高二数学选修2-2导数的定义、计算及其应用
- 格式:ppt
- 大小:3.09 MB
- 文档页数:62
高中数学选修2-2知识点总结第一章 导数及其应用1. 平均变化率 xf x f x y x x ∆-∆+=∆∆)()(00 2. 导数(或瞬时变化率) x x f x x f x f x ∆-∆+='→∆)()(lim)(0000导函数(导数): xx f x x f x f x ∆-∆+='→∆)()(lim )(03. 导数的几何意义:函数y =f (x )在点x 0处的导数f '(x 0)就是曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率,即k =f '(x 0).4. 导数的运算:(1)几种常见函数的导数:①(C )′=0(C 为常数); ②(x α)′=1x αα-(x >0,Q α∈); ③(sin x )′=cos x ; ④(cos x )′=-sin x ; ⑤(e x )′=e x ; ⑥(a x )′=a x ln a (a >0,且a ≠1); ⑦xx 1)(ln =; ⑧1(log )ln a x x a =(a >0,且a ≠1).(2)导数的运算法则:①[u (x )±v (x )]′=u ′(x )±v ′(x ); ②[u (x )v (x )]′=u ′(x )v (x )+u (x )v ′(x ); ③)0)(()()()()()(])()([2=/'-'='⋅x v x v x v x u x v x u x v x u . 5. 设函数()u x ϕ=在点x 处有导数()x u x ϕ'=',函数()y f u =在点x 的对应点u 处有导数()u y f u '=',则复合函数(())y f x ϕ=在点x 处也有导数,且x u x u y y '''⋅= 或(())()()x f x f u x ϕϕ'='⋅'。
第一章导数及其应用知识点及练习题知识点1:导数概念的引入1. 导数的物理意义:瞬时速率。
一般的,函数()y f x =在0x x =处的瞬时变化率是000()()limx f x x f x x∆→+∆-∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =', 即0()f x '=000()()limx f x x f x x∆→+∆-∆2. 导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。
容易知道,割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即000()()lim ()n x n f x f x k f x x x ∆→-'==-3. 导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数. ()y f x =的导函数有时也记作y ',即0()()()limx f x x f x f x x∆→+∆-'=∆考点:导数的几何意义及其应用[例题] 已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程;(2)求曲线过点P (2,4)的切线方程; (3)求斜率为4的曲线的切线方程.[变式训练] 已知函数f(x)=x3+x -16.(1)求曲线y =f(x)在点(2,-6)处的切线的方程;(2)直线l 为曲线y =f(x)的切线,且经过原点,求直线l 的方程及切点坐标.知识点2:导数的计算1)基本初等函数的导数公式:1若()f x c =(c 为常数),则()0f x '=; 2 若()f x x α=,则1()f x xαα-'=;3 若()sin f x x =,则()cos f x x '=4 若()cos f x x =,则()sin f x x '=-;5 若()xf x a =,则()ln x f x a a '=6 若()x f x e =,则()xf x e '=7 若()log xa f x =,则1()ln f x x a '=8 若()ln f x x =,则1()f x x'=2)导数的运算法则1. [()()]()()f x g x f x g x '''±=±2. [()()]()()()()f x g x f x g x f x g x '''•=•+•3. 2()()()()()[]()[()]f x f xg x f x g x g x g x ''•-•'= 3)复合函数求导()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数 (())()y f g x g x '''=•考点:导数的求导及运算1、已知()22sin f x x x π=+-,则()'0f =2、若()sin x f x e x =,则()'f x =3.)(x f =ax 3+3x 2+2 ,4)1(=-'f ,则a=( )319.316.313.310.D C B A 4.过抛物线y=x 2上的点M )41,21(的切线的倾斜角是() A.30° B.45° C.60° D.90° 5.如果曲线2932y x =+与32y x =-在0x x =处的切线互相垂直,则0x =知识点3:导数在研究函数中的应用1.函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系:在某个区间(,)a b 内,如果()0f x '>,那么函数()y f x =在这个区间单调递增; 如果()0f x '<,那么函数()y f x =在这个区间单调递减. 2.函数的极值与导数极值反映的是函数在某一点附近的大小情况. 求函数()y f x =的极值的方法是:(1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么0()f x 是极大值;(2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么0()f x 是极小值; 4.函数的最大(小)值与导数函数极大值与最大值之间的关系.求函数()y f x =在[,]a b 上的最大值与最小值的步骤 (1) 求函数()y f x =在(,)a b 内的极值;(2) 将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的是一个最大值,最小的是最小值.考点:1.