y <0时,函数()y f x =在区间(∞-,2)内为 函数.思考:如果在某个区间内恒有()0f x '=,那么函数()f x 有什么特性结论:一般地,设函数()y f x =在某个区间内有导数,如果在这个区间内0y '>,那么函数()y f x =在这个区间内的增函数;如果在这个区间内0y '<,那么函数()y f x =在这个区间内的减函数.教学指导例1.判断下列函数的的单调性,并求出单调区间: (1)2()24f x x x =-+; (2)()x f x e x =-;(3)()sin ,(0,)f x x x x π=-∈; (4)32()23241f x x x x =+-+.变式:判断下列函数的的单调性,并求出单调区间:(1)3()3f x x x =+; (2)2()23f x x x =--;(3)3()3f x x x =-; (4)32()f x x x x =--.例2. 设函数f (x )=2x 3-3(a +1)x 2+6ax +8,其中a ∈R.若f (x )在(-∞,0)上为增函数,求a 的取值范围。
新课程数学选修2-2“导数及其应用”教材分析及教学反思柳铁一中——覃飞与《全日制普通高级中学数学教学大纲》相比,《普通高中数学课程标准(实验)》在“导数”在“导数”这部分教学内容、教学要求上都有了很大的变化。
“导数”是高中数学的传统内容之一,也是学生进一步学习数学和其他自然学科的基础,更是研究现代科学技术不可或缺的一项重要工具。
再次,谨与大家分享本人就《标准》和《普通高中课程标准实验教科书数学选修2-2》中对“导数及其应用”的内容与要求的变化,并谈谈本人在教学中的一些想法和反思。
一、教学内容和教学要求的变化教学内容的变化。
《标准》与《大纲》相比,去掉了极限(下文另谈),新增了定积分的概念与运算。
教学要求的变化。
《标准》强调了对概念本质的认识(导数是刻画事物变化率的数学模型),提高了对应用性的要求,降低了对计算的要求,突出了导数作为一种重要的数学思想、方法的工具性作用。
具体教学要求变化如下表所示:二、新课标教材的特点突出探索性,注重本质。
从数学知识的逻辑关系上看,极限是学习导数、定积分概念的基础。
以往的高中教材在编排上都是先讲极限的概念,再把导数作为一种特殊的极限来处理,即先讲数列的极限和函数的极限,再以极限为工具讲导数、定积分。
这种建立导数概念的方式具有严密的逻辑性,并能更好的理解极限的定义,但由于高中阶段学生认知水平的制约,部分学生在学习了极限之后,留在头脑中的印象往往是一些形式化的计算。
因此,这种形式化的极限概念就成为了学生学习的障碍,或多或少地影响了学生对导数、定积分本质的理解。
新课标教材则充分注意高中学生的认知水平与特点,不专门介绍极限的形式化定义及相关知识,不把导数作为一种增量比的极限来处理,而是直接运用大量的实际背景和具体应用(如膨胀率、速度、效率、增长率等)来反映导数思想和本质,让学生通过观察、实验、类比、归纳、抽象等数学活动,引导学生经历由平均变化率到瞬时变化率的过程,认识和理解导数的概念及其本质。
湖北省洪湖市贺龙高级中学高中数学选修2-2 导数的应用【学习目标】1.掌握利用导数研究函数的单调性,极值最值等问题;2.掌握函数与方程、数形结合、化归转化等数学思想的运用。
【重点难点】1.利用导数研究方程的根的个数;2.利用导数证明不等式。
【高考分析】2010年高考中的每一套试卷中都有对导数的考查,其考查的形式,既有客观题,也有主观题,其中以客观题形式出现的主要是考察导数的运算、几何意义及导数在求解函数单调性、极值、最值等方法的应用;以主观题形式出现的,则主要是结合不等式、方程、解析几何等方面的内容进行综合考查,同时也会考查等价转化、数形结合等数学思想方法与综合解题能力。
【学习过程】一、基础练习1.若曲线x x y -=4在点p 处的切线平行于直线03=-y x ,则点p 的坐标为 ( )A .)3,1(B .)3,1(-C .)0,1(D .)0,1(-二、学习探究例1.已知函数2)(2-=x x f ,x a x x f x g ln )1(2)()(+++=⑴已知函数)(x g 在区间)1,0(上单调递减,求实数a 的取值范围;⑵函数k x f x x h --+=)(21)1ln()(2,讨论关于x 的方程0)(=x h 根的情况。
例2.已知a b <<0,求证bb a b a a b a -<<-ln【课堂小结】【当堂检测】1.(2010陕西理科卷21题)已知函数x x f =)(,x a x g ln )(=,R a ∈,⑴若曲线)(x f y =与曲线)(x g y =相交,且在交点处有相同的切线,求a 的值及该切线的方程;⑵设函数)()()(x g x f x h -=,当)(x h 存在最小之时,求其最小值)(a ϕ的解析式。
课题:导数及应用复习小结(2)课时:23 课型:考试课(满分150分 时间:120分钟 )一、选择题(本大题共8小题,共40分,只有一个答案正确)1.函数()22)(x x f π=的导数是( )(A) x x f π4)(=' (B) x x f 24)(π=' (C) x x f 28)(π=' (D) x x f π16)(=' 2.函数x e x x f -⋅=)(的一个单调递增区间是( )(A)[]0,1- (B) []8,2 (C) []2,1 (D) []2,03.已知对任意实数x ,有()()()()f x f x g x g x -=--=,,且0x >时,()0()0f x g x ''>>,,则0x <时( )A .()0()0f x g x ''>>,B .()0()0f x g x ''><,C .()0()0f x g x ''<>,D .()0()0f x g x ''<<,4.=-+⎰dx xx x )111(3221( ) (A)872ln +(B)872ln - (C)452ln + (D)812ln +5.曲线12e x y =在点2(4e ),处的切线与坐标轴所围三角形的面积为( )A.29e 2B.24eC.22eD.2e6.设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( )7.已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有()0f x ≥,则(1)'(0)f f 的最小值为( ) A .3 B .52 C .2 D .328.设2:()e ln 21x p f x x x mx =++++在(0)+∞,内单调递增,:5q m -≥,则p 是q 的( )A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件二.填空题(本大题共6小题,共30分)9.用长为18 cm 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,则该长方体的长、宽、高各为 时,其体积最大.10.将抛物线22x y =和直线1=y 围成的图形绕y 轴旋转一周得到的几何体的体积等于11.已知函数3()128f x x x =-+在区间[3,3]-上的最大值与最小值分别为,M m ,则M m -=__.12.对正整数n ,设曲线)1(x x y n -=在x =2处的切线与y 轴交点的纵坐标为n a ,则数列1n a n ⎧⎫⎨⎬+⎩⎭的前n 项和的公式是 13.点P 在曲线323+-=x x y 上移动,设在点P 处的切线的倾斜角为为α,则α的取值范围是 14.已知函数53123-++=ax x x y (1)若函数在()+∞∞-,总是单调函数,则a 的取值范围是 . (2)若函数在),1[+∞上总是单调函数,则a 的取值范围 .(3)若函数在区间(-3,1)上单调递减,则实数a 的取值范围是 . 三.解答题(本大题共6小题,共12+12+14+14+14+14=80分) 15.设函数()e e xxf x -=-. (1)证明:()f x 的导数()2f x '≥;(2)若对所有0x ≥都有()f x ax ≥,求a 的取值范围.16.设函数3()32f x x x =-++分别在12x x 、处取得极小值、极大值.xoy 平面上点A B 、的坐标分别为11()x f x (,)、22()x f x (,),该平面上动点P 满足•4PA PB =,点Q 是点P 关于直线2(4)y x =-的对称点,.求 (1)求点A B 、的坐标; (2)求动点Q 的轨迹方程.17.已知函数c bx x ax x f -+=44ln )((x>0)在x = 1处取得极值-3-c ,其中a,b,c 为常数。
(1)试确定a,b 的值;(2)讨论函数f(x)的单调区间;(3)若对任意x>0,不等式22)(c x f -≥恒成立,求c 的取值范围。
18.已知()R a x x a ax x f ∈+++-=14)1(3)(23(1)当1-=a 时,求函数的单调区间。
(2)当R a ∈时,讨论函数的单调增区间。
(3)是否存在负实数a ,使[]0,1-∈x ,函数有最小值-3? 19.已知函数3()3.f x x x =- (1)求曲线()y f x =在点2x =处的切线方程;(2)若过点(1,)(2)A m m ≠-可作曲线()y f x =的三条切线,求实数m 的取值范围.20.已知函数()2a f x x x=+,()ln g x x x =+,其中0a >.(1)若1x =是函数()()()h x f x g x =+的极值点,求实数a 的值;(2)若对任意的[]12,1x x e ∈,(e 为自然对数的底数)都有()1f x ≥()2g x 成立,求实数a 的取值范围. 测试解析 一、选择题1.()∴==,42)(222x x x f ππ=⋅='x x f 242)(πx x f 28)(π=';或()()=⋅='⋅⋅='ππππ24222)(x x x x f x 28π(理科要求:复合函数求导) 2.∴=⋅=-.)(x xe x ex x f []=⋅-⋅='21)(x x x e e x e x f , ()[]1,012<∴>⋅-x e e x x x 选(A) 或().1,0.0)1(11)(<∴>>⋅-=-⋅⋅+⋅='----x e e x e x e x f x x x x 3.(B)数形结合4.(D ) 5.(D ) 6.(D )7.(C ) 8.(B ) 二、填空题9.2cm,1cm,1.5cm ; 设长方体的宽为x (m ),则长为2x (m),高为⎪⎭⎫ ⎝⎛-=-=230(m )35.441218<<x x xh .故长方体的体积为).230()(m 69)35.4(2)(3322<<x x x x x x V -=-=从而).1(18)35.4(1818)(2x x x x x x V -=--='令V ′(x )=0,解得x =0(舍去)或x =1,因此x =1. 当0<x <1时,V ′(x )>0;当1<x <32时,V ′(x )<0, 故在x =1处V (x )取得极大值,并且这个极大值就是V (x )的最大值。