导数在研究函数单调性中的应用2.导数在求函数极值与最值中的应用题型一:导数在研究函数单调性中的应用[例题] 设函数f (x )=x e a -x +bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y=(e -1)x +4.(1)求a ,b 的值; (2)求f (x )的单调区间.[变式训练] 设函数f(x)=xekx(k ≠0).(1)讨论函数f(x)的单调性;(2)若函数f(x)在区间(-1,1)内单调递增,求k 的取值范围.题型二:导数在求函数极值与最值中的应用[例题]已知函数f(x)=-x3+ax2+bx在区间(-2,1)内,当x=-1时取极小值,当x=23时取极大值.(1)求函数y=f(x)在x=-2时的对应点的切线方程;(2)求函数y=f(x)在[-2,1]上的最大值与最小值.[变式训练] 设函数f(x)=[ax2-(4a+1)x+4a+3]e x.(1)若曲线y=f(x)在点(1,f(1))处的切线方程与x轴平行,求a;(2)若f(x)在x=2处取得极小值,求a的取值范围.知识点4:解决实际问题利用导数的知识,,求函数的最大(小)值,从而解决实际问题考点:1、导数在切线方程中的应用2、导数在单调性中的应用3、导数在极值、最值中的应用4、导数在恒成立问题中的应用题型一:导数在切线方程中的运用1.曲线3x y =在P 点处的切线斜率为k,若k=3,则P 点为( ) A.(-2,-8) B.(-1,-1)或(1,1)C.(2,8)D.(-21,-81)2.曲线53123+-=x x y ,过其上横坐标为1的点作曲线的切线,则切线的倾斜角为( ) A.6π B.4π C.3π D.π43题型二:导数在单调性中的运用1.函数32()31f x x x =-+是减函数的区间为( ) A.(2,)+∞ B.(,2)-∞ C.(,0)-∞ D.(0,2)2.关于函数762)(23+-=x x x f ,下列说法不正确的是( ) A .在区间(∞-,0)内,)(x f 为增函数 B .在区间(0,2)内,)(x f 为减函数 C .在区间(2,∞+)内,)(x f 为增函数 D .在区间(∞-,0)),2(+∞⋃内,)(x f 为增函数3.已知函数()y xf x '=的图象如右图所示(其中'()f x 是函数()f x 的导函数),下面四个图象中()y f x =的图象大致是( )4、(2010年山东21)(本小题满分12分)已知函数).(111)(R a xaax nx x f ∈--+-= (Ⅰ)当处的切线方程;在点时,求曲线))2(,2()(1f x f y a=-=(Ⅱ)当12a ≤时,讨论()f x 的单调性.题型三:导数在最值、极值中的运用1.函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =( ) A .2B. 3C. 4D.52.函数5123223+--=x x x y 在[0,3]上的最大值与最小值分别是( ) A.5 , - 15 B.5 , 4 C.- 4 , - 15 D.5 , - 163.已知函数)0()(3≠++=adcxaxxf是R上的奇函数,当1=x时)(xf取得极值-2.(1)试求a、c、d的值;(2)求)(xf的单调区间和极大值;4.设函数2312)(bxaxexxf x++=-,已知12=-=xx和为)(xf的极值点。
导数概念与运算基础知识总结知识清单 1.导数的概念函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=f (x 0+x ∆)-f (x 0),比值xy∆∆叫做函数y=f (x )在x 0到x 0+x ∆之间的平均变化率,即x y ∆∆=x x f x x f ∆-∆+)()(00。
如果当0→∆x 时,xy ∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。
即f (x 0)=0lim →∆x xy∆∆=0lim →∆x x x f x x f ∆-∆+)()(00。
说明:(1)函数f (x )在点x 0处可导,是指0→∆x 时,x y ∆∆有极限。
如果xy∆∆不存在极限,就说函数在点x 0处不可导,或说无导数。
(2)x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。
由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤(可由学生来归纳):(1)求函数的增量y ∆=f (x 0+x ∆)-f (x 0); (2)求平均变化率xy ∆∆=x x f x x f ∆-∆+)()(00;(3)取极限,得导数f’(x 0)=xyx ∆∆→∆0lim 。
2.导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f(x 0))处的切线的斜率。
也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。
相应地,切线方程为y -y 0=f /(x 0)(x -x 0)。
3.几种常见函数的导数:①0;C '= ②()1;n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-;⑤();x x e e '=⑥()ln x x a a a '=; ⑦()1ln x x '=; ⑧()1l g log a a o x e x '=.4.两个函数的和、差、积的求导法则法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: (.)'''v u v u ±=±法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即:.)('''uv v u uv +=若C 为常数,则'''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数: .)(''Cu Cu =法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:⎪⎭⎫⎝⎛v u ‘=2''v uv v u -(v ≠0)。
导数的几何意义当点趋近于点时,割线
趋近于确定的位置,这个确定位置的直线 P n P (,f ()) x 0x 0 P P n P P
).
.
.
.
高考不提分,赔付1万元,关注快乐学了解详情。
解析:图像中每点的斜率均表示这一时刻的速度.
答案:解析:4. 如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记 时刻五角星露出水面部分的图形面积为
,则导函数 的图象大致为
.
A .
B .
C
.D .
A
导函数 为单位时间内五角星出水的面积率,由图可知当一个角出来时,面积率由 开始,逐渐增多,当一个角
都出完了,则面积率一下由最大开始减小,当出最后两个角时,面积率会先增加,然后减小到 .
t S (t )(S (0)=0)y =(t )S ′()y =(t )S ′0。
导数的概念以及应用一、平均变化率(平均速度)例1.小明运动的路程S满足S(t)=14t2,求(1)小明在0秒到1秒的平均速度(2)在19秒到20秒的平均速度(3)在t1秒到t2秒的平均速度v̅=∆s∆t称为从t1秒到t2秒的平均变化率小结:对于函数y=f(x),当自变量x从x1变为x2时,函数值从f(x1)变为f(x2),它的平均变化率为:f(x2)−f(x1)x2−x1记∆x=x2−x1,∆y= f(x2)−f(x1),则∆y∆x =f(x2)−f(x1)x2−x1=f(x1+∆x)−f(x1)∆x平均变化率的几何意义:代表割线的斜率二、瞬时变化率(瞬时速度)已知函数f(x)在x=x0的瞬时变化率为lim∆x→0f(x0+∆x)−f(x0)∆x三、导数的定义一般的,函数y=f(x)在x=x0处的瞬时变化率为lim ∆x→0f(x0+∆x)−f(x0)∆x=lim∆x→0∆y∆x,我们称它为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即f′(x0)=lim∆x→0∆y∆x=lim∆x→0f(x0+∆x)−f(x0)∆x小结:求函数y =f (x )在点x 0处的导数的步骤 1. 求函数的增量,∆y = f (x 0+∆x )−f(x 0) 2. 求函数的平均变化率,∆y∆x3. 取极限,得导数四、导数的几何意义(1)切线的概念:如图,对于割线PP n ,当点P n 趋近于点P 时,割线PP n 趋近于确定的位置,这个确定位置的直线PT 称为点P 处的切线.4.(2)导数的几何意义:函数f (x )在x =x 0处的导数就是切线PT 的斜率k ,即k =li m Δx →0f x 0+Δx -f x 0Δx=f ′(x 0).题型一、导数定义的应用1.用导数的定义求下列函数的导数:()1 2()y f x x ==;()2 24()y f x x ==2.()1已知000(2)()lim 13x f x x f x x→--=△△△,求0()f x '()2若(3)2f '=,则1(3)(12)lim 1x f f x x →-+=-3. 函数f (x )在x =0可导,则lim h →af (h )-f (a )h -a=( )A .f (a )B .f ′(a )C .f ′(h )D .f (h )4.已知函数y =x 2+1的图像上一点(1,2)及邻近点(1+Δx,2+Δy ),则lim Δx →0ΔyΔx =( )A .2B .2xC .2+ΔxD .2+Δx 25.设f (x )为可导函数,且满足lim x →0f (1)-f (1-2x )2x=-1,则f ′(1)的值为( )A .2B .-1C .1D .-26.若一物体运动方程如下:(位移:m ,时间:s)s =⎩⎪⎨⎪⎧3t 2+2 (t ≥3), ①29+3(t -3)2(0≤t <3). ② 求:(1)物体在t ∈[3,5]内的平均速度; (2)物体的初速度v 0;(3)物体在t =1时的瞬时速度.7.设f ′(x 0)=0,则曲线y =f (x )在点(x 0,f (x 0))处的切线( )A .不存在B .与x 轴平行或重合C .与x 轴垂直D .与x 轴斜交8.