从而最大体积V =V ′(x )=9×12-6×13(m 3),此时长方体的长为2 m ,高为1.5 m.10.π.==⎰dy x S 102π ().012210πππ==⎰y dy y (图略)11.32 12.()()/11222,:222(2)n n n x yn y n x --==-++=-+-切线方程为,令x=0,求出切线与y 轴交点的纵坐标为()012ny n =+,所以21n n a n =+,则数列1n a n ⎧⎫⎨⎬+⎩⎭的前n 项和()12122212n n n S +-==--13.⎪⎭⎫⎢⎣⎡⋃⎪⎭⎫⎢⎣⎡πππ,432,0 14. (1).3)3(;3)2(;1-≤-≥≥a a a 三、解答题15.解:(1)()f x 的导数()e e x x f x -'=+. 由于e e 2e e2x-xxx-+= ≥,故()2f x '≥.(当且仅当0x =时,等号成立). (2)令()()g x f x ax =-,则()()e e x x g x f x a a -''=-=+-,(ⅰ)若2a ≤,当0x >时,()e e20xxg x a a -'=+->-≥,故()g x 在(0)+,∞上为增函数,所以,0x ≥时,()(0)g x g ≥,即()f x ax ≥.(ⅱ)若2a >,方程()0g x '=的正根为214ln 2a a x +-=,此时,若1(0)x x ∈,,则()0g x '<,故()g x 在该区间为减函数.所以,1(0)x x ∈,时,()(0)0g x g <=,即()f x ax <,与题设()f x ax ≥相矛盾. 综上,满足条件的a 的取值范围是(]2-∞,.16.解:(1)由题意知(1)3f c =--,因此3b c c -=--,从而3b =-. 又对()f x 求导得3431()4ln 4f x ax x ax bx x'=++3(4ln 4)x a x a b =++.由题意(1)0f '=,因此40a b +=,解得12a =.(2)由(I )知3()48ln f x x x '=(0x >),令()0f x '=,解得1x =. 当01x <<时,()0f x '<,此时()f x 为减函数; 当1x >时,()0f x '>,此时()f x 为增函数.因此()f x 的单调递减区间为(01),,而()f x 的单调递增区间为(1)+,∞.(3)由(II )知,()f x 在1x =处取得极小值(1)3f c =--,此极小值也是最小值,要使2()2f x c -≥(0x >)恒成立,只需232c c ---≥.即2230c c --≥,从而(23)(1)0c c -+≥,解得32c ≥或1c -≤. 所以c 的取值范围为3(1]2⎡⎫-∞-+∞⎪⎢⎣⎭,,17.解: (1)令033)23()(23=+-='++-='x x x x f 解得11-==x x 或当1-<x 时,0)(<'x f , 当11<<-x 时,0)(>'x f ,当1>x 时,0)(<'x f所以,函数在1-=x 处取得极小值,在1=x 取得极大值,故1,121=-=x x ,4)1(,0)1(==-f f所以, 点A 、B 的坐标为)4,1(),0,1(B A -.(2) 设),(n m p ,),(y x Q ,()()4414,1,122=-+-=--∙---=∙n n m n m n m PB PA21-=PQ k ,所以21-=--m x n y ,又PQ 的中点在)4(2-=x y 上,所以⎪⎭⎫⎝⎛-+=+4222m x n y消去n m ,得()()92822=++-y x .另法:点P 的轨迹方程为(),9222=-+n m 其轨迹为以(0,2)为圆心,半径为3的圆;设点(0,2)关于y=2(x-4)的对称点为(a,b),则点Q 的轨迹为以(a,b),为圆心,半径为3的圆,由2102-=--a b ,⎪⎭⎫⎝⎛-+=+420222a b 得a=8,b=-2 18(1)(),2,-∞-∈x 或(),,2+∞∈x )(x f 递减; (),2,2-∈x )(x f 递增; (2)1、当,0=a (),2,-∞-∈x )(x f 递增;2、当,0<a ,2,2⎪⎭⎫ ⎝⎛∈ax )(x f 递增;3、当,10<<a (),2,∞-∈x 或,,2⎪⎭⎫⎝⎛+∞∈a x )(x f 递增; 当,1=a (),,+∞∞-∈x )(x f 递增;当,1>a ,2,⎪⎭⎫ ⎝⎛∞-∈a x 或(),,2+∞∈x )(x f 递增;(3)因,0<a 由②分两类(依据:单调性,极小值点是否在区间[-1,0]上是分类“契机”:1、当,2,12-≥⇔-≤a a [],2,20,1⎪⎭⎫ ⎝⎛⊆-∈a x )(x f 递增,3)1()(min -=-=f x f ,解得,243->-=a 2、当,2,12-≤⇔->a a由单调性知:3)2()(min -==af x f ,化简得:01332=-+a a ,解得,26213->±-=a 不合要求;综上,43-=a 为所求。