设f (x )=2x ,则lim x →af (x )-f (a )a -x等于( )A.-2a B.2aC.-2a2 D.2a2题型二、求曲线的切线方程[典例] 已知曲线C:y=13x3+43,求曲线C上的横坐标为2的点处的切线方程.【小结】1.过曲线上一点求切线方程的三个步骤2.求过曲线y=f(x)外一点P(x1,y1)的切线方程的六个步骤(1)设切点(x0,f(x0)).(2)利用所设切点求斜率k=f′(x0)=li mΔx→0f x+Δx-f x0Δx.(3)用(x0,f(x0)),P(x1,y1)表示斜率.(4)根据斜率相等求得x0,然后求得斜率k.(5)根据点斜式写出切线方程.(6)将切线方程化为一般式.【练习】过点(1,-1)且与曲线y=x3-2x相切的直线方程为( )A.x-y-2=0或5x+4y-1=0B.x-y-2=0C.x-y-2=0或4x+5y+1=0D.x-y+2=0题型三、求切点坐标【小结】求切点坐标可以按以下步骤进行(1)设出切点坐标;(2)利用导数或斜率公式求出斜率;(3)利用斜率关系列方程,求出切点的横坐标;(4)把横坐标代入曲线或切线方程,求出切点纵坐标[典例] 已知抛物线y=2x2+1分别满足下列条件,请求出切点的坐标.(1)切线的倾斜角为45°.(2)切线平行于直线4x-y-2=0.(3)切线垂直于直线x+8y-3=0..【练习】直线l:y=x+a(a≠0)和曲线C:y=x3-x2+1相切,则a的值为___________,切点坐标为____________.题型四:在点和过点的区别[典例] 已知曲线y =1x.(1)求曲线在点P (1,1)处的切线方程; (2)求曲线过点Q (1,0)处的切线方程.练习、当常数k 为何值时,直线y =x 与曲线y =x 2+k 相切?请求出切点.题型五、与切线有关的综合问题[典例] (1)函数y =2cos 2x 在x =π12处的切线斜率为________.(2)已知函数f (x )=ax 2+ln x 的导数为f ′(x ), ①求f (1)+f ′(1).②若曲线y =f (x )存在垂直于y 轴的切线,求实数a 的取值范围.【对点训练】1.若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 的值为( )A .-1或-2564B .-1或214C .-74或-2564D .-74或72.(2016全国卷Ⅲ)已知f(x)为偶函数,当x <0时,f(x)=f (-x )+3x ,则曲线y=f (x )在点(1,-3)处的切线方程是(2014新课标全国Ⅱ)设曲线y=ax-ln (x+1)在点(0,0)处的切线方程为y=2x ,则a=A. 0B.1C.2D.34.(2016全国卷Ⅱ)若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln (x+1)的切线,则b=5.(2014江西)若曲线y=e -x 上点P 处的切线平行于直线2x+y+1=0,则点P 的坐标是6.(2014江苏)在平面直角坐标系中,若曲线y=ax 2+xb(a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x+2y+3=0平行,则a+b= 7.(2012新课标全国)设点P 在曲线y=21e x上,点Q 在曲线y=ln (2x )上,则▕PQ ▏的最小值为A.1-ln2B.2(1-ln2)C.1+ln2D.2(1+ln2) 8.若存在过点(1,0)的直线与曲线y=x 3和y=ax 2+415x-9都相切,则a 等于 9.抛物线y=x 2上的点到直线x-y-2=0的最短距离为 A.2B.827C. 22D. 110.已知点P 在曲线y=14+x e 上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是2.切线的条数问题切线的条数问题====以切点0x 为未知数的方程的根的个数 公切线问题:(1)切点相同。